
July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

International Journal of Humanoid Robotics
c© World Scientific Publishing Company

RECOGNIZING BEHAVIOR IN HAND-EYE COORDINATION
PATTERNS

WEILIE YI

Microsoft Corporation One Microsoft Way
Redmond, WA 98052, USA

weiliey@microsoft.com

DANA BALLARD

Department of Computer Science
University of Texas at Austin

Austin, TX, USA
dana@cs.utexas.edu

Received Day Month Year
Revised Day Month Year
Accepted Day Month Year

Modeling human behavior is important for the design of robots as well as human-
computer interfaces that use humanoid avatars. Constructive models have been built,
but they have not captured all of the detailed structure of human behavior such as the
moment-to-moment deployment and coordination of hand, head and eye gaze used in
complex tasks. We show how this data from human subjects performing a task can be
used to program a dynamic Bayes network (DBN) which in turn can be used to recog-
nize new performance instances. As a specific demonstration we show that the steps in
a complex activity such as sandwich making can be recognized by a DBN in real time.

Keywords: Markov models; humanoid avatars ; dynamic Bayesian networks.

1. Introduction

Modeling human activity is central to a number of different areas in humanoid
robotics. One of the most important is that of human-computer interfaces. In order
to engage in a dialog with a human, a robot has to understand what the human is up
to. The human conduct of everyday activities appears simple but has resisted robust
solutions even though it has attracted considerable attention.1, 8, 10, 17–19 One reason
may be that the role of evolution in the human design has been underestimated. The
degrees of freedom of the human musculo-skeletal system, together with its control
strategies make manipulation appear facile, but only because over evolutionary
timescales hand-eye coordination strategies have been discovered and implicitly
catalogued in the basic human design.4 Thus it may be that we have to uncover
these solutions by direct observation in order to be able to duplicate them to be

1

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

2 Weilie. Yi & Dana. H. Ballard

able to enter into a discourse about the human conduct in everyday tasks that
acknowledges human spatio-temporal task constraints.2, 15

Researchers in psychology and physiology have generally reached a consensus
that most of human vision system is active.3, 7, 20 In the active vision paradigm,
vision system is actively seeks information that is relevant to current cognitive
activity.16 The non-uniform spatial distribution of photoreceptors in the retina,
which is just one observation point in a complex chain of reasoning, suggests that
the vision system cannot, and doesn’t have to, reconstruct the 3D model of the
scene in the brain veridically, but it rather samples pieces of information from the
scene by initiating eye movements and bringing the object of interest in the fovea.
Because the high resolution retinal image being processed is extremely local to the
fovea,23 the process of any non-trivial visual action is a temporal sequence of both
overt shifts of the fixation point12 and internal movements of covert focus. Thus it
is natural to model visual actions as sequences of small discrete fixations that have
specific associated image processing goals and attendant functions.

Similarly, in hand-eye coordination tasks, in addition to the gaze control system,
the rest of the the motor system also can be seen as composed of discrete steps,
with each step generally coordinated with gaze shifts. Thus such behavior consists
of high-speed segments, including the physical movement of the eyes, shifting of
internal focus, memory manipulation, and other changes of internal states. Our
hypothesis is that if we only keep ‘snapshots’ where important events happen, e.g.
an object is recognized and remembered, or a point is fixated on, we can describe the
visual behavior as a sequence of these events. If we further hypothesize that there
is a finite, or even small number of these events, or basic operations, which are
atomic, we have the basis for a visuo-motor routines theory. This theory, originally
expressed for vision,22 claims that there is a repository of precompiled programs
in the brain, each of which could be triggerred on demand when a relevant task is
present, and, these programs are assembled from a fixed set of primitive operations.
The are assumed to be wired into brain’s system and can be accessed and modified
at run time. The visual routines theory models human visual perception in a top-
down architecture: when a goal is identified, the corresponding routine is executed.
The execution of visual routines is triggered by high level cognitive system, rather
than low level stimuli. This model implies that cognition is situated: We cannot
study visual cognition by extracting it from its context.

Understanding this internal structure is essential for behavior recognition. Hu-
man behavior recognition has been extensively studied and successively applied in
various fields such as human computer interaction, context aware systems, security,
transportation, and health care. It uses sensory data, e.g. video and motion tracker
readings, to monitor and infer human activities.5 We are particularly interested
in recognizing behaviors in everyday hand-eye coordination tasks. Such tasks can
involve extensive interactions with task relevant objects. Two prominent technical
hurdles include searching for an object of interest in the scene from unsegmented
low resolution images, and building a set of behavior models that can interpret

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 3

feature vectors computed from sensory input. We solve these two problems by de-
tecting the attended object using eye tracking data without image segmentation,
and by applying a probabilistic task model which can dramatically narrow down
the choices in the inference of a sequence of activities.

Using eye gaze to recognize human attention is fairly common. Oliver13 and Liu9

investigated incorporating gaze analysis in human driver behavior modeling. Corre-
lations between certain fixation patterns and driving tasks were found that could be
used to help detect driver behavior and intention. However, few implementations in
virtual reality simulations have been reported. The most closely related work to our
system is by Yu and Ballard,25 which recognized human actions in an office setting
by parsing eye movement data and motion sensors data. The actions recognized
involve only one object, and are typically short (less than 10 seconds) and isolated.
Our system, using the same sensory input, can recognize complex behavior, e.g.
making a sandwich, which is composed of a series of actions such as spreading and
screwing, involving multiple objects. With the additional task model, we are able
to integrate the task execution history into the inference system to enhance the
efficiency of the recognition of a long sequence of actions. Philipose14 also studied
behavior recognition from interactions with multiple objects. Their approach is to
build a recipe-like multi-step task description and determine the probability of each
object being used in each step from online how-tos. Then human behavior is recog-
nized by feeding a Bayesian inference engine the name of the object being used. Our
task model is more generalized because it allows a task to be executed in different
ways. For example, some steps can be done in arbitrary orders. This gives a much
higher flexibility to the recognition system, which has the potential to recognize
arbitrarily complex and loosely defined behavior.

