
COMPRESSION OF SAMPLABLE

SOURCES

Luca Trevisan, Salil Vadhan, and David Zuckerman

Abstract. We study the compression of polynomially samplable
sources. In particular, we give efficient prefix-free compression and de-
compression algorithms for three classes of such sources (whose support
is a subset of {0, 1}n).

1. We show how to compress sources X samplable by logspace ma-
chines to expected length H(X) + O(1).

Our next results concern flat sources whose support is in P.

2. If H(X) ≤ k = n− O(log n), we show how to compress to length
k + polylog(n− k).

3. If the support of X is the witness set for a self-reducible NP rela-
tion, then we show how to compress to expected length H(X)+5.

Keywords. expander graphs, arithmetic coding, randomized logspace,
pseudorandom generators, approximate counting

Subject classification. 68P30 Coding and information theory

1. Introduction

Data compression has been studied extensively in the information theory liter-
ature (see e.g. Cover & Thomas (1991) for an introduction). In this literature,
the goal is to compress a random variable X, which is called a random source.
Non-explicitly, the entropy H(X) is both an upper and lower bound on the
expected size of the compression (to within an additive log n term). For ex-
plicit (i.e. polynomial-time) compression and decompression algorithms, this
bound cannot be achieved for general sources. Thus, existing efficient data-
compression algorithms have been shown to approach optimal compression for
sources X satisfying various stochastic “niceness” conditions, such as being
stationary and ergodic, or Markovian.

2 Trevisan, Vadhan & Zuckerman

In this paper, we focus on the feasibility of data compression for sources
satisfying computational niceness conditions, most notably efficient samplabil-
ity. Goldberg & Sipser (1991) were the first to study compression of sources
satisfying computational, rather than stochastic, conditions. Actually, they did
not explicitly discuss random sources, but focused on compressing languages

in P, and thus implicitly considering sources uniformly distributed on all n-bit
strings in such a language.

Samplable Sources with Membership Algorithms. We extend and gen-
eralize their study. We focus on sources which are polynomially samplable,
i.e. can be generated by a probabilistic polynomial-time algorithm. Sampla-
bility captures a very general class of sources, and it is arguably a reasonable
model for probability distributions generated by various natural and man-made
processes. When a distribution is not samplable, the problem of generating the
distribution is computationally intractable, and this seems unlikely for “nat-
ural” sources.

The languages corresponding to the supports of samplable sources need not
be in P. Indeed, while Goldberg & Sipser show that every sparse language in
P can be compressed at least slightly, this is unlikely to be true for all poly-
nomially samplable distributions. In particular, as first observed by Levin,1

pseudorandom distributions are incompressible and, if pseudorandom genera-
tors exist, then there are polynomially samplable pseudorandom distributions.
(See Section 3 for more details.)

Therefore, while seeking classes of samplable distributions that can be opti-
mally compressed, we need to impose computational constraints that rule out
the possibility of sampling pseudorandom distributions. We do this by consid-
ering sources for which membership in the support can be tested in polynomial
time. We first study logspace sources, which have this property implicitly, while
later we study flat sources with explicit membership algorithms.

Logspace Samplers. We first study sources that can be sampled by a sam-
pling algorithm that uses logarithmic space. (As is usual when studying ran-
domized logspace, we only allow the algorithm one-way access to the random
tape.) Such sources generalize Markovian sources (which can be thought of as
being sampled by a constant-space sampling algorithm). On the other hand,
it is known that no such source can be pseudorandom; see Kharitonov et al.

(1989).
We show the existence of a universal compression algorithm for such sources

1according to Goldberg & Sipser (1991)

Compression of Samplable Sources 3

that compresses optimally, up to an additive constant, in polynomial time. The
compression algorithm is universal in the sense that it optimally compresses a
source X without being given a sampler for X, and just knowing the existence
of a sampling algorithm and an upper bound to the space used by the sampler.

If the sampler is known, we use arithmetic encoding, a well known optimal
compression method that can be used on any source for which it is possible
to compute the cumulative probability distribution of the source. Our result is
then obtained by giving an algorithm for computing cumulative probabilities
for sources sampled by logarithmic space algorithms. We also prove a general
result showing that if optimal compression is possible for a class of samplable
distributions given the sampler then, with only an constant additive loss, op-
timal compression is also possible without being given the sampler, i.e. it is
possible to do universal compression for this class. Applying this to the result
above, we obtain a universal compression algorithm for sources samplable in
space c logn for any constant c.

Flat Sources with Membership Algorithms. We next consider more gen-
eral samplable sources for which membership in the support can be tested in
polynomial time. Without further restrictions, a membership algorithm may
not be useful; for example, the support of the source could be {0, 1}n but some
strings occur with tiny probability. We therefore require that the source be
flat, i.e., uniform on its support. Observe that a membership algorithm rules
out the possibility that such a distribution is pseudorandom. Indeed, the mem-
bership algorithm gives a way to distinguish the source from any other source
of higher entropy.

The case of flat distributions with membership algorithms was studied
by Goldberg & Sipser (1991) who showed that every such source X on {0, 1}n
could be compressed to k + 3 logn bits provided that the entropy of X is
smaller than k = n − O(logn). We show how to improve the compression
length to k + polylog(n − k) ≤ k + polylog log n. While Goldberg and Sipser
use arithmetic encoding, we use a completely different method relying on re-
cent constructions of expander graphs with expansion close to the degree, due
to Capalbo et al. (2002). In addition, our compression algorithm is determin-
istic, whereas the Goldberg–Sipser algorithm is probabilistic. Our algorithm,
however, only achieves good average compression length, while the Goldberg–
Sipser algorithm compresses every element of the support of the source.

In our last main result, we show that if the support of the samplable dis-
tribution forms the witness set for a self-reducible NP relation, then we can
compress almost optimally. As a consequence, we obtain polynomial-time com-

4 Trevisan, Vadhan & Zuckerman

pression algorithms for a wide variety of combinatorial structures for which
sampling algorithms are known, e.g., the set of perfect matchings in a bipar-
tite graph; see Jerrum et al. (2001). Our compression algorithm computes an
“approximate” arithmetic coding, using ideas underlying the proof, due to Jer-
rum et al. (1986), that sampling implies approximate counting for self-reducible
relations. In fact, we show that, for self-reducible relations, near-optimal com-
pression is equivalent to almost-uniform sampling (which in turn is known to
be equivalent to approximate counting, cf. Jerrum & Sinclair (1989); Jerrum
et al. (1986)).

Perspective and Open Problems. There are a number of examples where
the imposition of complexity-theoretic constraints on traditionally information-
theoretic problems has been very fruitful. For example, modern cryptography
developed and flourished out of the realization that Shannon’s classic impossi-
bility results, Shannon (1949), could be bypassed via the reasonable assump-
tion that the adversary is computationally bounded Diffie & Hellman (1976).
Our restriction to samplable sources in particular was motivated by the work
of Trevisan & Vadhan (2000), who consider the somewhat related problem of
(deterministic) random extraction, in which one is given a source of a certain
entropy and wants to devise an algorithm that given a sample from the source
outputs an almost uniform distribution. This deterministic randomness ex-
traction problem was known to be impossible for general sources, see Chor &
Goldreich (1988); Santha & Vazirani (1986), and it was known to be possible for
very structured sources like Markovian sources (just like the data compression
problem). Trevisan & Vadhan (2000) show that, under certain complexity as-
sumptions, randomness extraction is possible for samplable sources. Another,
earlier, work showing the promise of restricting to samplable sources is that
of Lipton (1994), who showed that if the distribution of errors in a channel is
samplable, then it is possible to transmit information reliably even above the
capacity bound. As noted above, for data compression, the class of samplable
sources is still too general, and thus we have tried to impose sensible additional
restrictions that are still computational in nature, yet allow for interesting pos-
itive results. However, we have by no means exhausted the possibilities, and
there may be other computational constraints that are even more relevant for
data compression.

Another motivation for this line of work comes from the general project of
understanding information-theoretic aspects of samplable sources. The theory
of pseudorandom generators is naturally one major piece of this study. But
samplable sources and their information-theoretic properties have also come

Compression of Samplable Sources 5

up in unexpected places, such as in the complete problems for statistical zero
knowledge, see Goldreich & Vadhan (1999); Sahai & Vadhan (2003). Under-
standing the compressibility of samplable sources can contribute to this gen-
eral study, as it provides another measure of the (computational) randomness
in a source. Indeed Yao (1982) proposed such a compressibility measure of
randomness, and this is one of the several measures of computational random-
ness recently studied by Barak et al. (2003). In the same spirit, a few years
ago, Impagliazzo (1999) posed an intriguing question about the relationship
between the compressibility and another standard measure of computational
randomness, pseudoentropy. A source has pseudoentropy at least k if it is com-
putationally indistinguishable from some distribution having entropy at least
k. A source of pseudoentropy k cannot be compressed to k − ω(logn) by an
efficient algorithm, and the question is whether the converse is true for sam-
plable distributions. That is, does low pseudoentropy imply compressibility for
samplable sources? This intriguing question is still an open problem. However,
Wee (2004) has exhibited an oracle relative to which the answer is no. Specif-
ically, under this oracle there are samplable distributions over {0, 1}n of very
low pseudoentropy that cannot be compressed to less than n−O(log n) bits. It
would be very interesting to obtain a similar result without oracles, but rather
under complexity-theoretic assumptions.

Finally, the notion of compression we study is in some sense the common
generalization of two other problems widely studied in the computational com-
plexity literature — specifically “randomness condensers” (or hashing) and
“resource-bounded Kolmogorov complexity”. Loosely speaking, in the study
of condensers one is interested in efficient compression algorithms, with no
bounds on the complexity of decompressing, while in resource-bounded Kol-
mogorov complexity one is interested in efficient decompression algorithms,
with no bounds on the complexity of compressing.

A lossless condenser for a source (see e.g. Raz & Reingold (1999); Ta-Shma
et al. (2001)) is a randomized procedure that, with high probability, is injec-
tive (or approximately injective) when applied to samples from the source. The
output of the condenser is efficiently computable and can be seen as a compres-
sion of the sample; however, no efficient decompressing algorithm is required
to exist. Condensers have been studied for their applications to randomness
extractors (Nisan & Zuckerman (1996)), and no assumption is typically made
on the source that they’re applied to, other than the source having bounded
“min-entropy”.

Resource-bounded Kolmogorov complexity (cf. Li & Vitanyi (1997)) focuses
on the following question: for a fixed universal Turing machine U , given a time

6 Trevisan, Vadhan & Zuckerman

bound t and a string x, what is the shortest encoding y of x such that U(y) will
output x within t time steps? Thus, here one studies efficient decompression
without the requirement that the compressed representation be computable by
an efficient algorithm. For example, while the output of a pseudorandom gener-
ator is an incompressible source according to our definition, each of the possible
outputs of the generator has low resource-bounded Kolmogorov complexity (be-
cause the corresponding seed s is an efficiently decompressible representation
of the output G(s)) . The study of language compression (see e.g. Buhrman
et al. (2004) for recent results and references to earlier work) focuses on the
worst-case compressibility (in the above sense) for sources that are flat over an
efficiently decidable support (i.e. sources with membership oracles, just as we
study).

2. Preliminaries

2.1. Basic definitions. A source X is a probability distribution on strings
of some length. We write x

R← X to indicate that x is chosen randomly ac-
cording to X. We think of X as being a member of a family of distributions
(i.e., a probability ensemble), in order for asymptotic notions to make sense.
The ensemble will usually be of the form (Xn)n∈Z+ , in which case Xn will be
distributed on {0, 1}n.2 Sometimes we will consider ensembles (Xx)x∈L indexed
by strings in some language L ⊆ {0, 1}+, in which case Xx will be distributed
over {0, 1}p(|x|) for some polynomial p. Here Σ+ = ΣΣ∗ is the set of strings over
alphabet Σ, excluding the empty string.

We denote X(a) = Pr[X = a]. The support of X is Sup(X) = {x|X(x) >
0}. A flat source is uniform on its support. Un is the uniform distribution on
{0, 1}n.

Definition 2.1. The entropy of a distributionX isH(X) = E
x

R
←X

[
log
(

1
X(x)

)]
.

Here, and throughout the paper, all logs are to base 2.

