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Abstract—We consider the robust curve fitting problem, for
both algebraic and Fourier (trigonometric) polynomials, in the
presence of outliers. In particular, we study the model of Arora
and Khot (STOC 2002), who were motivated by applications
in computer vision. In their model, the input data consists of
ordered pairs (xi, yi) ∈ [−1, 1] × [−1, 1], i = 1, 2, . . . , N , and
there is an unknown degree-d polynomial p such that for all but
ρ fraction of the i, we have |p(xi)− yi| 6 δ. Unlike Arora-Khot,
we also study the trigonometric setting, where the input is from
T × [−1, 1], where T is the unit circle. In both scenarios, the i
corresponding to errors are chosen randomly, and for such i the
errors in the yi can be arbitrary. The goal is to output a degree-d
polynomial q such that ‖p − q‖∞ is small (for example, O(δ)).
Arora and Khot could achieve a polynomial-time algorithm only
for ρ = 0. Daltrophe et al. observed that a simple median-based
algorithm can correct errors if the desired accuracy δ is large
enough. (Larger δ makes the output guarantee easier to achieve,
which seems to typically outweigh the weaker input promise.)

We dramatically expand the range of parameters for which
recovery of q is possible in polynomial time. Specifically, we show
that there are polynomial-time algorithms in both settings that
recover q up to `∞ error O(δ.99) provided

1) ρ 6 c1
log d

and δ > 1/(log d)c, or
2) ρ 6 c1

log log d
log2 d

and δ > 1/dc.

Here c is any constant and c1 is a small enough constant
depending on c. The number of points that suffices is N = Õ(d)
in the trigonometric setting for random xi or arbitrary xi that
are roughly equally spaced, or in the algebraic setting when
the xi are chosen according to the Chebyshev distribution, and
N = Õ(d2) in the algebraic setting with random (or roughly
equally spaced) xi.

Index Terms—Error-correction; Polynomial regression; Reed-
Solomon codes.

I. INTRODUCTION

The curve fitting problem is, roughly, to construct a curve
that passes near many input points. The curve is typically
constrained to be of a certain form, such as having low
degree. This problem is fundamental and has applications in
many areas, including statistics, computer vision, and Fourier
analysis. In statistics, it is commonly referred to as linear or
polynomial regression, and is one of the most basic tools for
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estimating the relationships between random variables. This is
used extensively in machine learning; see for example the book
[Zie11]. In computer vision, boundaries of objects can often
be modeled as low-degree algebraic curves, so researchers try
to fit curves to their estimates of boundaries.

For periodic functions or functions on the circle, it is more
natural and useful to consider low-degree trigonometric poly-
nomials. A trigonometric polynomial in θ is a linear function
in sin(kθ) and cos(kθ) for integral k; the largest such k in
absolute value is the degree. Thus low-degree trigonometric
polynomials correspond to Fourier series approximations. This
again has extensive uses.

An important issue with curve fitting is the presence of
outliers. Ordinary least squares tends to be influenced signif-
icantly by outliers, whereas often it is best to ignore them.
Therefore, researchers have introduced robust methods that do
just this. For example, RANSAC (random sample consensus)
[FB81] is a popular method that works by sampling a small
number of points and fitting a polynomial q to the sample. If
there are no outliers in the sample, then the hope is that q fits
the entire input, excluding outliers. The algorithm repeatedly
samples sufficiently many times so that with high probability
one sample will contain no outliers.

There are a couple of problems with this method and
related techniques. First, if the degree d of the (algebraic or
trigonometric) polynomial is large, then we need samples of
size d+ 1 just for the error-free case, so we shouldn’t be able
to handle more than about (log d)/d fraction of errors. Second,
even if d is small, there could be significant errors among the
inliers (non-outliers). A small sample of the points may not
give us enough information to determine the polynomial.

Another approach to robust curve fitting is to minimize the
`1 error rather than `2 error. In particular, Lasso has been
used, at least for robust linear regression [XCM10]. However,
outliers can still have noticeable effects, and we don’t know
of any theorems along the lines we propose below.

Arora and Khot [AK03] studied a model allowing signif-
icant errors in the inliers as well as a significant number
of outliers. In other words, given noisy evaluations of an
unknown polynomial p, where a significant number of evalu-
ations are allowed to have arbitrary noise, can we recover p
up to some reasonable error? Arora and Khot considered only
algebraic polynomials; we extend their framework to include



trigonometric polynomials as follows.
There is an unknown (algebraic or trigonometric) polynomial
p : D → [−1, 1] of degree d with ‖p‖∞ 6 1.

Input: (a1, y1), . . . , (an, yn) ∈ D × [−1, 1], where
|p(ai)− yi| 6 δ for “most” i.

Output: Degree d (algebraic or trigonometric) polyno-
mial q with ‖p− q‖∞ as small as possible.