This paper introduces a routine-based behavior modeling framework using a ba-
sic operation set which is task independent. The active vision approach is taken, and
both visual and motor movements form the backbone of the interactions with the
environment. This system concentrates on high level visual cognition and bypasses
low level vision such as image segmentation and object recognition, assuming these
processes are available for use. Because of the marriage between visual routines and
active vision, it avoids the reconstruction of the surrounding’s complete 3D model.
Geometric information is retrieved on demand by executing proper routines, so the
system can perform tasks in a geometry independent fashion.

The central component of the system is a Markov model which captures the
interpersonal differences in solving natural tasks by executing a sequence of primi-
tive operations. A task is automatically segmented into subtasks and the execution
order is determined in a probabilistic fashion. In a very real sense the Markov model
exhibits the ability to anticipate events because ‘the past is prologue:’ Having done
a task many times allows us to experience its variations and provides us with the
ability to do them differently as a function of different environmental and internal
conditions. In addition the Markov model provides an ability to simulate the vari-
ous ways of doing the task by choosing its state values incrementally in an online

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

4 Weilie. Yi & Dana. H. Ballard

manner.
The paper focuses on the task of making a sandwich. There are over 1,000

different ways to make a peanut butter and jelly sandwich, even after obvious sym-
metries are excluded. We use human data to develop a model in a two step process.
First, hand segmented human data is automatically analyzed to find the common
segments used by humans. Second, these segments are used to build a dynamic
Bayes network model of the task.11 The Bayes network makes extensive use of data
gathered at the gaze fixation points to recognize the steps in the task in real time.

2. Recognizing sequences of visuo-motor primitives

Compared with deterministic computer agents, humans solve everday tasks in highly
diverse ways. For instance, different people make sandwiches in different ways. It
is important to identify the similarities and differences between those solutions, in
the form of behavioral routines. We start with identifying local patterns in behav-
ioral routines, and develope an algorithm to find common subsequences in different
routines. The purpose is to partition sequential behavior into segments such that
each behavior can be represented as an assembly of these segments in a certain
order. Each behavior is a sequence of behavioral primitives and solves the same
task. Since the actual planning in such a solution varies across individual subjects,
this algorithm attempts to identify common structures and patterns in different
solutions.

Since this algorithm assumes a routine-based modeling of cognitive behavior,
complex behavior is programmed with a fixed set of primitives. For example, the
following are two sample routines obtained by hand segmenting video data from
different subjects making a sandwich. They encode structurally different while func-
tionally similar behavior: Putting a slice of bread in a plate and using a knife to
spread jelly on the bread. The routines are highly abstract and are for demon-
stration purpose only, so they do not encode detailed finger movement or visual
feedback, and assume a proper context.

A closer look at these routines reveals that they share some common segments
as shown below in Table 2. Each routines is a concatenation of the three segments.
The only difference is the order. This small example is representative of much larger
data sets used in making a complete sandwich. To compare these larger data sets
we are motivated to construct an algorithm to identify these common segments
automatically. To make the description of this algorithm more accessible. we use
single letters for the segments. Thus the action ‘locate bread’ might be represented
by the single character ‘a.’

Since a behavior routine is coded as a text string, the automatic segmentation
problem can be represented as finding a small common segmentation for a set of
input strings, so that each string can be reconstructed by concatenating some or
all of the segments in a certain order. By small we mean the number of segments is
close to minimum. To simplify this problem, we assume the lengths of these strings

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 5

Routine 1 Routine 2
locate bread locate knife
puthand right puthand left
pickup right pickup left
locate plate locate bread
remember location plate puthand right
puthand right pickup right
dropoff right locate plate
locate knife remember location plate
puthand left puthand right
pickup left dropoff right
puthand left location jelly puthand left location jelly
pickup left pickup left
puthand left location plate puthand left location plate
dropoff right dropoff right

Table 1. Sample hand-segmented routines. This table shows two routines as the input to the
automatic segmentation algorithm. These routines consist the same hehavioral primitives with
different order. They can be segmented into 3 segments, as hown in Table 2

Segment 1 Segment 2 Segment 3
locate bread locate knife puthand left location jelly
puthand right puthand left pickup left
pickup right pickup left puthand left location plate
locate plate dropoff left
remember location plate
puthand right
dropoff right

Table 2. Finding common segments. The output of the automatic segmentation with input shown
in Table 1

are equal, and all the segments appear in every input string exactly once.
The input to the algorithm is a series of strings

{B(i)| i = 1, 2, . . . , N, B(i) ∈ ΣL, L > 0}

where Σ is the alphabet and L is the length of the strings. And the output of the
algorithm is

{S(j)| j = 1, 2, . . . , M,∀B(i), ∃p ∈ P (M) : B(i) = S(p1) + S(p2) + · · · + S(pM)}

where P(M) is all the permutations of integers [1, M], and + is the string concate-
nation operator.

