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This completes the proof. O

Asymptotically Good Codes Correcting

IV. CONCLUDING REMARKS . . "
Insertions, Deletions, and Transpositions

This correspondence introduces binary codes correttiogalized
erasures. The redundancy of codes(is+ ¢) and is thus very close Leonard J. Schulman and David Zuckerman
to the minimal possible. The complexity of the simplest construction
is linear inn and inversely proportional te’. The numbere can
take almost any value if0, 1), contrary to some other recursive AbstracF—We present simple, polynomial-time encodable _and_decot_:iable
constructions in which it has to be small, which results in higﬁofe_s which dare aSYmPt_Ot'Ca”X good folrl Cha”ﬂe's allr?_wmg |nsert|0n_s,|

: : : o : etions, and transpositions. As a corollary, they achieve exponentia
encoding/decoding complexity. We note that it is possible to constr e : . : !
. . . - or probability in a stochastic model of insertion—deletion.

almost optimal low-complexity binary codes that correct localized P b _ o
errors and erasures at the same time. This could be the subject of 'gdex Terms— Asymptotically good, asynchronous communication,
future work. Another interesting problem would be to construct IOV\ﬂeletlon, edit distance, error-correcting codes, insertion, transposition.
complexity codes correcting localized erasures with redundancy
t + o(n) as for codes correcting defects [7]. |. INTRODUCTION
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B Transpositions of blocks of data: a message of the fdrlBC'  and deletion errors exist. A series of papers has followed, developing
is transformed intedC'B. (Note that this implies also generalcodes for such channels, especially on account of their occurrence
transpositions, i.e ABC DE transforming toADCBE) in magnetic and optical media. These codes, as with other codes for

such media, employ “run-length limited” codes, in which the length

of any maximal run of’s is bounded below by somé and above

by somek. As is most relevant for the media considered, these codes

correct insertions and deletions only @.

Our code encodes bits of information in codewords of length
n/r, for some positive constantcalled therate of the code. The code
corrects up t@ an errors of typed andegn/ log n errors of typeB,

for certain positive constants,, eg. This result is, up to the values of Ours is the first construction of asymptotically good codes for

the constants, best possible; thus we refer to it as an a‘Sym’:’to“CEHBﬁetion/insertion channels. Our purpose is to present these codes and

good” code for this error model. This is the first constructive code %fccompanying encoding/decoding algorithms as simply as possible,

this type. The code can be encoded and decoded in polynomial tigé, oyt optimization of rate or computational overhead for particular
up to its designed distance. Reversals of segments of the COdeWé’ﬁBlications or ranges of parameters.

can also be accommodated using the methods described. It is not difficult to use Justesen codes to constrgét k)-

This is a generalization of the constructive, asymptotically goqdstrained codes with constant rate correcting a small enough con-
codes for the Hamming distance given by Justesen [9]. Those cOdggyt fraction of insertions and deletionsits. Namely, associate the
could correct only alterations of characters, whereas here we allgyiesen codeword, a2, - -+, a;) over an alphabet of size—d+
more general errors. _ _ _ 1 with the (d, k)-constrained codeword0®***10%2* ... 10%H4,

Channels with insertions and deletions occur in various situationsy 1. = (1) (otherwise the constrained code cannot have constant
for example: rate). If the original codeword has a small enough constant fraction of

« Insertion and deletion errors occur in reading magnetic and opors. then a small enough constant fraction of dhere modified,

tical media (in addition to the more familiar character-alteratiof® e Justesen code can be used to recover the original word.
errors). This was the motivation for considering insertions and Bours [4], following on Roth and Siegel [17], improved the
deletions in [17] and [4]. constants above by constructing fixed-lengthk)-constrained codes

. . . .. using the more appropriate Lee metric. In the Lee metric, the distance
« If the error-correcting code employed in a digital communicatiofanveen digits and j modulo g is

system is designed for a synchronous model (i.e., one without

insertions or deletions) then occasional synchronization pulses min ((j — i) mod ¢, (i — j) mod ¢)
must be transmitted over the channel. It is likely that the begfhere it is understood that the modular representatives are in the
rate for such a channel is instead achieved by directly de5|gn|%ge() ..., ¢ —1), as compared td if i # j in the Hamming

> b ] v

a code that allows for timing uncertainties in the statistics of the oyic.

channel. This was the motivation for considering insertions and ggme other works giving constructions, or bounds, for codes

deletions in [7]. for insertions and deletions are those of Ullman [21], Calabi and
* In a medium with only occasional transmissions (e.g., radidjartnett [5], Okuda, Tanaka, and Kasai [15], Tanaka and Kasai

it may not be apparent whether a noise burst has obscufd8], Tenengolts [20] (single error), Levenshtein [13], and Klgve

transmissions. [11] (single error which may be either a transposition of adjacent

« Genetic material undergoes just such transformations betwedlracters or an insertion or deletion obp

generations. It is possible that some of the complex mechanismé\long different lines, there are also essentially optimal codes for
ssy packet-based channels such as the Internet [1], [2]. Those codes

of, say, protein production serve to protect the functionalit ; .
dle only deletion of complete packets (a packet is a character from

(the phenotype) from such changes in the genotype. Here _ .
possibility of transpositions is also significant. a very large alphabet, e.g., of ord&t’, and decoding cannot rely
on order of packet arrival).

* In Internet protocols, long messages are commonly split int0 5 1ager [7] and Dobrushin [6] discussed stochastic models of

small packets, each of which is routed separately, and some;fartion and deletion errors. Gallager showed how the random

which may be lost, on the way to the Internet recipient. The engdhnojutional coding method of Wozencraft and Reiffen [23], [16]
client, however, may be linked to the Internet recipient via agq|q be adapted to this situation. (Note that this method is not a
unreliable channel such as a telephone line. Currently, codipgqe put a probability distribution over codes; successful transmission
for these two stages is handled separately (and the first stag@ei§uires that the transmitter and receiver share a random seed
usually not coded at all, but interest in such coding appearsituntifying the code to be used.) Dobrushin proved existence of a
be growing, especially for real-time applications [1], [2]); th&hannel capacity for a fairly broad class of memoryless stochastic
channel as a whole, however, is of the type considered in thifannels with insertions and deletions. A slightly different model,
correspondence, and it may be possible to improve transmissibwing a restricted kind of channel memory, will be described in
rates by coding for the entire process. The ability to handigection IV; our codes provide for block coding with exponential error

transpositions is essential in this example, since the order gohapilities, for channels in this class (subject to limits on the error
transmission of the packets is lost due to their separate routipgepabilities).

For a discussion of these and other application areas, along with/€ €émphasize that our codes allow arbitrary insertions, deletions,
related algorithms, see the survey by Kruskal [10]. and transposmons,.subject only to nurr]erlcal limits; the errors do not
Codes for insertion and deletion errors were first considered in 19%%ve to be of restricted types, or distributed randomly.
by Levenshtein [12]. He obtained bounds on the number of codewords
possible for correcting any constant number (not fraction) of errors Il. THE Cope
in a block, and suggested the use of buffers between codewords i©ur code, like a Justesen code [9], is a two-level code. The outer
an extended transmission. These and later bounds [13] on the voluewel can be given by polynomial evaluation, i.e., a Reed—Solomon
of metric balls imply the existence of exponentially large families afode [14] (and decoded using the Welch—Berlekamp algorithm [22],
codewords, and therefore that asymptotically good codes for insertmee also [8] and [3]); or by any asymptotically good, efficiently
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encodable and decodable code. The inner level is given by a cade convertC' to a functionC: {0, 11" x [con/lgn] — {0, 1}'5™,
which we find by brute force (e.g., by a “greedy” construction). SincEhen we can sef'(z, i) = i o C'(x, 7). It is straightforward to verify
we will only use this code on words of lenglibg n, its construction, that this satisfies the required decoding condition for a sufficiently
as well as encoding and decoding, will require only polynomial timéarge constant.
We first describe these ingredients, and then describe the encoding
and decoding procedures of our code. C. Greedily Constructed Codes

We describe two variants of our code, a “buffered” form in Section

. ) We will use the following metric in this correspondendg;, the
II-D and an “unbuffered” form in Section II-E. 9 P @

insertion—deletion distance, is the minimum number of insertions or

deletions (i.e., typed errors) required to transform one string into

A. Integrality Constraints and Notation another. (For strings of the same length this is equivalent to the
Throughout the exposition we ignore round-off errors, assumimginimum total number of deletions, or the minimum total number of

when needed that a number is an integer. It is not hard to see timsertions, to convert the two strings into a common string [12].)

