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Abstract

This paper makes a case for developing a general
Scalable Distributed Information Management System
(SDIMS) abstraction that aggregates information about
large-scale networked systems, provides detailed views
of nearby information and summary views of global in-
formation, and can serve as a basic building block for
a broad range of large-scale distributed applications.
This paper outlines the requirements of a SDIMS, de-
scribes an initial prototype, lays out key research chal-
lenges, and provides directions for tackling those is-
sues.

1 Introduction

This paper makes the case for developing a general
Scalable Distributed Information Management System
(SDIMS) abstraction that aggregates information about
large-scale networked systems and that can serve as a
basic building block for a broad range of large-scale
distributed applications. The paper then describes our
initial efforts for constructing such an abstraction as a
peer-to-peer system, focusing on both the promising
high-level properties of such an approach and the key
research challenges in realizing this goal.

We speculate that a SDIMS in a networked system
would provide a “distributed operating systems back-
bone” and facilitate the development and deployment
of new distributed services. For example, monitoring,
querying, and reacting to changes in the state of a dis-
tributed system are core components of applications
such as system management [8, 16], data sharing and
caching [12, 14, 17, 19, 21], sensor monitoring and con-
trol [10], multicast tree formation [3, 4, 15, 18, 20], and
naming and request routing [5, 6].

In these and other large scale information systems,
hierarchical aggregation is a fundamental abstraction
for scalability. Rather than expose all information to
all nodes, hierarchical aggregation allows a node to ac-
cess detailed views of nearby information and summary
views of global information. In a SDIMS based on hi-
erarchical aggregation, different nodes can therefore re-
ceive different answers to the query “find a [nearby]
node with at least 1 GB of free memory” or “find a
[nearby] copy of file foo.” A hierarchical system that
aggregates information through reduction trees [10, 15]
allows nodes to access information they care about
while maintaining system scalability.

This paper outlines the requirements of a SDIMS,
describe an initial prototype, lays out key research chal-
lenges, and provides directions for tackling those is-
sues.

2 Requirements

In order to be a general framework, a SDIMS should
have four properties. First, the system should accom-
modate large numbers of participating nodes, and it
should allow applications to install and monitor large
numbers of data attributes. Enterprise and global scale
systems today might have tens of thousands to millions
of nodes and these numbers will increase as desktop
machines give way to larger numbers of smaller de-
vices. Similarly, we hope to support many applications
and each application may track several attributes (e.g.,
the load and free memory of a system’s machines) or
millions of attributes (e.g., which files are stored on
which machines).

Second, the system should have flexibility to accom-
modate a broad range of applications and attributes.
For example, read-dominated attributes like numC-
PUs rarely change in value, while write-dominated at-
tributes like numProcesses change quite often. An ap-
proach tuned for read-dominated attributes will suffer
from high bandwidth consumption when applied for
write-dominated attributes. Conversely, an approach
tuned for write-dominated attributes may suffer from
unnecessary query latency or imprecision for read-
dominated attributes. Therefore, a SDIMS should pro-
vide a flexible mechanism that can efficiently handle
different types of attributes, and leave the policy deci-
sion of tuning read and write propagation to the appli-
cation installing an attribute.

Third, a SDIMS should provide autonomy and iso-
lation. In a large computing platform, it is natural to
arrange nodes in an organizational or an administrative
hierarchy. A SDIMS should support administrative au-
tonomy so that, for example, a system administrator can
control what information flows out of her machines and
what queries may be installed on them. And, a SDIMS
should provide isolation in which queries about a do-
main’s information can be satisfied within the domain
so that the system can operate during disconnections
and so that an external observer cannot monitor or af-
fect intra-domain queries.



Fourth, the system must be robust to node failures
and disconnections. A SDIMS should adapt to recon-
figurations in a timely fashion and should also provide
mechanisms so that applications can exploit the trade-
off between the cost of adaptation versus the consis-
tency level in the aggregated results when reconfigura-
tions occur.

3 SDIMS Architecture

We draw inspiration from two previous works: Astro-

labe and Distributed Hash Tables (DHTs).

Astrolabe [15] is a robust information management
system. Astrolabe provides the abstraction of a single
logical aggregation tree that mirrors a system’s admin-
istrative hierarchy for autonomy and isolation. It pro-
vides a general interface for installing new aggregation
functions and provides eventual consistency on its data.
Astrolabe is highly robust due to its use of an unstruc-
tured gossip protocol for disseminating information and
its strategy of replicating all aggregated attribute val-
ues for a subtree to all nodes in the subtree. This
combination allows any communication pattern to yield
eventual consistency and allows any node to answer
any query using local information. This high degree
of replication, however, may limit the system’s ability
to accommodate large numbers of attributes. Also, al-
though the approach works well for read-dominated at-
tributes, an update at one node can eventually affect the
state at all nodes, which may limit the system’s flexibil-
ity to support write-dominated attributes.