For example, if the input behavioral routines are

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

6 Weilie. Yi & Dana. H. Ballard

B(1) abcabbcabccbbbaccbabbccaba
B(2) ccbabcabbcabbccababbaccbab
B(3) bccabaabcabbcabccbbbaccbab

then the output consists of the four segments shown below. In reconstruction, those
three input strings are corresponding to permutations 1234, 2143 and 4123 respec-
tively. If the three input strings all solve the same task, then the four segments can
be recognized as the subtasks of it, and the difference among various behaviors can
be captured by the execution order of those subtasks.

S(1) abcabbcab
S(2) ccb
S(3) bbaccbab
S(4) bccaba

Obviously, every such problem has a trivial solution S(j) ⊆ Σ: each segment is a
character in the alphabet. A solution is meaningful in term of subtask recognition
only if the number of segments is small. Even with a given number of segments,
enumerating all the possible segmentations is computationally hard. If the length
of the input strings is L, and the number of segments is M , there are

(
L

M − 1

)
=

L!
(L − M + 1)!(M − 1)!

different segmentations.a The efficiency of the searching becomes very important. So
we designed an algorithm with a greedy heuristic6 that can produce a sub-optimal
solution.

Our algorithm has two steps.

Step 1 Find all the potential segments. This step is an iterative search for all
the common substrings of all input strings. We pick an arbitrary input string
B(i∗), i∗ ∈ [1, N], compare it with another input string B(i), i &= i∗, and collect
all the segments in B(i∗) that also exist in B(i), by shifting and matching as shown
in Fig 1. Here the location of such segments in B(i∗) is important: identical sub-
strings in different locations are considered different segments. Repeat this process
on all other input strings B(i), i &= i∗, and compute the intersection of collected
segments. This intersection has all the segments in B(i) that also exists in all other
strings, i.e. the solution to the automatic segmentation problem consists of segments
selected from this collection. We denote this candidate collection as

C = {Cj | j = 1, 2, . . . , K, Cj ⊆ [1, L]}

each element of which is the location of a substring of B(i∗). Note if a substring c
is in this candidate collection, then all its non-empty substrings are candidates too.

aFor example, strings of 30 character can be segmented into 5 segments in 27405 different ways;
strings 50 characters long can be segmented into 7 segments in 15890700 different ways.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 7

Also note that the calculation is over potential strings, and that these may have
repeated elements from the alphabet. Thus the calculation only counts the number
of ways of dividing any string up, irrespective of alphabetic constitution.

(a) (b)

(c)

Fig. 1. Searching for all common substrings of a pair of input strings B(i∗) and B(i), i "= i∗. (a)-(c):
common substrings are indentified while string B(i) is shifts along B(i∗). Each of these common
substrings are candidate segments. Any substrings of a candidate segment is also a candidate
segment. For the sake of simplicity, they are not shown in this figure.

This step has a time complexity of O(L2N) in terms of comparisons, where N
is the size of the alphabet..

Step 2 Search for a combination of candidate segments in C. The goal of this step
is to find S ⊆ C such that the substrings indexed by S is

{S(j)|j = 1, 2, . . . , M,∀B(i), ∃p ∈ P (M) : B(i) = S(p1) + S(p2) + · · · + S(pM)}

which is the desired output. In general this is an NP Complete problem. Our ap-
proach is a knapsack algorithm which doesn’t guarantee an optimal solution, but
generates a sub-optimal one without having to exhaust all the combinations. The
basic idea of this greedy algorithm is to give priority to long candidate segments
when looking for a combination. First we sort C by length decreasingly, and get
C∗. Then the algorithm is a depth first search of a binary decision tree in which the
root nodes correspond to the decision “Is the longest candidate segment C∗

1 in the
segmentation?”, and generally the ith layer nodes correspond to the decision “Is the
ith longest candidate segment C∗

i in the segmentation?”. As the depth first traverse
proceeds, the combination of selected candidates, decided by the path from the root,
as shown in Fig 2, is tested for the qualification for a solution to the problem, i.e.
whether the current combination makes a segmentation of each input string B(i).
Once this criterion is met, the search stops.

This algorithm doesn’t guarantee an optimal solution and each run may generate
different segmentation. Since the complexity of optimization is exponential in the

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

8 Weilie. Yi & Dana. H. Ballard

C∗
1 C∗

1

C∗
2 C∗

2 C∗
2 C∗

2

C∗
3 C∗

3 C∗
3 C∗

3 C∗
3 C∗

3 C∗
3 C∗

3

Fig. 2. Searching for a Segmentation. The decision tree has a height of |C|, with each layer asking
the question whether segment C∗

i can be added in the segmentation given the decisions on segments
C∗

j , j < i. The blue path indicates an example solution, in which segment C∗
2 is included but C∗

1

and C∗
3 are not. The subtrees rooted at C∗

3 and C∗
3 are shown as triagles.

length of input strings, we use a greedy algorithm when dealing with long inputs
and go back to brute force when input strings are short.

A few tricks accelerate the algorithm. For example, we compressed the input
routines by encoding each primitive name with one letter, skipping all the separa-
tors. We tested this algorithm with visuo-motor routines describing a virtual human
making sandwiches and the algorithm successfully identified ten segments, i.e. ten
subtasks which can be solved with different orders. This segmentation, given in
Table 3, is the basis of the next two sections.

3. Human Data

We recorded 4 human subjects making peanut butter and jelly sandwiches. The
experimental setting is shown in Fig 3: objects are placed in the same positions as
in the virtual reality. We used an SR Research EyeLink R©II eye tracker to record
gaze movement. We then analyzed the transitions of fixation points. One of the
fixation patterns is illustrated in Fig 4(b).