2.2. Basics of compression.

Definition 2.2. For functions Enc : Σ+ → Σ+ and Dec : Σ+ → Σ+, we say
(Enc,Dec) compresses source X to length m if

2Note that this differs from the notation used in classical information theory, where one
writes Xi for an individual symbol of an infinite stochastic process X1, X2, . . . and is con-
cerned with compressing a prefix (X1, X2, . . . , Xn) of this process.

Compression of Samplable Sources 7

(i) For all x ∈ Sup(X), Dec(Enc(x)) = x, and

(ii) E[|Enc(X)|] ≤ m.

We say that the encoding is prefix-free if for all x 6= y in Sup(X), Enc(x) is
not a prefix of Enc(y).

All of our codes will be prefix-free. It is well known that a prefix-free
encoding is “uniquely decodable”; that is, commas are not needed to send
multiple samples of X.

Definition 2.3. We say source X is compressible to length m if there exist
functions Enc and Dec such that (Enc,Dec) compresses X to length m.

The following simple lemma allows us to assume throughout that all encod-
ings are of length at most n+ 1.

Lemma 2.4. If a source Xn is compressible to length m, then it is compressible
to length m+ 1 where for all x ∈ sup(Xn), |Enc(x)| ≤ n + 1.

Proof. Let (Enc,Dec) compress Xn to length m. Define Enc′(x) to be
0Enc(x) (0 concatenated with Enc(x)) if |Enc(x)| < n, and 1x otherwise. Then
|Enc′(x)| ≤ n+1, E[|Enc(Xn)|] ≤ m+1, and there is an efficient inverse Dec′. �

It is well known that a source X is compressible to length H(X) + 1 by a
prefix-free encoding (see e.g. Cover & Thomas (1991)). If the encoding is re-
quired to be uniquely decodable, then X is not compressible to length less than
H(X). Although the codes we construct are uniquely decodable, Definition 2.2
above is less restrictive (often called “nonsingular” compression) and allows
some random variables X to be compressed to length less than H(X). The
biggest gap is obtained by the distribution Xn which chooses i uniformly from
0 to n-1 and y uniformly from {0, 1}n−i−1 and outputs 0i1y. The compressed
string is y, which has expected length H(Xn)− logn. We assume the following
is known but we do not know a reference.

Lemma 2.5. A source Xn is not compressible to length less than H(Xn) −
⌈log(n + 1)⌉

Proof. Convert any encoding Enc to a prefix-free encoding Enc′ as follows.
If |Enc(x)| ≤ n, then we define Enc′(x) = ℓ(x)Enc(x), where ℓ(x) is the number
|Enc(x)| written in binary, padded to length ⌈log(n + 1)⌉. If |Enc(x)| > n,
then we define Enc′(x) = ℓ(x)x, where ℓ(x) is the number n + 1 written in

8 Trevisan, Vadhan & Zuckerman

binary. Then Enc′ is prefix free, and hence uniquely decodable. The new
compression length is E[|Enc′(Xn)|] ≤ E[|Enc(Xn)| + ⌈log(n + 1)⌉]. By the
lower bound for uniquely decodable codes, we have E[|Enc′(Xn)|] ≥ H(Xn).
Thus, E[Enc(Xn)] ≥ H(Xn)− ⌈log(n+ 1)⌉], as desired. �

We remark that, by a more careful reduction (specifically, encoding ℓ(x) in
a prefix-free way without padding to length ⌈log(n+1)⌉), the loss of log(n+1)
can be replaced with a term depending logarithmically on only H(Xn) (rather
than n).

We mention that for flat sources, H(X)−O(1) is again a lower bound.

Lemma 2.6. A flat sourceXn is not compressible to length less thanH(Xn)−3.

Proof. It suffices to show that if Xn is uniform on a set of size 2k for some
integer k, then it is not compressible to length less than k − 2. The optimal
compression has support uniform on all strings of length less than k, plus some
given string of length k. Ignoring the string of length k, this compresses Xn to
length greater than

1

2
(k − 1) +

1

4
(k − 2) +

1

8
(k − 3) + . . . ≥ k − 2,

as needed. �

Since tight non-explicit bounds are known, the interesting issue is efficient

compressibility, e.g., when Enc and Dec are computed by polynomial-time al-
gorithms. Indeed, much of the field of Data Compression is centered around
understanding when this is possible. In order for efficient compressibility to
make sense, we must specify how the source is presented. Ideally, the compres-
sion algorithm is only given a random sample from the source, and does not
have any global information about the source other than the fact that it comes
from some class of sources:

Definition 2.7 (universal compression). Let C be a class of sources (i.e. class
of probability ensembles Xn), and let m = m(h, n) be a function. We say that
(Enc,Dec) is a universal compression algorithm for C with compression length
m if for every source (Xn)n∈Z+ in C, there is a constant c such that (Enc,Dec)
compresses Xn to length m(H(Xn), n) + c.

For example, the classic Lempel–Ziv method is a universal compression
algorithm with compression length H(X) + o(n) for the class of stationary
ergodic processes (Ziv & Lempel (1978)). (That is, the Lempel–Ziv method is

Compression of Samplable Sources 9

guaranteed to effectively compress Xn if there is a stationary ergodic process
Y1, Y2, . . . such that Xn = (Y1, . . . , Yn).)

Since universal compression is only known for a fairly restricted class of
sources (and for those, only approaches the optimal compression length asymp-
totically), it is also of interest to study the case when the compression algorithm
may depend on the entire source (rather than a single sample). That is, the
compression algorithm is given a description dn of the source Xn, and we require
that Dec(Enc(x, dn), dn) = x for all x ∈ Sup(Xn), and E[|Enc(Xn, dn)|] ≤ m.
In other words, Enc′(·) = Enc(·, dn) and Dec′(·) = Dec(·, dn) should form a
compression algorithm for Xn in the sense of Definition 2.2.

When the source is described explicitly (e.g., by the list of probability masses
assigned to each string x), then standard methods, such as Huffman coding (cf.
Cover & Thomas (1991)) compress to length H(X)+1. But here the input size
and the running time of the algorithm are both roughly 2n. Thus, it is more
interesting to consider the case when the source is described in some compact,
implicit form. Then the question is which implicit representations allow for
efficient compression.

One general technique for obtaining efficient compression is arithmetic cod-

ing, which is feasible if computing the cumulative distribution function is fea-
sible.

Lemma 2.8 (arithmetic coding, cf. Cover & Thomas 1991). LetX be a source
on Σn and ≺ a total order on Sup(X). Let F : Σn → [0, 1] be the fol-
lowing modification of the cumulative distribution function of X: F (x) =∑

a≺xX(a) + X(x)/2. Define Enc(x) to be the first ⌈log(1/X(x))⌉ + 1 bits
of F (x). Then Enc is one-to-one and monotone, and (Enc,Enc−1) compresses
X to length H(X) + 2. The encoding is prefix-free.

For example, if X is a Markovian source (i.e. the sequence of symbols of
X form a Markov chain run for n steps), then it is known that the cumulative
distribution function (with respect to the standard lexicographic order) can be
computed in polynomial time, and hence so can the arithmetic coding. (See
Cover & Thomas (1991).) Note that since Enc is monotone, if Enc can be
computed efficiently, then Enc−1 can also be computed efficiently by binary
search. Several of our positive results will make use of arithmetic coding and
variants.

Another useful fact is that it suffices to obtain a decoder which decodes
correctly with high probability. Specifically, we say that (Enc,Dec) compresses
a source X with decoding error ǫ if Pr [Dec(Enc(X)) 6= X] ≤ ǫ. The following

10 Trevisan, Vadhan & Zuckerman

lemma shows that we can eliminate small decoding error at a small price in
compression length and efficiency.

Lemma 2.9. SupposeXn is a source on {0, 1}n that is compressible to lengthm
with decoding error ǫ, by algorithms (Enc,Dec) computable in time T . Suppose
further that for all x ∈ Sup(Xn), |Enc(x)| ≥ m0. Then Xn is compressible to
length m+ ǫ(n−m0)+1 (with zero decoding error), by algorithms (Enc′,Dec′)
computable in time O(T). If Enc gives a prefix-free encoding, then so does
Enc′.

For example, if X is close (in variation distance) to a source which is highly
compressible, then X itself is highly compressible.

Proof (Proof of Lemma 2.9). We construct Enc′ and Dec′ such that for all
x ∈ Sup(Xn), Dec′(Enc′(x)) = x. On input x, Enc′ first checks if Dec(Enc(x)) =
x. If so, Enc′ outputs 0Enc(x) (0 concatenated with Enc(x)). If not, Enc′ out-
puts 1x. It is easy to see that Enc′ and the natural Dec′ are as required. �

2.3. Randomized compression. We will also consider compression algo-
rithms that are randomized. Here we consider two variants, one where Enc
and Dec have independent randomness and one where they have shared ran-

domness. In both cases, we measure the compression length as E[|Enc(X,R)|],
where the expectation is taken over X and the coin tosses R of Enc. They differ
in the definition of decoding error. For independent randomness, the decoding
error refers to a bound on Pr [Dec(Enc(X,R1), R2) 6= X], whereas with shared
randomness it refers to a bound on Pr [Dec(Enc(X,R), R) 6= X]. Unless oth-
erwise specified, we require that the decoding error is 0 (even with zero error,
randomization could be useful in achieving a small compression length with
polynomial-time algorithms). Note that zero-error randomized compression al-
gorithms (with either shared or independent randomness) are subject to the
same lower bounds on compression length as in Lemmas 2.5 and 2.6. The rea-
son is that for each fixing of the coin tosses, the lower bounds for deterministic
compression algorithms apply.

We also note that in the case of shared randomness, decoding error can
be eliminated in a manner analogous to Lemma 2.9 (with the same price on
compression length and efficiency):

Lemma 2.10. Suppose Xn is a source on {0, 1}n that is compressible to length
m with decoding error ǫ by algorithms (Enc,Dec) with shared randomness,
computable in time T . Suppose further that for all x ∈ Sup(Xn), |Enc(x)| ≥

Compression of Samplable Sources 11

m0. Then Xn is compressible to length m + ǫ · (n − m0) + 1 with shared
randomness and zero decoding error, by algorithms (Enc′,Dec′) computable in
time O(T). If Enc gives a prefix-free encoding, then so does Enc′.

For independent randomness, it is not clear how to eliminate decoding error
(while maintaining the independence of the randomness used by Enc and Dec).
However, it can be made exponentially small:

Lemma 2.11. Suppose Xn is a source on {0, 1}n that is compressible to length
m with decoding error ǫ by algorithms (Enc,Dec) with independent random-
ness, computable in time T . Suppose further that for all x ∈ Sup(Xn),
|Enc(x)| ≥ m0. Then Xn is compressible to length m+ 3ǫ · (n−m0) + 2 with
independent randomness and decoding error 2−n, by algorithms (Enc′,Dec′)
computable in time O(n · T). If Enc gives a prefix-free encoding, then so does
Enc′.

Proof (Proof of Lemma 2.11). We construct Enc′ as follows. On input x,
Enc′(x) computes y ← Enc(x). It then runs O(n) independent executions of
Dec(y). If at least a .6 fraction of these executions output x, then it outputs
0y. Otherwise, it outputs 1x.

Before describing Dec′, we analyze the compression length of Enc′. Assume
without loss of generality that ǫ ≤ 1/3. Then by Markov’s inequality, with

probability at least 1− 3ǫ over x
R←Xn and the coin tosses r1 of Enc, we have

PrR2 [Dec(Enc(x, r1), R2) 6= x] ≤ 1/3. For each such x and r1, Enc′ will output
1x with probability at most 2−n (by a Chernoff bound). Thus, the probability
that Enc′ outputs 1x rather than 0Enc(x, r1) is at most 3ǫ+ 2−n. This implies
that the average compression length increases by at most (3ǫ+2−n) ·(n−m0)+
1 ≤ 3ǫ · (n−m0) + 2.

Now we describe Dec′. On an input of the form 1x, Dec′ outputs x. On
an input of the form 0y, Dec′ runs O(n) independent executions of Dec(y) and
outputs the value that appears most often (breaking ties arbitrarily).

Note that decoding errors can only occur when Enc′(x) outputs a com-
pressed string of the form 0y, for y = Enc(x, r1). For any x, r1, we consider two
cases. If Pr [Dec(y) = x] ≥ .55, then by a Chernoff bound, Dec′ will decode
correctly with probability at least 1− 2−n. If Pr [Dec(y) = x] ≤ .55, then by a
Chernoff bound, Enc′ will output 1x with probability at least 1 − 2−n. Thus
the decoding error is at most 2−n. �

12 Trevisan, Vadhan & Zuckerman

Finally, we observe that randomized compression algorithms can be con-
verted into deterministic ones at a small cost, under plausible complexity as-
sumptions.

