CS386D Problem Set #1

[1] Consider the following query:

```sql
select * from A a, B b, C c, D d
```

(a) List all of the logical access plans are examined by the System R optimizer. Hint: do not show the stream ordering and join predicate parameters in your expressions. Follow the analysis in the class notes (choose a sink and find all 1-relation queries, then prune, 2-relation queries, then prune, etc.)

(b) What logical access plans are not examined by the System R optimizer? Why are they not considered?

[2] Consider a linear query graph. What is the size of the search space that System R examines? (or how many plans does System R generate)? Pick one question — they have different answers.

[3] Consider the following attributes, their cardinalities, and index storage structures:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Cardinality</th>
<th>Storage Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>B+ trees</td>
</tr>
<tr>
<td>B</td>
<td>2000</td>
<td>B+ trees</td>
</tr>
<tr>
<td>C</td>
<td>2000</td>
<td>hash</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>Not Indexed</td>
</tr>
</tbody>
</table>

Now consider the following local predicates. For each predicate, what index would you use (if any) to most efficiently retrieve the tuples that satisfy this predicate:

(a) B=3 or B=4
(b) B=66 and C=12
(c) B>3 and C>77
(d) B=22 and A = 15
(e) D=44 and B>34

[4] Suppose join predicates are of the form “A or B or C or ...” where A, B, C, ... are typical conjunctive join predicates. How would you generalize the System R algorithm to process such queries?
solution

[1a]

1 relation queries are a, b, c, d
2 relation queries are a-b, a-d, b-a, b-c, c-b, c-d, d-a, d-c
pruning: \(ab = \min(a-b, b-a), bc = \min(b-c, c-b), cd = \min(c-d, d-c) \), \(ad = \min(a-d, d-a) \)

3 relation queries are: ab-c, ab-d, bc-a, bc-d, cd-a, cd-b, ad-b, ad-c
pruning: \(abc = \min(ab-c, bc-a), abd = \min(ab -d, ad-b), bcd = \min(bc-d, cd-b), acd = \min(cd-a, ad-c) \)

4 relation queries are: abc-d, adb-c, bcd-a, acd-b
pruning abcd = \(\min(abc-d, adb-c, bcd-a, acd-b) \)

[1b] system r produces left-deep operator trees (meaning that the right operation is a retrieval, never a join). So a plan never considered is \(((a,b),(c,d))\) i.e., \(\text{join(join(a,b), join(c,d)))} \)

[2] A linear query of n relations is a query graph that is a line:

```
1 2 3    n-1 n
```

How many distinct logical access plans (or equivalently, join orderings) could be produced by the System R algorithm for a linear query of n relations? You are to ignore stream orderings and simply consider the number of distinct orders in which relations can be joined. Define a (closed-form) formula for \(S(n) \). You may find the following identity helpful:

\[
2^k = \sum_{i=0}^{k} \binom{k}{i}
\]

Let node \(i \) be the sink node. There are \(i-1 \) nodes to the “left” of \(i \) and \(n-i \) nodes to the right. There are \(\binom{n-1}{i-1} \) ways of forming a logical access plan, given node \(i \) as a sink. Reason: fixing \(i \), nodes can be dragged down the sink in any order of listing from right to left. Summing over all positions for \(i \), we have the total number of logical plans that can be created:

\[
S(n) = \sum_{i=1}^{n} \binom{n-1}{i-1}
\]

It follows that \(S(n) = 2^{n-1} \).

Another way to interpret this question is how many plans are actually generated (i.e., taking into account pruning). The number of plans for 1 relation is \(n \). The number of plans for 2 relations (before pruning) is approx \(n-1+n-1= 2^{*(n-1)} \). Note: for a line of \(n \) nodes, only \(n-1 \) nodes can be joined with a
node to the right, and only n-1 nodes can be joined to the left. The number of plans for 3 relations is \(n-2+n-2=2(n-2)\). For i relations, there are \(2(n-i+1)\) plans. Summing, the complexity is \(O(n^2)\).

[3] Consider the following attributes, their cardinalities, and index storage structures:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Cardinality</th>
<th>Storage Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>B+ trees</td>
</tr>
<tr>
<td>B</td>
<td>2000</td>
<td>B+ trees</td>
</tr>
<tr>
<td>C</td>
<td>2000</td>
<td>hash</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>Not Indexed</td>
</tr>
</tbody>
</table>

Now consider the following local predicates. For each predicate, what index would you use (if any) to most efficiently retrieve the tuples that satisfy this predicate:

(a) B=3 or B=4 -- either scan or use B index twice
(b) B= 66 and C=12 -- C would be fastest (if you use 1 index). You could use multiple indices and take the intersection of their pointers.
(c) B>3 and C>77 -- scan
(d) B=22 and A = 15 -- use B index (could intersect lists, but this is not clear that even creating an index for A is that useful).
(e) D=44 and B>34 -- scan

[4] There are a variety of answers that you could postulate. The “framework” of System-R is extraordinarily robust. Just as a join predicate (A.x = B.y and A.z=B.w) could be supplied as an argument to a join operation (e.g., JOIN(A,B, A.x=B.y and A.z=B.w)), there’s no reason why (A.x=B.y or A.z=B.w) could be provided as an argument to a join operation (e.g., JOIN(A,B, A.x=B.y or A.z=B.w)). The trick here is what algorithm could you use to process this join predicate. Nested loops would work just fine. As a possible future problem, is there a reasonable generalization of merge-join and/or hash-join to deal with such join predicates?

You could have other, more drastic solutions: you could allow cross-product edges with join predicate labels. They would be considered first, before pure or unrestricted cross products.

There is even a rather simple generalization of System-R algorithm to allow an additional operation that takes a stream S and predicate P (join predicate, relation predicate, mix of the two) and produces a stream where only records of S that satisfy P are output.

There is no end to the creativity of how this could be accomplished. If you don’t see such possibilities, as I list above, please (by all means) ask in class. If you do understand my points, you have a very good understanding of this material.