this does not affect our analysis. We also assume, when needed, thalfe will use two slightly different greedily constructed codes

n is sufficiently large, so that, e.dglgn is bigger than some fixed (used in the buffered codes) afd (used in the unbuffered codes).

constant; and that is a power of a prime. Thus there is a finiteis a function from{0, 1}'/> — {0, 1}** (wheret will be ©(Ig n)).

field on n elements, which can be constructed in time polynomidVe will guarantee a somewhat lower rate foyr: for some constant

in n, and whose arithmetic operations may be performed in timeit is a function from{0, 1} — {0, 1}*.

polynomial inlogn. Code S, satisfies “condition 1:” thel 4 distance between any two
We use[m] to denote the set of integefs, 2, ---, m}, andlg to codewords if2(¢). Furthermore, every interval (of even length) has
denote the logarithm to the ba8e By an interval of a stringy we at least halfl’s.
mean a contiguous subsequence of the sting,.i - - - ;. CodeS; satisfies the stronger “condition 2:” for any two codewords
uw # v, thed, distance between any two intervals«dnandv, each
B. The Outer Code of length at least/5, is more thant/30.

The outer codel: {0, 1}" — ({0 1}21g n)cgn/lg,n outouts a There is a greedy algorithm to construct a code of type 1: pick a
sequence of blocks: ir{d 1)2tsn (ac{ually the blocks wiIF be of codewordw;, then pick a codeword- that is far fromw;, then a
length slightly smaller t7har?l “this i P d ws that is far from bothws andws, etc. This algorithm runs in time
gn; this is not important, and one 5, p imilar] . h
could always pad). We sometimes thinkBfin the equivalent form 27 A go_de of type .2 can b_e constructed simrarly, ensuring that
T: {0, 13" x [con/1z 1] — {0 1}2],;,1 WhenT(z) is transmitted each sufficiently long interval is far from all intervals in previously
- Y 0] 5 = xr s

the order of the blocks is scrambled, and errors may occur. By gﬁleCted codewords.

error, we mean either a received block that is not a blocH6f), Lemma 2: The greedy algorithm can construct codes of types 1
or a block of T'(x) that was not received. The decoder of the outeind 2.
code thus receives a set of blocks {if, 1}2'5™, in no particular Proof;

order. The decoder has the property that, if there are at mogtn Type 1: The number of words in{0, 1}* that are withind4-
errors, thene can be efficiently determined. We mention two meangistance2d of a particular wordw in {0, 1}* is at most(fl)zzf’, To
of accomplishing this. _ _ _ see this, note that to go from to sayv € {0, 1}* using distanc@d
1) Reed-Solomon Codeghe first method (which we will adhere entailsd deletions and! insertions. There ar§}) possible characters
to in the rest of the correspondence) uses Reed-Solomon codesiangd to delete. Then there aféfd) ways to place the remaining

Welch-Berlekamp decoding. First partitione {0, 1}" into blocks  characters in proper positionsdnand2? possibilities for the inserted

g1, *+» ga, €ach of lengthg n, whered = . Regard these as the characters inw.

coefficients of a degreé — 1 polynomialg over GH(n). Set We now choosel to be a small enough constant timeswhich
T(x, i) =iog(i) (hereo denotes concatenation), makes(;)2! < 2% N ,
for 1<i<con/lgn We ensure that every interval has hals by inserting1’s into
= = " every other position. That is, iff is the code we have constructed
We call these indexed Reed—Solomon codes. greedily, and if we define
Decoding relies on the following lemma, which is the essence of
the Welch—Berlekamp decoder [3], [8], [22]:

N(ziag - wn) = laglag - lay,
) ) " ) . then the small code we use ) = N(G(x)). Note that
Lemma 1: Let F' be a field with efficiently implementable arith- ,
metic operations, and assumed, and » are nonnegative integers da(N(x), N(y)) > dala, y).

