
A Scalable Distributed Information Management System ∗

Praveen Yalagandula
ypraveen@cs.utexas.edu

Mike Dahlin
dahlin@cs.utexas.edu

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

ABSTRACT
We present a Scalable Distributed Information Management Sys-
tem (SDIMS) thataggregatesinformation about large-scale net-
worked systems and that can serve as a basic building block for a
broad range of large-scale distributed applications by providing de-
tailed views of nearby information and summary views of global in-
formation. To serve as a basic building block, a SDIMS should have
four properties: scalability to many nodes and attributes, flexibility
to accommodate a broad range of applications, administrative iso-
lation for security and availability, and robustness to node and net-
work failures. We design, implement and evaluate a SDIMS that (1)
leverages Distributed Hash Tables (DHT) to create scalable aggre-
gation trees, (2) provides flexibility through a simple API that lets
applications control propagation of reads and writes, (3) provides
administrative isolation through simple extensions to current DHT
algorithms, and (4) achieves robustness to node and network recon-
figurations through lazy reaggregation, on-demand reaggregation,
and tunable spatial replication. Through extensive simulations and
micro-benchmark experiments, we observe that our system is an or-
der of magnitude more scalable than existing approaches, achieves
isolation properties at the cost of modestly increased read latency
in comparison to flat DHTs, and gracefully handles failures.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Network Operating Systems, Distributed Databases

General Terms
Management, Design, Experimentation

Keywords
Information Management System, Distributed Hash Tables, Net-
worked System Monitoring

∗This work is supported in part by the National Science Foun-
dation (CNS-0326001) and the Texas Advanced Technology Pro-
gram. Dahlin was also supported by an IBM Faculty Partnership
award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04,Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

1. INTRODUCTION
The goal of this research is to design and build a Scalable Dis-

tributed Information Management System (SDIMS) thataggregates
information about large-scale networked systems and that can serve
as a basic building block for a broad range of large-scale distributed
applications. Monitoring, querying, and reacting to changes in
the state of a distributed system are core components of applica-
tions such as system management [15, 31, 37, 42], service place-
ment [14, 43], data sharing and caching [18, 29, 32, 35, 46], sensor
monitoring and control [20, 21], multicast tree formation [8, 9, 33,
36, 38], and naming and request routing [10, 11]. We therefore
speculate that a SDIMS in a networked system would provide a
“distributed operating systems backbone” and facilitate the devel-
opment and deployment of new distributed services.

For a large scale information system,hierarchical aggregation
is a fundamental abstraction for scalability. Rather than expose all
information to all nodes, hierarchical aggregation allows a node to
access detailed views of nearby information and summary views of
global information. In a SDIMS based on hierarchical aggregation,
different nodes can therefore receive different answers to the query
“find a [nearby] node with at least 1 GB of free memory” or “find
a [nearby] copy of file foo.” A hierarchical system that aggregates
information through reduction trees [21, 38] allows nodes to access
information they care about while maintaining system scalability.

To be used as a basic building block, a SDIMS should have
four properties. First, the system should be scalable: it should
accommodate large numbers of participating nodes, and it should
allow applications to install and monitor large numbers of data at-
tributes. Enterprise and global scale systems today might have tens
of thousands to millions of nodes and these numbers will increase
over time. Similarly, we hope to support many applications, and
each application may track several attributes (e.g., the load and
free memory of a system’s machines) or millions of attributes (e.g.,
which files are stored on which machines).

Second, the system should haveflexibility to accommodate a
broad range of applications and attributes. For example,read-
dominatedattributes likenumCPUsrarely change in value, while
write-dominatedattributes likenumProcesseschange quite often.
An approach tuned for read-dominated attributes will consume high
bandwidth when applied to write-dominated attributes. Conversely,
an approach tuned for write-dominated attributes will suffer from
unnecessary query latency or imprecision for read-dominated at-
tributes. Therefore, a SDIMS should provide mechanisms to handle
different types of attributes and leave the policy decision of tuning
replication to the applications.

Third, a SDIMS should provideadministrative isolation. In a
large system, it is natural to arrange nodes in an organizational or
an administrative hierarchy. A SDIMS should support administra-

tive isolation in which queries about an administrative domain’s in-
formation can be satisfied within the domain so that the system can
operate during disconnections from other domains, so that an ex-
ternal observer cannot monitor or affect intra-domain queries, and
to support domain-scoped queries efficiently.

Fourth, the system must berobust to node failures and discon-
nections. A SDIMS should adapt to reconfigurations in a timely
fashion and should also provide mechanisms so that applications
can tradeoff the cost of adaptation with the consistency level in the
aggregated results when reconfigurations occur.

We draw inspiration from two previous works:Astrolabe[38]
andDistributed Hash Tables (DHTs).

Astrolabe [38] is a robust information management system. As-
trolabe provides the abstraction of a single logical aggregation tree
that mirrors a system’s administrative hierarchy. It provides a gen-
eral interface for installing new aggregation functions and provides
eventual consistency on its data. Astrolabe is robust due to its use
of an unstructured gossip protocol for disseminating information
and its strategy of replicating all aggregated attribute values for a
subtree to all nodes in the subtree. This combination allows any
communication pattern to yield eventual consistency and allows
any node to answer any query using local information. This high
degree of replication, however, may limit the system’s ability to
accommodate large numbers of attributes. Also, although the ap-
proach works well for read-dominated attributes, an update at one
node can eventually affect the state at all nodes, which may limit
the system’s flexibility to support write-dominated attributes.

Recent research in peer-to-peer structured networks resulted in
Distributed Hash Tables (DHTs) [18, 28, 29, 32, 35, 46]—a data
structure that scales with the number of nodes and that distributes
the read-write load for different queries among the participating
nodes. It is interesting to note that although these systems export
a global hash table abstraction, many of them internally make use
of what can be viewed as a scalable system of aggregation trees
to, for example, route a request for a given key to the right DHT
node. Indeed, rather than export a general DHT interface, Plaxton
et al.’s [28] original application makes use of hierarchical aggre-
gation to allow nodes to locate nearby copies of objects. It seems
appealing to develop a SDIMS abstraction that exposes this internal
functionality in a general way so that scalable trees for aggregation
can be a basic system building block alongside the DHTs.

At a first glance, it might appear to be obvious that simply fus-
ing DHTs with Astrolabe’s aggregation abstraction will result in a
SDIMS. However, meeting the SDIMS requirements forces a de-
sign to address four questions: (1) How to scalably map different
attributes to different aggregation trees in a DHT mesh? (2) How to
provide flexibility in the aggregation to accommodate different ap-
plication requirements? (3) How to adapt a global, flat DHT mesh
to attain administrative isolation property? and (4) How to provide
robustness without unstructured gossip and total replication?

The key contributions of this paper that form the foundation of
our SDIMS design are as follows.

1. We define a new aggregation abstraction that specifies both
attribute type and attribute name and that associates an aggre-
gation function with a particular attribute type. This abstrac-
tion paves the way for utilizing the DHT system’s internal
trees for aggregation and for achievingscalabilitywith both
nodes and attributes.

2. We provide a flexible API that lets applications control the
propagation of reads and writes and thus trade off update
cost, read latency, replication, and staleness.

3. We augment an existing DHT algorithm to ensurepath con-

vergenceandpath localityproperties in order to achievead-
ministrative isolation.

4. We providerobustnessto node and network reconfigurations
by (a) providing temporal replication through lazy reaggre-
gation that guarantees eventual consistency and (b) ensur-
ing that our flexible API allows demanding applications gain
additional robustness by using tunable spatial replication of
data aggregates or by performing fast on-demand reaggre-
gation to augment the underlying lazy reaggregation or by
doing both.

We have built a prototype of SDIMS. Through simulations and
micro-benchmark experiments on a number of department machines
and PlanetLab [27] nodes, we observe that the prototype achieves
scalability with respect to both nodes and attributes through use
of its flexible API, inflicts an order of magnitude lower maximum
node stress than unstructured gossiping schemes, achieves isolation
properties at a cost of modestly increased read latency compared to
flat DHTs, and gracefully handles node failures.