Lemma 2.12. Suppose there is a function in E = DTIME(2O(n)) of cir-
cuit complexity 2Ω(n). Then for every polynomial-time compression algorithm
(Enc,Dec) with shared randomness there exists a deterministic polynomial-
time compression algorithm (Enc′,Dec′) such that for every sourceXn, if (Enc,Dec)
compresses X to length m = m(H(Xn), n), then (Enc′,Dec′) compresses Xn to
length m+ O(logn). If Enc gives a prefix-free encoding, then so does Enc′.

Proof. Let t(n) be a bound on the running time of (Enc,Dec) on inputs
of length n. Under the hypothesis, there is a pseudorandom generator G :
{0, 1}ℓ(n) → {0, 1}t(n) with ℓ(n) = O(logn) such that no circuit of size t(n)
can distinguish the output of G from uniform with advantage greater than
ǫ = 1/t(n) (Impagliazzo & Wigderson (1997); Nisan & Wigderson (1994)).
We define Enc′(x) to be the shortest string in the set {s ◦ Enc(x,G(s)) : s ∈
{0, 1}ℓ(n)}, where ◦ denotes concatenation. Now set Dec′(s◦y) = Dec(y,G(s)).
By inspection, Dec′(Enc′(x)) = x for all x.

For the compression length, the pseudorandom property of G implies that
for every string x ∈ {0, 1}n,

ES[|Enc(x,G(S))|] ≤ ER[|Enc(x,R)|] + t(n) · ǫ
= ER[|Enc(x,R)|] + 1.

Thus,

E[|Enc′(Xn)|] = EXn
[min

s
|s ◦ Enc(Xn, G(s))|]

= EXn
[min

s
|Enc(Xn, G(s))|] +O(logn)

≤ EXn
[ES[|Enc(Xn, G(S))|]] +O(logn)

≤ EXn
[ER[|Enc(Xn, R)|] + 1] +O(logn)

≤ m(H(Xn), n) +O(logn)

�

3. Samplable Sources

Classical results, such as those mentioned in the previous section, show that
data compression is feasible for various classes of sources defined by statistical or

Compression of Samplable Sources 13

information-theoretic constraints (e.g., stationary ergodic sources or Markovian
sources). We propose to investigate classes of sources defined by computational

constraints, specifically samplability:

Definition 3.1. A source Xn is samplable if there is an efficient probabilistic
algorithm S such that S(1n) is distributed according to Xn for every n ∈ N.
“Efficient” can be taken to mean a polynomial-time algorithm, a logarithmic
space algorithm, a uniform or nonuniform algorithm, or any other complexity
constraint, and will be specified in context.

For sources (Xx)x∈L indexed by strings, we instead require that S(x) is
distributed according to Xx for every x ∈ L.

It is natural to consider samplable sources, since any flat source X which is
polynomially compressible to length H(X), and moreover for all x ∈ Sup(X),
|Enc(x)| = H(X), is polynomially samplable. This is because X = Dec(UH(X)).
Goldberg & Sipser (1991) also studied compression of computationally con-
strained sources, but they focused on the complexity of deciding membership
in the support of the source (for flat sources).

We recall that pseudorandom generators yield samplable sources that are
incompressible. (Goldberg & Sipser (1991) attribute this observation to L.
Levin.)

Proposition 3.2 (Levin). If one-way functions exist, then there exist polynomial-
time samplable sources Xn of entropy at most nǫ that cannot be compressed to
length n− 3 by any probabilistic polynomial-time algorithms (Enc,Dec), even
if the algorithms are allowed to use shared randomness.

Proof. (sketch) H̊astad et al. (1999) showed that if one-way functions exist,
then there exists a pseudorandom generator G : {0, 1}nǫ → {0, 1}n. Let Xn =
G(Unǫ). From the pseudorandom property of G, it follows that

Pr [Dec(Enc(Un)) = Un] ≥ Pr [Dec(Enc(Xn)) = Xn]− neg(n) = 1− neg(n),

where neg denotes a negligible function. Otherwise, the following procedure
would be a distinguisher: on input x, accept if and only if Dec(Enc(x)) = x.

The pseudorandom property of G also implies that

E[|Enc(Un)|] ≤ E[|Enc(Xn)|] + neg(n).

Otherwise, there would be an encoding length ℓ such that there is a noticeable
difference between the probability that |Enc(Un)| = ℓ and the probability that
|Enc(Xn)| = ℓ, and we would have a distinguisher.

14 Trevisan, Vadhan & Zuckerman

Suppose that E[|Enc(Xn)|] ≤ n− 3. Then, by the above reasoning we have
that, for sufficiently large n,

(3.3) Pr [Dec(Enc(Un)) = Un] ≥ .99

and

(3.4) E[|Enc(Un)|] ≤ n− 2.99 .

By (3.3), there are .99·2n or more elements x of {0, 1}n such that Dec(Enc(x)) =
x. The contribution of these to the expectation in (3.4) is at least n−2.01, by a
calculation similar to the one in the proof of Lemma 2.6. This is a contradiction.

�

Conversely, Wee (2004) proves that if one-way functions don’t exist, then
every polynomial-time samplable flat source Xn can be compressed to length
H(Xn) +O(logn) (for infinitely many n).

Thus, we do not expect to efficiently compress samplable sources in full gen-
erality. Instead, we aim to identify natural subclasses of samplable sources for
which compression is feasible. We will focus on the case when the compression
algorithms are given the sampling algorithm. This is a natural implicit de-
scription of the source (like those discussed in Section 2.2). Moreover, efficient
compression in this case implies universal compression (for uniform algorithms):

Lemma 3.5. Let S ⊆ Σ∗ be a class of sampling algorithms (encoded as strings)
and C be the corresponding class of sources. Suppose that there exist algo-
rithms (Enc,Dec) such that for every S ∈ S, (Enc(·, S),Dec(·, S)) compresses
Xn = S(1n) to length m = m(H(Xn), n) in time poly(n) · f(|S|) for some
function f . Then there exists a polynomial-time universal compression algo-
rithm (Enc′,Dec′) for C that compresses to length m+O(1). If each encoding
Enc(·, S) is prefix-free, then so is the encoding Enc′.

Proof. Let ◦ denote concatenation, and let Σ∗ = {S1, S2, S3, . . .} be an
enumeration of all strings in lexicographic order. Let p(n)·f(|S|) be the running
time of (Enc,Dec).

Enc′(x), on input x ∈ {0, 1}n:

1. For each i = 1, . . . , n

(a) Run Enc(x, Si) for p(n) ·n steps, and if it halts, let yi be the output.

Compression of Samplable Sources 15

(b) Run Dec(yi, Si) for p(n) · n steps. If it outputs x, set zi = 0i1 ◦ yi.

(c) If either Enc or Dec failed to halt within p(n) ·n steps, set zi = 1◦x.

2. Output the shortest string among z1, z2, . . . , zn.

Dec′(0i1 ◦ z): If i = 0, output z. Otherwise output Dec(z, Si).
By inspection, the above algorithms run in polynomial time. For the

compression length, suppose Xn is sampled by algorithm Sk ∈ S. For all
n ≥ max{k, f(|Sk|)}, Enc(x, Sk) and Dec(yk, Sk) will halt within p(n) · f(n) ≤
p(n) ·f(|Sk|) steps and thus zk will equal 0k1◦Enc(x, Sk)). Thus, the compres-
sion length will be at most

E[|Enc′(Xn)|] ≤ E[|0k1Enc(X,Sk)|]
≤ m(H(Xn), n) +O(1),

since k is a constant. For n ≤ max{k, f(|Sk|)}, the compression length is
bounded by a constant. �

Before moving on to our positive results, we observe that good compression
of a samplable source implies that the source’s entropy can be approximated.

Proposition 3.6. If a polynomial-time samplable source Xx distributed over
{0, 1}n (for n = n(x)) is compressible to length m = m(x) by a probabilistic
polynomial-time encoding algorithm Enc (even sharing randomness with the
decoding algorithm Dec), then there is a probabilistic polynomial-time algo-
rithm A such that Pr [A(x) ∈ [H(Xx)− log n− 1, m+ 1/2]] ≥ 2/3.

Proof. By Lemma 2.5 and hypothesis, we have

H(Xx)− logn− 1/2 ≤ E[|Enc(Xx, R)|] ≤ m.

A simply estimates the average compression length E[|Enc(Xx, R)|] by taking

polynomially many independent samples x1, . . . , xk
R←Xx and sequences of coin

tosses r1, . . . , rk for Enc, and computing the average of the |Enc(xi, ri)|’s. Tak-
ing k = O(n2), we obtain an approximation of E[|Enc(Xx, R)|] to within ±1/2
with high probability. �

In particular, one way to show that a family of sources Xx does not have
good polynomial-time compression algorithms is to show that it is intractable
to approximate the entropy of Xx. For example, Goldreich & Vadhan (1999)

16 Trevisan, Vadhan & Zuckerman

showed that the problem of approximating the entropy of a general polynomial-
time samplable source is complete for SZK, the class of problems possessing
statistical zero knowledge proofs. (More precisely, the problem is the following:
given a boolean circuit C : {0, 1}m → {0, 1}n, approximate the entropy of
distribution XC = C(Um).) Using this, we obtain the following.

Proposition 3.7. If SZK 6= BPP, then there is a family of samplable sources
{Xx}x∈L that cannot be compressed to length H(Xx)+n1−α by a probabilistic
polynomial-time encoding algorithm Enc (even sharing randomness with the
decoding algorithm Dec), for any constant α > 0.

This result is incomparable to Proposition 3.2. Proposition 3.7 only requires
that the encoding algorithm be efficient, but Proposition 3.2 rules out compres-
sion even to length n−3 and uses a qualitatively weaker assumption (Ostrovsky
(1991), Ostrovsky & Wigderson (1993) have shown that SZK 6= BPP implies
the existence of a variant of one-way functions).

We note that Proposition 3.7 relies on the fact that the compression al-
gorithm is not given a bound on the entropy of Xx. In fact, the literature
on lossless condensers, cf. Raz & Reingold (1999); Ta-Shma et al. (2001),
gives efficient, randomized encoding algorithms that near-optimally compress
flat sources (with a small decoding error) when given a bound on the entropy.
Condensers do not, however, provide an efficient decoding algorithm. (Indeed,
if the decoding algorithm were efficient, then one could eliminate the need to
know a bound on the entropy by trying k = 1, . . . , n, using the one that gives
the smallest encoding length and decodes correctly, and including the value of
k used in the compressed string.)

Note that for flat sources, an additive approximation to H(Xx) is equiva-
lent to a multiplicative approximation to |Sup(Xx)|, which is an approximate
counting problem in the usual sense. In Section 7, we will exploit this relation-
ship between compression and approximate counting in the opposite direction,
using techniques from approximate counting algorithms to develop compression
algorithms for a certain class of sources.

4. Sources with Logspace Samplers

In this section we consider sources sampled by logarithmic space randomized
algorithms. As usual in the theory of randomized space-bounded algorithms,
we consider a model where the space-bounded machine has one-way access to
a tape containing random bits.

Kharitonov et al. (1989) have shown that no pseudorandom generator can
be implemented as a log-space machine with one-way access to the seed. (This

Compression of Samplable Sources 17

follows from the fact that deciding if a given string is a possible output of the
generator is a problem in non-deterministic log-space, and so it is solvable in
polynomial time.)

In the rest of this section we show that optimal compression is possible for
sources sampled by one-way log-space algorithms. This complements the result
of Goldberg & Sipser (1991), who showed optimal compression for flat sources
whose support is decidable by one-way log-space machines. Moreover, logspace
samplers generalize the Markov chain model used often in compression work
(see e.g. Ziv & Lempel (1978)). This is because a Markov chain with S states
can be converted to a machine using space logS. (S is usually viewed as a
constant so uniformity issues do not arise.)

Definition 4.1 (Space-bounded Samplable Sources). We say that a source
Xn is samplable in space s(n) if there is a probabilistic Turing machine M
such that:

◦ M(1n) has the same distribution as Xn,

◦ For every content of the random tape, the computation M(1n) uses space
at most s(n),

◦ M has one-way access to its random tape,

◦ M has write-only access to its output.

