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The Dependency Inversion
Principle

 

This is the third of my 

 

Engineering Notebook

 

 columns for 

 

The C++ Report

 

. The articles
that will appear in this column will focus on the use of C++ and OOD, and will address
issues of software engi-
neering. I will strive for
articles that are pragmatic
and directly useful to the
software engineer in the
trenches. In these articles I
will make use of Booch’s
and Rumbaugh’s new 

 

uni-
fied

 

 notation (Version 0.8)
for documenting object ori-
ented designs. The sidebar
provides a brief lexicon of
this notation.

 

Introduction

 

My last article (Mar, 96) talked about the Liskov Substitution Principle (LSP). This princi-
ple, when applied to C++, provides guidance for the use of public inheritance. It states that
every function which operates upon a reference or pointer to a base class, should be able to
operate upon derivatives of that base class without knowing it. This means that the virtual
member functions of derived classes must expect no more than the corresponding member
functions of the base class; and should promise no less. It also means that virtual member
functions that are present in base classes must also be present in the derived classes; and
they must do useful work. When this principle is violated, the functions that operate upon
pointers or references to base classes will need to check the type of the actual object to
make sure that they can operate upon it properly. This need to check the type violates the
Open-Closed Principle (OCP) that we discussed last January.

In this column, we discuss the structural implications of the OCP and the LSP. The
structure that results from rigorous use of these principles can be generalized into a princi-
ple all by itself. I call it “The Dependency Inversion Principle” (DIP). 

Sidebar: Unified Notation 0.8
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What goes wrong with software?

 

What goes wrong with software?

 

Most of us have had the unpleasant experience of trying to deal with a piece of software
that has a “bad design”. Some of us have even had the much more unpleasant experience
of discovering that we were the authors of the software with the “bad design”. What is it
that makes a design bad?

Most software engineers don’t set out to create “bad designs”. Yet most software
eventually degrades to the point where someone will declare the design to be unsound.
Why does this happen? Was the design poor to begin with, or did the design actually
degrade like a piece of rotten meat? At the heart of this issue is our lack of a good working
definition of “bad” design.

 

The Definition of a “Bad Design”

 

Have you ever presented a software design, that you were especially proud of, for review
by a peer? Did that peer say, in a whining derisive sneer, something like: “Why’d you do it

 

that

 

 way?”. Certainly this has happened to me, and I have seen it happen to many other
engineers too. Clearly the disagreeing engineers are not using the same criteria for defin-
ing what “bad design” is. The most common criterion that I have seen used is the TNTWI-
WHDI or “That’s not the way I would have done it” criterion.

But there is one set of criteria that I think all engineers will agree with. A piece of
software that fulfills its requirements and yet exhibits any or all of the following three
traits has a bad design. 

1. It is hard to change because every change affects too many other parts of the sys-
tem. (Rigidity)

2. When you make a change, unexpected parts of the system break. (Fragility)

3. It is hard to reuse in another application because it cannot be disentangled from 
the current application. (Immobility)

Moreover, it would be difficult to demonstrate that a piece of software that exhibits
none of those traits, i.e. it is flexible, robust, and reusable, and that also fulfills all its
requirements, has a bad design. Thus, we can use these three traits as a way to unambigu-
ously decide if a design is “good” or “bad”.

 

The Cause of “Bad Design”.

 

What is it that makes a design rigid, fragile and immobile? It is the interdependence of the
modules within that design. A design is rigid if it cannot be easily changed. Such rigidity
is due to the fact that a single change to heavily interdependent software begins a cascade
of changes in dependent modules. When the extent of that cascade of change cannot be
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predicted by the designers or maintainers, the impact of the change cannot be estimated.
This makes the cost of the change impossible to predict. Managers, faced with such unpre-
dictability, become reluctant to authorize changes. Thus the design becomes officially
rigid.

Fragility is the tendency of a program to break in many places when a single change is
made.    Often the new problems are in areas that have no conceptual relationship with the
area that was changed. Such fragility greatly decreases the credibility of the design and
maintenance organization. Users and managers are unable to predict the quality of their
product. Simple changes to one part of the application lead to failures in other parts that
appear to be completely unrelated. Fixing those problems leads to even more problems,
and the maintenance process begins to resemble a dog chasing its tail. 