For algebraic polynomials, we follow Arora and Khot and
use D = [−1, 1]; for trigonometric polynomials, we use
D = T, the unit circle. Before discussing the outlier model
and the meaning of “most,” it is instructive to investigate
the outlier-free case, i.e., |p(ai) − yi| 6 δ for all i. For this
discussion, view δ as a small constant. The first issue is which
sets of domain elements A = {a1, . . . , an} are allowed. The
simplest natural setting may be equally spaced points. In this
case, Θ(d) points are necessary and sufficient on the circle
T, but perhaps surprisingly Θ(d2) are necessary and sufficient
on the interval [−1, 1]. We know such a polynomial exists, by
assumption, and Arora and Khot observed that we can set up
a linear program to find it. The issue is that we want the input
to determine this polynomial up to some reasonable error, like
O(δ). Viewing the error as a polynomial and normalizing,
this amounts to showing that if a low-degree polynomial is
at most 1 on equally spaced points, then it is bounded over
the entire domain. Such results were show by Ehlich and Zeller
[EZ64] and Coppersmith and Rivlin [CR92] for the interval
and Rakhmanov and Shekhtman [RS06] and Dubinin [Dub11]
for the circle.

In fact, we observe that the points do not need to be equally
spaced; they just need to form a dense enough cover, i.e., any
point in the space must be close to some point in the set A.
(This follows from an inspection of the proof for the circle in
[Dub11], and a similar statement for the interval would then
follow by a reduction.) We do need a cover because certain
polynomials, like the Chebyshev polynomials, can be large on
a small interval and close to zero otherwise. For intuition, note
that even (1−x2)d is small outside a small interval containing
0.

Arora and Khot assume the domain elements A are cho-
sen uniformly at random. In this case Ω(d log d) points are
necessary on T and Ω(d2 log d) are necessary on [−1, 1];
otherwise the points probably will not form a fine enough
cover. Arora and Khot showed a constructive upper bound of
O((d2/δ) log(d/δ)) points, matching the lower bound except
for terms involving δ.

Interestingly, if we can choose the points, then Θ(d) points
are necessary and sufficient for both T and [−1, 1]. This
follows because the algebraic case can be reduced to the
trigonometric case by using the substitution x = cos θ. Thus,
on the interval there will be many more points near ±1
rather than near 0. Because of this reduction, our analysis will
focus on the trigonometric case, and we will state the result
for algebraic polynomials as a corollary. For these reasons,
the Chebyshev distribution is useful, as sampling from this

distribution on [−1, 1] amounts to picking θ ∈ [0, π] uniformly
and outputting x = cos θ.

We now discuss the outlier model. Simply limiting the
number of outliers is not enough, because these outliers may
all occur in some interval and then we lose control over the
polynomial in that interval. We really need the inliers to form
a suitable cover. Probably the most natural model here is that
each ai is chosen to be an outlier with some fixed probability
ρ. If a point is chosen to be an outlier, then the corresponding
yi may be chosen arbitrarily by an adversary.

Arora and Khot showed that this is impossible when the
outlier probability ρ is at least half. This is an information-
theoretic result, in the sense that the polynomial is not uniquely
determined up to small `∞ error, and in fact there can
exponentially many candidate solutions which are pairwise far
apart in `∞ norm (the “list-decoding regime” with large lists).
They also gave an algorithm for very structured errors, even
in the list-decoding regime, but it runs in exponential time. In
this structured model, there are k unknown polynomials, and
at each data point one polynomial p is picked randomly and
yi set to p(xi) + β with |β| 6 δ chosen adversarially. Their
algorithm runs in time exponential in kd2/δ.

Information-theoretically, the general, unstructured-error
problem is possible to solve when the fraction of (randomly
chosen) outliers is less than half. Although we don’t achieve
this information-theoretic bound, we do manage to achieve
the first positive result in this model with outliers that is not
exponential time. In particular, we give a polynomial-time
algorithm that tolerates a fraction of about 1/ log d outliers.

Theorem 1. (Informal for T) Let c > 1 an arbitrary
integer. There exists c1 > 0 small enough compared to c,
such that when N > Ω̃c(d), the following holds. Let A =
{a1, . . . , aN} ⊂ T be any set of N roughly equally spaced
points. In the model where for each i ∈ [N ] independently,
yi fails to satisfy |yi − p(ai)| 6 δ with probability at most ρ,
there is a polynomial-time algorithm that with high probability
recovers a trigonometric polynomial q of degree at most d
satisfying ‖p− q‖∞ 6 O(δ0.99) provided

1) ρ 6 c1
log d and δ > 1

(log d)c , or
2) ρ 6 c1

log log d
log2 d

and δ > 1
dc .

Theorem 2. (Informal for [−1, 1]) Let c > 1 an arbitrary
integer. There exists c1 > 0 small enough compared to c,
such that when N > Ω̃(d2) for roughly equally spaced (or
uniformly random) xi, or N > Ω̃c(d) for xi chosen according
to the Chebyshev distribution, the following holds. In the
model where for each i ∈ [N ] independently, yi fails to
satisfy |yi − p(xi)| 6 δ with probability at most ρ, there is a
polynomial-time algorithm that with high probability recovers
an algebraic polynomial f of degree at most d satisfying
‖p− f‖∞ 6 O(δ0.99) provided

1) ρ 6 c1
log d and δ > 1

(log d)c , or
2) ρ 6 c1

log log d
log2 d

and δ > 1
dc .



One simple approach, suggested e.g., by Daltrophe et al.
[DDL12], is that if we look in a small enough interval, the
value of the polynomial p will be close enough to constant that
any outliers can be detected and removed. One can therefore
take the median of values in this small interval to correct
and find outliers ( [DDL12] take the average). This simple
approach works if δ is sufficiently large, since when δ is
large, the output error ‖p − q‖∞ can also be fairly large.
Specifically, this median approach works when p doesn’t vary
by more than O(δ.99) on intervals where there are c logN
points for a large enough constant c. Since the derivative of
p is at most d on T and at most d2 on [−1, 1], this means
that for random or roughly equally-spaced points, medians
work on T if δ.99 = Ω(d(logN)/N), and on [−1, 1] if
δ.99 = Ω(d2(logN)/N). Our approach works for smaller δ.