Z?C:rittrr]]ritz\/ctji—cﬁ fi<n d"s" f(;\éer:;é pglm:\igigl v ; uech}:hétrg?rv()e |_s’evm Type 2: For any intervalz of length at least/5, we upper-bound
9 graepoly g U(@i) =9 he number of wordss in {0, 1}* that possess an interval closer

fl?r:ealrl t;]li]t.:]va:!lrjneesé)ffz,t,hlgs;cggg];x]:tscfllnnvc\)/mg; .CaZ%;.ﬁ;tz:?lée)' than d 4-distance2d to . By multiplying our upper bound by?,
unning gon IS poly la ! Y we can fix the starting positions of the intervalsnd »’. Let D(z)

the time to invert & x x matrix over . denotez with the first character deleted. Since
It follows that_with co = 3, for example, the’ cod? can tolerate da(z,w) > da(D(2), D(w))
a constant fraction of incorrectly received pairs g(i).
2) Linear-Time Codes:We can improve the running time of our by deleting initial characters we may assume thhas length exactly
decoder, at the expense of worse rate constants, by using Spielmafs
linear-time codes [18]. Let ¢ be the length of:’, which is within 2d of ¢/5. We will
In fact, we can base our work on any asymptotically good arfik ¢ and multiply our upper bound by another factor toflf the
computationally efficient cod€: {0, 1}" — {0, 1}°°™. To do this, d4 distance from: to =’ consists ofu insertions and! deletions,
we divide the output of” into con/lgn blocks of lengthlg n, i.e., thenu + v = 2d andu — v = ¢/5 — t'. To bound the number of
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possibilities forw, note that there are at mo(s‘tz ) ways to delete:  be located approximately correctly. Thus if not too many errors occur
characters from, then there are at moé’g,) ways to add a particular in blocks and bufferé—1 andi, then the buffers surrounding blo¢k
set ofv characters to form the interval. We still have to multiply are determined approximately correctly, and bloekll appear close

by the number of possible sets ofcharacters; instead we multiply to @ codeword, and will be decoded properly.

by the number of ways to fill in characters to get to the full word To make this rigorous, we give precise meanings to the above
w, namely,‘_)"“*t' = 2u+t=t/5 Therefore, the desired upper bounderms. By not too manyi errors in a block or buffer, we mean at

is the maximum of mosté lg n/24 errors. By located approximately correctly, we mean
, within 61gn/6 places. By determined approximately correctly, we
# (f/‘5> (f )2“*4*/-” mean to within less thahlgn/2 errors.

u Note that more tharflgn/24 errors can corrupt one block or
buffer, which can mean that two blocks are improperly decoded.
Hence,ean errors can lead to fewer thaBean/(61lgn/24) =
n/(21gn) errors in the collection of block€. We also must take
into account that totally new blocks and buffers can be created with

Haugh insertions. But such insertions are less efficient at corrupting
the codelg n insertions are required to create a new buffer, which

v

over all feasible choices af (which determines: andv).

To get the best constants, we would note that increaiiy 2
increasesv by 1 and decreases by 1, which would show that
u/(t/5) should be roughly twicer/#'. Since we have not optimized
constants in this correspondence, we can get a quicker upper bo

. ! = . t/5y [ty P
by noting thatu < 2d, #' < ¢/5+ 2d, and ("/*) (') is maximized is more than the Iz n/24 needed above.

2 .
for 5u/t = v/t" and hence is at mogt/**!)". Ford = ¢/100 this Note that a transposition error affects up to two blocks or buffers.
gives the upper bound Each block or buffer corrupted can mean that two blocks are decoded
(59(1/50+(11/25)x H(1/22))t . o.94t improperly. Thus each transposition error can cause at most four
B blocks to be improperly decoded. Hence the transposition errors
for large enought, whereH denotes the binary entropy function. contribute to at mostegn/lgn = n/(21gn) errors inC.
Hence fewer tham/lg n errors are made if. Of these, say that
D. Buffered Code 7 introduce a paifl'(x, i) = i o g(i) wherei appears only once in