This initial study discusses key aspects of an ongoing system
building effort, but it does not address all issues in building a SDIMS.
For example, we believe that our strategies for providing robustness
will mesh well with techniques such assupernodes[22] and other
ongoing efforts to improve DHTs [30] for further improving ro-
bustness. Also, although splitting aggregation among many trees
improves scalability for simple queries, this approach may make
complex and multi-attribute queries more expensive compared to
a single tree. Additional work is needed to understand the signif-
icance of this limitation for real workloads and, if necessary, to
adapt query planning techniques from DHT abstractions [16, 19]
to scalable aggregation tree abstractions.

In Section 2, we explain the hierarchical aggregation abstrac-
tion that SDIMS provides to applications. In Sections 3 and 4, we
describe the design of our system for achieving the flexibility, scal-
ability, and administrative isolation requirements of a SDIMS. In
Section 5, we detail the implementation of our prototype system.
Section 6 addresses the issue of adaptation to the topological re-
configurations. In Section 7, we present the evaluation of our sys-
tem through large-scale simulations and microbenchmarks on real
networks. Section 8 details the related work, and Section 9 sum-
marizes our contribution.

2. AGGREGATION ABSTRACTION
Aggregation is a natural abstraction for a large-scale distributed

information system because aggregation provides scalability by al-
lowing a node to view detailed information about the state near it
and progressively coarser-grained summaries about progressively
larger subsets of a system’s data [38].

Our aggregation abstraction is defined across a tree spanning all
nodes in the system. Each physical node in the system is a leaf and
each subtree represents a logical group of nodes. Note that logical
groups can correspond to administrative domains (e.g., department
or university) or groups of nodes within a domain (e.g., 10 work-
stations on a LAN in CS department). An internal non-leaf node,
which we callvirtual node, is simulated by one or more physical
nodes at the leaves of the subtree for which the virtual node is the
root. We describe how to form such trees in a later section.

Each physical node haslocal datastored as a set of(attributeType,
attributeName, value) tuples such as(configuration, numCPUs,
16), (mcast membership, session foo, yes), or (file stored, foo, myI-
Paddress). The system associates anaggregation functionftype
with each attribute type, and for each level-i subtreeTi in the sys-
tem, the system defines anaggregate valueVi,type,namefor each (at-

tributeType, attributeName) pair as follows. For a (physical) leaf
nodeT0 at level0, V0,type,nameis the locally stored value for the at-
tribute type and name or NULL if no matching tuple exists. Then
the aggregate value for a level-i subtreeTi is the aggregation func-
tion for the type, ftype computed across the aggregate values of
each ofTi ’s k children:
Vi,type,name= ftype(V0

i−1,type,name,V
1
i−1,type,name, . . . ,V

k−1
i−1,type,name).

Although SDIMS allows arbitrary aggregation functions, it is of-
ten desirable that these functions satisfy thehierarchical computa-
tion property [21]: f (v1, ...,vn)= f (f (v1, ...,vs1), f (vs1+1, ...,vs2),
..., f (vsk+1, ...,vn)), wherevi is the value of an attribute at node
i. For example, the average operation, defined asavg(v1, ...,vn) =
1/n.∑n

i=0vi , does not satisfy the property. Instead, if an attribute
stores values as tuples(sum,count), the attribute satisfies the hier-
archical computation property while still allowing the applications
to compute the average from the aggregate sum and count values.

Finally, note that for a large-scale system, it is difficult or im-
possible to insist that the aggregation value returned by a probe
corresponds to the function computed over the current values at the
leaves at the instant of the probe. Therefore our system provides
only weak consistency guarantees – specifically eventual consis-
tency as defined in [38].

3. FLEXIBILITY
A major innovation of our work is enabling flexible aggregate

computation and propagation. The definition of the aggregation
abstraction allows considerable flexibility in how, when, and where
aggregate values are computed and propagated. While previous
systems [15, 29, 38, 32, 35, 46] implement a single static strategy,
we argue that a SDIMS should provideflexible computation and
propagationto efficiently support wide variety of applications with
diverse requirements. In order to provide this flexibility, we de-
velop a simple interface that decomposes the aggregation abstrac-
tion into three pieces of functionality: install, update, and probe.

This definition of the aggregation abstraction allows our system
to provide a continuous spectrum of strategies ranging from lazy
aggregate computation and propagation on reads to aggressive im-
mediate computation and propagation on writes. In Figure 1, we
illustrate both extreme strategies and an intermediate strategy. Un-
der the lazyUpdate-Localcomputation and propagation strategy,
an update (or write) only affects local state. Then, a probe (or read)
that reads a level-i aggregate value is sent up the tree to the issuing
node’s level-i ancestor and then down the tree to the leaves. The
system then computes the desired aggregate value at each layer up
the tree until the level-i ancestor that holds the desired value. Fi-
nally, the level-i ancestor sends the result down the tree to the is-
suing node. In the other extreme case of the aggressiveUpdate-All
immediate computation and propagation on writes [38], when an
update occurs, changes are aggregated up the tree, and each new
aggregate value is flooded to all of a node’s descendants. In this
case, each level-i node not only maintains the aggregate values for
the level-i subtree but also receives and locally stores copies of all
of its ancestors’ level-j (j > i) aggregation values. Also, a leaf sat-
isfies a probe for a level-i aggregate using purely local data. In an
intermediateUpdate-Upstrategy, the root of each subtree maintains
the subtree’s current aggregate value, and when an update occurs,
the leaf node updates its local state and passes the update to its
parent, and then each successive enclosing subtree updates its ag-
gregate value and passes the new value to its parent. This strategy
satisfies a leaf’s probe for a level-i aggregate value by sending the
probe up to the level-i ancestor of the leaf and then sending the ag-
gregate value down to the leaf. Finally, notice that other strategies
exist. In general, an Update-Upk-Downj strategy aggregates up to

parameter description optional
attrType Attribute Type
aggrfunc Aggregation Function
up How far upward each update is

sent (default: all)
X

down How far downward each aggre-
gate is sent (default: none)

X

domain Domain restriction (default: none) X
expTime Expiry Time

Table 1: Arguments for the install operation

thek th level and propagates the aggregate values of a node at level
l (s.t. l ≤ k) downward forj levels.

A SDIMS must provide a wide range of flexible computation and
propagation strategies to applications for it to be a general abstrac-
tion. An application should be able to choose a particular mech-
anism based on its read-to-write ratio that reduces the bandwidth
consumption while attaining the required responsiveness and pre-
cision. Note that the read-to-write ratio of the attributes that appli-
cations install vary extensively. For example, aread-dominated
attribute like numCPUsrarely changes in value, while awrite-
dominatedattribute likenumProcesseschanges quite often. An ag-
gregation strategy like Update-All works well forread-dominated
attributes but suffers high bandwidth consumption when applied for
write-dominatedattributes. Conversely, an approach like Update-
Local works well forwrite-dominatedattributes but suffers from
unnecessary query latency or imprecision forread-dominatedat-
tributes.

SDIMS also allows non-uniform computation and propagation
across the aggregation tree with different up and down parameters
in different subtrees so that applications can adapt with the spa-
tial and temporal heterogeneity of read and write operations. With
respect to spatial heterogeneity, access patterns may differ for dif-
ferent parts of the tree, requiring different propagation strategies
for different parts of the tree. Similarly with respect to temporal
heterogeneity, access patterns may change over time requiring dif-
ferent strategies over time.

3.1 Aggregation API
We provide the flexibility described above by splitting the ag-

gregation API into three functions:Install() installs an aggregation
function that defines an operation on an attribute type and speci-
fies the update strategy that the function will use,Update()inserts
or modifies a node’s local value for an attribute, andProbe()ob-
tains an aggregate value for a specified subtree. The install inter-
face allows applications to specify thek and j parameters of the
Update-Upk-Downj strategy along with the aggregation function.
The update interface invokes the aggregation of an attribute on the
tree according to corresponding aggregation function’s aggregation
strategy. The probe interface not only allows applications to obtain
the aggregated value for a specified tree but also allows a probing
node tocontinuouslyfetch the values for a specified time, thus en-
abling an application to adapt to spatial and temporal heterogeneity.
The rest of the section describes these three interfaces in detail.

3.1.1 Install
The Install operation installs an aggregation function in the sys-

tem. The arguments for this operation are listed in Table 1. The
attrTypeargument denotes the type of attributes on which this ag-
gregation function is invoked. Installed functions are soft state that
must be periodically renewed or they will be garbage collected at
expTime.