We say that M is a space-s(n) sampler.

Notice that the bound on the space implies that M runs in time n2O(s(n))

and uses at most as many random bits.
The main lemma of this section says that the cumulative probability dis-

tributions of logspace-samplable sources can be computed in polynomial time.
(A potentially larger class of sources can be handled using the techniques of
Allender et al. (1993).)

Lemma 4.2. There is an algorithm A that on input a space-s(n) sampler M
and string x ∈ {0, 1}n runs in time poly(n, 2s(n)) and returns the cumulative
probability Pr [M(1n) � x], where � denotes lexicographic ordering.

Proof. Given M , we define a new probabilistic space-bounded machine M ′

that uses space O(s(n)) and with the property that, for every x ∈ {0, 1}n,

Pr [M ′(1n, x) accepts] = Pr [M(1n) � x]

18 Trevisan, Vadhan & Zuckerman

Given (1n, x), M ′ simulates M(1n), and it accepts if and only if the simulated
computation outputs a string a such that a � x. Since M ′ does not have
enough space to store a, we need to be careful about the way the simulation is
performed. Note that if a � x and a and x have the same length, then either
a = x or, for some i, a is a string of the form (x1, . . . , xi−1, 0, ai+1, . . . , an),
where xi = 1. That is, a starts with a (possibly empty) prefix of x, then it has
a zero in a position in which x has a one, and then it continues arbitrarily.

At the beginning of the simulation, the head of M ′ on the input tape is on
the first bit of x. Every time the simulated computation of M(1n) writes on
the output tape, M ′ compares the bit that M(1n) is going to write with the
current bit of x that it sees on the output tape. If the bits are the same, then
M ′ continues the simulation and moves the input-tape head on to the next
symbol of x. If M(1n) is about to write a one, and the corresponding bit of x
is zero, then the simulation halts and M ′ rejects. If M(1n) is about to write
a zero, and the corresponding bit of x is one, then M ′ accepts. Also, if the
simulation of M(1n) is completed with the input-tape head moving all the way
until the end of x, then also M ′ accepts. It should be clear that the contents
of the random tape for which M ′(1n, x) accepts are precisely those for which
M(1n) outputs a string � x.

After constructing M ′, it then remains to compute Pr [M ′(1n, x) accepts],
which is a standard problem. We enumerate all S = n · 2O(s) possible states of
M ′(1n, x), and construct an S × S matrix P such that Pi,j is the probability
that M ′(1n, x) goes from state i to state j in one step. We let e be the S-
dimensional vector such that ei = 1 if i is the start state of the machine, and
ei = 0 otherwise, and we compute the vector eP S. Then, if A is the set of
accepting states of the machine, then

∑
a∈A(eP S)[a] gives the probability that

the machine accepts. �

Theorem 4.3 (Compressing log-space Sources). LetXn be a source over {0, 1}n
samplable in space O(logn). Then there are polynomial time algorithms (Enc,Dec)
that compress Xn to length H(Xn) + 2. The encoding is prefix-free.

Proof. Combine Lemma 2.8 with Lemma 4.2 �

Corollary 4.4 (Universal Compression of log-space Sources). For every bound
s(n) = O(logn) there are polynomial-time algorithms (Enc,Dec) such that for
every source Xn over {0, 1}n samplable in space s(n), and for every sufficiently
large n, (Enc,Dec) compress Xn to length H(Xn) + O(1). The encoding is
prefix-free.

Compression of Samplable Sources 19

Proof. Combine Theorem 4.3 with Lemma 3.5. �

5. Sources with Membership Algorithms

In the rest of this paper, we consider an alternative approach to bypassing the
impossibility of compressing pseudorandom sources. Here we allow the sam-
pler to be an arbitrary probabilistic polynomial-time algorithm, but explicitly
impose the constraint that the source is not pseudorandom.

Definition 5.1. Let Xn be a flat source. We say that Xn is a source with
membership algorithm if there is a polynomial-time algorithm D such that
D(z) = 1 ⇔ z ∈ Sup(X|z|). For a source Xx indexed by a string x, we require
instead that there is a polynomial-time algorithm D such that D(x, z) = 1 ⇔
z ∈ Sup(Xx).

Note that a source with a membership algorithm cannot be pseudorandom;
indeed the algorithm D distinguishes it from all sources of higher entropy.

Are all samplable sources with membership algorithms efficiently compress-
ible? Goldberg & Sipser (1991) showed that any source with membership algo-
rithm can be compressed to length n− Θ(logn) (provided H(Xn) < n− (3 +
δ) logn). But can they be compressed to length roughly H(Xn)? (Think of,
say, H(Xn) = n/2.) This is an intriguing open question, which we first heard
from Impagliazzo (1999). Goldberg & Sipser (1991) and Wee (2004) provide
oracles relative to which the n−Θ(logn) bound cannot be improved, and rel-
ative to which deterministic compression is impossible.3 We know of no other
evidence regarding this question without oracles.

In the next two sections, we present two positive results about sources
with membership algorithms. In the first, we show how to compress better
than Goldberg–Sipser while using deterministic compression and decompression
algorithms. In particular, if Xn is a source with membership algorithm and
H(Xn) ≤ k = n − O(logn), then Goldberg & Sipser showed how to compress
Xn to length k + 3 logn with high probability. We show how to compress to
length k + polylog(n− k) ≤ k + polylog log n.

Our technique is completely different than that of Goldberg & Sipser (1991).
Instead of arithmetic coding, we use the recent explicit construction by Capalbo
et al. (2002) of constant-degree “lossless” expanders.

3We note that Goldberg and Sipser measure compression by the worst-case length (except
for a finite number of exceptions, which makes no difference in the Turing machine model),
whereas our definitions involve the average-case length, as does the work of Wee (2004).

20 Trevisan, Vadhan & Zuckerman

In the second result, we show how to compress to length H(X) + O(1)
for a large class of sources with membership algorithms, namely those whose
supports are self-reducible in the sense of Schnorr (1976).

6. Compressing High Entropy Sources

We prove the following theorem.

Theorem 6.1. LetXn be a flat source with membership algorithm andH(Xn) ≤
k. ThenXn is compressible to any length k+polylog(n−k) in time poly(n, 2n−k).
In particular, if k = n − O(logn), then the compression is polynomial time.
The encoding is prefix-free.

The idea of the proof is that we wish to condense the input distribution,
without many collisions of points in the support. Lossless condensers, first
defined and constructed by Raz & Reingold (1999) and Ta-Shma et al. (2001),
do exactly this. We prove that a good condensing function can be used to
compress, and then use the expanders constructed by Capalbo et al. (2002) as
condensing functions.

We begin with the following lemma, which shows how a good condensing
function can be used to compress.

Lemma 6.2. Suppose Xn is a flat source with membership algorithm and S =
Sup(X). Fix a function f : {0, 1}n × {0, 1}d → {0, 1}m. Call z ∈ {0, 1}m S-
unique if there is exactly one element (x, r) ∈ S×{0, 1}r such that f(x, r) = z.
Suppose that Prx∈X,r∈Ud

[f(x,r) is S-unique] ≥ 1 − ǫ. Then Xn is compressible
to length m with decoding error ǫ in (deterministic) time Tf · Tf−1 · poly(n).
Here Tf denotes the time to compute the set {f(x, r) : r ∈ {0, 1}d} on input x
and Tf−1 denotes the time to compute the set f−1(y) on input y. The encoding
is prefix-free.

Proof. Let Enc(x) be the lexicographically first y of the form f(x, r) that
is S-unique, and let Dec(y) be the lexicographically first x such that (x, r) ∈
f−1(y) for some r and x ∈ S (or 0m if no such x exists). Note that computing
Enc(x) can be done by enumerating the set F (x) = {f(x, r) : r ∈ {0, 1}d},
which takes time Tf , and testing each element y ∈ F (x) for S-uniqueness.
Testing a string y for S-uniqueness can be done by enumerating the set f−1(y),
which takes time Tf−1 , and testing each element of f−1(y) for membership
in S, which takes time poly(n). Computing Dec(y) can similarly be done by
enumerating f−1(y) and testing each element for membership in S. �

Compression of Samplable Sources 21

The function f is essentially a disperser. A disperser is a type of expanding
graph where the expansion is required only for sets of a particular size. We will
need the expansion close to the degree. It is convenient to use a true expander,
as then we don’t need to know |S| (which corresponds to not needing to know
H(Xn) in Theorem 6.1, but only an upper bound). Known dispersers also do
not appear to improve our bounds.

Definition 6.3. A bipartite graph G = (V,W,E) is a (K,A)-expander if, for
all subsets T ⊆ V such that |T | ≤ K, we have |Γ(T)| ≥ A · |T |, where Γ(T)
denotes the set of neighbors of the vertices in T .

The following lemma is self-evident.

Lemma 6.4. LetG = ({0, 1}n, {0, 1}m, E) be a (K, (1−ǫ/2)DL)-expander with
left degree DL = 2d and right degree DR. Assume the edges out of a given node
in {0, 1}n are labelled with unique labels from {0, 1}d . Define f(x, r) to be the
neighbor of x labelled by r. Then f satisfies the conditions of Lemma 6.2 for
any source Xn whose support S is of size at most K.

We take G to be the expander explicitly constructed by Capalbo et al.

(2002):

Theorem 6.5 (Capalbo et al. 2002). Let N = 2n ≥ K = 2k. There are ex-
plicitly constructible (K, (1−ǫ/2)DL) regular expandersG = ({0, 1}n, {0, 1}m, E)
with left degree DL = 2d, d = poly(log(n − k), log(1/ǫ)), and M = 2m =
O(KDL/ǫ). The set of neighbors of a vertex in {0, 1}n is computable in time
poly(n,DL) and the set of neighbors of a vertex in {0, 1}m are computable in
time poly(n,DL, N/K)

In Capalbo et al. (2002), the computation time of the neighborhoods of
the right-vertices is not explicitly stated. For completeness, we sketch how to
obtain these in Appendix A.

Applying these expanders with ǫ = 1/(n− k) yields compression length

m = k + d+ log(1/ǫ) +O(1) = k + polylog(n− k)

and running time poly(n, 2polylog(n−k), 2n/2k) = poly(n, 2n−k). Removing decod-
ing errors via Lemma 2.9 increases the compression length by ǫ ·(n−m)+1 < 2
bits. This completes the proof of Theorem 6.1.

In the original version of this paper (see Trevisan et al. (2004)), we had a
weaker version of Theorem 6.1 with a more involved proof, because we did not
choose parameters optimally. Yet ideas in that proof can be used to achieve

22 Trevisan, Vadhan & Zuckerman

slightly better compression in the sense that a larger fraction of elements from
the source are compressed to length k + polylog(n− k) (all but a 1/n fraction
rather than a 1/(n − k) fraction); this improvement is not reflected in the
average compression length (which is the measure we use).

The idea in the original proof, based upon Arora et al. (1996), was to first
compress the S-unique strings as above. Then, however, we consider the set S1

of remaining strings, and compress them recursively using the same algorithm.
By setting the number of levels of recursion in this process, we can trade off
the fraction of strings compressed with the running time.

6.1. Generalizing to Non-Flat Sources. We now extend the above tech-
niques to non-flat distributions. We are able to obtain bounds on compression
length in terms of a “truncated” variant of entropy, defined as follows.

Definition 6.6. Let Xn be a source. For x ∈ {0, 1}n and ∆ ≤ n, define
h(x) = log(1/Pr [Xn = x]) and

h∆(x) =





n−∆ if h(x) < n−∆,

h(x) if h(x) ∈ [n−∆, n],

n if h(x) > n,

and
H∆(Xn) = EXn

[h∆(Xn)].

Also, recall that the min-entropy H∞(X) of a source X is defined as the mini-
mum of h(x) over all the elements x of the support of x, that is,

H∞(X) = min
x:Pr[X=x]6=0

h(x) .

For a non-flat distribution Xn, a natural generalization of a membership
algorithm is a probability mass algorithm: a polynomial-time algorithm D such
that for every z ∈ {0, 1}n, D(z) = Pr [Xn = z]. For sources with a probability
mass algorithm we prove the following result.

Theorem 6.7. Let Xn be a source with probability mass algorithm and let c
be any constant. Then Xn is compressible to length Hc log n(Xn) + polylog(n−
Hc log n(Xn)) in polynomial time. The encodings are prefix-free.