1) Encoding: In order to encode messages {ﬂ 1}" against the deCOded ||St, Whlle the remaining at mﬂgﬂgn —7—-1 Values
errors of typesd and B, we begin with the (greedily constructed)of ¢ coincide with some other (possibly correct) pair. Such duplicate,
code of type 1,5:: {0, 1}?'#" — {0, 1}*'8". The minimum inconsistent pairs are discarded before applying Lemma 1. In the
insertion—deletion distance between codewords is at st for hotation of that Lemmas > 3n/lgn — 2(n/lgn —7 - 1), t =T,
somes > 0. Such a code can be constructed in polynomial time @ndd = n/lgn. Now r —(2t+d) > 1. So by the decoding property
n. Encoding of codewords, and decoding up to the designed distarfethe outer code, i.e., Lemma %,can be determined.
can also be performed in polynomial time. 3) Improving the Computational EfficiencyéVe can improve the

Our codeR;: {0, 1}" — {0, 1}*" is defined as follows: efficiency of the algorithm, at some cost to the rate of the code, by
recursing. That is, we can use our code in place of the greedy code.
The decoding of the inner (now “middle”) codes will then require

where0's™ denotes) repeatedg n times, andk is 3n/lgn. Note Only timenlg ©() 5. By recursingj times, we can reduce the time to

: o(1 ) . . )
also thate = |Ry(z)|/|z| = 27 if an outer indexed Reed—Solomon™(1084; 1) ), wherelog,,; denotes the logarithm iteratgdimes.
code is used. Using the outer code based on Spielman’s error-correcting code then

2) Decoding: gives an overall running time Oi(log#j 2)°D  n practice, it is
unlikely to be desirable to recurse more than once (i.e., tg usd).

Theorem 1: Letes = §/96 andeg = 1/8. Lety be the received
string. Suppose the number of errors of typds at moste 4n, and
the number of errors of typd is at mostegn/lgn. Thenz is

determined by, and can be computed in time polynomialsin 1) Encoding: In order to encode messages {0, 1}" against
errors of typesd and B, we begin with a code
(Note: For Hamming distance the number of errors is always

Ri(x) = 81 (T(x, 1))0"" S, (T(x, 2))0'8" -+ 0" S\ (T(x, k))

E. Unbuffered Code

entirely defined frome and y, but here that is not the case. What Sy: {0, 13218 — {0, 1}t
we use is that there exists some sequence of at mosterrors of
type A andegn/lgn errors of typeB convertingz to y.) of type 2. As noted, such a code can be constructed in time polynomial

! . ) . in n. Encoding of codewords, as well as decoding up to the designed
~ Proof: We begin the decoding process by attempting to det&fisiance, can also be performed in polynomial time. We will take the
mine the original buffers 06’s. To this end, we search intervals Ofouter codeT to be an indexed Reed—Solomon code; by changing the

lengthlg n from left to right until we first find one that contains at;gnstants in the definition of the greedy code we can also base it on
mosté/24 fraction of 1's. We assume this is the buffer: we mark th%pielman’s linear-time code.

left and right endpoints, and continue searching intervals of lengthg, codeR: {0, 11" — {0, 1}°" is as follows:

lg n, starting with the left endpoint of the first new interval at the ’ o

right endpoint of the presumed buffer. Ry(z) = (So(T(x, 1)), ---, S2(T(x, k)))
We then look at all the words in between the presumed buffers, and

collect those within insertion—deletion distantks n of a codeword wherek is 4n/1gn. Note also that = |Rz(x)|/|z| = 4c1.

of Si. We then obtain these close codewords- - -, z,, and invert 2) Decoding:

S1 on eachz;. Thus we have a collectiofi of blocks, and we use

the decoder for the outer code to determine the original word. Theorem 2: Let It>(x) be the transmitted codeword, and lgt

be the received string. Fara = 0.01 andeg = 0.2, let there be

CorrectnessFirst, an intuitive description. Call, (I'(w, ¢)) block a sequence of at mostin insertions or deletions, anézn/lgn
i, and the buffer after it buffer. Note that if not too manwyl errors, transpositions, transforming2(z) to y. Thenz is determined byy,
and noB errors, occur in both blockand bufferi, then bufferi will and can be computed in time polynomialsin
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Proof: Setb = 1/100 anda = (1/5) + (1/100) = 0.21. Noting thatc, > 2 gives

We begin the decoding process by determining, for every interval ,
y' of length at most1+ b)c; lg n, whether there is a codewordof 2UA+d< (de1 +ea)k (8+ea)k
S> such thatd (=, y') < bei lgn. We call such a codewordlose T4l -a=b)er  8(1-a=b)
to y'. . 1 . ) »

