
Syed Akbar Mehdi
Lara Schmidt

CAP Theorem and
Distributed Database 
Consistency

1



Classical Database Model

Database

T1
T2

T3

2



Databases these days

3



Problems due to replicating data

● Having multiple copies of the data can create some problems

● A major problem is consistency i.e. how to keep the various copies 
of data in sync. Some problems include: 
○ Concurrent writes (possibly conflicting)
○ Stale Data
○ Violation of Database Constraints 

4



Consistency Models
● Consistency Model = Guarantee by the datastore that certain 

invariants will hold for reads and/or writes.
 
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

5



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● No guarantees on order of writes applied to different replicas
● No guarantees on what intermediate states a reader may observe.
● Just guarantees that “eventually” replicas will converge.

6



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Session means a context that persists across operations (e.g. 
between “log in” and “log out”)

● Example of a session guarantee = Read-My-Writes

7



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Operations to the datastore applied in causal order.
○ e.g. Alice comments on Bob’s post and then Bob replies to her 

comment.
○ On all replicas, Alice’s comment written before Bob’s comment.

● No guarantees for concurrent writes.

8



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Global total order operations to the datastore.
● Read of an object returns the latest write.

○ Even if the write was on a different replica.

9



Introducing the CAP Theorem

Any networked shared-data system can have at most two of three of 
the above properties

Consistency - equivalent to having a single up-to-date copy of the data 
(i.e. serializability)

Availability - any reachable replica is available for reads and writes 

Partition Tolerance - tolerance to arbitrary network partitions

10



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

11



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Allowing writes on either replica = Loss of Consistency 

12



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Allowing one replica to be unavailable = Loss of availability 

13



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Assuming that partitions never occur = Loss of partition tolerance

14



Revisiting CAP Theorem*

● Last 14 years, the CAP theorem has been used (and abused) to 
explore variety of novel distributed systems.

● General belief = For wide-area systems, cannot forfeit P

● NoSQL Movement: “Choose A over C”.
○ Ex. Cassandra - Eventually Consistent Datastore

● Distributed ACID Databases: “Choose C over A”
○ Ex. Google Spanner - provides linearizable

* from the paper “CAP 12 years later: How the rules have changed by Eric Brewer”

 
15



Revisiting CAP Theorem
● CAP only prohibits a tiny part of the design space 

○ i.e. perfect availability and consistency with partition tolerance.
● “2 of 3” is misleading because:

○ Partitions are rare. Little reason to forfeit C or A when no partitions.
○ Choice between C and A can occur many times within the same 

system at various granularities.
○ All three properties are more continuous than binary.

Eric Brewer: Modern CAP goal should be to "maximize 
combinations of consistency and availability" that "make sense 
for the specific application"

16



Revisiting the CAP Theorem
● Recent research adopts the main idea

○ i.e. don’t make binary choices between consistency and 
availability

● Lets look at two examples 

17



ETH Zurich, VLDB 2009
Tim Kraska
Martin Hentschel
Gustavo Alonso
Donald Kossmann

Consistency Rationing in the Cloud: 
Pay Only When It Matters

18



Pay Only When It Matters: Problem

Consider the information stored by a simple online market like Amazon: 
● Inventory 

○ Serializability: don’t oversell
● Buyer Preferences

○ Weaker Consistency: who cares if the user gets slightly more 
correct advertising 5 minutes later than they could.

● Account Information
○ Serializability: don’t want to send something to the wrong place. 

Won’t be updated often. 

19



Pay Only When It Matters: Problem

Consider an online auction site like Ebay:
● Last Minute

○ Serializability: Database should be accurate. Want to show 
highest bids so people bid higher.

● Days Before 
○ Weaker Consistency: Will be okay if data is a few minutes 

delayed. No high contention.

20



Pay Only When It Matters: Problem

Another example is a collaborative document editing application:
● Parts of the paper which are usually done by 1 person 

○ Weaker Consistency: Since less editors there will be less 
conflicts and serializability isn’t as important. 