Proof. First, we observe that the proof of Theorem 6.1 immediately works
for sources that are “nearly flat,” in the sense that every two elements of

Compression of Samplable Sources 23

Sup(Xn) have probability mass within a factor of, say, 2 of each other. This is
the case because if the algorithm correctly compresses all but a ǫ = 1/(n− k)
fraction of elements of Sup(Xn), then it will also correctly compress all but a
2ǫ fraction of the distribution Xn. Removing errors via Lemma 2.9 will then
increase the compression length by at most 2ǫ · (n−m) + 1 < 3 bits.

To handle general sources Xn, we bucket the elements of Sup(Xn) into sets
Si, consisting of elements of probability mass in the interval [2−i, 2−(i+1)). Note
that given x ∈ Sup(Xn), we can determine its bucket i(x) using the probability
mass algorithm for Xn.

To compress elements x of Si (where i = i(x)), we use the compression
algorithm from the proof of Theorem 6.1, replacing the parameter k with ki =
max{i+1, n− (c+1) logn}. We denote such an encoding of a string x ∈ Si by
Enci(x). The final encoding Enc(x) of a string x is as follows: If i(x) ≤ n then
we set Enc(x) = 0 ◦ (n− i(x)) ◦ 1 ◦ Enci(x)(x) where (n− i(x)) is written as a
string of length 2⌈log(n − i(x))⌉ by taking its binary expansion and replacing
each 0 with 00 and each 1 with 01. If i(x) ≥ n, then we set Enc(x) = 1 ◦ x.

Since the running time of the compression algorithms in Theorem 6.1 are
decreasing in k, the running time of the new compression algorithm can be
bounded by substituting k = n−(c+1) logn into the same expressions, yielding
polynomial running time. The compression length can be bounded as follows:

EXn
[|Enc(Xn)|]
≤ EXn

[ki(Xn) + polylog(n− ki(Xn)) + log(n− i(Xn)) +O(1)]

≤ EXn
[max{i(Xn), n− c logn}+ polylog(n−max{i(Xn), n− c logn}) +O(1)]

≤ EXn
[max{i(Xn), n− c logn}] + polylog(EXn

[n−max{i(Xn), n− c logn}]) +O(1)

≤ Hc log n(Xn) + polylog(n−Hc log n(Xn)) +O(1).

The second inequality above is obtained by separately considering the cases
that i(Xn) + 1 ≤ n − (c + 1) logn (in which case the log(n − i(Xn)) term is
absorbed into the first term) and i(Xn) + 1 > n − (c + 1) logn (in which case
the log(n − i(Xn)) term is absorbed into the second). The third inequality is
obtained by applying Jensen’s inequality to the function f(x) = logm x, which
is concave when m is constant and x is sufficiently large. �

We now deduce two corollaries of the above, giving compression bounds in
terms of the actual entropy of the source.

Corollary 6.8. Let Xn be a source with probability mass algorithm having
min-entropy at least n − c logn for some constant c. Then Xn is polynomial-

24 Trevisan, Vadhan & Zuckerman

time compressible to length H(Xn) + polylog(n − H(Xn)), via a prefix-free
encoding.

Proof. IfXn has min-entropy at least n−c log n, thenHc log n(Xn) ≤ H(Xn).
�

Corollary 6.9. Let Xn be a source with probability mass algorithm. Then
for any constant c > 0, Xn is polynomial-time compressible to length

n−
(

1− H(Xn)

n

)
· c logn+O(1).

Proof. Let H(Xn) = n−∆, so our goal is to compress to length n− (∆/n) ·
c logn +O(1).

First, we may assume that ∆ ≥ 2c logn; otherwise compressing to length n
(say via the identity map) suffices. Call a string x light if h(x) > n−c log n. Let
L be the set of light strings. By Markov’s inequality, Pr [Xn ∈ L] ≤ H(Xn)/(n−
c logn). So

Pr [Xn /∈ L] ≥ 1−H(Xn)/(n− c logn)

= (∆− c log n)/(n− c logn)

≥ ∆/2n

Thus,

Hc log n(Xn) ≤ Pr [Xn ∈ L] · n+ Pr [Xn /∈ L] · (n− c logn)

= n− Pr [Xn /∈ L] · (c logn)

≤ n− (∆/2) · (c logn)

Thus, setting ∆′ = (∆/2)·(c logn) and applying Theorem 6.7, we can compress
Xn to length

n−∆′ + polylog∆′ ≤ n−∆′/2 +O(1) = n−∆ · (c logn)/4 +O(1).

Increasing c by a factor of 4 yields the desired bound. �

Notice that the results in this section do not require that the source Xn is
samplable, but only that Xn has a membership algorithm (in the case of flat
sources) or a probability-mass algorithm (in the case of general sources). For
flat sources of entropy at least n − O(logn), a membership algorithm implies
samplability: one can sample by randomly picking elements of {0, 1}n and

Compression of Samplable Sources 25

testing if they are in the support of Xn. But our results also apply to sources
of entropy smaller than n−O(logn) (though they will only achieve compression
length n−O(logn)). This leads to the question of whether better compression
can be achieved based on just the membership algorithm condition. Below
we give evidence that the membership algorithm condition alone is unlikely to
imply near-optimal compression, even for sources of entropy zero.

Proposition 6.10. Suppose that every family of flat sources (Xx)x∈L of zero
entropy with a membership algorithm can be compressed to length m = m(n)
by a polynomial-time compression algorithm (Enc,Dec) with shared random-
ness. Then SAT is in RTIME(poly(n) · 2m(n)).

Proof. We show that the hypothesis implies a randomized algorithm for
finding satisfying assignments to formulas with a unique satisfying assign-
ment, and then apply the Valiant & Vazirani (1986) reduction from SAT to
Unique-SAT. For a boolean formula ϕ, consider the source Xϕ that is uni-
form on the satisfying assignments of ϕ, and let L be the set of formulas ϕ with
exactly one satisfying assignment. Then (Xϕ)ϕ∈L has a membership algorithm
because checking whether an assignment satisfies a formula is easy. Now, if
(Enc,Dec) compress Xϕ for ϕ ∈ L to expected length m, then with probability
at least 1/(m+1) over the coin tosses R of Enc and Dec, the unique satisfying
assignment of ϕ gets compressed to length at most m. In such a case, the sat-
isfying assignment can be found by enumerating all O(2m) strings z of length
at most m and computing Dec(z, R). Repeating for O(m) independent choices
of R amplifies the probability of finding an assignment to 1/2.

Valiant & Vazirani (1986) give a randomized polynomial-time reduction
mapping any formula ψ to a formula ϕ on the same number n of variables such
that if ψ is satisfiable, then with constant probability ϕ has has exactly one
satisfying assignment, and if ψ is unsatisfiable, then with probability 1 ϕ is
unsatisfiable. Composing this reduction with the above algorithm for finding
unique satisfying assignments yields the claimed algorithm for SAT. �

Thus, if SAT requires time 2Ω(n), the above gives a family of zero-entropy
sources that cannot be compressed to length o(n). The argument can be mod-
ified to give an incompressible family of sources indexed only by input length,
under an assumption about “unique nondeterministic exponential time”.

Proposition 6.11. Suppose that every family of flat sources (Xn)n∈N of en-
tropy at most 1 with a membership algorithm can be compressed to length
m = m(n) by a polynomial-time compression algorithm (Enc,Dec) with shared

randomness. Then UTIME(2n) ⊆ RTIME(2O(n) · 22m(2n+O(1))).

26 Trevisan, Vadhan & Zuckerman

Proof. Let M be a nondeterministic Turing machine running in time T (ℓ) =
2ℓ on inputs of length ℓ such that M has zero or one accepting computation
on each input. Our aim is to show that, under the hypothesis, L(M) can be

decided by a randomized algorithm running in time 2O(ℓ) · 22m(2ℓ+O(1)) on inputs
of length ℓ.

Let M ′ be a nondeterministic TM running in time 2ℓ that has exactly one
more accepting computation than M on each input (by adding a trivial ac-
cepting computation). We view each possible input of length ℓ to M ′ as a
binary number n in the interval [2ℓ+c, 2ℓ+c + 2ℓ], where 2c upper bounds the
branching factor of M ′. Since M ′ has running time 2ℓ, computations of M ′

can be described by strings of length n. We define Xn to be the the uniform
distribution on the accepting computations of M ′. (For n not in an interval
[2ℓ+1, 2ℓ+1 + 2ℓ], Xn can be taken to be the distribution that always outputs
0n.) Notice that Xn has entropy zero or 1, depending on whether M ′ has 1 or
2 accepting computations on input n. Membership in the support of Xn can
be decided in time 2O(ℓ) = poly(n).

Now we argue that a good compression algorithm can be used to decide
L(M), specifically by yielding an efficient algorithm to find all accepting com-
putations of M ′. If (Enc,Dec) compress Xn to length m, then with probability
at least 1/(m + 1) over the coin tosses R of Enc, all accepting computations
of M ′ are compressed to length at most 2m. (At worst, one is compressed to
length 2m and the other to length zero.) Thus, the accepting computations
can be found in time poly(n) · 22m(n) = 2O(ℓ) · 22m(2ℓ+c). �

If we impose the additional condition that Xn is samplable, then we do not
know of any evidence suggesting the intractability of near-optimal compression
other than the oracle result of Wee (2004).

7. Self-Reducible Sets

For a source Xx with membership oracle, the relation R = {(x, z) : z ∈
Sup(Xx)} is decidable in polynomial time. Thus sources with membership ora-
cles correspond to the uniform distribution on NP witness sets. Many natural
NP witness sets have the following property of self-reducibility:

Definition 7.1 (Schnorr 1976). A polynomially balanced relation R ⊆ Σ∗ ×
Σ∗ is self-reducible if there exist polynomial-time computable functions ℓ :
Σ∗ → N, σ : Σ∗ → N, and ρ : Σ∗ × Σ∗ → Σ∗ such that for all x, w =
w1 · · ·wm ∈ Σ∗,

(i) (x, w) ∈ R⇒ |w| = ℓ(x).

Compression of Samplable Sources 27

(ii) For all x, σ(x) ≤ ℓ(x), and ℓ(x) > 0⇒ σ(x) > 0.

(iii) σ(x) = O(log |x|),

(iv) (x, w1w2 · · ·wℓ(x)) ∈ R if and only if (ρ(x, w1 · · ·wσ(x)), wσ(x)+1 · · ·wℓ(x)) ∈
R,

(v) |ρ(x, w1w2 · · ·wσ(x))| ≤ |x|.

(vi) If ℓ(x) = 0, then R can be decided in polynomial time.

As usual, the language associated with R is LR = {x : ∃w(x, w) ∈ R}.
Intuitively, this definition says that the witness set for a given input can be

expressed in terms of witness sets for smaller inputs. Specifically, the witnesses
for x which begin with initial segment w1 · · ·wσ(x) are in one-to-one corre-
spondence with the witnesses for the instance ρ(x, w1 · · ·wσ(x)). Many natural
witness relations are self-reducible in this sense, e.g., satisfying assignments of
boolean formulae and perfect matchings in bipartite graphs.

Example 7.2. (perfect matchings) Let R be the relation consisting of pairs
(G,M), where G is a bipartite graph and M is a perfect matching in G. This
is self-reducible because the perfect matchings in G = (V,E) that contain some
edge e = (i, j) ∈ E are in one-to-one correspondence with the perfect matchings
in G′ = (V \ {i, j}, E \ {e}), and those that do not contain e are in one-to-one
correspondence with the perfect matchings in G′′ = (V,E \ {e}).

More formally, we represent G by its n × n adjacency matrix, and if G
has m edges, then M is represented by a bit vector M1M2 · · ·Mm where Mi

indicates whether or not edge i is included in the perfect matching. Then we
set ℓ(G) = m, σ(G) = 1 (unless m = 0, in which case σ(G) = 0), and define
ρ(G, 0) to be the graph obtained by removing edge 1 from G (but keeping its
endpoints as vertices), and ρ(G, 1) to be the graph obtained by removing edge
1 and its endpoints from G. ♦

Jerrum et al. (1986) proved that, for self-reducible relations, witnesses can
be generated almost uniformly at random if and only if approximate counting
of witnesses can be done in probabilistic polynomial time. And, indeed, there
are now many approximate counting algorithms known that have been obtained
by first constructing almost-uniform samplers (typically via the Markov chain
Monte Carlo method; see the surveys of Jerrum & Sinclair (1996); Kannan
(1994); Randall (2003)).