Human eye movements are far more noisy and unpredictable than camera move-
ment in a computer vision system. We processed human data by clustering fixation
points and associating them to objects in the scene. Fortunately this association is
easy: Almost every fixation point is close to a certain object which is relevant to
the task. From the similarity between the two fixation pattern in Fig 4 we can see
that the design of the instruction set in our behavioral routine architecture provides
functional support for generating human like visual behavior. Furthermore, it has
the extensibility and flexibility to model human world interaction in natural tasks,
and provides a platform to study complex human visuo-motor behavior.

Table 3 summarizes the scheduling of 10 subtasks in making a peanut butter

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 9

Fig. 3. Experiment Setting. A subject is making a peanut butter sandwich with real objects which
have identical positions as in the virtual reality.

sandwich by 3 human subjectsb. Despite that some chronological constraints, e.g.
BT, PLF and KH must precede POB and JOB, have ruled out most of the 10!
orders, the number of possible orders remaining is still a large numberc. However,
experiments with additional subjects show that the orders picked by human subjects
display common features.

4. Markov Model for Task Planning

Different subjects have different orders in solving each subtask, but there are some
statistically common patterns, e.g. KH is almost always followed by one of the two
spreading subtasks, POB or JOB. This motivates us to use a Markov model to
capture, and later generate, these patterns.

Generally, we denote these subtasks as

T = {ti|i = 1, 2, . . . , N}

bWe make some assumptions such as the knife is picked up only once and is not put down until
spreading finishes.
cIf we divide the 10 subtasks into 3 stages: {BT, PLF, JLF, KH}, {POB, JOB} and {PLO, JLO,
KT, FB}, we have at least 4! × 2! × 4! = 1152 different orders

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

10 Weilie. Yi & Dana. H. Ballard

(a)

(b)

Fig. 4. Fixation Patterns in Sandwich Making. The numbers indicate order of fixations. Some
points have multiple labels because of revisits. (a) is the fixation pattern of the virtual agent,
which is controlled by handmade script, while (b) shows that of a human subject making a virtual
sandwich in the same VR setting. Each fixation point is one of the following 10 positions. Upper
row: knife, jelly bottle, jelly lid, peanut butter bottle, peanut butter lid. Lower row: the places to
put jelly lid, peanut butter lid, left slice of bread, right slice of bread.

First we compute the power set of T :

P (T) = {∅, {t1}, {t2}, . . . , {t1, t2}, . . . , T}

and then construct a graph in which the vertex set

V = P (T)

and edge set

E = {〈pi, pj〉| pi, pj ∈ V, pi ⊂ pj, |pj − pi| = 1}

In plain words, each vertex of this graph is a set of subtask that have been done,
indicating the progress in solving a complete task, while each edge is the transition
between two states, one of which has exactly one more subtask done.

Since a subtask can be executed in various of scenarios, we need to encode
the context of the subtask as well. For example, the subtask t1 of the task set
{t1, t2, t3, t4} may be executed in 8 different scenarios, taking into account the prece-
dence constraints.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 11

SEQUENTIAL TIME INTERVALS

SUBTASK
LIST

1 2 3 4 5 6 7 8 9 10
BT abc

PLF a c b
JLF bc a
KH ab c
POB a c b

JOB b c a
PLO a b c
JLO c ab
KT c ab

FB b c a

Table 3. Scheduling of Subtasks. The task is decomposed into ten subtasks including BT (putting
bread on table), PLF (taking peanut butter lid off), JLF (taking jelly lid off), KH (grabbing knife
in hand), POB (spreading peanut butter on bread), JOB (spreading jelly on bread), PLO (putting
peanut butter lid on), JLO (putting jelly lid on), KT (putting knife on table), and FB (flipping
bread to make an sandwich). Letters a, b and c denote the orders of subtasks taken by 3 subjects,
e.g. in the first 2 steps subject c put bread on the table and took jelly lid off.

∅ ! {t1}
{t2} ! {t1, t2}
{t3} ! {t1, t3}
{t4} ! {t1, t4}

{t2, t3} ! {t1, t2, t3}
{t2, t4} ! {t1, t2, t4}
{t3, t4} ! {t1, t3, t4}

{t2, t3, t4} ! {t1, t2, t3, t4}

Each of the 8 scenarios, although executing the same subtask, should be different
states. To derive the new task model, we start from the original graph, add a node
to each edge, and removed the original nodes. For example, the following transitions

. . . {t1}
(t2,p)−−−→ {t1, t2}

(t4,q)−−−→ {t1, t2, t4}

become

. . . {t1}
p−→

(
{t1}, {t1, t2}

) 1−→ {t1, t2}
q−→

(
{t1, t2}, {t1, t2, t4}

) 1−→ {t1, t2, t4}

after inserting nodes on the edges. p and q are transitional probabilities. The new
nodes are labeled as pairs of sets of subtasks, indicating the context of the subtask
being executed. These transitions then become

(
∅, {t1}

) p−→
(
{t1}, {t1, t2}

) q−→
(
{t1, t2}, {t1, t2, t4}

)

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

12 Weilie. Yi & Dana. H. Ballard

∅

{t1} {t2} {t3} . . .

t1 t2 t3

{t1, t2} {t1, t3} {t2, t3} {t2, t4} . . .

t1 t3 t4

{t1, t2, t3} {t1, t2, t4} {t1, t3, t4} {t2, t3, t4} . . .

t1 t4

...
...

...
...

...

{t1, t2} {t1, t3} {t2, t3} {t2, t4} . . .

. . .