○ Really just need to read your writes.
● Parts of the paper which are highly edited

○ Serializability: Would want parts of the document like the 
references to be updated often as it may be updated by many 
people.

21



Pay Only When It Matters : Problem

● How can we balance cost, consistency, and availability?
● Assume partitions.
● Don’t want your consistency to be stronger than you need

○ causes unnecessary costs if not needed.
● Don’t want your consistency to be weaker than you need

○ causes operation costs. For example, showing you are out of 
stock when you are not means lost sales.

22



Pay Only When It Matters: Solution

Avoid costs by using both!
● Serializability costs more
● Avoid costs by only using it when you really need it.
● Provide policies to users to change consistency.
● Provide 3 kinds of consistency: A, B, C

23



Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Serializable
● All transactions are isolated
● Most costly
● Uses 2PL
● Used for high importance and high conflict operations.
● Ex. address information and stock count for webstore.

24



Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Session Consistency
● Can see own updates
● Read-my-writes
● Used for low conflict operations that can tolerate a few 

inconsistencies
● For example: User preferences on web store

25



Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Switches between A and C consistency
● Adaptive, dynamically switches at run-time
● Users can pick how it should change with provided policies
● For example, the auction example uses B Consistency.

26



Pay Only When It Matters: B Consistency
● How to switch between A and C in a way that makes sense?

○ Provide policies for switching
○ Try to minimize costs but keep needed consistency
○ 3 basic policies

■ General Policy
■ Time Policy
■ Numerical Policy

27



Pay Only When It Matters: B Consistency
● General Policy

○ Try to statistically figure out frequency of access
○ Use this to determine probability of conflict
○ Then determine the best consistency

● Time Policy
○ Pick a timestamp afterwhich the consistency changes.

● Numerical Policy
○ For increment and decrement
○ Knows how to deal with conflicts
○ Three kinds

28



Pay Only When It Matters: Numerical Policy
Numerical Policies : For increment and decrement
● Fixed Threshold Policy

○  If data goes below some point switch consistency.
○ Ex: Only 10 items left in stock, change to serializability. 

● Demarcation Policy
○ Assign part of data to each server. 
○ For example if 10 in stock, 5 servers, a  server can sell 2.
○ Use serializability if want to use more than their share. 

● Dynamic Policy
○ Similar to fixed threshold but the threshold changes
○ Threshold depends on the probability that it will drop to zero.

29



Pay Only When It Matters: CAP
● How can we provide serializability while allowing partitions to follow 

the CAP theorem? We can’t. 
● If your application needs A Consistency, it won’t be available if 

there is a partition.
● But it will be available for the cases where your application needs C 

Consistency.
● Note that B Consistency can fall into either case depending on 

which consistency at the time.

30



Pay Only When It Matters: Implementation
● This specific solution uses s3 which is Amazon’s key value store 

which provides eventual consistency. In simplest terms can think of 
it as a replica per server.

● Build off of their own previous work which provides a database on 
top of S3 which 

● However don’t really talk about how they switch consistencies and 
talk more about how they allow the user to tell them to switch 
consistencies.

31



Pay Only When It Matters: Summary
● Pay only what you need too.
● Allow application to switch between consistencies at runtime.
● Allow application to have different consistencies in the same 

database. 

32



UC Berkeley, VLDB 2014
Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, 
Joseph M. Hellerstein, Ion Stoica

Highly Available Transactions: 
Virtues and Limitations

33



● ACID = Atomicity Consistency Isolation Durability
● Set of guarantees that database transactions are processed 

reliably.

● The acronym is more mnemonic than precise.
● The guarantees are not independent of each other.

○ Choice of Isolation level affects the Consistency guarantees.
○ Providing Atomicity implicitly provides some Isolation 

guarantees.