A design is immobile when the desirable parts of the design are highly dependent
upon other details that are not desired. Designers tasked with investigating the design to
see if it can be reused in a different application may be impressed with how well the
design would do in the new application. However if the design is highly interdependent,
then those designers will also be daunted by the amount of work necessary to separate the
desirable portion of the design from the other portions of the design that are undesirable.
In most cases, such designs are not reused because the cost of the separation is deemed to
be higher than the cost of redevelopment of the design.

 

Example: the “Copy” program.

 

A simple example may help
to make this point. Consider a
simple program that is charged
with the task of copying charac-
ters typed on a keyboard to a
printer. Assume, furthermore,
that the implementation plat-
form does not have an operating
system that supports device inde-
pendence. We might conceive of
a structure for this program that
looks like Figure 1:

Figure 1 is a “structure chart”

 

1

 

. It shows that there are three modules, or subprograms,
in the application. The “Copy” module calls the other two. One can easily imagine a loop
within the “Copy” module. (See Listing 1.) The body of that loop calls the “Read Key-
board” module to fetch a character from the keyboard, it then sends that character to the
“Write Printer” module which prints the character.

 

1. See: 

 

The Practical Guide To Structured Systems Design

 

, by Meilir Page-Jones, Yourdon Press, 
1988

Figure 1. Copy Program.

Copy

Read
Keyboard
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Dependency Inversion

 

The two low level mod-
ules are nicely reusable. They
can be used in many other
programs to gain access to the
keyboard and the printer. This
is the same kind of reusability
that we gain from subroutine
libraries. 

However the “Copy” module is not reusable in any context which does not involve a
keyboard or a printer. This is a shame since the intelligence of the system is maintained in
this module. It is the “Copy” module that encapsulates a very interesting policy that we
would like to reuse.

For example, consider a new program that copies keyboard characters to a disk file.
Certainly we would like to reuse the “Copy” module since it encapsulates the high level
policy that we need. i.e. it knows how to copy characters from a source to a sink. Unfortu-
nately, the “Copy” module is dependent upon the “Write Printer” module, and so cannot
be reused in the new context.

We could certainly
modify the “Copy”

 

 

 

module
to give it the new desired
functionality. (See Listing
2). We could add an ‘if’
statement to its policy and
have it select between the
“Write Printer” module
and the “Write Disk” mod-
ule depending upon some
kind of flag. However this
adds new interdependencies to the system. As time goes on, and more and more devices
must participate in the copy program, the “Copy” module will be littered with if/else state-
ments and will be dependent upon many lower level modules. It will eventually become
rigid and fragile.

 

Dependency Inversion

 

One way to characterize the problem above is to notice that the module containing the
high level policy, i.e. the Copy() module, is dependent upon the low level detailed modules
that it controls. (i.e. WritePrinter() and ReadKeyboard()). If we could find a way to make
the Copy() module independent of the details that it controls, then we could reuse it freely.
We could produce other programs which used this module to copy characters from any

void Copy()
{
int c;
while ((c = ReadKeyboard()) != EOF)
WritePrinter(c);

}

Listing 1. The Copy Program

enum OutputDevice {printer, disk};
void Copy(outputDevice dev)
{
int c;
while ((c = ReadKeyboard()) != EOF)
if (dev == printer)
WritePrinter(c);

else
WriteDisk(c);

}

Listing 2. The “Enhanced” Copy Program
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input device to any output device. OOD
gives us a mechanism for performing
this 

 

dependency inversion

 

.

Consider the simple class diagram
in Figure 2. Here we have a “Copy”
class which contains an abstract
“Reader” class and an abstract “Writer”
class. One can easily imagine a loop
within the “Copy” class that gets char-
acters from its “Reader” and sends
them to its “Writer” (See Listing 3). Yet
this “Copy” class does not depend upon
the “Keyboard Reader” nor the “Printer
Writer” at all. Thus the dependencies
have been 

 

inverted

 

; the “Copy” class
depends upon abstractions, and the
detailed readers and writers depend
upon the same abstractions.

Now we can reuse the “Copy”
class, independently of the “Key-
board Reader” and the “Printer
Writer”. We can invent new kinds of
“Reader” and “Writer” derivatives
that we can supply to the “Copy”
class.    Moreover, no matter how
many kinds of “Readers” and “Writ-
ers” are created, “Copy” will depend
upon none of them. There will be no
interdependencies to make the pro-
gram fragile or rigid. And Copy()
itself can be used in many different
detailed contexts. It is mobile.