The argumentsup anddownspecify the aggregate computation

Update Strategy On Update On Probe for Global Aggregate Value On Probe for Level-1 Aggregate Value

Update-Local

Update-Up

Update-All

Figure 1: Flexible API
parameter description optional
attrType Attribute Type
attrName Attribute Name
mode Continuous or One-shot (default:

one-shot)
X

level Level at which aggregate is sought
(default: at all levels)

X

up How far up to go and re-fetch the
value (default: none)

X

down How far down to go and re-
aggregate (default: none)

X

expTime Expiry Time

Table 2: Arguments for the probe operation

and propagation strategyUpdate-Upk-Downj . Thedomainargu-
ment, if present, indicates that the aggregation function should be
installed on all nodes in the specified domain; otherwise the func-
tion is installed on all nodes in the system.

3.1.2 Update
TheUpdateoperation takes three argumentsattrType, attrName,

andvalueand creates a new (attrType, attrName, value) tuple or
updates the value of an old tuple with matchingattrTypeandattr-
Nameat a leaf node.

The update interface meshes with installed aggregate computa-
tion and propagation strategy to provide flexibility. In particular,
as outlined above and described in detail in Section 5, after a leaf
applies an update locally, the update may trigger re-computation
of aggregate values up the tree and may also trigger propagation
of changed aggregate values down the tree. Notice that our ab-
straction associates an aggregation function with only anattrType
but lets updates specify anattrNamealong with theattrType. This
technique helps achieve scalability with respect to nodes and at-
tributes as described in Section 4.

3.1.3 Probe
TheProbeoperation returns the value of an attribute to an appli-

cation. The complete argument set for the probe operation is shown
in Table 2. Along with theattrNameand theattrTypearguments, a
levelargument specifies the level at which the answers are required
for an attribute. In our implementation we choose to return results
at all levelsk < l for a level-l probe because (i) it is inexpensive as
the nodes traversed for level-l probe also contain levelk aggregates
for k < l and as we expect the network cost of transmitting the ad-
ditional information to be small for the small aggregates which we
focus and (ii) it is useful as applications can efficiently get several
aggregates with a single probe (e.g., for domain-scoped queries as
explained in Section 4.2).

Probes withmodeset tocontinuousand with finiteexpTimeen-
able applications to handle spatial and temporal heterogeneity. When
nodeA issues a continuous probe at levell for an attribute, then re-
gardless of theup anddownparameters, updates for the attribute
at any node inA’s level-l ancestor’s subtree are aggregated up to
level l and the aggregated value is propagated down along the path

from the ancestor toA. Note that continuous mode enables SDIMS
to support a distributed sensor-actuator mechanism where a sen-
sor monitors a level-i aggregate with a continuous mode probe and
triggers an actuator upon receiving new values for the probe.

Theup anddownarguments enable applications to perform on-
demand fast re-aggregation during reconfigurations, where a forced
re-aggregation is done for the corresponding levels even if the ag-
gregated value is available, as we discuss in Section 6. When
present, theup and down arguments are interpreted as described
in the install operation.

3.1.4 Dynamic Adaptation
At the API level, theupanddownarguments in install API can be

regarded as hints, since they suggest a computation strategy but do
not affect the semantics of an aggregation function. A SDIMS im-
plementation can dynamically adjust its up/down strategies for an
attribute based on its measured read/write frequency. But a virtual
intermediate node needs to know the currentup anddownpropa-
gation values to decide if the local aggregate is fresh in order to
answer a probe. This is the key reason whyupanddownneed to be
statically defined at the install time and can not be specified in the
update operation. In dynamic adaptation, we implement a lease-
based mechanism where a node issues a lease to a parent or a child
denoting that it will keep propagating the updates to that parent or
child. We are currently evaluating different policies to decide when
to issue a lease and when to revoke a lease.

4. SCALABILITY
Our design achieves scalability with respect to both nodes and at-

tributes through two key ideas. First, it carefully defines the aggre-
gation abstraction to mesh well with its underlying scalable DHT
system. Second, it refines the basic DHT abstraction to form an
Autonomous DHT (ADHT) to achieve the administrative isolation
properties that are crucial to scaling for large real-world systems.
In this section, we describe these two ideas in detail.

4.1 Leveraging DHTs
In contrast to previous systems [4, 15, 38, 39, 45], SDIMS’s ag-

gregation abstraction specifies both an attribute type and attribute
name and associates an aggregation function with a type rather than
just specifying and associating a function with a name. Installing a
single function that can operate on many different named attributes
matching a type improves scalability for “sparse attribute types”
with large, sparsely-filled name spaces. For example, to construct
a file location service, our interface allows us to install a single
function that computes an aggregate value for any named file. A
subtree’s aggregate value for (FILELOC, name) would be the ID of
a node in the subtree that stores the named file. Conversely, Astro-
labe copes with sparse attributes by having aggregation functions
compute sets or lists and suggests that scalability can be improved
by representing such sets with Bloom filters [6]. Supporting sparse
names within a type provides at least two advantages. First, when
the value associated with a name is updated, only the state associ-

001 010100

000

011 101

111

110

011 111 001 101 000 100 110010
L0

L1

L2

L3

Figure 2: The DHT tree corresponding to key 111 (DHTtree111)
and the corresponding aggregation tree.

ated with that name needs to be updated and propagated to other
nodes. Second, splitting values associated with different names
into different aggregation values allows our system to leverage Dis-
tributed Hash Tables (DHTs) to map different names to different
trees and thereby spread the function’s logical root node’s load and
state across multiple physical nodes.

Given this abstraction, scalably mapping attributes to DHTs is
straightforward. DHT systems assign a long, random ID to each
node and define an algorithm to route a request for keyk to a
noderootk such that the union of paths from all nodes forms a tree
DHTtreek rooted at the noderootk. Now, as illustrated in Figure 2,
by aggregating an attribute along the aggregation tree correspond-
ing toDHTtreek for k =hash(attribute type, attribute name), differ-
ent attributes will be aggregated along different trees.

In comparison to a scheme where all attributes are aggregated
along a single tree, aggregating along multiple trees incurs lower
maximum node stress: whereas in a single aggregation tree ap-
proach, the root and the intermediate nodes pass around more mes-
sages than leaf nodes, in a DHT-based multi-tree, each node acts as
an intermediate aggregation point for some attributes and as a leaf
node for other attributes. Hence, this approach distributes the onus
of aggregation across all nodes.

4.2 Administrative Isolation
Aggregation trees should provide administrative isolation by en-

suring that for each domain, the virtual node at the root of the
smallest aggregation subtree containing all nodes of that domain is
hosted by a node in that domain. Administrative isolation is impor-
tant for three reasons: (i) for security – so that updates and probes
flowing in a domain are not accessible outside the domain, (ii) for
availability – so that queries for values in a domain are not affected
by failures of nodes in other domains, and (iii) for efficiency – so
that domain-scoped queries can be simple and efficient.

To provide administrative isolation to aggregation trees, a DHT
should satisfy two properties:

1. Path Locality: Search paths should always be contained in
the smallest possible domain.

2. Path Convergence: Search paths for a key from different
nodes in a domain should converge at a node in that domain.

Existing DHTs support path locality [18] or can easily support it
by using the domain nearness as the distance metric [7, 17], but they
do not guarantee path convergence as those systems try to optimize
the search path to the root to reduce response latency. For example,
Pastry [32] usesprefix routingin which each node’s routing table
contains one row per hexadecimal digit in the nodeId space where
the ith row contains a list of nodes whose nodeIds differ from the
current node’s nodeId in theith digit with one entry for each pos-
sible digit value. Given a routing topology, to route a packet to
an arbitrary destination key, a node in Pastry forwards a packet to
the node with a nodeId prefix matching the key in at least one more
digit than the current node. If such a node is not known, the cur-
rent node uses an additional data structure, theleaf setcontaining

110XX

010XX
011XX

100XX

101XX

univ

dep1 dep2

key = 111XX

011XX 100XX 101XX 110XX 010XX

L1

L0

L2

Figure 3: Example shows how isolation property is violated
with original Pastry. We also show the corresponding aggre-
gation tree.

110XX

010XX
011XX

100XX

101XX

univ

dep1 dep2

key = 111XX

X

011XX 100XX 101XX 110XX 010XX

L0

L1

L2

Figure 4: Autonomous DHT satisfying the isolation property.
Also the corresponding aggregation tree is shown.