Recent research in peer-to-peer structured networks
resulted in Distributed Hash Tables (DHTSs) [3, 4, 6, 12,
13, 14, 17, 18, 19, 20, 21]—a data structure that scales
with the number of nodes and that distributes the read-
write load for different queries among the participat-
ing nodes. It is interesting to note that although these
systems export a global hash table abstraction, many
of them internally make use of what can be viewed as
a scalable system of aggregation trees to, for exam-
ple, route a request for a given key to the right DHT
node. Indeed, rather than export a general DHT inter-
face, Plaxton et al.’s [13] original application makes
use of hierarchical aggregation to allow nodes to lo-
cate nearby copies of objects. It seems appealing to
develop a SDIMS abstraction that exposes this internal
functionality in a general way so that scalable trees for
aggregation can be considered a basic system building
block alongside the distributed hash tables.

In [1], we make an initial case for the fusion of As-
trolabe aggregation abstraction with DHTs.

1. We expose a DHT system’s internal trees as an aggre-
gation abstraction by aggregating an attribute along
the tree corresponding to the hash of the attribute
name. Thus each different attribute is aggregated
along a different tree. This approach gives a SDIMS
scalability with respect to both nodes and attributes.

2. We provide a flexible API that lets applications con-
trol the propagation of reads and writes and thus
trade off update cost, read latency, replication, and
staleness.

3. We augment DHT algorithm, Pastry [17], to ensure
path convergence and path locality properties in or-
der to achieve autonomy and isolation.

4. We provide robustness to node and network re-
configurations by (a) providing temporal replication
through lazy reaggregation that guarantees eventual
consistency and (b) ensuring that our flexible API
allows demanding applications gain additional ro-
bustness by either using tunable spatial replication
of data aggregates and/or performing fast on-demand
reaggregation to augment the underlying lazy reag-
gregation.

This position paper describes the broader research
agenda. In going forward, we need to further refine
the above mentioned techniques to reach the goals of
SDIMS.

4 Scalability

Existing DHTSs can be viewed as a mesh formed of sev-
eral trees. Suppose the node responsible for a key k
is rooty. The paths from all nodes for a key k form
a tree rooted at the node root;, — say DHTtree;. By
aggregating an attribute along the tree DHTtree; for
k =hash(attribute type, attribute name), different at-
tributes will be aggregated along different trees and
hence the scalability. The experimental results in [1]
demonstrate the scalability of this approach with both
the number of nodes and the number of the attributes.

Research Issue: Composite Queries While aggre-
gating different attributes along different trees provides
scalability with respect to attributes, solving composite
queries involving two or more attributes becomes hard.
For example a probe like find a nearest machine with
load less than 20 percent and has more than 2 GB of
memory. If query compositions are known in advance,
then attributes can be grouped and can be aggregated
along one tree. For example, load and memory of ma-
chines can be aggregated along one tree if queries as
in the above example are very common. But by group-
ing extensively, we lose the property of load balancing.
This tradeoff presents a fundamental limitation of dis-
tributing attributes across trees.

Handling ad-hoc composite queries, whose compo-
sitions are not known in advance, is more complicated.
Here we outline our approach in handling the queries
with OR and AND operations: (1) a OR b: Walk along
trees corresponding to both attributes a and b. (2) a
AND b: Guess the smaller of the trees corresponding
to a and b, and compute the predicate along the tree.
Two approaches can be used to determine the size of
the trees: (a) Along with the computation of the aggre-
gation function for an attribute, maintain a count of the



number of contributing nodes or (b) Use statistical sam-
pling techniques — randomly choose a small percent-
age of nodes and evaluate the attributes. For handling
general logical expressions, convert the logical expres-
sions to their Disjunctive Normal Forms (DNF) and use
above AND operation for each conjunctive term.

S Flexibility

A SDIMS should provide flexibility for applications to
handle (1) a broad range of read and write request ra-
tios of the attributes, (2) spatial heterogeneity of the re-
quests, and (3) temporal heterogeneity of the requests.
As explained in Section 2, different attributes will have
different read write load patterns and a single policy op-
timized for one read-write ratio may be inefficient for
attributes with different read-write ratio.

The spatial heterogeneity of the requests for an at-
tribute need to be considered as for some attributes,
only few nodes perform read and write operations. For
example in a multicast session, typically, only members
post messages to the group and hence need to know
about the multicast tree information.