{t1} {t2} {t3} . . .

t1

T

t1

Fig. 5. The Markovian task model represents knowledge about task planning extracted from human
experiments. Each node is a set of accomplished subtasks, which is a state in solving the task.
Each edge is a subtask that brings task solving one step closer to the end state.

after removing the original nodes. Transitional probabilities are inherited by new
edges. This new representation makes explicit which subtask is being executed with
what context, in each state. These states are the states of the task node.

The subtask node has much less states, which have a one to one correspondence
with all the subtasks. The probabilistic dependency between the task node and the
subtask node is straight forward: there is an m-to-1 mapping between the two. For
example, all the 8 different edges listed above map to subtask t1, no matter what
the context is. So the conditional probabilistic distribution matrix of node subtask
is binary: each row is all 0’s except one element, which is 1.

With this new representation of the task model, the time frame of each state
is limited to a much smaller range. Since the contextual information, i.e. which
subtasks have been executed, is known, the system doesn’t have to consider all
the scenarios. Instead, it only has to process the subtasks that have actually been
executed. Without the max and min operators in Eq. 4, we have a better estimation
of the likelihood of observing a clock reading given the current state.

After collecting human data and assigning values to transitional probabilities

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 13

in the task model, behavior recognition can be computed in a much more efficient
way. These probabilities restrain the paths through time slices in the DBN. For
example, the subtask execution order - t1 → t5 is unlikely to be taken if the
transitional probability between states {∅, {t1}} and {{t1}, {t1, t5}} is close to zero.
These constraints can greatly reduce ambiguity in the inference.

BT

PLF

JLF

KH

POB

JOB

FB

PLO

JLO

KT

Fig. 6. Dependencies among Subtasks. Arrows connecting subtask ti and tj denotes that ti must
be done prior to tj .

Note that in the construction of such a DAG, constraints about chronological
order of subtasks apply, as shown in Fig 6. For example, POB always happens after
PLF, and before FB. With these constraints, the number of vertices is narrowed
down from 210 to 41.

At this point we have a general framework for learning a task model from human
data based on.24 In this framework, a natural task is automatically segmented into
several subtasks, providing a way to represent and measure task progress. The task
execution becomes a navigation through a series of states, gradually leading to the
end state. The transitional probabilities between these states are represented by a
Markovian task model, as shown in Fig. 11, which computes the probabilities from
human data. The model represents knowledge about task planning extracted from
human experiments. Each node is a set of accomplished subtasks, which is a state
in executing the task. Each edge is a subtask that brings the task one step closer to
the end state T = {t1, t2, . . . , tN}. Any path from ∅ to T gives an order of executing
the N subtasks, while each N hops from ∅ always brings the task to its end state
T . More details are in.24

Next, we feed data into this Markov model, and calculate transition probabil-
ities between statuses. With these probabilities, subtask orders can be generated
probabilistically. An example is as follows.

With input data (numbers indicating subtasks):

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

14 Weilie. Yi & Dana. H. Ballard

Subject 1 0 3 1 4 7 2 5 6 9 8
Subject 2 2 0 1 3 4 5 9 6 8 7
Subject 3 0 2 3 5 1 4 6 9 7 8
Subject 4 0 2 1 3 4 5 9 6 8 7

the most probable path is:

(75%) 0 → (67%) 2 → (67%) 1 → (100%) 3 → (100%) 4 → (100%)
5 → (67%) 9 → (100%) 6 → (67%) 8 → (100%) 7

with a probability 14.8%.

5. Incorporating Sensory Data

At this point tasks can be identified as sequences of visuo-motor primitives that
are repeated in different data sets from different subjects. Furthermore, the tasks
graphical data structure allows the different ways of making a sandwich to be char-
acterized as paths in the graph. At this point we can add the methodology for
taking task-related measurements from image and motor data. The data in the sys-
tem includes the visually attended object, hand movements, and the current clock
reading.

5.1. Visually Attended Object

An agent has intensive interactions with objects throughout a natural task. Which
object the agent is interacting with is a very important piece of information needed
in recognizing the agent’s behavior. One approach to getting this information is to
attach a sensor to each task relevant object.14 However, this might not be possible
for some objects, such as a slice of bread, which could be consumed by the agent.
Instead, we use a head mounted camera and an eye tracker to recognize attended
object from video.

Foveal Image Human makes a series of eye movements when inspecting a scene or
searching for an object.23 Along with the foveal design of the eye, the eye movement
reduces the information to be processed in each fixation. Similarly, the use of eye
tracker greatly reduces the difficulty of retrieving useful information from the scene.
Image segmentation is no longer necessary because the image patch to be processed
is dramatically narrowed down to a small area that projects to the fovea, where the
visual acuity is the highest on the retina.

In human visual system, the fovea covers about 1.7 degree of visual field. Taking
into account some peripheral vision and compensating for calibration errors in the
eye tracker, we used a 12.65 degree visual field to recognize attended object. This
corresponds to an image patch of 20 pixels in radius.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 15

(a)

(b)

Fig. 7. Complete vs. foveated image. The behavior recognition does not use the entire image (a)
but only makes use of a small image patch centered on the fixation point (b). The color histogram
data in this patch is used for classification into one of {nothing, peanutbutter, jelly, bread, hand}

Color Histogram Since the image patch to be processed is small and normally
the background does not constitute a major portion of the image patch, we used
histogram intersection technique21 to recognize attended objects. Histogram Inter-
section is defined as

Xo =
n∑

j=1

min(Ij , M
o
j) (1)

where Mo
j are all the models of object o.