L immediate higher and lower neighbors in the nodeId space, and
forwards the packet to a node with an identical prefix but that is
numerically closer to the destination key in the nodeId space. This
process continues until the destination node appears in the leaf set,
after which the message is routed directly. Pastry’s expected num-
ber of routing steps islogn, wheren is the number of nodes, but
as Figure 3 illustrates, this algorithm does not guarantee path con-
vergence: if two nodes in a domain have nodeIds that match a key
in the same number of bits, both of them can route to a third node
outside the domain when routing for that key.

Simple modifications to Pastry’s route table construction and
key-routing protocols yield an Autonomous DHT (ADHT) that sat-
isfies the path locality and path convergence properties. As Figure 4
illustrates, whenever two nodes in a domain share the same prefix
with respect to a key and no other node in the domain has a longer
prefix, our algorithm introduces a virtual node at the boundary of
the domain corresponding to that prefix plus the next digit of the
key; such a virtual node is simulated by the existing node whose id
is numerically closest to the virtual node’s id. Our ADHT’s routing
table differs from Pastry’s in two ways. First, each node maintains
a separate leaf set for each domain of which it is a part. Second,
nodes use two proximity metrics when populating the routing tables
– hierarchical domain proximity is the primary metric and network
distance is secondary. Then, to route a packet to a global root for a
key, ADHT routing algorithm uses the routing table and the leaf set
entries to route to each successive enclosing domain’s root (the vir-
tual or real node in the domain matching the key in the maximum
number of digits). Additional details about the ADHT algorithm
are available in an extended technical report [44].

Properties. Maintaining a different leaf set for each adminis-
trative hierarchy level increases the number of neighbors that each
node tracks to(2b)∗ lgbn+c.l from (2b)∗ lgbn+c in unmodified
Pastry, whereb is the number of bits in a digit,n is the number of
nodes,c is the leaf set size, andl is the number of domain levels.
Routing requires O(lgbn+ l) steps compared to O(lgbn) steps in
Pastry; also, each routing hop may be longer than in Pastry because
the modified algorithm’s routing table prefers same-domain nodes
over nearby nodes. We experimentally quantify the additional rout-
ing costs in Section 7.

In a large system, the ADHT topology allows domains to im-

A1 A2 B1
((B1.B.,1),
(B.,1),(.,1))

((B1.B.,1),
(B.,1),(.,1))

L2

L1

L0

((B1.B.,1),
(B.,1),(.,3))((A1.A.,1),

(A.,2),(.,2))

((A1.A.,1),
(A.,1),(.,1))

((A2.A.,1),
(A.,1),(.,1))

Figure 5: Example for domain-scoped queries

prove security for sensitive attribute types by installing them only
within a specified domain. Then, aggregation occurs entirely within
the domain and a node external to the domain can neither observe
nor affect the updates and aggregation computations of the attribute
type. Furthermore, though we have not implemented this feature
in the prototype, the ADHT topology would also support domain-
restricted probes that could ensure that no one outside of a domain
can observe a probe for data stored within the domain.

The ADHT topology also enhances availability by allowing the
common case of probes for data within a domain to depend only on
a domain’s nodes. This, for example, allows a domain that becomes
disconnected from the rest of the Internet to continue to answer
queries for local data.

Aggregation trees that provide administrative isolation also en-
able the definition of simple and efficient domain-scoped aggre-
gation functions to support queries like “what is the average load
on machines in domain X?” For example, consider an aggrega-
tion function to count the number of machines in an example sys-
tem with three machines illustrated in Figure 5. Each leaf node
l updates attributeNumMachineswith a valuevl containing a set
of tuples of form (Domain, Count) for each domain of which the
node is a part. In the example, the node A1 with name A1.A. per-
forms an update with the value ((A1.A.,1),(A.,1),(.,1)). An aggre-
gation function at an internal virtual node hosted on nodeN with
child setC computes the aggregate as a set of tuples: for each do-
mainD thatN is part of, form a tuple(D,∑c∈C(count|(D,count) ∈
vc)). This computation is illustrated in the Figure 5. Now a query
for NumMachineswith level set to MAX will return the aggre-
gate values at each intermediate virtual node on the path to the
root as a set of tuples (tree level, aggregated value) from which
it is easy to extract the count of machines at each enclosing do-
main. For example, A1 would receive ((2, ((B1.B.,1),(B.,1),(.,3))),
(1, ((A1.A.,1),(A.,2),(.,2))), (0, ((A1.A.,1),(A.,1),(.,1)))). Note that
supporting domain-scoped queries would be less convenient and
less efficient if aggregation trees did not conform to the system’s
administrative structure. It would be less efficient because each in-
termediate virtual node will have to maintain a list of all values at
the leaves in its subtree along with their names and it would be less
convenient as applications that need an aggregate for a domain will
have to pick values of nodes in that domain from the list returned
by a probe and perform computation.

5. PROTOTYPE IMPLEMENTATION
The internal design of our SDIMS prototype comprises of two

layers: the Autonomous DHT (ADHT) layer manages the overlay
topology of the system and the Aggregation Management Layer
(AML) maintains attribute tuples, performs aggregations, stores
and propagates aggregate values. Given the ADHT construction
described in Section 4.2, each node implements an Aggregation
Management Layer (AML) to support the flexible API described in
Section 3. In this section, we describe the internal state and opera-
tion of the AML layer of a node in the system.

local
 MIB

MIBs
ancestor

reduction MIB
(level 1)MIBs

ancestor

MIB from
child 0X...

MIB from
child 0X...

Level 2

Level 1

Level 3

Level 0

1XXX...

10XX...

100X...

From parents0X..

To parent 0X...

−− aggregation functions

From parents

To parent 10XX...

1X..
1X..

1X..

To parent 11XX...

Node Id: (1001XXX)

1001X..

100X..

10X..

1X..

Virtual Node

Figure 6: Example illustrating the data structures and the or-
ganization of them at a node.

We refer to a store of (attribute type, attribute name, value) tuples
as a Management Information Base or MIB, following the termi-
nology from Astrolabe [38] and SNMP [34]. We refer an (attribute
type, attribute name) tuple as anattribute key.

As Figure 6 illustrates, each physical node in the system acts as
several virtual nodes in the AML: a node acts as leaf for all attribute
keys, as a level-1 subtree root for keys whose hash matches the
node’s ID inb prefix bits (whereb is the number of bits corrected
in each step of the ADHT’s routing scheme), as a level-i subtree
root for attribute keys whose hash matches the node’s ID in the
initial i ∗ b bits, and as the system’s global root for attribute keys
whose hash matches the node’s ID in more prefix bits than any
other node (in case of a tie, the first non-matching bit is ignored
and the comparison is continued [46]).

To support hierarchical aggregation, each virtual node at the root
of a level-i subtree maintains several MIBs that store (1)child MIBs
containing raw aggregate values gathered from children, (2) are-
duction MIBcontaining locally aggregated values across this raw
information, and (3) anancestor MIBcontaining aggregate values
scattereddownfrom ancestors. This basic strategy of maintaining
child, reduction, and ancestor MIBs is based on Astrolabe [38],
but our structured propagation strategy channels information that
flows up according to its attribute key and our flexible propagation
strategy only sends child updatesupand ancestor aggregate results
down as far as specified by the attribute key’s aggregation func-
tion. Note that in the discussion below, for ease of explanation, we
assume that the routing protocol is correcting single bit at a time
(b= 1). Our system, built upon Pastry, handles multi-bit correction
(b = 4) and is a simple extension to the scheme described here.

For a given virtual nodeni at leveli, eachchild MIB contains the
subset of a child’s reduction MIB that contains tuples that match
ni ’s node ID ini bits and whoseupaggregation function attribute is
at leasti. These local copies make it easy for a node to recompute
a level-i aggregate value when one child’s input changes. Nodes
maintain their child MIBs in stable storage and use a simplified
version of the Bayou log exchange protocol (sansconflict detection
and resolution) for synchronization after disconnections [26].

Virtual nodeni at level i maintains areduction MIBof tuples
with a tuple for each key present in any child MIB containing the
attribute type, attribute name, and output of the attribute type’s ag-
gregate functions applied to the children’s tuples.