Note that two intervals which overlap in more tham; lgn -2 Kl TP 25(‘)‘4/2)/1’ + h/Z} + R/
characters cannot be close to different codewords. For, this would (et ea)k (84 ea)k
imply that the overlap was at distance at méstlgn to some T 4(1—a—b)e —h+ 8(1—a—1b)
interval of length at leasta — b)cilgn = (e1/5)lgn in each ) 1
codeword, and hence that those intervals were at distance at most + R/ _ 2k(1 = 5e5 = 25ea/2)
(2bc1)lg » from each other, which violates the distance condition — = k(i — 2564 —ep — (8 + 6A)>
(¢1/50)1g n of the codeS,. 4 ’ 8-0.78

Every codeword that is close to some intervalyo€an therefore <k —E(0.4679 — 25.5¢4 — eR)

be regarded as the sole owner of a segmenty dieginning at

most (ac; /2)1g n after the start of the interval that is close to thevhich, for the stated values efs ande, is less thans.
codeword, and ending at leasic; /2)1g n before the end of that

interval. Hence the segment is of length at ledst- a — b)c1lgn; m
note further that the received stripgs of length at mostc+ec.4)n. It

follows that the number of codewords that are close to some intervalt has already been shown that the code has positive rate (in both
' the buffered and unbuffered cases). It remains to argue that it is

y' is at most ) o
optimal up to constant factors, namely, that no code of positive rate
can tolerate more thafi(n/lgn) transposition errors. We show that

(cteam = (de1 + ek . (1+0(1))n/lgn is an upper bound on the number of transpositions
1-a-balgn 4(1l-a=b)a that can be corrected (here denotes the length of the codeword).
Suppose that > 0 and that a code can corrett= n/((1—<=)lgn)
Suppose that some sequence of at mast insertions or deletions, transpositions. Consider any string € {0, 1}". Parsex into d
andegn/lgn transpositions, transformi; () to y. Then at most blocks, each of lengtlil — =)1gn. A sequence ofl transpositions
fraction e /2 codewords ofS> are ever bisected by a transpositiomow suffices to rearrange these blocks in lexicographic order. The

. THE CODE IS ASYMPTOTICALLY GOOD

boundary. Also, at most a fraction only information retained about is the frequency of occurrence of
each block, so no two codewords can share their frequency list. Since
1—e 1—e . . .
ean/((c1lgn/100)(4n/1gn)) = 25e4 /¢y there are less than™ = 2" !8" possible lists of frequencies,

that is an upper bound on the number of codewords.

codewords can be affected by more tharign/100 insertions or
deletions. Hence at least — (1/2)es — 25e.4/c1)k codewords of IV. STOCHASTIC CHANNEL MODEL
S, are correctly decoded. In this section we propose a relatively simple model of a prob-

Each decoded word yields a pdir, g(i)). If somei occurs more abilistic asynchronous channel. (We will allow only insertions and
than once (which can happen only if all but one are erroneodgletions here, not block transpositions.) It appears to be a difficult
decodings) then all such pairs, skyof them, are discarded; at leastproblem to analyze the capacity of such a channel even in the case that
h/2 of these are erroneous decodings. The remaining decoded paiily deletions are allowed. Since our codes are “asymptotically good”
are submitted to a decoding algorithm for the Reed—Solomon codgey achieve exponentially small error probability on such stochastic

The Reed-Solomon decoding algorithm is thus provided with ahannels, provided the error rates are below certain constants. We do
mostx = fffijifgffl — h pairs, of which at least not know how to code for insertion-deletion channels of arbitrary

nonzero capacity.
1 The Model:We restrict ourselves to discrete channels, with alpha-
<1 —5en - 256’,A/Cl>k —h/2 bet0, 1 (for both input and output). It is not hard to generalize the
- model to larger alphabets. For a string let £(«) be the random
variable which is the output of the channel on inputFor stringy
derive from the message, or in other words, of which at most  and for, > 0, lety,. be the string consisting of the firstcharacters
of y; similarly lety\,. be the string consisting of the lasicharacters
of y.