Another extreme case is when the good points have no error,
i.e., the inlier noise δ = 0. This is similar to the finite field
setting, where Welch and Berlekamp [WB86] showed how to
curve fit with the optimum number of outliers (i.e., optimally
error-correct Reed-Solomon codes). Other authors, such as
Arora-Khot and Daltrophe et al. [DDL12] specifically mention
that the Welch-Berlekamp techniques appears to require δ = 0.
Kaltofen and Yang [KY13], [KY14] do manage to handle
some noise in the inliers, but they require small relative error.
They don’t state a theorem along these lines, but they discuss
handling relative error 10−7. Regardless, handling relative
error doesn’t suffice for our purposes.

Despite the earlier lack of progress in applying Welch-
Berlekamp to handle significant δ, we manage to use similar
techniques to do just that. After giving some background and
setting up the model, we give an overview of our techniques
and then the proof itself in the next section.

Independent and Subsequent Work: In independent work,
Chen et al. [CKPS16] give an efficient algorithm that takes as
input samples from p(x)+g(x), with p a degree-d polynomial
and ‖g‖2 6 δ, and outputs a degree-d polynomial q with
‖p − q‖2 = O(δ). This doesn’t imply our result, as outliers
could cause ‖g‖2 to be quite large. Our result doesn’t imply
their theorem either, but for some parameters it can give a
stronger `∞ guarantee for a weaker quantitative bound. To
see this, observe that for uniformly random samples xi, we
have Pr[|g(xi)| > sδ] 6 1/s2. Therefore, if 1/s2 is at most
the error ρ allowed in our theorems, and sδ is suitably large,
then we can obtain q with ‖p− q‖∞ = O((sδ).99). We would
need s = O(

√
log d) or O(log d).

In exciting subsequent work, Eric Price used different
techniques to obtain an essentially optimal algorithm for our
setting [Pri16]. His algorithm works for any fraction of outliers
ρ < 1/2, achieves error O(δ), and doesn’t require any
lower bound on δ. In the algebraic setting, he requires O(d2)
uniformly random samples, or O(d log d) samples from the
Chebyshev distribution.

II. FITTING A FOURIER POLYNOMIAL TO NOISY DATA

We consider bounded functions defined on the unit circle T,
whose points we will parameterize by angles θ ∈ [0, 2π). The
distance dT(θ, α) between two points θ, α ∈ T is given by the
length of the arc on the unit circle between those angles.

We call a subset A ⊂ T an ε-cover if for all θ ∈ T, there
exists α ∈ A such that dT(θ, α) 6 ε/2. Equivalently, each
interval (arc) of length ε contains a point of A. By dropping
points, it is easy to see that an ε-cover may be converted to a
2ε-cover so that distances between consecutive points is in the
range [ε/2, 2ε]. This is summarized in the following lemma,
whose proof we defer to the appendix.

Lemma II.1. An ε-cover on the circle T may be efficiently
converted to a 2ε-cover such that distances between consec-
utive points lie in the range [ε/2, 2ε]. If the new cover has
N points, then distances between consecutive points lie in the
range [π/(2N), 8π/N ].

Throughout this section, p : T → [−1, 1] will denote
an unknown trigonometric polynomial of degree at most d
(i.e., p(θ) =

∑d
j=0(rj cos(jθ) + sj sin(jθ)) for some real

coefficients rj , sj). The goal is to reconstruct p, given its noisy
evaluations at a sufficiently large number N of roughly equally
spaced points 0 6 a0 < a1 < · · · < aN−1 < 2π on the circle
satisfying

π/(2N) 6 dT(ai, ai+1) 6 8π/N (1)

for 1 6 i < N , where we let aN = a0. We denote [N ] =
{0, 1, . . . , N − 1}, and A = {a0, a1, . . . , aN−1} to be the set
of evaluation points.

Specifically, we are given a collection of pairs (ai, yi) ∈
T × [−1, 1] where yi is close to p(ai) (within δ for some
accuruacy parameter δ) on many points, but on the erroneous
points we have no guarantee on the relation of yi to p(ai)
(these points are outliers with arbitrary errors).

Let us a call a point ai accurate if |p(ai) − yi| 6 δ, and
an outlier otherwise. Let A = {ai ∈ A | ai is accurate} and
O = {ai ∈ A | ai is an outlier} denote the corresponding
subsets.

Let us define a point ai to be r-reliable, or simply re-
liable when the integer parameter r is clear from context,
if ai is accurate, and r − 1 points on either side of ai are
also accurate (i.e., ai is in the middle of an accurate run
of (2r − 1) points ai−(r−1), , ..., ai−1, ai, ai+1, . . . , ai+r−1,
where the operations on the subscript are understood to be
mod N ). The corresponding set of reliable points is denoted
R = {ai ∈ A | ai is reliable}. The notion of reliable
points will play an important role in our algorithm design and
analysis.