The main result of this section adds compression of the witness set to the
list of tasks equivalent to sampling and counting.

28 Trevisan, Vadhan & Zuckerman

Theorem 7.3. Let R be a self-reducible relation, and for every x ∈ LR, let Xx

be the uniform distribution on Wx = {w : (x, w) ∈ R}. If the sources (Xx)x∈LR

are samplable, then they can be efficiently compressed to length H(Xx)+5 with
shared randomness and zero decoding error. The encodings are prefix-free.

Proof. We will show how to compute an “approximate arithmetic encod-
ing” for the sources Xx. A similar approach was used by Goldberg & Sipser
(1991) in their main result, but as mentioned above they were only able to
compress to length n−O(logn). (Their algorithm, however, compresses every
string in the support of the source, and it does not require the self-reducibility
condition that we have in this theorem.) We use the ideas in the reduction
from approximate counting to sampling of Jerrum et al. (1986) to obtain an
almost-optimal compression length.

The first step is to argue that we can efficiently approximate probabilities
of witness prefixes. For an input x and a witness prefix z = z1 · · · zσ(x), let
p(x, z) = Pr

[
Xx|σ(x) = z

]
, where a|t denotes the first t bits of a.

Claim 7.4. There is a probabilistic algorithm A(x, z, ǫ, δ; r) (where r are the
coin tosses) running in time poly(|x|, 1/ǫ, log(1/δ)) such that

(i) For every x, z, ǫ, δ, Pr [|A(x, z, ǫ, δ)− p(x, z)| > ǫ] ≤ δ, and

(ii) For every x, ǫ, δ, r, A(x, ·, ǫ, δ; r) is a probability measure on Σσ(x). That is,∑
z∈Σσ(x) A(x, z, ǫ, δ; r) = 1 and for every z ∈ Σσ(x), A(x, z, ǫ, δ; r) ∈ [0, 1].

The algorithm A simply takes poly(1/ǫ, log(1/δ)) samples from Xx and outputs
the fraction that begin with prefix z. The claim follows from a Chernoff Bound.

Fix an input length n, and set δ = 2−3n, ǫ = 1/n2c, for a large constant
c to be specified later. For x of length at most n, z of length at most σ(x),
and a sequence r of (poly(n)) coin tosses for A, define qr(x, z) = A(x, z, ǫ, δ; r).
Taking a union bound over all x, z, the following holds with probability at least
1− 2−n over r:

(7.5) |qr(x, z)− p(x, z)| ≤ ǫ ∀|x| ≤ n, |z| = σ(x).

Our compression and decompression algorithms will choose r at random, so we
may assume they have an r that satisfies this condition (the exponentially rare
r’s which violate this condition will only increase the expected compression
length by at most poly(n)/2n).

Once r is fixed, the qr’s induce approximating distributions X̂x,r via self-
reducibility:

Compression of Samplable Sources 29

X̂x,r: If ℓ(x) = 0, output the empty string. Otherwise:

1. Select a prefix z ∈ {0, 1}σ(x) according to the distribution qr(x, ·).
2. Recursively sample z′ ← X̂ρ(x,z),r.

3. Output zz′.

Moreover, we can recursively compute the cumulative distribution function
F̂x,r(w) for X̂x,r with respect to the lexicographic order as follows, writing
w = zz′ with |z| = σ(x):

(7.6) F̂x,r(zz
′) =

(∑

u<z

qr(x, u)

)
+ qr(x, z) · F̂ρ(x,z),r(z

′).

Thus we can compute the arithmetic coding (Êncx,r, D̂ecx,r) (Lemma 2.8)

for X̂x,r in polynomial time. Our compression algorithms (Enc,Dec) for Xx

itself are as follows:

Enc(x, w, r): Let s = Êncx,r(w). If |s| ≤ ℓ(x), output 0s. Otherwise output
1w.

Dec(x, bs, r): If b = 0, output D̂ecx,r(s). Otherwise output s.

By inspection, Dec(x,Enc(x, w, r), r) = w for all w. Thus, we only need
to verify the compression length. To do this, we argue about how well X̂x,r

approximates Xx.

Claim 7.7. With probability at least 1 − 1/(n · ℓ) over w ← Xx (where ℓ =
ℓ(x)), we have Xx(w) ≤

√
2X̂x,r(w).

Proof of claim: To prove this claim, we call a prefix z ∈ Σσ(x)

light if

Pr
[
Xx|σ(x) = z

]
≤ 1/(nc · |Σ|σ(x)).

By a union bound over all z ∈ Σσ(x), the probability that z ←
Xx|σ(x) is light is at most 1/nc. Thus, if we sample from Xx by first
sampling a prefix z and then recursively sampling from Xρ(x,z), we
encounter a light prefix somewhere along the way with probability
at most ℓ·(1/nc), because there are at most ℓ levels of recursion. For
a sufficiently large choice of c, this probability is at most 1/(n · ℓ).

30 Trevisan, Vadhan & Zuckerman

So we only need to argue that if the sampling of w involves no
light prefixes, then Xx(w) ≤

√
2X̂x,r(w). Let z be the first prefix.

By Property (7.5) of the qr’s, we have

qr(x, z) ≥ p(x, z)− ǫ

= p(x, z)− 1

n2c

≥ p(x, z) ·
(

1− |Σ|
σ(x)

nc

)

≥ p(x, z) ·
(

1− 1

3ℓ

)
,

for a sufficiently large choice of the constant c. By the definition
of self-reducibility and the fact that Xx is uniform on Wx, we can
expand Xx(w) for any x and w = z1 · · · zt ∈Wx as follows:
(7.8)
Pr [Xx = z1z2 · · · zt] = p(x0, z1) · p(x1, z2) · p(x2, z3) · · ·p(xt−1, zt),

where x0 = x, |zi| = σ(xi−1), xi = ρ(xi−1, zi), and σ(xt) = 0.
Similarly, by the recursive definition of X̂x,r, we have:
(7.9)

Pr
[
X̂x,r = z1z2 · · · zt

]
= qr(x0, z1)·qr(x1, z2)·qr(x2, z3) · · · qr(xt−1, zt),

Putting all of the above together, we have X̂x,r(w) ≥ (1 − 1/3ℓ)ℓ ·
Xx(w) ≥ Xx(w)/

√
2, as desired. �

We can now estimate the compression length ofXx under (Enc(x, ·, r),Dec(x, ·, r)).
Recall that the arithmetic coding Êncx,r(w) compresses an individual string w

to length ⌈log(1/X̂x,r(w))⌉+1. If r and w satisfy the Inequalities (7.5) and the
conclusion of Claim 7.7, then we can bound this length as

∣∣∣Êncx,r(w)
∣∣∣ = ⌈log(1/X̂x,r(w)⌉+ 1 ≤ log(1/Xx(w)) + 5/2.

The probability that r and w do not satisfy either the Inequalities (7.5) or the
conclusion of Claim 7.7 is at most 2−n+1/(n·ℓ). Thus, the average compression
length is at most

Ew←Xx,r
[|Enc(x, w, r)|] = Ew←Xx,r

[max{|Êncx,r(w)|, ℓ}] + 1

≤ Ew←Xx
[log(1/Xx(w)) + 5/2] + (1/(n · ℓ) + 2−n) · ℓ+ 1

≤ H(Xx) + 4,

for large enough n, as desired. �

Compression of Samplable Sources 31

The randomization in the compression algorithms above can be eliminated
via Lemma 2.12, under a complexity assumption. However, if we do not care
for a full derandomization, and only to eliminate the shared randomness, we
can use a “random perturbation” trick of Goldberg & Sipser (1991) to do it
without a complexity assumption.

Proposition 7.10. Let R be a self-reducible relation, and for every x, let
Xx be the uniform distribution on {w : (x, w) ∈ R}. If the sources Xx are
samplable, then they can be compressed by probabilistic polynomial-time algo-
rithms to length H(Xx)+O(logn) with independent randomness and decoding
error 2−n. The encodings are prefix-free.

Proof. The only use of randomness in the above proof is to compute the
approximations qr satisfying Property (7.5), and this randomness r needs to be
shared so that both the encoder and decoder utilize the same approximations.
Thus, it suffices to show how they can compute their approximations indepen-
dently, yet have the approximations be equal with high probability. Roughly
speaking, we do this by perturbing the approximations with random noise η
and rounding. It turns out that the noise only needs to specified to O(logn)
bits and thus can be included as part of the compressed string.

We now proceed with the details. The randomness used by Enc and Dec
consists of two parts — r, which is not shared, and η which will be shared
(by explicit inclusion in the compressed string). To compute an approxima-
tion qr,η(x, z), we first use the algorithm A(x, z, ǫ, δ; r) from Claim 7.7, set-
ting δ = 2−3n (as before) and ǫ = 1/n4c (instead of 1/n2c). Then we take
η, which is a random number in {0, 1, . . . , nc − 1}, and set q′r,η(x, z) to equal
A(x, z, ǫ, δ; r) + η/n4c rounded to the nearest multiple of 1/n3c. Note that the
noise and rounding increase the error (in approximating p(x, z)) by at most
2/n3c. However, q′r,η(x, ·) no longer defines a probability measure (because the
perturbations have all been positive). Thus we observe that we can (determin-
istically) convert q′r,η(x, ·) into a probability measure qr,η(x, ·), while reducing
each entry by at most 2/n3c.

Notice that with probability at least 1− 2−n over r and η, the qr,η’s satisfy
the following analogue of Property (7.5):

|qr,η(x, z)− p(x, z)| ≤ ǫ+O

(
1

n3c

)
<

1

n2c
∀|x| ≤ n, |z| = σ(x).

Thus, if the encoding algorithm uses the qr,η’s in in place of the qr’s, the bound
on compression length will hold just as before, except that we add O(logn)
bits to specify the noise η ∈ {0, . . . , nc − 1}.

32 Trevisan, Vadhan & Zuckerman

So all that remains is to argue that decoding is correct with high prob-
ability. For this, we argue that the encoder and decoder compute the same
approximations with high probability. Specifically, we argue that for every x
and z,

(7.11) Pr
r1,r2,η

[qr1,η(x, z) = qr2,η(x, z)] ≥ 1− 2/nc.

First, by Claim 7.7, we know that with probability at least 1 − 2 · 2−n, both
A(x, z, ǫ, δ; r1) and A(x, z, ǫ, δ; r2) differ from p(x, z) by at most ǫ = 1/n4c, so
they differ from each other by at most 2/n4c. Thus there are at most two values
of η ∈ {0, 1, . . . , nc − 1} such that A(x, z, ǫ, δ; r1) + η/n4c and A(x, z, ǫ, δ; r2) +
η/n4c round to different multiples of 1/n3c.

To complete the proof, we argue that (whp) both Enc and Dec evaluate the
qr,η’s on some p(n) = poly(n) inputs (x, z) where p(n) is a fixed polynomial
independent of the choice of the constant c, and the sequence of inputs is
independent of r and η. Thus, by Inequality (7.11), the probability that the two
algorithms “see” any difference in their approximations (and decoding possibly
fails) is at most p(n)·(2/nc). By Lemma 2.11, we can reduce this decoding error
to 2−n while increasing the compression length by at most (2p(n)/nc) ·ℓ+2 < 3
bits for a sufficiently large constant c. So we proceed to argue that the number
and sequence of evaluations of qr,η is indeed fixed (independent of c and the

randomness). By inspection, we see that the arithmetic coding Êncx,r,η(w)

(Lemma 2.8) only requires evaluating the cumulative distribution function F̂x,r,η

at w and its predecessor. By Equation (7.6), we see that evaluating F̂x,r,η

requires only a fixed polynomial number of evaluations of qr,η and the evaluation
points are independent of r and η. This handles the encoding algorithm Enc.
Now recall that the decoding algorithm decodes Êncx,r,η(w) by using F̂x,r,η to do
binary search for the sample w. By inspection, if the decoding algorithm were
given the same function qr,η as the encoding algorithm, then the evaluations
made in the binary search for w would be independent of r and η (because it
would successfully traverse the path down to w). �

The above results actually only require that Xx can be approximately sam-

pled in the following sense.