While an attribute like cpu-load that is set to be
updated periodically has a nice temporal homogeneity
with respect to update operations, most other attributes
like files, multicast membership, etc., will have a strong
temporal heterogeneity in the update and probe patterns
due to sudden popularity, diurnal patterns of the users,
etc.,

Our research agenda is to build a clean framework
for adaptation that provides several mechanisms with
different consistency guarantees and enable applica-
tions to choose a policy based on their requirements.

In [1], we provide three flexible API: install, update
and probe that enables application to control the propa-
gation of reads and writes and thus tradeoff update com-
munication cost, read latency, replication and staleness.
The install API takes up and down arguments to deter-
mine how many levels up any update is forwarded and
how many levels down the aggregated value is prop-
agated respectively. And during probe, the query is
sent up towards the root and might dispersed down the
tree to gather the information depending on how far up-
dates and aggregated values are propagated. In [1], we
present simulation results illustrating the effectiveness
of the flexible API in solving the first issue.

The same flexible API seems to be enough, with mi-
nor modifications, to handle the spatial and temporal
heterogeneity. The spatial heterogeneity can be sup-
ported by restricting the dispersal of aggregation values
down along the paths to only interested nodes. The tem-
poral heterogeneity can also be supported in the same
framework through supporting dynamic adaptation of
up and down values.

Several research issues arise in supporting dynamic
adaptation to temporal heterogeneity of operations: (1)

What should be the monitoring interval?, (2) What val-
ues to adapt to?, (3) How long should a lease be?,
(4) How to invalidate the leases?, and (5) How old a
value can be used in responding to a probe? We ex-
ploit the existing extensive research in distributed file
systems(e.g., [9]) and web caching(e.g., [7]) to answer
these issues.

6 Robustness

Reconfigurations are norm in a distributed system. The
straightforward approach is to reaggregate the data on
failures. But reaggregation affects availability and has
high costs [2]. Hence the two goals that we try to
achieve are: (i) to reduce the number of reconfigura-
tions to avoid costly reconfigurations and (ii) to mask
the unavailability during reconfigurations to avoid the
probe response delays. We propose two approaches —
K-way hashing and Supernodes [11], compare them an-
alytically, and discuss the pros and cons.
Reconfigurations are costly A SDIMS exposes
DHT trees for aggregation. Any change in the struc-
ture directly effects the aggregated values in the system
and hence the need for the reaggregation and the re-
quirement to reduce the frequency of reconfigurations.
Suppose m attributes are configured to be update-UP
and N be the number of nodes in the system. As-
suming a well balanced DHT, the amount of informa-
tion exchanged between nodes when a node i fails is

< 5 (logN—1) —i—):}ozglN*l s (logN — (I41))c}, where
c; denotes the children at or below level [ of the node

i (Refer to Figure 1). This is O(m.log> N) communi-
cation cost assuming a constant number of children at
each level for a node. A new node joining the network
also inflicts similar amount of communication cost.
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Fig. 1: Children of a node arranged in levels

Unavailability during reconfigurations The recon-
figurations in a SDIMS are handled in three stages: (i)
Detection DHT detects the reconfiguration and informs
the SDIMS layer, (ii) Structure repair The DHT per-
forms the repair algorithms, and (iii) Reaggregation
the SDIMS layer reaggregates the data. The probes
during the reconfigurations may be delayed or may get
stale values or both.

Replication in Space The updates can be propa-
gated to all nodes, aka full replication, to counter the
unavailability during reconfigurations. Flexible API in



our current system allows the replication of aggregated
value on all nodes so that queries perceive no delays
while guaranteeing eventual consistency. But such full
replication is inefficient as the updates have to be prop-
agated to all nodes. The flexible API also allows the
replication to only a few nodes. But this does not re-
duce the cost of reconfigurations as the reaggregation
has to be done as soon as possible to avoid staleness of
the responses.

Here we explore two other approaches that does con-
trolled replication in space that reduce the costly reag-
gregations while masking the unavailability: (1) K-way
hashing and (2) Supernodes. Both approaches achieve
the required robustness goals at the increased cost of
communication during the normal operation.

6.1 K-way Hashing

In k-way hashing, each attribute is aggregated along k
different trees. These trees are computed using precho-
sen k hash functions. Updates and probes are sent along
all of the k trees for an attribute. This approach masks
unavailability at all stages of the reconstruction in the
face of reconfigurations.

6.2 Supernodes

The key idea is that a single Nodeld is shared by multi-
ple nodes. All nodes that are part of a supernode repli-
cate the behavior of a single node in normal DHT. Two
approaches are possible in forming supernodes: (1)
Shadowing: Each node selects k shadow nodes to form
a supernode with Nodeld equal to the node’s nodeld
and (2) Clustering: Few nodes group together to form a
supernode.