A. Classical Approximation Theorems and Outlier-Free
Curve-Fitting

We will use two classical tools from the theory of trigono-
metric polynomials: Jackson’s theorem on approximating ar-
bitrary functions by low-degree trigonometric polynomials,



and discrete Remez-type inequalities to bound the norm of a
trigonometric polynomial based on its values at a fine enough
discrete cover of points. For a function f : T → [−1, 1], we
define ‖f‖∞ = sup{|f(θ)| : θ ∈ T}.

Proposition II.2 (Jackson approximation theorem for trigono-
metric polynomials). [Jac30] Let f : T → [0, 1] be a
continuous function with

|f(x)− f(y)| 6 Λ|x− y|

for some Lipschitz constant Λ <∞, uniformly over all x, y ∈
T. Then, for m > 1, there exists a degree m trigonometric
polynomial p, taking values in the range [0, 1], such that

‖f − p‖∞ 6 c1 ·
Λ

m

for some absolute constant c1 <∞.

For more on Jackson’s theorem and other topics in approx-
imation theory, see for example [Che82].

Proposition II.3 (Discrete Remez inequality). Let p be a
trigonometric polynomial of degree m. Let A ⊂ T be a finite
2π
M -cover for some integer M > 2m. Suppose |p(α)| 6 γ for
all α ∈ A. Then,

sup{|p(θ)| : θ ∈ T} 6 γ

cos(πm/(2M))
(2)

In particular, if we take M = 2m, then ‖p‖∞ 6
√

2γ < 2γ.

An inequality of this form, with a different constant multi-
plying γ in (2), can be deduced from Bernstein’s bound on the
derivatives of trigonometric polynomials. For example, see the
analogous statement about algebraic polynomials in Rivlin’s
book [Riv81], pages 37-38, giving a proof due to Ehlich and
Zeller [EZ64]. For the case when A consists of M equally
spaced points on the circle, inequalities of the above form,
with different constants multiplying γ in (2), have been shown
in a few places, including [RS06], [Dub11]. An inspection of
the proof in [Dub11] shows that it works for a 2π

M -cover as
well.

The above immediately implies an efficient algorithm, based
on a natural linear program, to interpolate (a global approxi-
mation of) a polynomial from its values at a fine enough set
of points when there are no outliers.

Lemma II.4 (Outlier-free interpolation). There exists an ab-
solute constant κ ∈ (0, 1) for which the following holds. There
is an algorithm based on linear programming that, given as
input {(ai, yi) ∈ T× [−1, 1] | i ∈ [N ]} where the ai’s form a
κ
d -cover and |yi − p(ai)| 6 δ ∀i ∈ [N ] for some degree 6 d
trigonometric polynomial, finds a trigonometric polynomial q
of degree at most d satisfying ‖p − q‖∞ 6 2δ using poly(d)
operations.

Note that the above implies one can interpolate a trigono-
metric polynomial from its values at O(d) (roughly) equally
spaced points. In contrast, for algebraic polynomials de-
fined on [−1, 1], one needs Ω(d2) such equally spaced

points [AK03]. However, if we choose the points carefully,
then one can make do with O(d) points, ensuring that there
are enough points close to the boundaries.

B. Informal description of idea

Our approach is based on a (non-trivial) adaptation of
the Welch-Berlekamp approach to error-correct Reed-Solomon
codes. In that setting, we are given N pairs (ai, yi) ∈ F2

where the ai’s are distinct elements of a finite field F, and
the goal to recover an unknown degree d polynomial p such
that p(ai) 6= yi for at most ρ fraction of pairs (in this case,
even the erroneous positions can be chosen adversarially). If
ρN < (N − d), such a polynomial p if it exists is uniquely
specified. If we define the error-locator polynomial

E0(X) =
∏

i:p(ai)6=yi

(X − ai) , (3)

then the bivariate polynomial R0(X,Y )
def
= E0(X)(Y −p(X))

satisfies R0(ai, yi) = 0 ∀i. The approach then is to interpolate
a nonzero polynomial R(X,Y ) = E(X)Y − Q(X) with
appropriate degree restrictions on E and Q that satisfies
E(ai)yi − Q(ai) = 0 for all i, and then argue that there is
no choice but for these coefficient polynomials E,Q to satisfy
Q(X)
E(X) = p(X), allowing for simple recovery of the polynomial
p.

In the continuous setting, we will try to mimic this strategy.
Specifically, we will attempt to argue that (with high proba-
bility) there exists an error-locating trigonometric polynomial
E0 such that (i) |E0(ai)| is very small on the outliers, where
|p(ai)−yi| > δ, (ii) E0 has low-degree, (iii) E0 is bounded in
absolute value by 1 everywhere, and (iv) E0 is “large” often
enough on accurate points ai where |p(ai)−yi| 6 δ. Note that
in the finite field case, there is no notion of small/large, and
one just had to meet requirement (i), which is trivially done
by taking E0 as in (3).

To show the existence of such an E0, let us first drop the
low-degree requirement, and imagine a piecewise linear error-
indicator function f : T → [0, 1] such that f(ai) = 0 for
outliers ai, f(ai) = 1 for the accurate points ai, and for values
between the ai’s we interpolate f linearly by a line segment
joining (ai, f(ai)) with (ai+1, f(ai+1)) otherwise. Thus f is
like a “mountain range” with valleys at the outliers, and peaks
at the other evaluation points. We can try to approximate f by
a low-degree polynomial via classical results in approximation
theory, specifically Jackson’s inequality (Proposition II.2).
The degree of the approximating polynomial scales with the
slope of our function f (which is Ω(N)) and inverse of the
approximation error (which we would like to be ≈ δ). Thus,
used naively, this will yield an E0 with degree � N which is
useless for our purposes.