Definition 7.12. A family of sources (Xx)x∈L is approximately samplable if
there is a probabilistic algorithm S such that for every x ∈ L and ǫ > 0, the
output S(x, ǫ) has statistical difference (i.e. variation distance) at most ǫ from
Xx, and S(x, ǫ) runs in time poly(|x|, 1/ǫ).

Compression of Samplable Sources 33

Proposition 7.13. Let R be a self-reducible relation, and for every x ∈ LR,
let Xx be the uniform distribution on Wx = {w : (x, w) ∈ R}. If the sources
(Xx)x∈LR

are approximately samplable, then they can be efficiently compressed
to length H(Xx) + 6 with shared randomness and zero decoding error, and to
length H(Xx)+O(logn) with independent randomness and decoding error 2−n.
The encodings are prefix-free.

Proof. In the proof of Theorem 7.3, both the encoding and decoding algo-
rithms use the sampling algorithm for the distributions Xx only as an oracle
to obtain samples from the distribution. Since they make only poly(n) queries
to the oracle, if we replace the oracle with a distribution at statistical differ-
ence ǫ, the statistical difference of the outcome (i.e. the compressed string,
and an indicator for whether or not decoding is successful) will be at most
ǫ · poly(n). Choosing ǫ to be a sufficiently small polynomial, we can make
this statistical difference smaller than 1/(2ℓ′), where ℓ′ is the maximum en-
coding length. This implies that the average encoding length changes by at
most (1/(2ℓ′)) · ℓ′ = 1/2 and the probability of unsuccessful decoding is at most
1/(2ℓ′). Applying Lemma 2.9 completes the proof. �

Thus, we obtain compression algorithms for the wide variety of self-reducible
structures for which almost-uniform samplers are known. For example:

Corollary 7.14. The following families of sources Xx can be efficiently com-
pressed to length H(Xx) + 6 with shared randomness and zero decoding error,
and to length H(Xx) + O(logn) with independent randomness and decoding
error 2−n:

(i) XG = the uniform distribution on all perfect matchings in bipartite graph
G, cf. Jerrum et al. (2001).

(ii) XG = the uniform distribution on all matchings in graph G, cf. Jerrum
& Sinclair (1989).

(iii) XG = the uniform distribution on all independent sets in graph G of
degree at most 4, cf. Luby & Vigoda (1999).

(iv) X(a1,...,an,b) = the uniform distribution on all “knapsack solutions”, i.e.
subsets S ⊆ [n] such that

∑
i∈S ai ≤ b, where a1, . . . , an, b are positive

real numbers, cf. Morris & Sinclair (1999).

(v) Xφ = the uniform distribution on satisfying assignments of DNF formula
ϕ, cf. Jerrum et al. (1986); Karp et al. (1989).

34 Trevisan, Vadhan & Zuckerman

The citations refer to the papers establishing the approximate samplability
of the given distributions. Actually, for DNF formula, the ideas underlying
the approximate counting algorithm of Karp et al. (1989) directly yields a
simple compression algorithm: given a satisfying assignment w ∈ {0, 1}t of a
DNF formula ϕ = C1 ∨ · · · ∨ Cm with minimum clause length k, we define
Encϕ(w) to be (i, α) ∈ [m] × {0, 1}t−k, where Ci is the first clause satisfied
by w and α is the restriction of w to the variables outside Ci. It is easy
to check that this encoding is efficiently decodable, and compresses to length
⌈logm⌉ + t − k ≤ ⌈logm⌉ + H(Xϕ). Compressing to length H(Xϕ) + O(1),
however, seems less immediate.

The ability to compactly store combinatorial substructures of a graph (as
in the above corollary) could be useful, for example, in storing substructures
of huge graphs such as the World Wide Web; indeed, there have been recent
efforts at compressing Web graphs; see Adler & Mitzenmacher (2001). There
are many other examples of self-reducible relations to which our technique can
be applied; see the surveys Jerrum & Sinclair (1996); Kannan (1994); Randall
(2003) and the references therein.

In addition, we can show that compression and almost-uniform sampling
are equivalent.

Theorem 7.15. Let R be a self-reducible relation, and for every x, let Xx

be the uniform distribution on Wx = {w : (x, w) ∈ R}. Then the following
conditions are equivalent:

(i) Xx can be approximately sampled in polynomial time.

(ii) Xx can be compressed to lengthH(Xx)+O(1) by probabilistic polynomial-
time compression algorithms with shared randomness and zero decoding
error.

(iii) Xx can be compressed to lengthH(Xx)+O(logn) by probabilistic polynomial-
time compression algorithms with independent randomness and decoding
error 2−n.

(iv) Xx can be compressed to lengthH(Xx)+O(logn) by probabilistic polynomial-
time compression algorithms with shared randomness and decoding error
1/n.

Proof. By Proposition 7.13, sampling (Item i) implies compression in the
sense of Items ii and iii. Each of these latter two items imply Item iv, so we need
only argue that Item iv implies Item i. So suppose (Enc,Dec) compresses Xx to

Compression of Samplable Sources 35

length m ≤ H(Xx) + c log n with shared randomness. We may assume there is
zero decoding error, by Lemma 2.10. By the results of Sinclair & Jerrum (1989)
(building on work by Jerrum et al. (1986)), approximate sampling follows if we
can approximate |Wx| to within a poly(n) accuracy factor in polynomial time.
This would be easy if we could estimate the average compressed length m;
unfortunately, random sampling from Xx is unavailable to us.

Instead, we use random sampling from the compressed space and decom-
pressing. In particular, we will use random sampling to estimate

pℓ = Er

[
Pr

y←U≤ℓ

[Dec(x, y, r) ∈Wx&Enc(x,Dec(x, y, r), r) = y]

]
,

where U≤ℓ denotes the uniform distribution on {0, 1}≤ℓ, the set of strings of
length ≤ ℓ. By sampling, with high probability we can find an integer m̂ such
that pm̂ ≥ 1/(8 · nc · (m+ 1)) and pi < 1/(4 · nc · (m+ 1)) for all i > m̂. (Note
that we need only estimate pi for i up to, say, n times the running time of Enc,
because beyond that, pi is exponentially small.)

We claim that 2m̂ approximates |Wx| to within a polynomial factor. For one
direction, note that when we restrict to y’s satisfying the condition Enc(x,Dec(x, y, r), r) =
y, the mapping y 7→ Dec(x, y, r) is injective. Thus,

|Wx| ≥ pm̂ · |{0, 1}≤m̂| ≥ 2m̂

8 · nc · (m+ 1)
.

For the other direction, note that Markov’s inequality implies that

Pr
w

R
←Xx,r

[|Enc(x, w, r)| ≤ m+ 1] ≥ 1− m

m+ 1
=

1

m+ 1
.

Therefore, the expected number of encodings of Wx with length at most m+ 1
is at least

|Wx|
m+ 1

≥ 2m

nc
· 1

m+ 1
>
|{0, 1}≤m+1|

4 · nc · (m+ 1)
,

Hence pm+1 ≥ 1/(4 · nc · (m+ 1))
and thus with high probability, m̂ ≥ m + 1 ≥ H(Xx) − O(logn) (by

Lemma 2.5) and thus 2m̂ ≥ |Wx|/poly(n). �

A final extension we mention is that our results also apply to some non-
uniform distributions on the witness set {w : (x, w) ∈ R}. Specifically, it
applies to sources Xx that are compatible with the self-reduction in the follow-
ing sense.

36 Trevisan, Vadhan & Zuckerman

Definition 7.16. Let R be a self-reducible NP relation, with corresponding
functions ℓ : Σ∗ → N, σ : Σ∗ → N, and ρ : Σ∗ × Σ∗ → Σ∗ as in Definition 7.1.
We say that the sources (Xx)x∈LR

are compatible with R (and ℓ, ρ, σ) if

(i) The support of Xx is a subset of Σℓ(x).

(ii) When ℓ(x) > 0 (equivalently, σ(x) > 0), then for every z ∈ Σσ(x) such
that Xx has nonzero probability of having prefix z, the distribution of Xx

conditioned on having prefix z is precisely z ◦Xρ(x,z).

The above conditions imply that that for every x ∈ LR, the support of Xx

is a subset of Wx = {w : (x, w) ∈ R}. It can be verified that setting Xx equal
to the uniform distribution on Wx is compatible with R. An example of a
non-uniform family of sources compatible with a self-reducible relation is the
following generalization of Example 7.2:

Example 7.17. weighted perfect matchings Let R be the relation consisting of
pairs ((G,w),M), whereG is a bipartite graph with positive real weights w(e) on

each edge and M is a perfect matching in G. G and w are encoded by the n×n
weighted adjacency matrix whose (i, j)’th entry is w(i, j) if (i, j) is an edge, and
0 otherwise. This relation is self-reducible for the same reason as Example 7.2.
We define the distribution XG,w to be the one where a perfect matching M
is sampled with probability proportional to its weight w(M) =

∏
e∈M w(e).

(Note that the total weight
∑

M w(M) equals the permanent of the weighted
adjacency matrix.) It can be verified that these distributions are compatible
with the self-reducibility of the relation R (e.g., when we remove an edge e and
its endpoints, every perfect matching M in G that contains e becomes a perfect
matching in G \ {e} with weight w(M \ {e}) = w(M)/w(e).) ♦

We can also compress such distributions:

Theorem 7.18. Let R be a self-reducible relation, and let (Xx)x∈LR
be a

family of sources compatible with R. If the sources (Xx)x∈LR
are approximately

samplable, then they can be efficiently compressed to length H(Xx) + 6 with
shared randomness and zero decoding error and to lengthH(Xx)+O(logn) with
independent randomness and decoding error 2−n. The encodings are prefix-free.

Proof. The proof is identical to that of Theorem 7.3 and Proposition 7.13.
The only use of the fact that Xx equals the uniform distribution on Wx is in
the proof of Claim 7.7, specifically to establish Equation (7.8). By inspection,
this equation holds for any family of sources compatible with R. �

Compression of Samplable Sources 37

Many of the known approximate sampling algorithms for self-reducible re-
lations generalize to natural non-uniform distributions that are compatible
with the relation. Often, these distributions have interpretations in statisti-
cal physics (namely being the “Gibbs distribution” of some physical system).
Some examples follow.

Corollary 7.19. The following families of sources Xx can be efficiently com-
pressed to length H(Xx) + 6 with shared randomness and zero decoding error,
and to length H(Xx) + O(logn) with independent randomness and decoding
error 2−n:

(i) XG,w = perfect matchings in weighted bipartite graph (G,w), as in Ex-
ample 7.17 (a.k.a. the Gibbs distribution on a dimer system) (Jerrum
et al. (2001)).

(ii) XG,w = matchings on a weighted graph (G,w), where the weights are
presented in unary (a.k.a. the Gibbs distribution on monomer-dimer
systems) (Jerrum & Sinclair (1989)).

(iii) XG,λ = the weighted distribution on independent sets in graph G, where
independent set I has weight λ|I|, and the maximum degree of G is at
most 2/λ+ 2 (a.k.a. the Gibbs distribution for the hard-core gas model)
(Luby & Vigoda (1999)).

Monte Carlo experiments in statistical physics estimate the expectation of var-
ious quantities in a physical system (such as the “mean energy”) by randomly
sampling configurations of the system (e.g., according to the Gibbs distribu-
tion). Compression algorithms such as in Corollary 7.19 could be possible to
compactly store the configurations used in such experiments (e.g., for archival
purposes, or to reuse the samples later).

Acknowledgements

Luca Trevisan’s work was supported by NSF Grant CCR-9984783, US-Israel
BSF grant 2002246, a Sloan Research Fellowship and an Okawa Foundation
Grant. Salil Vadhan’s work was supported by NSF grant CCR-0133096, US-
Israel BSF grant 2002246, ONR grant N00014-04-1-0478, and a Sloan Research
Fellowship. This work was done in part while he was fellow at the Radcliffe
Institute for Advanced Study at Harvard University. David Zuckerman’s work
was supported in part by NSF Grants CCR-9912428 and CCR-0310960, a David

38 Trevisan, Vadhan & Zuckerman

and Lucile Packard Fellowship for Science and Engineering, a Radcliffe Institute
Fellowship, and a Guggenheim Fellowship.

We thank Boaz Barak, Nenad Dedić, Ned Dimitrov, Troy Lee, and the
anonymous referees for helpful comments and discussions.

References

Micah Adler & Michael Mitzenmacher (2001). Toward Compressing Web
Graphs. In Proceedings of the 2001 Data Compression Conference.

