Problem Set #2

Suppose an important customer says “It is essential that your DBMS processes join predicates of
the form (A.x = B.x or A.y=B.y) quickly”. Normally, you would say: tough beans. But the survival
of your DBMS company is dependent on this customer using your product. Your DBMS supports
only nested loops and hash join algorithms, and uses the System-R algorithm for generating
physical access plans. You can’t make major changes to your DBMS query optimization
subsystem. Your manager has an insight — generalize the hash join algorithm. But how?

Another important customer says “it is essential that your DBMS processes join predicates of the
form (A.x>B.x) quickly”. As before, you’d rather say: tough beans. But your manager asked you
again to perform another miracle. Using the same constraints as before, how would you save
your company? Hint: think alternative main-memory data structures.

Consider the following nested SQL query, which says retrieve x values from each A tuple where
g=40 and there are no tuples in C that could join with attribute w of that tuple in A:

select A.x

from A

where A.q=40 and not exists (
select *
from C
where C.w =A.w)

a. Use a Kim or magic set rewrite of this query as a sequence of 2 non-nested queries. Hint:
SQL minus and select-into operations.
b. Rewrite this query as a single unnested query. Hint: outerjoins.

What does this query mean? (This query could be executed on the database of Project 1).

select pname
from parts
where not exists (
select cname
from customers natural join zipcodes
where city = ‘Austin’ and not exists (
select ono
from orders natural join odetails
where cno = customers.cno
and parts.pno=pno) )