Therefore, we relax the requirement on f and require instead
a function g : T→ [0, 1] that it is large only on accurate points
that are in the middle of long run of 2r accurate points; these
are the points we called “reliable.” In other words, g is an
indicator function for reliable vs. outlier, and we don’t care



about its value at accurate points that are not reliable. This
allows us to reduce the slope of g, and therefore the degree
of the approximating polynomial E0, by a factor of r.

If we naively use Jackson’s theorem to approximate g within
accuracy ≈ δ, then to keep the degree of E0 smaller than N ,
we would need r > 1/δ. In this case reliable points become
very rare, occurring with probability s = exp(−1/δ). Since
we don’t know the locations of reliable points but only their
frequency, our efficient algorithm is only able to guarantee that
average value of E0 on large intervals is ≈ s. We can then
deduce that E0 is at least s on one of these reliable points α,
but this is much smaller than our desired Ω(1) value. If we use
Q(αi)/E0(αi) as an approximation of p(αi) (for some reliable
αi), the division by the potentially very small E0(αi) blows
up the error by an exp(1/δ) factor, completely destroying the
original accuracy |Q(αi)− p(αi)E0(α)| 6 O(δ).

To get around this, we use Jackson’s theorem to get a coarse
approximation, within error 0.1 say, via a polynomial F0 :
T → [0, 1] of degree O(N/r). The value of F0 on outliers
could now be ≈ 0.1, which is too high. To fix this, we raise F0

to a large enough power ` ≈ log(1/δ) to get our final choice
of “approximator” E0. This will ensure that E0(ai) 6 δ if ai
is an outlier, but also might decrease the value E0 at reliable
points; however, for suitable `, we can ensure E0(ai) > δ0.1

for reliable ai.
To accommodate the factor `-fold degree increase caused

by powering, we need the run length parameter r > log(1/δ).
Furthermore, even for random errors, there might be a run of
≈ logN outliers, and to accommodate this in our analysis, the
overall degree has to be O(N/ logN) requiring an even larger
run length r ≈ logN ·log(1/δ). A careful choice of parameters
in this approach shows that we can recover a good global
approximation to the unknown p within accuracy δ0.99 if each
ai is an outlier independently with probability ρ 6 1/ log d.

The algorithm uses linear programming to find polynomials
Q,E of appropriate degree such that |Q(ai) − yiE(ai)| 6 δ
for each i ∈ [N ]. Then, for points where E(ai) is above some
threshold τ , it uses Q(ai)/E(ai) as a good approximation
to p(ai), and then recovers an approximation to p itself via
outlier-free curve fitting on those points.

C. A low-degree error locator

We now formalize the above discussion and record the
construction of a low-degree polynomial E0 that is small on
outliers, and much larger on reliable points.

In all statements that follow, O(·) is meant to hide only
absolute constants; dependency on any of our parameters will
be spelled out explicitly. We also use A . B to denote A 6
O(B).

By definition, if α ∈ R and β ∈ O, then

dT(α, β) > r · π
2N

. (4)

This implies that one can approximate the indicator function of
being reliable vs. an outlier with a degree that is a factor Ω(r)

smaller than what is required to approximate the indicator
function of accurate vs. outlier.

Lemma II.5. Let γ ∈ (0, 1/4). There exists a trigonometric
polynomial F0 : T → [0, 1] of degree at most O

(
N
rγ

)
satisfying 0 6 F0(β) 6 γ whenever β ∈ A is an outlier,
and 1− γ 6 F0(α) 6 1 whenever α ∈ A is reliable.

Proof. The proof follows by applying Proposition II.2 to a
function piecewise linear function g : T→ [0, 1] that satisfies
g(α) = 1 if α ∈ R; g(β) = 0 if β ∈ O, and defined by linear
interpolation for points outside R∪O. The Lipschitz constant
of g is at most 2N

πr by virtue of (4).

Corollary II.6. Let δ > 0 be sufficiently small, and let γ ∈
(δ, 1/4). There exists a degree

∆ .
N · log(1/δ)

r · γ log(1/γ)
(5)

trigonometric polynomial E0 : T → [0, 1] such that 0 6
E0(β) 6 δ/2 whenever β ∈ O, and E0(α) > δγ whenever
α ∈ R.

Proof. Take E0 = F `0 for a large enough power

` =

⌈
ln(2/δ)

ln(1/γ)

⌉
.

Since γ` 6 δ/2, we have E0(β) 6 δ/2 when β ∈ O. Using
(1 − γ) > e−8γ/7 for γ < 1/4, one can easily check that
(1− γ)` > δγ for small enough δ.

D. Assumptions on the noise

For greater modularity, we will analyze our algorithm under
some abstract assumptions on the errors, which we detail now
before presenting the algorithm in the next subsection. We will
assume the accurate and reliable points satisfy the following
conditions, for parameters t, r, b, η:

1) The accurate points form a t/N -cover, for some constant
t <∞

2) Every set of b consecutive points has at least ηb r-
reliable points, for some parameters b <∞ and η > 0.

A qualitative assumption like the first one is necessary to
have any hope of recovering a global approximation of p. The
second assumption on reliable points arises because of the
specific nature of our algorithm.