In our system, histogram is computed in HSV color space, using saturation and
hue channels. The match between the image and the model is

H(I, Mo) =
∑n

j=1 min(Ij , Mo
j)

∑n
j=1 Mo

j

(2)

The object with the highest match is the object being fixated.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

16 Weilie. Yi & Dana. H. Ballard

x = argmax
o∈O

H(I, Mo) (3)

With histogram intersection, we do not need to segment the objects from back-
ground, nor do we have to maintain 3D models of the objects. In our sandwich
making experiments, the object recognition program recognizes 4 different objects:
bread, peanut butter, jelly and handd with a histogram database of 30 models. The
result of recognition is shown in Fig. 8.

Fig. 8. Visually Attended Object. The upper bar shows what object is identified at each time
interval. The lower bar illustrates the color coding key for the four objects.Close-set multiple
colors are likely classification errors as the gaze typically uses 100-300 milliseconds per fixation.
However this data can still be very useful when combined with prior expectations.

5.2. Hand Movement Extraction

Hand movement is another piece of important information that helps behavior
recognition. Because of the highly dynamic and unpredictable nature of eye move-
ment, especially look-aheads, visually attended object may not be the object being
manipulated by hand. So directly recognizing hand movement becomes inevitable.
We identified two events in our Bayesian inference system: reaching and high fre-
quency hand movement. These two types of movement are commonly seen in natural
tasks, and they characterize how the hands are interacting with objects.

Hand locations are captured by a Polhemus FASTRAKTMsensor attached to a
pair of gloves worn by human subjects. These sensors produce 3D locations of the
hands at a frequency of 120 Hz, with an accuracy of 0.01 inch (Fig. 9(a)).

dThere are other objects in the task, for example, knife and table. We do not need to recognize
every object because attended object is just one of a few observed nodes in the Dynamic Bayesian
Network. Other other observable sensory data, along with the task model, help make robust
inference from imperfect observations.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 17

Reaching often accompanies picking up and putting down an object. The reach-
ing event is defined as the distance from the hand to the body exceeding a threshold,
which is 40 cm in our system for sandwich making. Depending on this distance, the
corresponding observed node in DBN has two possible states: reaching and not
reaching.

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20

30

40

50

Time (second)

Lo
ca

tio
n

(c
m

)

Hand X
Hand Y
Hand Z

(a) Raw hand location data for the three wrist coordinates.

0 10 20 30 40 50 60 70 80
0

1

Time (second)

St
at

e

Hand Frequency
Hand Reaching

(b) Observed hand movement classifications

Fig. 9. Hand Movement Extraction. Certain places in the hand trajectory have recognizable fea-
tures. Places where the velocity is high can be classified as ‘Hand Reaching.’ places with steady
oscillations in one or more components can be classified as ‘Hand Frequency,’ a feature used to
identify screwing or unscrewing container lids.

High frequency hand movements are typically seen in unscrewing a cap, stir-
ring coffee, or spreading butter. We recognize them by computing the frequency of
change of direction in hand movements. This frequency is computed in each of the 3
coordinates, and the maximal value is used as the main frequency. For right handed
subjects, the left hand is mainly used to hold objects during unscrewing, stirring
and spreading, so we only take into account the right hand’s data for right handed
subjects. Similar to the reaching event, the observed node for hight frequency hand
movement has two states, separated by a threshold of 2/3 Hz.

Fig. 9(b) shows the observed hand movement from raw sensory data in Fig. 9(a).
Hand Reaching has two states, reaching (1) and not reaching (0). Hand Frequency
also has two states, High frequency movement (1) and Low frequency movement (0).

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

18 Weilie. Yi & Dana. H. Ballard

5.3. Timing

When a subtask can be executed depends on task planning, which is subject to
precedence constraints between subtasks. For example, in sandwich making, taking
jelly lid off has to precede, although not necessarily immediately, spreading jelly on
bread. If the duration of taking the lid off is d seconds, then the earliest time that
the subtask spreading jelly can start is d. Generally, the earliest time a task t can
start is the sum of the duration of all its prerequisite subtasks, and the latest time
t has to finish is the the total duration of the task minus the sum of the duration of
all its postrequisite subtasks. Since the duration of each subtask is a probabilistic
distribution, rather than a constant value, the time frame of a subtask t is

TF (t) =
[∑

i∈pre(t)

minD(i),
∑

t/∈post(t)

max D(i)
]

(4)

This gives an additional constraint to the behavior recognition. For example, a
high frequency hand movement in the first few seconds of the task is not likely to
be spreading jelly, but more likely to be unscrewing a lid.

A stronger constraint will be introduced in the next section, taking advantage
of human data.

6. Behavior Recognition

With all the sensory data discussed above, we are ready to design the DBN that
inferences underlying task status from observations. The structure of the network
is shown in Fig. 6.

There are 4 hidden nodes and 4 observed nodes in each time slice. As illustrated
in Fig. 6The observed nodes are recognized attended object, hand reaching, high
frequency hand movement and time frame. The hidden nodes are gaze object, hand
object, subtask and task. hand object is the object being manipulated by hand; while
gaze object is the object being fixated by eyes. They could be different because, (1)
gaze often switches to a new object earlier than hand to guide subsequent hand
movement; and (2) gaze may move way from the hand object during look-aheads.
The probabilistic distribution matrix of the gaze object node reflects this relation
statistically. hand object depends on subtask in the way that each subtask has a set
of task relevant objects that are to be manipulated. The reason that we have two
nodes, including task, to represent task progress, is that the original Markovian task
model does not fit in the DBN.

Task planning information provided by the task model greatly narrows down
the possible states that the agent could be in, given a series of observations.