 

Device Independence

 

By now, some of you are probably saying to yourselves that you could get the same bene-
fits by writing Copy() in C, using the device independence inherent to 

 

stdio.h

 

; i.e.

 

getchar

 

 and 

 

putchar

 

 (See Listing 4). If you consider Listings 3 and 4 carefully, you
will realize that the two are logically equivalent. The abstract classes in Figure 3 have been
replaced by a different kind of abstraction in Listing 4. It is true that Listing 4 does not use
classes and pure virtual functions, yet it still uses abstraction and polymorphism to achieve
its ends. Moreover, it still uses dependency inversion! The Copy program in Listing 4 does
not depend upon any of the details it controls. Rather it depends upon the abstract facilities

Figure 2: The OO Copy Program

AbstractAbstract

Copy

Reader Writer

Printer
Writer

Keyboard
Reader

class Reader
{
public:
virtual int Read() = 0;

};

class Writer
{
public:
virtual void Write(char) = 0;

};

void Copy(Reader& r, Writer& w)
{
int c;
while((c=r.Read()) != EOF)
w.Write(c);

}

Listing 3: The OO Copy Program
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declared in 

 

stdio.h

 

. Moreover, the
IO drivers that are eventually invoked
also depend upon the abstractions
declared in stdio.h. Thus the device
independence within the 

 

stdio.h

 

library is another example of depen-
dency inversion.

Now that we have seen a few
examples, we can state the general form of the DIP.

 

The Dependency Inversion Principle
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.

 

One might question why I use the word “inversion”. Frankly, it is because more traditional
software development methods, such as Structured Analysis and Design, tend to create
software structures in which high level modules depend upon low level modules, and in
which abstractions depend upon details. Indeed one of the goals of these methods is to
define the subprogram hierarchy that describes how the high level modules make calls to
the low level modules. Figure 1 is a good example of such a hierarchy. Thus, the depen-
dency structure of a well designed object oriented program is “inverted” with respect to
the dependency structure that normally results from traditional procedural methods.

Consider the implications of high level modules that depend upon low level modules.
It is the high level modules that contain the important policy decisions and business mod-
els of an application. It is these models that contain the identity of the application. Yet,
when these modules depend upon the lower level modules, then changes to the lower level
modules can have direct effects upon them; and can force them to change.

This predicament is absurd! It is the high level modules that ought to be forcing the
low level modules to change. It is the high level modules that should take precedence over
the lower level modules. High level modules simply should not depend upon low level
modules in any way.

Moreover, it is high level modules that we want to be able to reuse. We are already
quite good at reusing low level modules in the form of subroutine libraries. When high
level modules depend upon low level modules, it becomes very difficult to reuse those
high level modules in different contexts. However, when the high level modules are inde-
pendent of the low level modules, then the high level modules can be reused quite simply.

#include <stdio.h>
void Copy()
{
int c;
while((c = getchar()) != EOF)
putchar(c);

}

Listing 4: Copy using stdio.h
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This is the principle that is at the
very heart of framework design.

 

Layering

 

According to Booch

 

2

 

, “...all well
structured object-oriented architec-
tures have clearly-defined layers,
with each layer providing some
coherent set of services though a
well-defined and controlled inter-
face.” A naive interpretation of this statement might lead a designer to produce a structure
similar to Figure 3. In this diagram the high level policy class uses a lower level Mecha-
nism; which in turn uses a detailed level utility class. While this may look appropriate, it
has the insidious characteristic that the Policy Layer is sensitive to changes all the way
down in the Utility Layer. 

 

Dependency is transitive

 

. The Policy Layer depends upon
something that depends
upon the Utility Layer, thus
the Policy Layer transi-
tively depends upon the
Utility Layer. This is very
unfortunate.

Figure 4 shows a more
appropriate model. Each of
the lower level layers are
represented by an abstract
class. The actual layers are
then derived from these
abstract classes. Each of
the higher level classes
uses the next lowest layer
through the abstract inter-
face. Thus, none of the lay-
ers depends upon any of
the other layers. Instead,
the layers depend upon abstract classes. Not only is the transitive dependency of Policy
Layer upon Utility Layer broken, but even the direct dependency of Policy Layer upon
Mechanism Layer is broken. 

 

2.