We will give a robust curve fitting algorithm that succeeds
when all these parameters obey some constraints that will
come out of our algorithm and its analysis. Imagine η is some
absolute constant. The quality of data we are fitting improves
as t and b get smaller, and r gets larger. When t is small,
the accurate points occur regularly, and when b gets smaller,
the window we need to look at to find a good frequency of
runs of r accurate points shrinks. We will later see that when
outliers are picked randomly at a small enough error rate,
accurate points will occur regularly so t will be small. Further,
r-reliable points for reasonably large r will also occur with
good frequency in windows of modest size b.



E. Linear programming based algorithm

We now describe the algorithm to recover a good approxi-
mation to the unknown polynomial p.
Robust Fourier Curve Fit Algorithm:

INPUT: N pairs (ai, yi) ∈ T × [−1, 1] with ai’s satisfying
(1), and yi’s satisfying the assumptions made in Section II-D
concerning the relation to the evaluations p(ai).

DESIRED OUTPUT: A trigonometric polynomial q of degree
at most d such that ‖q − p‖ 6 δΩ(1)

1) Set up a linear program to find polynomials E,Q with
deg(E) 6 ∆ and deg(Q) 6 ∆ + d (for ∆ obeying (5))
that satisfy the following conditions (all of which are
linear in the coefficients of E and Q), for every i ∈ [N ]:

|Q(ai)− yiE(ai)| 6 δ (6)
b−1∑
j=0

E(ai+j) > δγ · ηb (7)

E(ai) ∈ [0, 1] (8)

where in (7), i+ j is computed mod N .
2) Compute T ⊆ [N ] as T = {i | E(ai) > τ} for threshold

τ
def
= δγη .

For each i ∈ T , compute zi = Q(ai)/E(ai).
3) Compute, using the linear programming based algorithm

of Lemma II.4, a trigonometric polynomial q of degree
d such that |q(ai) − zi| 6 4δ1−γη−1 for i ∈ T . If no
such polynomial exists, return Failure.

Before embarking on the analysis of the algorithm, which
will also fix the dependencies between the various parameters,
let us quickly check the feasibility of the LP in Step 1 of the
algorithm.

Lemma II.7. Under the assumptions on the error model made
in Section II-D, there exist trigonometric polynomials E,Q of
degrees at most ∆ and ∆ + d satisfying the constraints (6)
and (7).

Proof. Take E = E0 as guaranteed by Corollary II.6, and Q =
pE0. For each i ∈ [N ], |Q(ai)− yiE(ai)| = |E(ai)||p(ai)−
yi|. If ai is accurate then |p(ai) − yi| 6 δ and E(ai) 6 1,
whereas if ai is an outlier then E(ai) 6 δ/2 and |p(ai)−yi| 6
2. So (6) is satisfied. As for (7), every set of b consecutive
points has at least ηb reliable points, and for ai ∈ R we have
E(ai) > δγ .

F. Analysis

Throughout this section, to avoid repeating this, we assume
that the actual evaluations p(ai) of the unknown polynomial
p, and their noisy versions yi, satisfy the two assumptions on
errors from Section II-D, namely that the correct points form
a t/N -cover, and every b consecutive points has a fraction η
of reliable points.

Lemma II.8. Assume that ∆ + d 6 α0N
t for some small

enough absolute constant α0 > 0. Then the polynomials Q and
E found in Step 1 of the algorithm satisfy ‖Q− pE‖∞ 6 4δ.

Proof. If ai is correct, then by triangle inequality |Q(ai) −
p(ai)E(ai)| is at most

|Q(ai)− yiE(ai)|+ |yi − p(ai)||E(ai)| 6 2δ .

Since the correct points form a t/N -cover, by Proposition II.3,
if ∆+d 6 α0N

t for some absolute constant α0 > 0 (in fact we
can take α0 = π), then we must have |Q(θ)−p(θ)E(θ)| 6 4δ
for every θ ∈ T.

Lemma II.9. Assume that b 6 β0N/d for some small enough
absolute constant β0 > 0, and that ‖Q − pE‖∞ 6 4δ. Then
Step 3 succeeds in finding a degree d trigonometric polynomial
q and any such polynomial q satisfies

‖p− q‖∞ 6 16 · η−1δ1−γ .

Proof. Note that for any i ∈ T , we have |p(ai) − zi| 6 4δ
δγη ,

so Step 3 will succeed in finding a polynomial q such that
|q(ai) − zi| 6 4δ1−γη−1 for i ∈ T . Thus |q(ai) − p(ai)| 6
8δ1−γη−1 for i ∈ T .

The condition (7) implies that any set of b consecutive
evaluation points contains an aj with E(aj) > δγ . This
together with (1) implies that the set {ai | i ∈ T} computed
in Step 2 is an 8πb

N -cover. For b 6 β0N/d for small enough
β0 > 0 (in fact one can take β0 = 1/8), {ai | i ∈ T} forms
a sufficiently fine cover, allowing us to apply Proposition II.3
and conclude that ‖q − p‖∞ 6 16δ1−γη−1.

Summarizing the analysis, the requirements on the param-
eters in Lemmas II.8 and II.9 which suffice for recovery of q
with ‖q − p‖∞ small are

r · γ log(1/γ) & t log(1/δ) and N & bd . (9)

G. Random errors

We now compute the values of t and b (for the assumptions
in Section II-D) when the evaluation points are made outliers
in an i.i.d fashion at a small enough noise rate.