Let p = {p:}Zy andg = {¢:}:2, be probability distributions
with finite first and second moments. L@t )o<;, j<1 be a stochastic
are erroneous. Recall that the degree of the polynomial in the indexB@rx, With a; = P (output j| input /). Let b = {b;}j=0 be a )
Reed—-Solomon code i& = n/lgn = k/4. probablllty dlstrlbutlc_m repre_sentlng a certain _background noise.

In order to guarantee success of the Reed—Solomon decodinahe noise model is described by the following process. The input

procedure we show that the hypothesis of Lemmarls d < «, 1S Written on cellsl, ---. |z| of an input tape. A “read head" is
initially located at cell0 of the tape. An output tape is provided on

i (der 4+ ea)k <1

1
SE TR (4~ Zep —25eafer |k — /2
H(1—a=b)e 2? 5"”“) /

2

is satisfied . 3
which a “write head” starts at cell. In each step of the process,
(4e1 + ea)k variablesr and w are chosen independently,from distributionp
2+d< 2 <4<11(’7Ab)p andw from distributiong. The read head then shiftscells while the
—a—=0)c

write head shiftse cells. In the intermediate — 1 cells of the output
_ <1 _ }CB _ 250‘4/cl)k _ h/g) + k/4. tape, independently chosen characters from probability distribéition
2 are written. Then a charactgis selected with probability distribution
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a}"-, where: is the character under the read heads written to the  [4] P. A. H. Bours, “Construction of fixed-length insertion/deletion correct-
cell currently under the write head. ing runlength-limited code,IEEE Trans. Inform. Theogyvol. 40, pp.

_ : 1841-1856, Nov. 1994.
Observe that the cagg = 1 corresponds to a channel with no [5] L. Calabi and W. E. Hartnett, “A family of codes for the correction of

_deIEti_OnS; while they = 1 case corresponds to a channel with no substitution and synchronization errordBEE Trans. Inform. Theory
insertions. When botlp; = 1 and¢; = 1 we have a synchronous vol. IT-15, pp. 102-106, Jan. 1969.

channel. Ifpy = 0 then there is no “stutter,” i.e., every input symbol [6] R. L. Dobrushin, “Shannon’s theorems for channels with synchroniza-
is represented in at most one output symbol. tion errors,”Probl. Inform. Transm.vol. 3, no. 4, pp. 11-26, 1967 (trans.

. . . from Probl. Pered. Inform.vol. 3, no. 4, pp. 18-36, 1967).
Gallager_ [7_] has_ discussed a_ different stochastic model of R. G. Gallager, “Sequential decoding for binary channels with noise
channel with insertions and deletions. In that model there are four” and synchronization errors,” Lincoln Lab. Group Rep. 2502, Sept.
fixed parameters., p4, pi;, and p., summing tol. Each character 1966; unclassified document AD266879, Armed Services Technical
of the codeword is independently affected in the following way:[s] I';‘f%fmat'mlll Agsf’l/?yysAé"ngt?_'U ';Iall Stf’:I\_UOﬂ, Arlington fVA- | -

: i ; ; i T . Gemmell and M. Sudan, “Highly resilient correctors for polynomials,”

with probablllty pe the 'Cha.racter IS .fl.lpped, with probability. Inform. Processing Lettvol. 43, no. 4, pp. 169-174, 1992.
the QharaCter_ is deleted; with probability two r_andom Ch‘_"l_raCters [9] J. Justesen, “A class of constructive, asymptotically good algebraic
are inserted in place of the character; and with probabijlitythe codes,” |[EEE Trans. Inform. Theogyvol. IT-18, pp. 652-656, Sept.
character is conveyed correctly. This work was conducted before the 1972. _ _ ' '
first constructions of asymptotically good codes; however, Gallagéf] J-d‘_?- Krusaka" An overview OfIZ‘?\?“F‘?”CG C‘I’mz%ar's"”:;'me ‘ggrlpsz’;;“”g
showed that, if transmitter and receiver have a shared random 2p'rs'lgg3 macromoleculess Ev. Vol. £, NO. 2, pp. —eeh
sequence, the random convolutional coding method of Wozencrgfi] 1. Kigve, “Codes correcting a single insertion/deletion of a zero or a

and Reiffen [23], [16] can be employed to yield computationally  single peak-shift,”IEEE Trans. Inform. Theoryvol. 41, pp. 279-283,

efficient sequential decoding for rates below a cutoff @ty . Jdan. 1995. _ , _
Dobrushin [6] studied a fairly general stochastic model; in terms &2 ;/ér:i-ohgvzf:%h:‘é'\?érsi;ggg\'/ CF?S;SS ngﬁ%‘; Oiocoggefg'ngpd‘;g'oglsé in-

the above description, his is obtained by requiring that 1 (thus Feb. 1966 (translated fromokl. Akad. Nauk SSSRol. 163, no. 4, pp.’