Shadowing: In Shadowing technique, the number
of supernodes in the system are same as the number
of nodes. As long as one of the shadows of a node is
up, the node’s failure and recovery does not effect the
system. If a shadow of a node fails, the node creates
a new shadow. Based on the information that is shad-
owed, we have two variants: (A) shadow only DHT
connectivity information: Since the structure is main-
tained, queries can be answered by aggregating the data
and (B) shadow both connectivity information and ag-
gregation data: this is full behavioral replication at both
DHT layer and the SDIMS layer and hence applications
does not perceive any difference during a node failure.
While approach A masks DHT repair time, the data still
needs to be reaggregated. Approach B masks both un-
availability and reduce reconfiguration costs but at the
expense of extra communication cost for data shadow-
ing during normal operation.

Clustering In Clustering technique, few nodes clus-
ter together to form a supernode. When the number
of nodes increases a high threshold mark, the cluster
is split into two smaller clusters. Similarly, when the
number decreases below a low threshold mark, the clus-

ter is merged with some other cluster. The high thresh-
old mark should be greater than twice the low threshold
mark for splitting to be possible and should be much
more to avoid frequent splits and merges.

Issues in supernodes (i) How many replicas to
choose? A larger k implies stronger robustness proper-
ties but at the cost of higher bandwidth requirements.
(il) How to choose the replicas? Choosing nearby
nodes reduces the communication costs while making
the scheme vulnerable to domain failures. (iii) How
to perform reconstruction transparently? During recon-
structions both old and new supernodes has to be main-
tained. (iv) How to maintain consistency between the
replicas? Gossiping between replicas guarantee even-
tual consistency.

6.3 Analytic comparison

Assume p be the probability of a node failure and [
be the path length from a node to the root for an at-
tribute. The probability of an access failure at the node
in case of k-way hashing, Py, is (one path fails)k =
(1—(1—p)")¥ and in case of k-way shadowing, Py,ado»
is 1 — (atleast one node does not fail)! = 1 — (1 — pk)!
For k-way clustering, the probability of an access fail-
ure is similar to Pypaq0, With [ replaced by / —lgk in the
exponent.

These functions are compared in Figure 2 for [ = 10
and k = 4. Clearly, supernode approach is more robust
than K-way hashing.

_~4way hashing
“3eiway shadowing -
“4way clustering -

Probability of an access failure
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Probability of a node failure

Fig. 2: K-way hashing vs supernode approach

6.4 Discussion

While K-way hashing is simpler than supernodes, the
probability of an access failure is greater than in supern-
ode approach for same values of replication. The DHT
maintenance overheads in K-way hashing during nor-
mal operation are none but reconstruction of the DHT is
needed during reconfigurations. In Supernodes, recon-
structions can be delayed and hence no overhead during
reconfigurations but requires more overhead for normal
DHT maintenance as each node needs to keep track
about the connectivity information of k other nodes.



Clustering vs. shadowing: Shadowing has the ad-
vantage that a node has the flexibility to choose any
other node as its shadow. enable us to handle hetero-
geneity : choose more stable node as a shadow, choose
more capable node as a shadow, etc.,

Replication in time With small factor of replication
in space, in cases where all replicas are down, reaggre-
gation is necessary. In [1], we provide two-fold repli-
cation in time mechanisms: (i) lazy reaggregation, and
(i) on-demand aggregation. During lazy reaggrega-
tion, probes might get stale answer. But applications
can force on-demand reaggregation at the cost of in-
creased response time and communication cost. Lazy
reaggregation limits the bandwidth used for reconfig-
uration and hence controls the cost of reconfiguration.
Note that these approaches does not mask unavailabil-
ity during failure detection and DHT repair stages.

7 Autonomy and Isolation

In [1], we present modifications to Pastry [17] that guar-
antee autonomy and isolation requirements. By main-
taining separate leafsets for each sub-domain in which a
node is a member, a simple modification to routing pro-
tocol ensures that there is single node in each domain
to which all requests for an attribute are routed. The ex-
perimental results in [1] show that the increase in path
length due to these modifications is very minimal.

8 Conclusions

This paper makes a case for developing a general
Scalable Distributed Information Management System
(SDIMS) abstraction that aggregates information about
large-scale networked systems and that can serve as a
basic building block for a broad range of large-scale
distributed applications. It also outlines the require-
ments of a SDIMS, describe an initial prototype, lays
out key research challenges, and provides directions for
tackling those issues.
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