Lemma II.10. For the noise model where each ai ∈ A is an
outlier independently with probability ρ, with probability at
least 1− 1/N the set of accurate points is a t/N -cover when
t = C logN

log(1/ρ) for a large enough absolute constant C.

Proof. If the set A of accurate points is not a t/N -cover, there
must be at least t

8π >
t

30 consecutive ai’s which are outliers.
The probability of this happening is at most N · ρt/30, by
a trivial union bound over all N sets of consecutive points
starting at any of the ai’s. If t = C logN

log(1/ρ) for a large enough
absolute constant C, then this bound is at most 1/N .

Lemma II.11. Let ρ ∈ (0, 1/2] and integer b > 64r(1 −
ρ)−4r lnN . For the noise model where each ai ∈ A is an
outlier independently with probability ρ, the following holds
with probability at least 1− 1/N :



Every set of b consecutive points in A contains at
least (1 − ρ)4rb/4 points that fall in the subset R
of r-reliable points.

Proof. Partition each interval of length b into ` > 16(1 −
ρ)−4r lnN disjoint intervals of length 4r. The probability
that a particular interval of length 4r contains only accurate
points is q = (1 − ρ)4r. Call such an interval always-
accurate. An always-accurate interval contains at least 2r
reliable points. Fix any interval J of length b containing `
subintervals of length 4r. The expected number of always-
accurate subintervals is µ = `q > 16 lnN , so by a Chernoff
bound,

Pr[J fails to contain µ/2 always-accurate subintervals]

6 exp(−µ/8) 6 1/N2 .

By a union bound, with probability 1 − 1/N , all intervals
of length b contain at least µ/2 always-accurate subintervals.
Thus, every b consecutive points contains at least (µ/2)(2r) =
r`q = b(q/4) accurate points, as required.

Thus, we may take

b = Θ(r(1− ρ)−4r logN) and η >
1

4
(1− ρ)4r (10)

in the claim that every set of b consecutive points has at least
ηb reliable points.

Finally we need to pick parameters carefully subject to
the requirements (9) and (10), and t & logN

log(1/ρ) from
Lemma II.10. We will make the following choices which
can be checked to satisfy all these requirements for suitable
constants e1, e2, e3, e4, assuming the degree d is assumed
to be sufficiently large.1 We will make two choices of ρ,
depending on error we are willing to tolerate in the final
approximation. For δ > 1/(log d)c, we will take ρ = c1/ log d,
and if greater accuracy δ > 1/dc is desired, we will take
ρ = c1 log log d/(log d)2, where c is an arbitrary constant,
and c1 is small enough as a function of c (and e2, which can
be taken to be an absolute constant).

γ = 1/100 (11)

t = e1
log d

log log d
for e1 = 2C where C is from Lemma II.10

r =

⌊
e2

log d

log log d
log(1/δ)

⌋
for e2 = e2(e1) large enough

ρ =
e3

log d
when δ > 1

(log d)c (or ρ = e3 log log d
log2 d

when δ > 1
dc )

for e3 = e3(c, e2) small enough

N =

⌊
e4d

log2 d

log log d
log(1/δ)

⌋
for e4 = e4(e2) large enough

(12)

1We fix γ = 1/100 only for simplicity, one can take it smaller to
improve the approximation guarantee of the final polynomial as guaranteed
by Lemma II.9

The only thing that might require some justification is the
bound on N . We know that

N & bd & dr(1− ρ)−4r logN & dr · e8ρr logN . (13)

For δ > 1/(log d)c, taking ρ = c1/ log d for small enough c1,
we can ensure e8ρr 6 δ−1/(c log log d) 6 2. Simmilarly, for δ >
1/dc, taking ρ = c1 log log d/(log d)2, we can ensure e8ρr 6
δ−1/(c log d) 6 2. Thus the bound (13) on N is satisfied if
N

logN & d log d
log log d log(1/δ) for some c2 large enough compared

to c. As log log(1/δ) � log d for either of our assumptions
on δ, this condition is in turn met by the choice in (12).

Also as we ensured e8ρr 6 2,

η >
1

4
(1− ρ)4r >

1

4
e−8ρr >

1

8
. (14)

We are finally ready to claim our result for recovering from
randomly inflicted outliers.

Theorem 1. Let c > 1 an arbitrary integer. There ex-
ists c1 > 0 small enough compared to c and C large
enough, such that when d is a sufficiently large integer and
N > Cd log2 d

log log d log(1/δ), the following holds. In the model
where for each i ∈ [N ] independently, yi fails to satisfy
|yi−p(ai)| 6 δ with probability at most ρ, the Robust Fourier
Curve Fit Algorithm runs in polynomial time and with high
probability recovers a trigonometric polynomial q of degree
at most d satisfying ‖p− q‖∞ 6 O(δ0.99) provided

1) ρ 6 c1
log d and δ > 1/(log d)c, or

2) ρ 6 c1
log log d
log2 d

and δ > 1/dc.

In the model where the ai are chosen uniformly on T, we need
N > Cd log3 d

log log d log(1/δ).