Recap: ACID

34



Recap: Isolation Levels
● Isolation levels defined in terms of possibility or impossibility 

of following anomalies
○ Dirty Read:  Transaction T1 modifies a data item which 

T2 reads before T1 commits or aborts. If T1 aborts then 
anomaly. 

○ Non-Repeatable Read: T1 reads a data item. T2 
modifies that data item and then commits. If T1 re-reads 
data item then anomaly. 

○ Phantoms: T1 reads a set of data items satisfying some 
predicate. T2 creates data item(s) that satisfy T1’s 
predicate and commits. If T1 re-reads then anomaly.

35



Recap: Isolation Levels
Isolation Level Dirty Read Non-Repeatable 

Read
Phantoms

Read 
Uncommitted+

Possible* Possible Possible

Read 
Committed

Not Possible Possible Possible

Repeatable 
Read

Not Possible Not Possible Possible

Serializable Not Possible Not Possible Not Possible

+ Implicit that Dirty Writes are not allowed
*  Standard does not say anything about recovery

36



● C in CAP = single-copy consistency (i.e. replication consistency)
● C in ACID = preserving database rules e.g. unique keys
● C in CAP is a strict subset of C in ACID.

● Common Misunderstanding: “CAP Theorem →  inability to provide 
ACID database properties with high availability”.

● CAP only prohibits serializable transactions with availability in the 
presence of partitions.
○ No need to abandon Atomicity or Durability.
○ Can provide weaker Isolation guarantees.

CAP and ACID

37



● Most research on Wide-Area Distributed Databases chooses 
serializability. 
○ i.e. Choose C over A (in terms of CAP)

● Question: What guarantees are provided by commercial, single-site 
databases?
○ Survey of 18 popular databases promising “ACID”
○ Only 3 out of 18 provided serializability as default option.
○ 8 out of 18 did not provide serializability as an option at all
○ Often the default option was Read Committed.

● Conclusion: If weak isolation is acceptable for single-site DBs then 
it should be ok for highly available environments.

ACID in the Wild

38



● Answers the question: “Which transactional semantics can be 
provided with high availability ? ”

● Proposes HATs (Highly Available Transactions)
○ Transactional Guarantees that do not suffer unavailability 

during system partitions or incur high network latency. 

Goal of the paper

39



Definitions of Availability
● High Availability: If client can contact any correct replica, then it 

receives a response to a read or write operation, even if replicas 
are arbitrarily network partitioned.

● Authors provide a couple of more definitions:
○ Sticky Availability: If a client’s transactions are executed 

against a replica that reflects all of its prior operations then …

○ Transactional Availability: If a transaction can contact at least 
one replica for every item it accesses, the transaction 
eventually commits or internally aborts

40



Overview of HAT guarantees

41



Example (HAT possible): Read Uncommitted
● Read Uncommitted = “No Dirty Writes”. 
● Writes to different objects should be ordered consistently.
● For example consider the following transactions:

T1: w1[x=1] w1[y=1]
   T2: w2[x=2] w2[y=2]

○ We should not have w1[x=1] w2[x=2] w2[y=2] w1[y=1] 
interleaving on any replica.

● HAT Implementation: 
○ Mark each write of a transaction with the same globally unique 

timestamp (e.g. ClientID + Sequence Number).
○ Apply last writer wins at every replica based on this timestamp.

42



Example (HAT possible): Read Committed
● Read Committed =  “No Dirty Writes” and “No Dirty Reads”. 
● Example: T3 should never see a = 1, and, if T2 aborts, T3 should 

not read a = 3:

● HAT Implementation: 
○ Clients can buffer their writes until commit OR
○ Send them to servers, who will not deliver their value to other 

readers until notified that writes have committed.
● In contrast to lock-based implementations, this does not provide 

recency guarantees.