A virtual nodeni at level i also maintains anancestor MIBto
store the tuples containing attribute key and a list of aggregate val-
ues at different levels scattered down from ancestors. Note that the

list for a key might contain multiple aggregate values for a same
level but aggregated at different nodes (see Figure 4). So, the ag-
gregate values are tagged not only with level information, but are
also tagged with ID of the node that performed the aggregation.

Level-0 differs slightly from other levels. Each level-0 leaf node
maintains alocal MIB rather than maintaining child MIBs and a
reduction MIB. This local MIB stores information about the local
node’s state inserted by local applications viaupdate()calls. We en-
vision various “sensor” programs and applications insert data into
local MIB. For example, one program might monitor local configu-
ration and perform updates with information such as total memory,
free memory, etc., A distributed file system might perform update
for each file stored on the local node.

Along with these MIBs, a virtual node maintains two other ta-
bles: an aggregation function table and an outstanding probes ta-
ble. An aggregation function table contains the aggregation func-
tion and installation arguments (see Table 1) associated with an at-
tribute type or an attribute type and name. Each aggregate func-
tion is installed on all nodes in a domain’s subtree, so the aggregate
function table can be thought of as a special case of the ancestor
MIB with domain functions always installedup to a root within a
specified domain anddown to all nodes within the domain. The
outstanding probes table maintains temporary information regard-
ing in-progress probes.

Given these data structures, it is simple to support the three API
functions described in Section 3.1.

Install TheInstall operation (see Table 1) installs on a domain an
aggregation function that acts on a specified attribute type. Execu-
tion of an install operation for functionaggrFuncon attribute type
attrTypeproceeds in two phases: first the install request is passed
up the ADHT tree with the attribute key(attrType, null)until it
reaches the root for that key within the specified domain. Then, the
request is flooded down the tree and installed on all intermediate
and leaf nodes.

Update When a leveli virtual node receives an update for an
attribute from a child below: it first recomputes the level-i aggre-
gate value for the specified key, stores that value in its reduction
MIB and then, subject to the function’supanddomainparameters,
passes the updated value to the appropriate parent based on the at-
tribute key. Also, the level-i (i ≥ 1) virtual node sends the updated
level-i aggregate to all its children if the function’sdownparameter
exceeds zero. Upon receipt of a level-i aggregate from a parent,
a levelk virtual node stores the value in its ancestor MIB and, if
k≥ i−down, forwards this aggregate to its children.

Probe A Probe collects and returns the aggregate value for a
specified attribute key for a specified level of the tree. As Figure 1
illustrates, the system satisfies a probe for a level-i aggregate value
using a four-phase protocol that may be short-circuited when up-
dates have previously propagated either results or partial results up
or down the tree. In phase 1, theroute probe phase, the system
routes the probe up the attribute key’s tree to either the root of the
level-i subtree or to a node that stores the requested value in its an-
cestor MIB. In the former case, the system proceeds to phase 2 and
in the latter it skips to phase 4. In phase 2, theprobe scatter phase,
each node that receives a probe request sends it to all of its children
unless the node’s reduction MIB already has a value that matches
the probe’s attribute key, in which case the node initiates phase 3
on behalf of its subtree. In phase 3, theprobe aggregation phase,
when a node receives values for the specified key from each of its
children, it executes the aggregate function on these values and ei-
ther (a) forwards the result to its parent (if its level is less thani)
or (b) initiates phase 4 (if it is at leveli). Finally, in phase 4, the
aggregate routing phasethe aggregate value is routed down to the

node that requested it. Note that in the extreme case of a function
installed withup= down= 0, a level-i probe can touch all nodes
in a level-i subtree while in the opposite extreme case of a func-
tion installed withup= down= ALL, probe is a completely local
operation at a leaf.

For probes that include phases 2 (probe scatter) and 3 (probe
aggregation), an issue is how to decide when a node should stop
waiting for its children to respond and send up its current aggre-
gate value. A node stops waiting for its children when one of three
conditions occurs: (1) all children have responded, (2) the ADHT
layer signals one or more reconfiguration events that mark all chil-
dren that have not yet responded as unreachable, or (3) a watchdog
timer for the request fires. The last case accounts for nodes that
participate in the ADHT protocol but that fail at the AML level.

At a virtual node, continuous probes are handled similarly as
one-shot probes except that such probes are stored in the outstand-
ing probe table for a time period ofexpTimespecified in the probe.
Thus each update for an attribute triggers re-evaluation of continu-
ous probes for that attribute.

We implement a lease-based mechanism for dynamic adaptation.
A level-l virtual node for an attribute can issue the lease for level-
l aggregate to a parent or a child only ifup is greater thanl or it
has leases from all its children. A virtual node at levell can issue
the lease for level-k aggregate fork > l to a child only if down≥
k− l or if it has the lease for that aggregate from its parent. Now a
probe for level-k aggregate can be answered by level-l virtual node
if it has a valid lease, irrespective of theup anddownvalues. We
are currently designing different policies to decide when to issue a
lease and when to revoke a lease and are also evaluating them with
the above mechanism.

Our current prototype does not implement access control on in-
stall, update, and probe operations but we plan to implement As-
trolabe’s [38] certificate-based restrictions. Also our current pro-
totype does not restrict the resource consumption in executing the
aggregation functions; but, ‘techniques from research on resource
management in server systems and operating systems [2, 3] can be
applied here.

6. ROBUSTNESS
In large scale systems, reconfigurations are common. Our two

main principles for robustness are to guarantee (i) read availability
– probes complete in finite time, and (ii) eventual consistency – up-
dates by a live node will be visible to probes by connected nodes
in finite time. During reconfigurations, a probe might return a stale
value for two reasons. First, reconfigurations lead to incorrectness
in the previous aggregate values. Second, the nodes needed for
aggregation to answer the probe become unreachable. Our sys-
tem also provides two hooks that applications can use for improved
end-to-end robustness in the presence of reconfigurations: (1) On-
demand re-aggregation and (2) application controlled replication.

Our system handles reconfigurations at two levels – adaptation at
the ADHT layer to ensure connectivity and adaptation at the AML
layer to ensure access to the data in SDIMS.

6.1 ADHT Adaptation
Our ADHT layer adaptation algorithm is same as Pastry’s adap-

tation algorithm [32] — the leaf sets are repaired as soon as a recon-
figuration is detected and the routing table is repaired lazily. Note
that maintaining extra leaf sets does not degrade the fault-tolerance
property of the original Pastry; indeed, it enhances the resilience
of ADHTs to failures by providing additional routing links. Due
to redundancy in the leaf sets and the routing table, updates can be
routed towards their root nodes successfully even during failures.

Reconfig

reconfig
notices
DHT

partial
DHT

complete
DHT

ends

Lazy

Time

Data

3 7 81 2 4 5 6starts

Lazy
Data

starts

Lazy
Data

starts

Lazy
Data

repairrepair

reaggr reaggr reaggr reaggr

happens

Figure 7: Default lazy data re-aggregation time line

Also note that the administrative isolation property satisfied by our
ADHT algorithm ensures that the reconfigurations in a leveli do-
main do not affect the probes for leveli in a sibling domain.

6.2 AML Adaptation
Broadly, we use two types of strategies for AML adaptation in

the face of reconfigurations: (1) Replication in time as a funda-
mental baseline strategy, and (2) Replication in space as an addi-
tional performance optimization that falls back on replication in
time when the system runs out of replicas. We provide two mecha-
nisms for replication in time. First, lazy re-aggregation propagates
already received updates to new children or new parents in a lazy
fashion over time. Second, applications can reduce the probability
of probe response staleness during such repairs through our flexible
API with appropriate setting of thedownparameter.

Lazy Re-aggregation: The DHT layer informs the AML layer
about reconfigurations in the network using the following three
function calls –newParent, failedChild,andnewChild. OnnewPar-
ent(parent, prefix), all probes in the outstanding-probes table cor-
responding toprefixare re-evaluated. If parent is not null, then ag-
gregation functions and already existing data are lazily transferred
in the background. Any new updates, installs, and probes for this
prefix are sent to the parent immediately. OnfailedChild(child, pre-
fix), the AML layer marks the child as inactive and any outstanding
probes that are waiting for data from this child are re-evaluated.
OnnewChild(child, prefix), the AML layer creates space in its data
structures for this child.