In the previous section we were able to generate possible sandwich construction
sequences, but recognizing these sequences in real-time is harder. The goal is to
compute an agent’s action from observed events in the sensori-motor input. A Bayes
network is a suitable tool for this class of problems because it uses easily observable

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 19

Gaze Object

Hand Object

Subtask

Task

Recognized Object

Hand Reaching

Hand Movement Frequency

Time Frame

Fig. 10. Structure of the Dynamic Bayes Net. There are four hidden nodes, which denotes the
internal states of an agent, and four observable nodes, which are sensory data retrieved from
human object interactions in a natural task.

evidence to update or to newly infer the probabilistic distribution of the underlying
random variable. A Bayesian net represents the causalities with a directed acyclic
graph, its denoting variables and edges denoting causal relations.

Since the state of the agent is dynamically changing, and the observations are
being updated throughout the task solving process, we need to specify the tem-
poral evolution of the network. Fig. 6 illustrates the two slice representation of a
Dynamic Bayesian Network. A DBN is a extension of Hidden Markov Models, in
that a DBN can have multiple hidden and observed states which have complex
interdependencies.

The two slice representation can be easily unrolled to address behaviors with
arbitrary numbers of slices. In each time, the observed sensory data (gray nodes),
along with its history, are used to compute the probability of the hidden nodes
being in certain states:

P (Qt|O[1,t])

where Qt is the set of states of hidden nodes at time t, O[1,t] are the observations
over time span [1, t], and

P (Qt|O[1,t]) = P (Q1)P (O1|Q1)
t∏

t=2

P (Qt|Qt−1)P (Ot|Qt) (5)

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

20 Weilie. Yi & Dana. H. Ballard

Time Slice i Time Slice i + 1

Fig. 11. Two Slice Representation of the Dynamic Bayes Net. Shaded nodes are observables;
the others are hidden. Causalities, represented by straight arrows, are determined by probability
distribution matrices. The state of the lowest hidden node is determined by its prior distribution
in the first time/slice, and thereafter jointly determined by its previous state and the transition
matrix, as denoted by the curved arrow.

Behavior recognition is to compute the states of each hidden node St at time t
that maximize the probability of observing the given sensory data:

St = argmax
S

P (Qt = S|O[1,t]) (6)

Eq. 6 defines the basic algorithm of the recognition system. The sensory data
we used in our system include visually attended object, hand movement and the
process time. The following sections describe the structure of the Dynamic Bayesian
Network and details about data preprocessing and behavior inferencing.

7. Behavior Recognition Experiments

We tested our system in the peanut butter & jelly sandwich experiment. there are 4
objects involved: bread, peanut butter, jelly and hand. Hand is included because it
is often fixated by the eyes. Identifying exactly what is being fixated helps inference
what subtask is being executed, since the probability of fixating the hand could be
different across all subtasks. Both the hidden gaze object node and the observed
recognized object node have 5 states, one for each object, and another for nothing.
Similarly, the hand object has 4 states, counting out the hand object.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 21

Table 4. Hidden Nodes in the PBJ DBN.

Node Name Number of States
task 80

subtask 10
hand object 4
gaze object 5

Table 5. Observed Nodes in the PBJ DBN.

Node Name Number of States
time frame 20

hand frequency 2
hand reaching 2

recognized object 5

The gaze object node could be in nothing state during a saccade, or when the
gaze is distracted by a task irrelevant stimulus.

The recognized object node is in nothing state when the eye tracker fails to track
the fixation point (e.g. when the subject is blinking), or the computer vision module
is not able to recognize any object, or what is recognized is a background object
which the hand does not manipulate, for instance the table or the plate. To simplify
the model and speed up the inference, we did not include these two objects, although
they can be recognized.

A task relevant object that we cannot recognize is the knife. Its slim profile
makes histogram intersection a non-optimal algorithm to use. However, with other
constraints, we can also pinpoint the moment when a knife is being picked up.

The time frame node has 20 states. Each state corresponds to a 5 second interval,
and the maximal duration of a sandwich making task is 100 seconds. The granularity
can be tuned. A finer grained DBN gives more accurate tracking but can also make
the inference slower than a coarser one.

The results of the recognition are shown in Fig. 12. There are two recognition
modes. In the offline mode, the task state at each moment is inferred after observing
the complete set of observation data, i.e. P (Qt|O[1,T]), where t ≤ T and T is
the duration of the task. In the online mode, the inference is only based on what
has happened, at each moment. In either modes, the system recognizes subtasks
correctly most of the time.

8. Discussion and Conclusions

Inspired by the Visual Routines model, we developed a computer vision architecture
which takes an active and situated approach, focuses on high level vision, and

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

22 Weilie. Yi & Dana. H. Ballard

(a) Offline behavior recognition

(b) Online behavior recognition

Fig. 12. Recognition Results.

exploits embodied information. Unlike any previous work, it has a basic operation
set with which virtually any high level visuo-motor behavior can be constructed,
and has the potential to model complex human world interaction as programming
with perceptual and motor primitives.

Based on the sequential modeling of cognition and agent-world interaction, we
introduced an algorithm to automatically identify top level structure of behavioral
routines by finding common segmentations across different routines, and dividing a
task into subtasks.

Our experiments show that humans make the same kinds of trade-offs that are
made in the visual routines model. In coffee pouring, individual subjects stop at

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 23

a fixed distance from the top of the cup and have very small deviations between
the level in successive fills, suggesting the use of standard procedures. Also, as
shown by our model, most of this variance can be explained as noise in an image
matching process. In sandwich-making, individual subjects exhibit very similar task
orderings so that their performance can be easily captured by a behavioral routines
based Markov Decision Process that contains the alternate task orderings.