Eric Allender, Danilo Bruschi & Giovanni Pighizzini (1993). The complexity
of computing maximal word functions. Computational Complexity 3(4), 368–391.
ISSN 1016-3328.

Sanjeev Arora, Frank T. Leighton & Bruce M. Maggs (1996). On-Line Al-
gorithms for Path Selection in a Nonblocking Network. SIAM Journal on Computing
25(3), 600–625.

Boaz Barak, Ronen Shaltiel & Avi Wigderson (2003). Computational Ana-
logues of Entropy. In 11th International Conference on Random Structures and
Algorithms.

Harry Buhrman, Troy Lee & Dieter van Melkebeek (2004). Language Com-
pression and Pseudorandom Generators. In Proceedings of the 19th Annual IEEE
Conference on Computational Complexity, 15–28.

Michael Capalbo, Omer Reingold, Salil Vadhan & Avi Wigderson (2002).
Randomness Conductors and Constant-Degree Lossless Expanders. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, 659–668.

Benny Chor & Oded Goldreich (1988). Unbiased Bits from Sources of Weak
Randomness and Probabilistic Communication Complexity. SIAM Journal on Com-
puting 17(2), 230–261.

Thomas M. Cover & Joy A. Thomas (1991). Elements of Information Theory.
John Wiley & Sons, Inc.

Whitfield Diffie & Martin E. Hellman (1976). New Directions in Cryptogra-
phy. IEEE Transactions in Information Theory IT-22(6), 644–654.

Andrew V. Goldberg & Michael Sipser (1991). Compression and Ranking.
SIAM Journal on Computing 20, 524–536.

Compression of Samplable Sources 39

Oded Goldreich & Salil Vadhan (1999). Comparing Entropies in Statistical
Zero-Knowledge with Applications to the Structure of SZK. In Proc. of Conference
on Computational Complexity, 54–73.

Johan Håstad, Russell Impagliazzo, Leonid A. Levin & Michael Luby

(1999). A Pseudorandom Generator From Any One-Way Function. SIAM Journal
on Computing 28, 1364–1396.

Russell Impagliazzo (1999). Remarks in Open Problem session at the DIMACS
Workshop on Pseudorandomness and Explicit Combinatorial Constructions.

Russell Impagliazzo & Avi Wigderson (1997). P = BPP if E Requires Expo-
nential Circuits: Derandomizing the XOR Lemma. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, 220–229.

Mark Jerrum & Alistair Sinclair (1989). Approximating the Permanent. SIAM
Journal on Computing 18(6), 1149–1178.

Mark Jerrum & Alistair Sinclair (1996). The Markov Chain Monte Carlo
Method: an Approach to Approximate Counting and Integration. In Approximation
Algorithms for NP-hard Problems, D.S. Hochbaum, editor, chapter 12, 482–520.
PWS Publishing.

Mark Jerrum, Alistair Sinclair & Eric Vigoda (2001). A Polynomial-Time
Approximation Algorithm for the Permanent of a Matrix with Non-Negative Entries.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 712–
721.

Mark R. Jerrum, Leslie G. Valiant & Vijay V. Vazirani (1986). Random
Generation of Combinatorial Structures from a Uniform Distribution. Theoretical
Computer Science 43, 169–188.

Ravi Kannan (1994). Markov chains and polynomial time algorithms. In Pro-
ceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science,
656–671. IEEE Comput. Soc. Press, Los Alamitos, CA.

Richard M. Karp, Michael Luby & Neal Madras (1989). Monte Carlo ap-
proximation algorithms for enumeration problems. Journal of Algorithms 10(3),
429–448. ISSN 0196-6774.

Michael Kharitonov, Andrew V. Goldberg & Moti Yung (1989). Lower
bounds for pseudorandom number generators. In Proceedings of the 30th Annual
IEEE Symposium on Foundations of Computer Science, 242–247.

40 Trevisan, Vadhan & Zuckerman

Ming Li & Paul Vitanyi (1997). An Introduction to Kolmogorov Complexity.
Springer. 2nd ed.

Richard J. Lipton (1994). A New Approach to Information Theory. In Proc. of
11th Symposium on Theoretical Aspects of Computer Science, 699–708.

Michael Luby & Eric Vigoda (1999). Fast convergence of the Glauber dynamics
for sampling independent sets. Random Structures & Algorithms 15(3-4), 229–241.
ISSN 1042-9832. Statistical physics methods in discrete probability, combinatorics,
and theoretical computer science (Princeton, NJ, 1997).

Ben Morris & Alistair Sinclair (1999). Random walks on truncated cubes and
sampling 0-1 knapsack solutions (preliminary version). In Proceedings of the 40th
Annual IEEE Symposium on Foundations of Computer Science, 230–240. IEEE.

Noam Nisan & Avi Wigderson (1994). Hardness vs. Randomness. Journal of
Computer and System Sciences 49, 149–167.

Noam Nisan & David Zuckerman (1996). Randomness is Linear in Space. Journal
of Computer and System Sciences 52(1), 43–52.

Rafail Ostrovsky (1991). One-Way Functions, Hard on Average Problems, and
Statistical Zero-Knowledge Proofs. In Proceedings of the Sixth Annual Structure in
Complexity Theory Conference, 133–138. IEEE Computer Society Press,, Chicago,
Illinois.

Rafail Ostrovsky & Avi Wigderson (1993). One-Way Fuctions are Essential for
Non-Trivial Zero-Knowledge. In Proceedings of the Isreali Symposium on Theoretical
Computer Science, 3–17.

Dana Randall (2003). Mixing. In Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, 4–15. IEEE, Cambridge, MA.

Ran Raz & Omer Reingold (1999). On Recycling the Randomness of States in
Space Bounded Computation. In Proceedings of the 31st Annual ACM Symposium
on Theory of Computing, 159–168.

Omer Reingold, Salil Vadhan & Avi Wigderson (2000). Entropy Waves, the
Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS ‘00), 3–13. IEEE, Redondo Beach, CA.

Amit Sahai & Salil Vadhan (2003). A complete problem for statistical zero
knowledge. Journal of the ACM 50(2), 196–249. Extended abstract in FOCS ‘97.

Compression of Samplable Sources 41

Miklos Santha & Umesh V. Vazirani (1986). Generating Quasi-Random Se-
quences from Semi-Random Sources. Journal of Computer and System Sciences 33,
75–87.

Claus-Peter Schnorr (1976). Optimal Algorithms for Self-Reducible Problems.
In Proceedings of the 3rd International Colloquium on Automata, Languages, and
Programming, 322–337.

Claude E. Shannon (1949). Communication theory of secrecy systems. Bell System
Technical Journal 28, 656–715.

Alistair J. Sinclair & Michael R. Jerrum (1989). Approximate Counting, Uni-
form Generation and Rapidly Mixing Markov Chains. Information and Computation
82, 93–133.

Amnon Ta-Shma, Christopher Umans & David Zuckerman (2001). Loss-Less
Condensers, Unbalanced Expanders, and Extractors. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing, 143–152.

Luca Trevisan, Salil Vadhan & David Zuckerman (2004). Compression of
Samplable Sources. In Proceedings of the 19th Annual IEEE Conference on Compu-
tational Complexity, 1–14.

Luca Trevisan & Salil P. Vadhan (2000). Extracting Randomness from Sam-
plable Distributions. In Proceedings of the 41st Annual IEEE Symposium on Foun-
dations of Computer Science, 32–42.

Leslie G. Valiant & Vijay V. Vazirani (1986). NP Is as Easy as Detecting
Unique Solutions. Theoretical Computer Science 47(1), 85–93.

Hoeteck Wee (2004). On Pseudoentropy versus Compressibility. In Proceedings
of the 19th Annual IEEE Conference on Computational Complexity, 29–41.

Andrew C. Yao (1982). Theory and applications of trapdoor functions. In Pro-
ceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science,
80–91.

Jacob Ziv & Abraham Lempel (1978). Compression of Individual Sequences by
Variable Rate Coding. IEEE Transactions on Information Theory 24, 530–536.

42 Trevisan, Vadhan & Zuckerman

A. Expander Graphs

In this section, we sketch how Theorem 6.5 can be obtained from the tech-
niques of Capalbo et al. (2002). In doing so, we assume familiarity with the
notation and terminology of that paper. The expander graphs claimed in Theo-
rem 6.5 are equivalent to explicit constructions of “(k, ǫ/2) lossless conductors”
E : {0, 1}n × {0, 1}d → {0, 1}m, where n, d,m, k, ǫ are as in the statement of
Theorem 6.5, and E(x, r) is the r’th neighbor of left-vertex x. Theorem 6.5
thus follows directly from Theorem 7.3 of Capalbo et al. (2002) (setting the
parameter t to equal t = n−k−c log3((n−k)/ǫ)), except that it does not claim
the computation time of right-hand vertices. We explain how this follows from
the construction below.

Computation Time of Right-Hand Vertices. The lossless conductors of
Capalbo et al. (2002) are obtained via the zig-zag product of Reingold et al.

(2000):

Definition A.1 (zig-zag product). Let 〈E1,C1〉 : {0, 1}n1×{0, 1}d1 7→ {0, 1}m1×
{0, 1}b1, 〈E2,C2〉 : {0, 1}n2×{0, 1}d2 7→ {0, 1}d1×{0, 1}b2, and E3 : {0, 1}b1+b2×
{0, 1}d3 7→ {0, 1}m3 be three functions. Set the parameters

n = n1 + n2,

d = d2 + d3,

m = m1 +m3

and define the zig-zag product

E : {0, 1}n × {0, 1}d 7→ {0, 1}m

of these functions as follows: For any x1 ∈ {0, 1}n1, x2 ∈ {0, 1}n2,r2 ∈ {0, 1}d2

and r3 ∈ {0, 1}d3 define

E(x1 ◦ x2, r2 ◦ r3) def
= y1 ◦ y2, where

〈r1, z1〉 def
= 〈E2,C2〉(x2, r2)

〈y1, z2〉 def
= 〈E1,C1〉(x1, r1), and

y2
def
= E3(z1 ◦ z2, r3).

In the proof of Theorem 7.3 of Capalbo et al. (2002), the above construction
is applied with functions satisfying the following conditions:

Compression of Samplable Sources 43

◦ m1 = n1, b1 = d1, 〈E1,C1〉 : {0, 1}n1 × {0, 1}d1 7→ {0, 1}m1 × {0, 1}b1
is a permutation, and both 〈E1,C1〉 and 〈E1,C1〉−1 can be computed in
polynomial time (in the the input length n1 + d1).

◦ Both 〈E2,C2〉 and E3 can be computed in polynomial time (in their input
lengths).

◦ The parameters satisfy b1 = d1 ≤ n2 = O(t+ d + log(1/ǫ)) = O(n− k +
d+ log(1/ǫ)) and b2 ≤ n2 + d2.

Given these facts, we can efficiently enumerate the elements of the set
E−1(y1 ◦ y2) as follows:

◦ For all r2 ∈ {0, 1}d2, r3 ∈ {0, 1}d3, x2 ∈ {0, 1}n2, and z2 ∈ {0, 1}b1, do the
following:

1. Compute 〈x1, r1〉 = 〈E1,C1〉−1(y1, z2).

2. Verify that 〈E2,C2〉(x2, r2) is of the form 〈r1, z1〉 for some z1 ∈
{0, 1}b2.

3. Verify that y2 = E3(z1 ◦ z2, r3).
4. If both verifications pass, output x1 ◦ x2.

The computation time of this procedure is at most

2d2+d3+n2+b1 · (poly(n1, d1) + poly(n2, d2) + poly(b1 + b2, d3))

= 2O(d+n−k+log(1/ǫ)) · poly(n, d)

= poly(n,DL, N/K),

where in the last inequality we use the fact that DL = 2d > 1/ǫ.

Manuscript received December 31, 2004

Luca Trevisan

Computer Science Division
U.C. Berkeley
615 Soda Hall
Berkeley, CA 94720
luca@cs.berkeley.edu

Salil Vadhan

Division of Engineering & Applied Sci-
ences

Harvard University
33 Oxford Street
Cambridge, MA 02138
salil@eecs.harvard.edu

44 Trevisan, Vadhan & Zuckerman

David Zuckerman

Department of Computer Science
University of Texas
1 University Station C0500
Austin, TX 78712
diz@cs.utexas.edu