Figure 7 shows the time line for the default lazy re-aggregation
upon reconfiguration. Probes initiated between points 1 and 2 and
that are affected by reconfigurations are reevaluated by AML upon
detecting the reconfiguration. Probes that complete or start between
points 2 and 8 may return stale answers.

On-demand Re-aggregation: The default lazy aggregation
scheme lazily propagates the old updates in the system. Addition-
ally, usingup anddownknobs in the Probe API, applications can
force on-demand fast re-aggregation of updates to avoid staleness
in the face of reconfigurations. In particular, if an application de-
tects or suspects an answer as stale, then it can re-issue the probe
increasing the up and down parameters to force the refreshing of
the cached data. Note that this strategy will be useful only after the
DHT adaptation is completed (Point 6 on the time line in Figure 7).

Replication in Space: Replication in space is more challeng-
ing in our system than in a DHT file location application because
replication in space can be achieved easily in the latter by just repli-
cating the root node’s contents. In our system, however, all internal
nodes have to be replicated along with the root.

In our system, applications control replication in space usingup
anddownknobs in the Install API; with largeup anddownvalues,
aggregates at the intermediate virtual nodes are propagated to more
nodes in the system. By reducing the number of nodes that have to
be accessed to answer a probe, applications can reduce the proba-
bility of incorrect results occurring due to the failure of nodes that
do not contribute to the aggregate. For example, in a file location
application, using a non-zero positivedownparameter ensures that
a file’s global aggregate is replicated on nodes other than the root.

 0.1

 1

 10

 100

 1000

 10000

 0.0001 0.01 1 100 10000

A
vg

. n
um

be
r

of
 m

es
sa

ge
s

pe
r

op
er

at
io

n

Read to Write ratio

Update-All

Up=ALL, Down=9

Up=ALL, Down=6

Update-Up

Update-Local

Up=2, Down=0

Up=5, Down=0

Figure 8: Flexibility of our approach. With different UP and
DOWN values in a network of 4096 nodes for different read-
write ratios.

Probes for the file location can then be answered without accessing
the root; hence they are not affected by the failure of the root. How-
ever, note that this technique is not appropriate in some cases. An
aggregated value in file location system is valid as long as the node
hosting the file is active, irrespective of the status of other nodes
in the system; whereas an application that counts the number of
machines in a system may receive incorrect results irrespective of
the replication. If reconfigurations are only transient (like a node
temporarily not responding due to a burst of load), the replicated
aggregate closely or correctly resembles the current state.

7. EVALUATION
We have implemented a prototype of SDIMS in Java using the

FreePastry framework [32] and performed large-scale simulation
experiments and micro-benchmark experiments on two real net-
works: 187 machines in the department and 69 machines on the
PlanetLab [27] testbed. In all experiments, we use static up and
down values and turn off dynamic adaptation. Our evaluation sup-
ports four main conclusions. First, flexible API provides different
propagation strategies that minimize communication resources at
different read-to-write ratios. For example, in our simulation we
observe Update-Local to be efficient for read-to-write ratios be-
low 0.0001, Update-Up around 1, and Update-All above 50000.
Second, our system is scalable with respect to both nodes and at-
tributes. In particular, we find that the maximum node stress in
our system is an order lower than observed with an Update-All,
gossiping approach. Third, in contrast to unmodified Pastry which
violates path convergence property in upto 14% cases, our system
conforms to the property. Fourth, the system is robust to reconfig-
urations and adapts to failures with in a few seconds.

7.1 Simulation Experiments
Flexibility and Scalability: A major innovation of our system

is its ability to provide flexible computation and propagation of ag-
gregates. In Figure 8, we demonstrate the flexibility exposed by the
aggregation API explained in Section 3. We simulate a system with
4096 nodes arranged in a domain hierarchy with branching factor
(bf) of 16 and install several attributes with differentup anddown
parameters. We plot the average number of messages per operation
incurred for a wide range of read-to-write ratios of the operations
for different attributes. Simulations with other sizes of networks
with different branching factors reveal similar results. This graph
clearly demonstrates the benefit of supporting a wide range of com-
putation and propagation strategies. Although having a small UP

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

M
ax

im
um

 N
od

e
S

tr
es

s

Number of attributes installed

Gossip 256

Gossip 4096

Gossip 65536

DHT 256

DHT 4096

DHT 65536

Figure 9: Max node stress for a gossiping approach vs. ADHT
based approach for different number of nodes with increasing
number of sparseattributes.

value is efficient for attributes with low read-to-write ratios (write
dominated applications), the probe latency, when reads do occur,
may be high since the probe needs to aggregate the data from all
the nodes that did not send their aggregate up. Conversely, applica-
tions that wish to improve probe overheads or latencies can increase
their UP and DOWN propagation at a potential cost of increase in
write overheads.

Compared to an existing Update-all single aggregation tree ap-
proach [38], scalability in SDIMS comes from (1) leveraging DHTs
to form multiple aggregation trees that split the load across nodes
and (2) flexible propagation that avoids propagation of all updates
to all nodes. Figure 9 demonstrates the SDIMS’s scalability with
nodes and attributes. For this experiment, we build a simulator to
simulate both Astrolabe [38] (a gossiping, Update-All approach)
and our system for an increasing number ofsparseattributes. Each
attribute corresponds to the membership in a multicast session with
a small number of participants. For this experiment, the session
size is set to 8, the branching factor is set to 16, the propagation
mode for SDIMS is Update-Up, and the participant nodes perform
continuous probes for the global aggregate value. We plot the max-
imum node stress (in terms of messages) observed in both schemes
for different sized networks with increasing number of sessions
when the participant of each session performs an update operation.
Clearly, the DHT based scheme is more scalable with respect to at-
tributes than an Update-all gossiping scheme. Observe that at some
constant number of attributes, as the number of nodes increase in
the system, the maximum node stress increases in the gossiping
approach, while it decreases in our approach as the load of aggre-
gation is spread across more nodes. Simulations with other session
sizes (4 and 16) yield similar results.

Administrative Hierarchy and Robustness: Although the
routing protocol of ADHT might lead to an increased number of
hops to reach the root for a key as compared to original Pastry, the
algorithm conforms to the path convergence and locality properties
and thus provides administrative isolation property. In Figure 10,
we quantify the increased path length by comparisons with unmod-
ified Pastry for different sized networks with different branching
factors of the domain hierarchy tree. To quantify the path con-
vergence property, we perform simulations with a large number of
probe pairs – each pair probing for a random key starting from two
randomly chosen nodes. In Figure 11, we plot the percentage of
probe pairs for unmodified pastry that do not conform to the path
convergence property. When the branching factor is low, the do-
main hierarchy tree is deeper resulting in a large difference between

 0

 1

 2

 3

 4

 5

 6

 7

 10 100 1000 10000 100000

P
at

h
Le

ng
th

Number of Nodes

ADHT bf=4

ADHT bf=16

ADHT bf=64

PASTRY bf=4,16,64

Figure 10: Average path length to root in Pastry versus ADHT
for different branching factors. Note that all lines correspond-
ing to Pastry overlap.

0

2

4

6

8

10

12

14

16

10 100 1000 10000 100000

P
er

ce
nt

ag
e

of
 v

io
la

tio
ns

Number of Nodes

bf=4
bf=16
bf=64

Figure 11: Percentage of probe pairs whose paths to the root
did not conform to the path convergence property with Pastry.

Upd
at

e-
All

Upd
at

e-
Up

Upd
at

e-
Lo

ca
l0

200

400

600

800

La
te

nc
y

(in
 m

s)

Average Latency

Upd
at

e-
All

Upd
at

e-
Up

Upd
at

e-
Lo

ca
l0

1000

2000

3000

La
te

nc
y

(in
 m

s) Average Latency

(a) (b)

Figure 12: Latency of probes for aggregate at global root level
with three different modes of aggregate propagation on (a) de-
partment machines, and (b) PlanetLab machines

Pastry and ADHT in the average path length; but it is at these small
domain sizes, that the path convergence fails more often with the
original Pastry.