We also described a Markov model which can capture different orders in which
human subjects execute subtasks. This model can be used to generate behavioral
routines that solve the same task in a human like fashion.

As future work, we are interested in a more robust automatic segmentation
algorithm. Currently we can only process very regular behaviors, i.e. corresponding
segements in different behaviors must be identical. However, the same subtask could
be executed in slightly different ways. A soft comparison criteria is necessary to
address this problem.

Acknowledgments

The research reported herein is supported by NIH Grant R01 RR009283

Weilie Yi received his/her M.S. degree in Computer
Science from Fudan University in Shanghai, China, and
his Ph.D. degree in Computer Science from the Univer-
sity of Rochester, USA, in 2001 and 2006, respectively.
From 2006, he has been at at Microsoft Research.

At Microsoft, Yi works as a Software Design Engineer, working on a variety of
products including Natural User Interface, Digital Ink Analysis, and Search Rele-
vance. Yis research interests include human computer interaction, cognitive science,
machine learning, and information retrieval.

Dana Ballard received his/her M.S. degree in Information and
Control Engineering from the University of Michigan, USA,
and his Ph.D. degree in Information Engineering from the
University of California,Irvine, USA, in 1970 and 1974, re-
spectively. From 1975 to 2005, he was at the University of
Rochester. He/she is currently a Full Professor in the Depart-
ment of Computer Science, the University of Texas at Austin.

Ballard’s main research interest is in computational theories of the brain with
emphasis on human vision. In 1985 he and Chris Brown led a team that designed and
built a high speed binocular camera control system capable of simulating human
eye movements and mounted on a robotic arm that allowed it to move at one
meter/second in a two-meter-radius workspace. Ballard and Brown also wrote the
first Computer Vision text.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

24 Weilie. Yi & Dana. H. Ballard

References

1. Tamim Asfour, Florian Gyarfas, Pedram Azad, and Rudiger Dillmann. Imitation
learning of dual-arm manipulation tasks in humanoid robots. In Humanoids, 2006.

2. N. Badler. Virtual beings. Communications of the ACM, 44:33–35, 2001.
3. Dana H. Ballard. Animate vision. Artificial Intelligence, 48:57–86, 1991.
4. Eric B. Baum. What is Thought? MIT Press, 2004.
5. Cynthia Breazeal, Daphna Buchsbaum, Jesse Gray, David Gatenby, and Bruce Blum-

berg. Learning from and about others: Towards using imitation to bootstrap the social
understanding of others by robots. Artificial Life, 11:31–62, 2005.

6. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press/McGraw-Hill, 1990.

7. John M. Findlay and Iain D. Gilchrist. Active Vision: The Psychology of Looking and
Seeing. Oxford University Press, 2003.

8. Odest Chadwicke Jenkins, German Gonzalez Serrano, and Matthew M. Loper. Inter-
active human pose and action recognition using dynamic motion primitives. Interna-
tional Journal of Humnoid Robotics, 4:365–385, 2007.

9. Andrew Liu and Salvucci. Modeling and prediction of human driver behavior. In Proc.
9th HCI International Conference, pages 1479–1483, 2001.

10. M. Lopes and J. Santos-Victor. Visual learning by imitation with motor representa-
tions. IEEE Transactions on Systems, Man and Cybernetics, 35:438–449, 2005.

11. Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, University of California at Berkeley, 1994.

12. David Noton and Lawrence Stark. Scanpaths in eye movements during pattern per-
ception. Science, 171(3968):308–311, 1971.

13. Nuria Oliver. Towards Perceptual Intelligence: Statistical Modeling of Human Individ-
ual and Interactive Behaviots. PhD thesis, MIT, 2000.

14. Matthai Philipose, Donald J. Patterson, Dieter Fox, Henry Kautz, and Dirk Hahnel.
Inferring activities from interactions with objects. In Pervasive Computing, IEEE,
volume 3, pages 50–57, 2004.

15. C. Phillips, J. Zhao, and N. Badler. Interactive real-time articulated figure manipula-
tion using multiple kinematic constraints. Computer Graphics, 24:245–250, 1990.

16. C. A. Rothkopf, D. H. Ballard, and M. M. Hayhoe. Task and context determine where
you look. Journal of Vision, 7:1–20, 2007.

17. Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, 3:233–242, 1999.

18. Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society B, 358:537–547,
2003.

19. A. P. Shon, J. J. Storz, A. N. Meltzoff, and R. P. N. Rao. A cognitive model of
imitative development in humans and machines. International Journal of Humnoid
Robotics, 4:387–406, 2007.

20. N Sprague, D Ballard, and Al Robinson. Modeling embodied visual behaviors. ACM
Transactions on Applied Perception, 4, 2007.

21. Michael J. Swain and Dana H. Ballard. Color indexing. International Journal of Com-
puter Vision, 7(1):11–32, 1991.

22. Shimon Ullman. High-level vision. MIT Press, 1996.
23. Alfred L. Yarbus. Eye movements and vision. New York, Plenum Press, 1967.
24. Weilie Yi and Dana H. Ballard. Routine based models of anticipation in natural be-

haviors. In AAAI Fall Symposium, From Reactive to Anticipatory Cognitive Embodied
Systems, pages 141–147, Arlington, VA, November 2005.

July 13, 2009 21:32 WSPC/INSTRUCTION FILE Yi3˙new

Recognizing everyday behavior from eye and hand movement data 25

25. Chen Yu and Dana H. Ballard. Learning to recognize human action sequences. In Proc.
IEEE International Conference on Development and Learning, Cambridge, MA, June
2002.