Proof. We pick parameters t, r, b as above, and since the
conditions of Lemmas II.8 and II.9 are met for our choices,
and the noise assumptions of Section II-D hold with high
probability, the algorithm finds a degree d polynomial q such
that ‖p − q‖∞ 6 16η−1δ1−γ . Using the lower bound on η
from (14), and γ = 1/100, we get ‖p − q‖ 6 128δ0.99.2 For
random ai, a coupon collector-type argument yields that N
points gives a O

(
logN
N

)
-cover

The polynomial runtime of the algorithm is evident, as the
main computation is solving two linear programs, one in Step
1 and another for outlier-free interpolation in Step 3. The linear
programs can be solved in time polynomial in N and the
number of bits of precision with which the input (ai, yi) is
given.

III. ROBUST POLYNOMIAL CURVE FITTING OVER [−1, 1]

We curve fit polynomials over [−1, 1] by reducing to curve
fitting over the circle T. We convert between the two domains
with the substitutions xi = cos ai. For this, we need the
Chebyshev polynomials.

2The 0.99 can of course be replaced by any constant bounded away from
1 with a change in choice of γ.



Definition III.1. The Chebyshev polynomials {Td} of the first
kind is defined by cos(dθ) = Td(cos θ).

Robust Polynomial Curve Fit Algorithm:
INPUT: N pairs (xi, yi) ∈ [−1, 1] × [−1, 1] with yi’s

satisfying the assumptions made in Section II-D concerning
the relation to the evaluations p(ai).

DESIRED OUTPUT: An algebraic polynomial f of degree at
most d such that ‖f − p‖ 6 δΩ(1)

1) Convert algebraic data points (xi, yi) to trigonometric
data points (ai, yi) over the domain [0, π] × [−1, 1],
where ai = arccos(xi).

2) For each point (ai, yi) ∈ [0, π] × [−1, 1], add the point
(2π − ai, yi) to get points over the full circle.

3) Run the Robust Fourier Curve Fit Algorithm on these
2N points to get a trigonometric polynomial q of degree
d;

q(θ) =

d∑
j=0

qj cos(jθ) + sj sin(jθ).

4) Output the algebraic polynomial f(x) =
∑d
j=0 qjTj(x),

where the Tj are the Chebyshev polynomials.

The following lemma shows that when the trigonometric
polynomial q fits well, so does the algebraic polynomial f .

Lemma III.2. Suppose |q(ai)−yi| 6 α and |q(2π−ai)−yi| 6
α. Then |f(xi)− yi| 6 α.

Proof. First note that q(θ) + q(2π − θ) = 2
∑d
j=0 qj cos(jθ).

Now

f(xi) =

d∑
j=0

qjTj(cos ai)

=

d∑
j=0

qj cos(jai) =
q(ai) + q(2π − ai)

2
.

Therefore, |f(xi)− yi| 6 (|q(ai)− yi|+ |q(2π− ai)− yi|)/2,
which is at most α for i ∈ S.

Theorem 2. Let c > 1 an arbitrary integer. There exists c1 > 0
small enough compared to c and C large enough, such that
when d is a sufficiently large integer and N is a large enough
function of d and log(1/δ) (see below), the following holds.
In the model where for each i ∈ [N ] independently, yi fails to
satisfy |yi− p(ai)| 6 δ with probability at most ρ, the Robust
Polynomial Curve Fit Algorithm runs in polynomial time and
with high probability recovers a polynomial q of degree at
most d satisfying ‖p− q‖∞ 6 O(δ0.99) provided

1) ρ 6 c1
log d and δ > 1/(log d)c, or

2) ρ 6 c1
log log d
log2 d

and δ > 1/dc.

The bound on N depends on the model:

1) When the xi are evenly spread, or simply form an
O(1/N)-cover, we need N > Cd2 log4 d

(log log d)2 log2(1/δ).

2) When the xi are chosen uniformly on [−1, 1], we need
N > Cd2 log5 d

(log log d)2 log2(1/δ).
3) When the xi are chosen according to the Chebyshev

distribution, we need N > Cd log2 d
log log d log(1/δ).

Proof. Lemma III.2 implies that if the trigonometric poly-
nomial q fits 1 − ρ fraction of points, then the algebraic
polynomial f fits at least 1− 2ρ fraction of points. To verify
that the points form a suitable cover, note that an ε2-cover
in [−1, 1] becomes an O(ε)-cover in T. This is because
| cos(θ+ ε)− cos(θ)| = Ω(ε2), which follows from the Taylor
expansion of cosine.
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APPENDIX

We recall the statement about converting an ε-cover into a
net where consecutive points are well separated.

Lemma II.1. An ε-cover on the circle T may be efficiently
converted to a 2ε-cover such that distances between consec-
utive points lie in the range [ε/2, 2ε]. If the new cover has
N points, then distances between consecutive points lie in the
range [π/(2N), 8π/N ].

Proof. Let S be the initial ε-cover. To construct the desired
cover T , begin by adding an arbitrary point s of S to T . We
work modulo 2π. There exists a point in the interval [s +
ε/2, s + 3ε/2]; add this to T . Continue in this manner: if t
was the last point added to T , then there exists a point t′ in
[t+ ε/2, t+3ε/2]; add t′ to T , as long as we haven’t wrapped
around, i.e., as long as t′ is not in the interval [s−ε/2, s+ε/2].
Stop once a point lands in this interval. Thus each distance
between consecutive points is at least ε/2, and all are at most
3ε/2, except possibly the distance between the last point and
s, which is at most 2ε.

The number of points N satisfies π/ε 6 N 6 4π/ε. Thus
ε/2 > π/(2N) and 2ε 6 8π/N , so the lemma follows.


