
Problem Set #2

1. Suppose an important customer says “It is essential that your DBMS processes join predicates of

the form (A.x = B.x or A.y=B.y) quickly”. Normally, you would say: tough beans. But the survival

of your DBMS company is dependent on this customer using your product. Your DBMS supports

only nested loops and hash join algorithms, and uses the System-R algorithm for generating

physical access plans. You can’t make major changes to your DBMS query optimization

subsystem. Your manager has an insight – generalize the hash join algorithm. But how?

2. Another important customer says “it is essential that your DBMS processes join predicates of the

form (A.x>B.x) quickly”. As before, you’d rather say: tough beans. But your manager asked you

again to perform another miracle. Using the same constraints as before, how would you save

your company? Hint: think alternative main-memory data structures.

3. Consider the following nested SQL query, which says retrieve x values from each A tuple where

q=40 and there are no tuples in C that could join with attribute w of that tuple in A:

select A.x

from A

where A.q=40 and not exists (

 select *

 from C

 where C.w = A.w)

a. Use a Kim or magic set rewrite of this query as a sequence of 2 non-nested queries. Hint:

SQL minus and select-into operations.

b. Rewrite this query as a single unnested query. Hint: outerjoins.

4. What does this query mean? (This query could be executed on the database of Project 1).

select pname

from parts

where not exists (

 select cname

 from customers natural join zipcodes

 where city = ‘Austin’ and not exists (

 select ono

 from orders natural join odetails

 where cno = customers.cno

 and parts.pno = pno))