7.2 Testbed experiments
We run our prototype on 180 department machines (some ma-

chines ran multiple node instances, so this configuration has a to-
tal of 283 SDIMS nodes) and also on 69 machines of the Planet-
Lab [27] testbed. We measure the performance of our system with
two micro-benchmarks. In the first micro-benchmark, we install
three aggregation functions of types Update-Local, Update-Up, and
Update-All, perform update operation on all nodes for all three ag-
gregation functions, and measure the latencies incurred by probes
for the global aggregate from all nodes in the system. Figure 12

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25
 2700

 2720

 2740

 2760

 2780

 2800

 2820

 2840
La

te
nc

y
(in

 m
s)

V
al

ue
s

O
bs

er
ve

d

Time(in sec)

Values
latency

Node Killed

Figure 13: Micro-benchmark on department network showing
the behavior of the probes from a single node when failures are
happening at some other nodes. All 283 nodes assign a value of
10 to the attribute.

10

100

1000

10000

100000

0 50 100 150 200 250 300 350 400 450 500
500

550

600

650

700

La
te

nc
y

(in
 m

s)

V
al

ue
s

O
bs

er
ve

d

Time(in sec)

Values
latency

Node Killed

Figure 14: Probe performance during failures on 69 machines
of PlanetLab testbed

shows the observed latencies for both testbeds. Notice that the la-
tency in Update-Local is high compared to the Update-UP policy.
This is because latency in Update-Local is affected by the presence
of even a single slow machine or a single machine with a high la-
tency network connection.

In the second benchmark, we examine robustness. We install one
aggregation function of type Update-Up that performs sum opera-
tion on an integer valued attribute. Each node updates the attribute
with the value 10. Then we monitor the latencies and results re-
turned on the probe operation for global aggregate on one chosen
node, while we kill some nodes after every few probes. Figure 13
shows the results on the departmental testbed. Due to the nature
of the testbed (machines in a department), there is little change in
the latencies even in the face of reconfigurations. In Figure 14, we
present the results of the experiment on PlanetLab testbed. The
root node of the aggregation tree is terminated after about 275 sec-
onds. There is a 5X increase in the latencies after the death of the
initial root node as a more distant node becomes the root node after
repairs. In both experiments, the values returned on probes start
reflecting the correct situation within a short time after the failures.

From both the testbed benchmark experiments and the simula-
tion experiments on flexibility and scalability, we conclude that (1)
the flexibility provided by SDIMS allows applications to tradeoff
read-write overheads (Figure 8), read latency, and sensitivity to
slow machines (Figure 12), (2) a good default aggregation strat-
egy isUpdate-Upwhich has moderate overheads on both reads and

writes (Figure 8), has moderate read latencies (Figure 12), and is
scalable with respect to both nodes and attributes (Figure 9), and
(3) small domain sizes are the cases where DHT algorithms fail to
provide path convergence more often and SDIMS ensures path con-
vergence with only a moderate increase in path lengths (Figure 11).

7.3 Applications
SDIMS is designed as a general distributed monitoring and con-

trol infrastructure for a broad range of applications. Above, we dis-
cuss some simple microbenchmarks including a multicast member-
ship service and a calculate-sum function. Van Renesse et al. [38]
provide detailed examples of how such a service can be used for a
peer-to-peer caching directory, a data-diffusion service, a publish-
subscribe system, barrier synchronization, and voting. Addition-
ally, we have initial experience using SDIMS to construct two sig-
nificant applications: the control plane for a large-scale distributed
file system [12] and a network monitor for identifying “heavy hit-
ters” that consume excess resources.

Distributed file system control: The PRACTI (Partial Repli-
cation, Arbitrary Consistency, Topology Independence) replication
system provides a set of mechanisms for data replication over which
arbitrary control policies can be layered. We use SDIMS to provide
several key functions in order to create a file system over the low-
level PRACTI mechanisms.

First, nodes use SDIMS as a directory to handle read misses.
When a noden receives an objecto, it updates the(ReadDir, o)
attribute with the valuen; whenn discardso from its local store,
it resets(ReadDir, o)to NULL. At each virtual node, theReadDir
aggregation function simply selects a random non-null child value
(if any) and we use the Update-Up policy for propagating updates.
Finally, to locate a nearby copy of an objecto, a noden1 issues a
series of probe requests for the(ReadDir, o)attribute, starting with
level= 1 and increasing thelevel value with each repeated probe
request until a non-null node IDn2 is returned. n1 then sends a
demand read request ton2, andn2 sends the data if it has it. Con-
versely, if n2 does not have a copy ofo, it sends a nack ton1,
andn1 issues a retry probe with thedownparameter set to a value
larger than used in the previous probe in order to force on-demand
re-aggregation, which will yield a fresher value for the retry.

Second, nodes subscribe to invalidations and updates tointerest
setsof files, and nodes use SDIMS to set up and maintain per-
interest-set network-topology-sensitive spanning trees for propa-
gating this information. To subscribe to invalidations for interest
set i, a noden1 first updates the(Inval, i) attribute with its iden-
tity n1, and the aggregation function at each virtual node selects
one non-null child value. Finally,n1 probes increasing levels of the
the (Inval, i) attribute until it finds the first noden2 6= n1; n1 then
usesn2 as its parent in the spanning tree.n1 also issues a continu-
ous probe for this attribute at this level so that it is notified of any
change to its spanning tree parent. Spanning trees for streams of
pushed updates are maintained in a similar manner.

In the future, we plan to use SDIMS for at least two additional
services within this replication system. First, we plan to use SDIMS
to track the read and write rates to different objects; prefetch algo-
rithms will use this information to prioritize replication [40, 41].
Second, we plan to track the ranges of invalidation sequence num-
bers seen by each node for each interest set in order to augment
the spanning trees described above with additional “hole filling” to
allow nodes to locate specific invalidations they have missed.

Overall, our initial experience with using SDIMS for the PRAC-
TII replication system suggests that (1) the general aggregation
interface provided by SDIMS simplifies the construction of dis-
tributed applications—given the low-level PRACTI mechanisms,

we were able to construct a basic file system that uses SDIMS for
several distinct control tasks in under two weeks and (2) the weak
consistency guarantees provided by SDIMS meet the requirements
of this application—each node’s controller effectively treats infor-
mation from SDIMS as hints, and if a contacted node does not have
the needed data, the controller retries, using SDIMS on-demand re-
aggregation to obtain a fresher hint.

Distributed heavy hitter problem: The goal of the heavy hitter
problem is to identify network sources, destinations, or protocols
that account for significant or unusual amounts of traffic. As noted
by Estan et al. [13], this information is useful for a variety of appli-
cations such as intrusion detection (e.g., port scanning), denial of
service detection, worm detection and tracking, fair network allo-
cation, and network maintenance. Significant work has been done
on developing high-performance stream-processing algorithms for
identifying heavy hitters at one router, but this is just a first step;
ideally these applications would like not just one router’s views of
the heavy hitters but an aggregate view.

We use SDIMS to allow local information about heavy hitters
to be pooled into a view of global heavy hitters. For each desti-
nation IP addressIPx, a node updates the attribute(DestBW, IPx)
with the number of bytes sent toIPx in the last time window. The
aggregation function for attribute typeDestBWis installed with the
Update-UP strategy and simply adds the values from child nodes.
Nodes perform continuous probe for global aggregate of the at-
tribute and raise an alarm when the global aggregate value goes
above a specified limit. Note that only nodes sending data to a par-
ticular IP address perform probes for the corresponding attribute.
Also note that techniques from [25] can be extended to hierarchical
case to tradeoff precision for communication bandwidth.

8. RELATED WORK
The aggregation abstraction we use in our work is heavily influ-

enced by the Astrolabe [38] project. Astrolabe adopts a Propagate-
All and unstructured gossiping techniques to attain robustness [5].
However, any gossiping scheme requires aggressive replication of
the aggregates. While such aggressive replication is efficient for
read-dominatedattributes, it incurs high message cost for attributes
with a small read-to-write ratio. Our approach provides a flexi-
ble API for applications to set propagation rules according to their
read-to-write ratios. Other closely related projects include Wil-
low [39], Cone [4], DASIS [1], and SOMO [45]. Willow, DASIS
and SOMO build a single tree for aggregation. Cone builds a tree
per attribute and requires a total order on the attribute values.