 

Object Solutions

 

, Grady Booch, Addison Wesley, 1996, p54

Figure 3: Simple Layers

Policy Layer

Mechanism
Layer

Utility Layer

Figure 4: Abstract Layers

Policy Layer Mechanism
Interface

Mechanism
Layer Utility Interface

Utility Layer

Abstract

Abstract



 

8

 

A Simple Example

 

Using this model, Policy Layer is unaffected by any changes to Mechanism Layer or
Utility Layer. Moreover, Policy Layer can be reused in any context that defines lower level
modules that conform to the Mechanism Layer interface. Thus, by inverting the dependen-
cies, we have created a structure which is simultaneously more flexible, durable, and
mobile.

 

Separating Interface from Implementation in C++

 

One might complain that the structure in Figure 3 does not exhibit the dependency, and
transitive dependency problems that I claimed. After all, Policy Layer depends only upon
the 

 

interface

 

 of Mechanism Layer. Why would a change to the implementation of Mecha-
nism Layer have any affect at all upon Policy Layer?

In some object oriented language, this would be true. In such languages, interface is
separated from implementation automatically. In C++ however, there is no separation
between interface and implementation. Rather, in C++, the separation is between the defi-
nition of the class and the definition of its member functions.

In C++ we generally separate a class into two modules: a 

 

.h

 

 module and a 

 

.cc

 

 mod-
ule. The 

 

.h

 

 module contains the definition of the class, and the 

 

.cc

 

 module contains the
definition of that class’s member functions. The definition of a class, in the 

 

.h

 

 module,
contains declarations of all the member functions and member variables of the class. This
information goes beyond simple interface. All the utility functions and private variables
needed by the class are also declared in the 

 

.h

 

 module. These utilities and private vari-
ables are part of the implementation of the class, yet they appear in the module that all
users of the class must depend upon. Thus, in C++, implementation is not automatically
separated from interface.

This lack of separation between interface and implementation in C++ can be dealt
with by using purely abstract classes. A purely abstract class is a class that contains noth-
ing but pure virtual functions. Such a class is pure interface; and its 

 

.h

 

 module contains
no implementation. Figure 4 shows such a structure. The abstract classes in Figure 4 are
meant to be purely abstract so that each of the layers depends only upon the 

 

interface

 

 of
the subsequent layer.

 

A Simple Example

 

Dependency Inversion can be applied wherever one class sends a message to another. For
example, consider the case of the Button object and the Lamp object. 

The Button object senses the external environment. It can determine whether or not a
user has “pressed” it. It doesn’t matter what the sensing mechanism is. It could be a button
icon on a GUI, a physical button being pressed by a human finger, or even a motion detec-



 

9

 

: The Dependency Inversion Principle

 

tor in a home security system. The Button object detects that a user has either activated or
deactivated it. The lamp object affects the external environment. Upon receiving a TurnOn
message, it illuminates a light of some kind. Upon receiving a TurnOff message it extin-
guishes that light. The physical mechanism is unimportant. It could be an LED on a com-
puter console, a mercury vapor
lamp in a parking lot, or even
the laser in a laser printer. 

How can we design a sys-
tem such that the Button object
controls the Lamp object? Fig-
ure 5 shows a naive model. The
Button object simply sends the
TurnOn and TurnOff message
to the Lamp. To facilitate this,
the Button class uses a “con-
tains” relationship to hold an
instance of the Lamp class. 

Listing 5 shows the C++
code that results from this
model. Note that the Button
class depends directly upon the
Lamp class. In fact, the 

 

but-
ton.cc

 

 module 

 

#include

 

s
the 

 

lamp.h

 

 module. This
dependency implies that the
button class must change, or at
very least be recompiled,
whenever the Lamp class
changes. Moreover, it will not
be possible to reuse the Button
class to control a Motor object.

Figure 5, and Listing 5
violate the dependency inver-
sion principle. The high level
policy of the application has
not been separated from the
low level modules; the abstrac-
tions have not been separated
from the details. Without such
a separation, the high level pol-
icy automatically depends
upon the low level modules, and the abstractions automatically depend upon the details. 