the read head never skips or repeats) while allowing the‘ou'tptmt 845-848, Aug. 1965).

be a word (rather than character) chosen from a distribqt,igr}‘j on [13] —, “On perfect codes in deletion and insertion metridjscr. Math.

j € {0, 1}* which depends on the input charactefrhus his model Appl, vol. 2, no. 3, pp. 241-258, 1992.

. . . . s 14] F. J. MacWilliams and N. J. A. Sloan&he Theory of Error-Correcting
is both more general than ours (in allowing an arbitrary distribution c;n Codes. Amsterdam, The Netherlands: North-Holland, 1977.

words depending on each input character; we allow only a distributiefs] T. Okuda, E. Tanaka, and T. Kasai, “A method for the correction of
on characters, though several such characters may be selected due togarbled words based on the Levenshtein mettiEEE Trans. Comput.
stutter) and more restricted (in being memoryless, which ours is not Vvol- C-25, no. 2, pp. 172-178, Feb. 1976.

s atrib it : ] B. Reiffen, “Sequential encoding and decoding for the discrete memo-
due to the distribution on skips and stutters). Of course, a comm ryless channel.” Res. Lab. Electron., MIT, Tech. Rep.. vol. 374, 1960.

generalization is obtained simplyrby_ aIIov_virjgin our definition tq [17] R. M. Roth and P. H. Siegel, “Lee-metric BCH codes and their
range over 0, 1}" rather than{0, 1} (in which case one can restrict application to constrained and partial-response channii&E Trans.
to ¢: = 1). Useful error-correcting codes should perhaps be designed Inform. Theory vol. 40, pp. 1083-1096, July 1994.

with a less general model in mind, but it would be desirable to knol#8] D. Spielman, “Linear-ime encodable and decodable error-correcting
the existence of a channel capacity in this generality. gggi‘wm 27th Annu. ACM Symp. Theory of Compufiig95, pp.

[19] E. Tanaka and T. Kasai, “Synchronization and substitution error-
V. D correcting codes for the Levenshtein metridBEE Trans. Inform.
- DISCUSSION Theory vol. IT-22, pp. 156-162, Mar. 1976.

The code can be modified to also account for reversals, i.e., €] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
modification of ABC into AB"C. where B” is the reverse off3. tion,” IEEE Trans. Inform. Theorwol. IT-30, pp. 766—769, Sept. 1984.
To do this i ffi k h’ . d il . %1] J. D. Uliman, “On the capabilities of codes to correct synchronization

0 do this '_t suffices to make the inner code resilient against su errors,”IEEE Trans. Inform. Theorwol. IT-13, pp. 95-105, Jan. 1967.
transformations. [22] L. Welch and E. R. Berlekamp, “Error Correction of Algebraic Block

In general, larger alphabet sizes make things easier. For example, Codes,” U.S. Patent 4633470, Dec. 1986.
an alphabet of siz& allows us to simplify our buffered codes, asl23] J. M. Wozencraft, “Sequential decoding for reliable communications,”
one character may be reserved for use as a buffer character, and an Res. Lab. Electron., MIT, Tech. Rep., vol. 325, 1957.

(unmodified) greedily constructed code of type 1 can be used for the
inner code.

As mentioned previously, we have not optimized constants for

rate, error capacity, or computation.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referees for their helpful
comments.

REFERENCES

[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority
encoding transmission,” iB5th Annu. Symp. Foundations of Computer
Science 1994, pp. 604-612.

[2] N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes with
nearly optimal recovery,” i86th Annu. Symp. Foundations of Computer
Science 1995, pp. 512-519.

[3] E. R. Berlekamp, “Bounded distancel soft-decision Reed—Solomon
decoding,”IEEE Trans. Inform. Theoryol. 42, pp. 704-720, May 1996.