T1:  w1[x=1] w1[x=2]
T2:  w2[x=3]
T3:  r3[x=a]

43



Example (HAT possible): Atomicity
● Once some effects of a transaction Ti are observed by another 

transaction Tx , afterwards, all effects of Ti are observed by Tx

● Useful for contexts such as:
○ Maintaining foreign key constraints
○ Maintenance of derived data

● Example: T2 must observe b=c=1. However it can observe a=1 or a 
= _|_ ( where _|_ is the initial value).

T1: w1[x=1] w1[y=1] w1[z=1]
   T2: r2[x=a] r2[y=1] r2[x=b] r2[z=c]

44



Example (HAT possible): Atomicity
● HAT system (Strawman implementation) : 

○ Replicas store all versions ever written to every data item and 
gossip information about versions they have observed. 

○ Construct a lower bound on versions found on every replica.
○ At start of a transaction, clients can choose read timestamp 

lower than or equal to this global lower bound.
○ Replicas return the latest version of each item that is not 

greater than the client’s chosen timestamp.
○ If the lower bound is advanced along transactional boundaries, 

clients will observe atomicity.

● More efficient implementation in the paper.

45



Example (HAT sticky possible): Read-my-writes
● Read-my-writes is a session guarantee.

● Not provided by a highly available system. 
○ Consider a client that executes the following transactions, 

as part of a session against different replicas partitioned 
from each other.

                             T1:  w1[x=1]
                             T2:  r2[x=a]

● However if a client remains sticky with one replica then this 
guarantee can be provided.

46



Examples (HAT Impossible)
● Fundamental problem with HATs is that the cannot prevent 

concurrent updates.
● Thus they cannot prevent anomalies like Lost Updates and Write 

Skew. 
● Consider the following examples where clients submit T1 and T2 

on opposite sides of a network partition.
○ Lost Update:  

T1:  r1[x=100] w1[x=100 + 20 = 120]
T2:  r2[x=100] w2[x=100 + 30 = 130]

○ Write Skew:
                   T1:  r1[y=0] w1[x=1]
                      T2:  r2[x=0] w2[y=1] 47



Examples (HAT Impossible)
● Following Isolation guarantees require no Lost Updates:

○ Cursor Stability
○ Snapshot Isolation
○ Consistent Read

● Following Isolation guarantees require no Lost Updates and no 
Write Skew:
○ Repeatable Reads
○ Serializability

● As a result all of these are unachievable with high-availability.

48



Conclusions
● The paper provides a broad review of how ACID guarantees relate 

to the CAP theorem.

● Shows that a number of ACID guarantees which are provided by 
default in most conventional databases can be provided in a highly 
available environment.

● Draws a line between what ACID guarantees are achievable and 
not-achievable with HATs.

49



Summary
● The CAP Theorem is not a barrier which prevents the development 

of replicated datastores with useful consistency and availability 
guarantees

● Only prevents a tiny part of the design space
● We can still provide useful guarantees (even transactional 

guarantees)
● Leverage application information to maximize both availability and 

consistency relevant for a particular application scenario

50



Extra Slides



Overview of HAT guarantees

● Serializability, Snapshot Isolation and Repeatable Read Isolation 
are not HAT-compliant
○ Intuition: They require detecting conflicts between concurrent 

updates.
● Read Committed, Transactional Atomicity and many other weaker 

isolation guarantees are possible.
○ via algorithms that rely on multi-versioning and client-side 

caching.
● Causal Consistency possible with sticky availability.



Example (HAT possible): Cut Isolation
● Transactions read from a non-changing cut or snapshot over the 

data items.
● If a transaction reads the same data more than once, it sees the 

same value each time.
● Not quite Repeatable Read since this allows Lost Updates or Write 

Skew anomalies due to concurrent writes.

● HAT Implementation:
○ Clients store any read data such that the values they read for 

each item never changes unless they overwrite themselves.
○ Alternatively can be accomplished on sticky replicas using 

multi-versioning.



ACID and NewSQL Db Isolation Levels