Figure 5: Naive Button/Lamp Model

Button Lamp

TurnOn

TurnOff

Button Lamp

--------------lamp.h----------------
class Lamp
{
public:
void TurnOn();
void TurnOff();

};
-------------button.h---------------
class Lamp;
class Button
{
public:
Button(Lamp& l) : itsLamp(&l) {}
void Detect();

private:
Lamp* itsLamp;

};
-------------button.cc--------------
#include “button.h”
#include “lamp.h”

void Button::Detect()
{
bool buttonOn = GetPhysicalState();
if (buttonOn)
itsLamp->TurnOn();

else
itsLamp->TurnOff();

}

Listing 5: Naive Button/Lamp Code
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Finding the Underlying Abstraction

 

What is the high level policy? It is the abstractions that underlie the application, the
truths that do not vary when the details are changed. In the Button/Lamp example, the
underlying abstraction is to detect an on/off gesture from a user and relay that gesture to a
target object. What mechanism is used to detect the user gesture? Irrelevant! What is the
target object? Irrelevant! These are details that do not impact the abstraction. 

To conform to the principle of
dependency inversion, we must
isolate this abstraction from the
details of the problem. Then we
must direct the dependencies of
the design such that the details
depend upon the abstractions. Fig-
ure 6 shows such a design.

In Figure 6, we have isolated
the abstraction of the Button class,
from its detailed implementation.
Listing 6 shows the corresponding
code. Note that the high level pol-
icy is entirely captured within the

Figure 6: Inverted Button Model

Button ButtonClient

Button
Implementation Lamp

Abstract Abstract

----------byttonClient.h---------
class ButtonClient
{
public:
virtual void TurnOn() = 0;
virtual void TurnOff() = 0;

};
-----------button.h---------------
class ButtonClient;
class Button
{
public:
Button(ButtonClient&);
void Detect();
virtual bool GetState() = 0;

private:
ButtonClient* itsClient;

};
---------button.cc----------------
#include button.h
#include buttonClient.h

Button::Button(ButtonClient& bc)
: itsClient(&bc) {}

void Button::Detect()
{
bool buttonOn = GetState();
if (buttonOn)
itsClient->TurnOn();

else
itsClient->TurnOff();

}
-----------lamp.h----------------
class Lamp : public ButtonClient
{
public:
virtual void TurnOn();
virtual void TurnOff();

};
---------buttonImp.h-------------
class ButtonImplementation
: public Button
{
public:
ButtonImplementaton(
ButtonClient&);

virtual bool GetState();
};

Listing 6: Inverted Button Model
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abstract button class

 

3

 

. The Button class knows nothing of the physical mechanism for
detecting the user’s gestures; and it knows nothing at all about the lamp. Those details are
isolated within the concrete derivatives: ButtonImplementation and Lamp. 

The high level policy in Listing 6 is reusable with any kind of button, and with any
kind of device that needs to be controlled. Moreover, it is not affected by changes to the
low level mechanisms. Thus it is robust in the presence of change, flexible, and reusable.

 

Extending the Abstraction Further

 

Once could make a legitimate complaint about the design in Figure/Listing 6. The device
controlled by the button must be derived from ButtonClient. What if the Lamp class comes
from a third party library, and we cannot modify the source code.

Figure 7 demonstrates how the Adapter pattern can be used to connect a third party
Lamp object to the model. The LampAdapter class simply translates the TurnOn and Turn-
Off message inherited from ButtonClient, into whatever messages the Lamp class needs to
see.

 

Conclusion

 

The principle of dependency inversion is at the root of many of the benefits claimed for
object-oriented technology. Its proper application is necessary for the creation of reusable
frameworks. It is also critically important for the construction of code that is resilient to

 

3. Aficionados of Patterns will recognize the use of the Template Method pattern in the Button Hier-
archy. The member function: Button::Detect() is the template that makes use of the pure virtual 
function: Button::GetState(). See: 

 

Design Patterns, Gamma, et. al., Addison Wesley, 1995

Figure 7: Lamp Adapter

Button ButtonClient

Button
Implementation

Lamp
Adapter Lamp
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change. And, since the abstractions and details are all isolated from each other, the code is
much easier to maintain.

This article is an extremely condensed version of a chapter from my new book: Pat-
terns and Advanced Principles of OOD, to be published soon by Prentice Hall. In subse-
quent articles we will explore many of the other principles of object oriented design. We
will also study various design patterns, and their strengths and weaknesses with regard to
implementation in C++. We will study the role of Booch’s class categories in C++, and
their applicability as C++ namespaces. We will define what “cohesion” and “coupling”
mean in an object oriented design, and we will develop metrics for measuring the quality
of an object oriented design. And after that, we will discuss many other interesting topics.