Several academic [15, 21, 42] and commercial [37] distributed
monitoring systems have been designed to monitor the status of
large networked systems. Some of them are centralized where all
the monitoring data is collected and analyzed at a central host. Gan-
glia [15, 23] uses a hierarchical system where the attributes are
replicated within clusters using multicast and then cluster aggre-
gates are further aggregated along a single tree. Sophia [42] is
a distributed monitoring system designed with a declarative logic
programming model where the location of query execution is both
explicit in the language and can be calculated during evaluation.
This research is complementary to our work. TAG [21] collects
information from a large number of sensors along a single tree.

The observation that DHTs internally provide a scalable forest
of reduction trees is not new. Plaxton et al.’s [28] original paper de-
scribes not a DHT, but a system for hierarchically aggregating and
querying object location data in order to route requests to nearby
copies of objects. Many systems—building upon both Plaxton’s
bit-correcting strategy [32, 46] and upon other strategies [24, 29,
35]—have chosen to hide this power and export a simple and gen-

eraldistributed hash tableabstraction as a useful building block for
a broad range of distributed applications. Some of these systems
internally make use of the reduction forest not only for routing but
also for caching [32], but for simplicity, these systems do not gen-
erally export this powerful functionality in their external interface.
Our goal is to develop and expose the internal reduction forest of
DHTs as a similarly general and useful abstraction.

Although object location is a predominant target application for
DHTs, several other applications like multicast [8, 9, 33, 36] and
DNS [11] are also built using DHTs. All these systems implicitly
perform aggregation on some attribute, and each one of them must
be designed to handle any reconfigurations in the underlying DHT.
With the aggregation abstraction provided by our system, designing
and building of such applications becomes easier.

Internal DHT trees typically do not satisfy domain locality prop-
erties required in our system. Castro et al. [7] and Gummadi et
al. [17] point out the importance of path convergence from the per-
spective of achieving efficiency and investigate the performance of
Pastry and other DHT algorithms, respectively. SkipNet [18] pro-
vides domain restricted routing where a key search is limited to the
specified domain. This interface can be used to ensure path conver-
gence by searching in the lowest domain and moving up to the next
domain when the search reaches the root in the current domain. Al-
though this strategy guarantees path convergence, it loses the aggre-
gation tree abstraction property of DHTs as the domain constrained
routing might touch a node more than once (as it searches forward
and then backward to stay within a domain).

9. CONCLUSIONS
This paper presents a Scalable Distributed Information Manage-

ment System (SDIMS) that aggregates information in large-scale
networked systems and that can serve as a basic building block
for a broad range of applications. For large scale systems,hier-
archical aggregationis a fundamental abstraction for scalability.
We build our system by extending ideas from Astrolabe and DHTs
to achieve (i) scalability with respect to both nodes and attributes
through a new aggregation abstraction that helps leverage DHT’s
internal trees for aggregation, (ii) flexibility through a simple API
that lets applications control propagation of reads and writes, (iii)
administrative isolation through simple augmentations of current
DHT algorithms, and (iv) robustness to node and network recon-
figurations through lazy reaggregation, on-demand reaggregation,
and tunable spatial replication.

Acknowlegements
We are grateful to J.C. Browne, Robert van Renessee, Amin Vah-
dat, Jay Lepreau, and the anonymous reviewers for their helpful
comments on this work.

10. REFERENCES
[1] K. Albrecht, R. Arnold, M. Gahwiler, and R. Wattenhofer.

Join and Leave in Peer-to-Peer Systems: The DASIS
approach. Technical report, CS, ETH Zurich, 2003.

[2] G. Back, W. H. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java. In
Proc. OSDI, Oct 2000.

[3] G. Banga, P. Druschel, and J. Mogul. Resource Containers:
A New Facility for Resource Management in Server
Systems. InOSDI99, Feb. 1999.

[4] R. Bhagwan, P. Mahadevan, G. Varghese, and G. M. Voelker.
Cone: A Distributed Heap-Based Approach to Resource
Selection. Technical Report CS2004-0784, UCSD, 2004.

[5] K. P. Birman. The Surprising Power of Epidemic
Communication. InProceedings of FuDiCo, 2003.

[6] B. Bloom. Space/time tradeoffs in hash coding with
allowable errors.Comm. of the ACM, 13(7):422–425, 1970.

[7] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Exploiting Network Proximity in Peer-to-Peer Overlay
Networks. Technical Report MSR-TR-2002-82, MSR.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-bandwidth
Multicast in a Cooperative Environment. InSOSP, 2003.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A Large-scale and Decentralised Application-level
Multicast Infrastructure.IEEE JSAC (Special issue on
Network Support for Multicast Communications), 2002.

[10] J. Challenger, P. Dantzig, and A. Iyengar. A scalable and
highly available system for serving dynamic data at
frequently accessed web sites. InIn Proceedings of
ACM/IEEE, Supercomputing ’98 (SC98), Nov. 1998.

[11] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS
using a Peer-to-Peer Lookup Service. InIPTPS, 2002.

[12] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. PRACTI replication for
large-scale systems. Technical Report TR-04-28, The
University of Texas at Austin, 2004.

[13] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for
counting active flows on high speed links. InInternet
Measurement Conference 2003, 2003.

[14] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
SHARP: An architecture for secure resource peering. In
Proc. SOSP, Oct. 2003.

[15] Ganglia: Distributed Monitoring and Execution System.
http://ganglia.sourceforge.net .

[16] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What Can Peer-to-Peer Do for Databases, and Vice Versa? In
Proceedings of the WebDB, 2001.

[17] K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The Impact of DHT Routing
Geometry on Resilience and Proximity. InSIGCOMM, 2003.

[18] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. InUSITS, March 2003.

[19] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In Proceedings of the VLDB Conference, May 2003.

[20] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. InMobiCom, 2000.

[21] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks. InOSDI, 2002.

[22] D. Malkhi. Dynamic Lookup Networks. InFuDiCo, 2002.
[23] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia

distributed monitoring system: Design, implementation, and
experience. In submission.

[24] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer
Information System Based on the XOR Metric. In
Proceesings of the IPTPS, March 2002.

[25] C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated data. In
VLDB, pages 144–155, Sept. 2000.

[26] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and

A. Demers. Flexible Update Propagation for Weakly
Consistent Replication. InProc. SOSP, Oct. 1997.

[27] Planetlab.http://www.planet-lab.org .
[28] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

Nearby Copies of Replicated Objects in a Distributed
Environment. InACM SPAA, 1997.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[30] S. Ratnasamy, S. Shenker, and I. Stoica. Routing Algorithms
for DHTs: Some Open Questions. InIPTPS, March 2002.

[31] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect:
Using a Logic Language for System Health Monitoring in
Distributed Systems. InProceedings of the SIGOPS
European Workshop, 2002.

[32] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. InMiddleware, 2001.

[33] S.Ratnasamy, M.Handley, R.Karp, and S.Shenker.
Application-level Multicast using Content-addressable
Networks. InProceedings of the NGC, November 2001.

[34] W. Stallings.SNMP, SNMPv2, and CMIP. Addison-Wesley,
1993.

[35] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer lookup
service for internet applications. InACM SIGCOMM, 2001.

[36] S.Zhuang, B.Zhao, A.Joseph, R.Katz, and J.Kubiatowicz.
Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-Area Data Dissemination. InNOSSDAV, 2001.

[37] IBM Tivoli Monitoring.
www.ibm.com/software/tivoli/products/monitor .

[38] R. VanRenesse, K. P. Birman, and W. Vogels. Astrolabe: A
Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining.TOCS, 2003.

[39] R. VanRenesse and A. Bozdog. Willow: DHT, Aggregation,
and Publish/Subscribe in One Protocol. InIPTPS, 2004.

[40] A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth
constrained placement in a wan. InPODC, Aug. 2001.

[41] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and
M. Dahlin. Potential costs and benefits of long-term
prefetching for content-distribution.Elsevier Computer
Communications, 25(4):367–375, Mar. 2002.

[42] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
Information Plane for Networked Systems. InHotNets-II,
2003.

[43] R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting
service for metacomputing.Journal of Future Generation
Computing Systems, 15(5-6):757–768, Oct 1999.

[44] P. Yalagandula and M. Dahlin. SDIMS: A scalable
distributed information management system. Technical
Report TR-03-47, Dept. of Computer Sciences, UT Austin,
Sep 2003.

[45] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-Organized
Metadata Overlay for Resource Management in P2P DHT. In
IPTPS, 2003.

[46] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, UC
Berkeley, Apr. 2001.

