

CS386D Problem Set #3

1. Justify the statement: “as long as the amount of memory available is between the square root of the data

file size and the size of the entire data file, the file can always be sorted into two passes”.

2. Given the following SQL select statement:

select *

from R

where A.exceeds(20) and B.includes(40) and C.overlaps(40,20)

(a) Suppose the exceeds predicate has an execution cost of 5/tuple and a selectivity of .3, the includes

predicate has an execution cost of 20/tuple with a selectivity of .1; and the overlaps predicate has

an execution cost of 7/tuple and with a selectivity of .2. What order of evaluation minimizes query

evaluation costs if R is to be scanned?

(b) Now suppose the costs for all of these predicates are 0. What order of predicate evaluation would

minimize query evaluation costs? (Hint: order actually does make a difference).

4. What is the ‘plumbing diagram’ that would process the following MDX query efficiently? The cube is

the SalesCube covered in the course notes.

SELECT

{USA_North.*, USA_South, Japan} on COLUMNS

{Time.Q1.*,Time.Q2,Time.Q3,Time.Q4.*} on ROWS

FROM SalesCube

WHERE (Sales.Jones, Sales.Rao, Time.2011, Measures.sales)

(yes, I know #3 is missing, but I can’t figure out how to make ‘4’ to be ‘3’ in MS Word. I hate Word).

Solutions

1. Justify the statement: “as long as the amount of memory available is between the square root of the data

file size and the size of the entire data file, the file can always be sorted into two passes”.

Answer: Assume a file has 𝑛2 blocks. On the first pass, read in 𝑛 blocks at a time, sort them in

memory, and output 𝑛 blocks (whose tuples are now ordered). This sequence of 𝑛 blocks is called

a run. In the first pass, 𝑛 runs are produced. In the second pass, you merge 𝑛 sorted runs. Thus, if

you have internal memory of 𝑛 blocks, you can sort a file of 𝑛2 blocks in 2 passes. If you have less

than 𝑛 blocks in memory, you can't sort the file in 2 passes.

2. Given the following SQL select statement:

select *

from R

where A.exceeds(20) and B.includes(40) and C.overlaps(40,20)

4. Suppose the exceeds predicate has an execution cost of 5/tuple and a selectivity of .3, the includes

predicate has an execution cost of 20/tuple with a selectivity of .1; and the overlaps predicate has

an execution cost of 7/tuple and with a selectivity of .2. What order of evaluation minimizes query

evaluation costs if R is to be scanned?

5. Now suppose the costs for all of these predicates are 0. What order of predicate evaluation would

minimize query evaluation costs? (Hint: order actually does make a difference).

Answer: (a) This was a no-brainer problem. The rank of exceeds is 5/.7 = 7.14, the rank of includes is

20/.9=22.2, and the rank of overlaps is 7/.8=8.75. Process exceeds, then includes, then overlaps in that

order.

(b) Here’s an odd corner case: when the cost is “0” (really, something very small), the ordering is based

on selectivities: the most selective predicate goes first. The ordering for this problem would be includes

first, then overlaps, then finally exceeds.

3. What is the ‘plumbing diagram’ that would process the following MDX query efficiently?

SELECT

{USA_North.*, USA_South, Japan} on COLUMNS

{Time.Q1.*,Time.Q2,Time.Q3,Time.Q4.*} on ROWS

FROM SalesCube

WHERE (Sales.Jones, Sales.Rao, Time.2011)

Answer: first, look at the SQL query that would merge all of these retrieval requests together:

Select *

from SalesCube NJ Time NJ Store

where RepName in (Jones, Rao) and Year=2011 and

(Quarter=Q1 or Quarter=Q3 or Quarter=Q3 or Quarter=Q4) and

(Region=USA_North or Region=USA_South or Country=Japan)

The plumbing diagram of this query is, where Store could be joined with SalesCube first. (It doesn’t

matter for this problem):

The output of this query is then partitioned into 4x7=28 streams, one stream per element of the matrix.

Each stream is aggregated into a single number, which is an element of the matrix. 28 streams, 28

elements computed.

Cubesplit(State=Vermont, State=Maine, Region=USA_South, Country=Japan)

followed by

Cubesplit(Month=Jan, Month=Feb, Month=Mar, Quarter=Q2, Month=Oct, Month=Nov, Month=Dec)

The plumbing diagram looks like:

