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Databases these days
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Problems due to replicating data

● Having multiple copies of the data can create some problems

● A major problem is consistency i.e. how to keep the various copies 
of data in sync. Some problems include: 
○ Concurrent writes (possibly conflicting)
○ Stale Data
○ Violation of Database Constraints 
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Consistency Models
● Consistency Model = Guarantee by the datastore that certain 

invariants will hold for reads and/or writes.
 
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability
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Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● No guarantees on order of writes applied to different replicas
● No guarantees on what intermediate states a reader may observe.
● Just guarantees that “eventually” replicas will converge.
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Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Session means a context that persists across operations (e.g. 
between “log in” and “log out”)

● Example of a session guarantee = Read-My-Writes
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Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Operations to the datastore applied in causal order.
○ e.g. Alice comments on Bob’s post and then Bob replies to her 

comment.
○ On all replicas, Alice’s comment written before Bob’s comment.

● No guarantees for concurrent writes.
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Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Global total order operations to the datastore.
● Read of an object returns the latest write.

○ Even if the write was on a different replica.

9



Introducing the CAP Theorem

Any networked shared-data system can have at most two of three of 
the above properties

Consistency - equivalent to having a single up-to-date copy of the data 
(i.e. serializability)

Availability - any reachable replica is available for reads and writes 

Partition Tolerance - tolerance to arbitrary network partitions
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Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.
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Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Allowing writes on either replica = Loss of Consistency 
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Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Allowing one replica to be unavailable = Loss of availability 
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Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Assuming that partitions never occur = Loss of partition tolerance
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Revisiting CAP Theorem*

● Last 14 years, the CAP theorem has been used (and abused) to 
explore variety of novel distributed systems.

● General belief = For wide-area systems, cannot forfeit P

● NoSQL Movement: “Choose A over C”.
○ Ex. Cassandra - Eventually Consistent Datastore

● Distributed ACID Databases: “Choose C over A”
○ Ex. Google Spanner - provides linearizable

* from the paper “CAP 12 years later: How the rules have changed by Eric Brewer”
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Revisiting CAP Theorem
● CAP only prohibits a tiny part of the design space 

○ i.e. perfect availability and consistency with partition tolerance.
● “2 of 3” is misleading because:

○ Partitions are rare. Little reason to forfeit C or A when no partitions.
○ Choice between C and A can occur many times within the same 

system at various granularities.
○ All three properties are more continuous than binary.

Eric Brewer: Modern CAP goal should be to "maximize 
combinations of consistency and availability" that "make sense 
for the specific application"
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Revisiting the CAP Theorem
● Recent research adopts the main idea

○ i.e. don’t make binary choices between consistency and 
availability

● Lets look at two examples 
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ETH Zurich, VLDB 2009
Tim Kraska
Martin Hentschel
Gustavo Alonso
Donald Kossmann

Consistency Rationing in the Cloud: 
Pay Only When It Matters
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Pay Only When It Matters: Problem

Consider the information stored by a simple online market like Amazon: 
● Inventory 

○ Serializability: don’t oversell
● Buyer Preferences

○ Weaker Consistency: who cares if the user gets slightly more 
correct advertising 5 minutes later than they could.

● Account Information
○ Serializability: don’t want to send something to the wrong place. 

Won’t be updated often. 
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Pay Only When It Matters: Problem

Consider an online auction site like Ebay:
● Last Minute

○ Serializability: Database should be accurate. Want to show 
highest bids so people bid higher.

● Days Before 
○ Weaker Consistency: Will be okay if data is a few minutes 

delayed. No high contention.
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Pay Only When It Matters: Problem

Another example is a collaborative document editing application:
● Parts of the paper which are usually done by 1 person 

○ Weaker Consistency: Since less editors there will be less 
conflicts and serializability isn’t as important. 

○ Really just need to read your writes.
● Parts of the paper which are highly edited

○ Serializability: Would want parts of the document like the 
references to be updated often as it may be updated by many 
people.
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Pay Only When It Matters : Problem

● How can we balance cost, consistency, and availability?
● Assume partitions.
● Don’t want your consistency to be stronger than you need

○ causes unnecessary costs if not needed.
● Don’t want your consistency to be weaker than you need

○ causes operation costs. For example, showing you are out of 
stock when you are not means lost sales.
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Pay Only When It Matters: Solution

Avoid costs by using both!
● Serializability costs more
● Avoid costs by only using it when you really need it.
● Provide policies to users to change consistency.
● Provide 3 kinds of consistency: A, B, C
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Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Serializable
● All transactions are isolated
● Most costly
● Uses 2PL
● Used for high importance and high conflict operations.
● Ex. address information and stock count for webstore.
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Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Session Consistency
● Can see own updates
● Read-my-writes
● Used for low conflict operations that can tolerate a few 

inconsistencies
● For example: User preferences on web store
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Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Switches between A and C consistency
● Adaptive, dynamically switches at run-time
● Users can pick how it should change with provided policies
● For example, the auction example uses B Consistency.
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Pay Only When It Matters: B Consistency
● How to switch between A and C in a way that makes sense?

○ Provide policies for switching
○ Try to minimize costs but keep needed consistency
○ 3 basic policies

■ General Policy
■ Time Policy
■ Numerical Policy
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Pay Only When It Matters: B Consistency
● General Policy

○ Try to statistically figure out frequency of access
○ Use this to determine probability of conflict
○ Then determine the best consistency

● Time Policy
○ Pick a timestamp afterwhich the consistency changes.

● Numerical Policy
○ For increment and decrement
○ Knows how to deal with conflicts
○ Three kinds
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Pay Only When It Matters: Numerical Policy
Numerical Policies : For increment and decrement
● Fixed Threshold Policy

○  If data goes below some point switch consistency.
○ Ex: Only 10 items left in stock, change to serializability. 

● Demarcation Policy
○ Assign part of data to each server. 
○ For example if 10 in stock, 5 servers, a  server can sell 2.
○ Use serializability if want to use more than their share. 

● Dynamic Policy
○ Similar to fixed threshold but the threshold changes
○ Threshold depends on the probability that it will drop to zero.
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Pay Only When It Matters: CAP
● How can we provide serializability while allowing partitions to follow 

the CAP theorem? We can’t. 
● If your application needs A Consistency, it won’t be available if 

there is a partition.
● But it will be available for the cases where your application needs C 

Consistency.
● Note that B Consistency can fall into either case depending on 

which consistency at the time.
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Pay Only When It Matters: Implementation
● This specific solution uses s3 which is Amazon’s key value store 

which provides eventual consistency. In simplest terms can think of 
it as a replica per server.

● Build off of their own previous work which provides a database on 
top of S3 which 

● However don’t really talk about how they switch consistencies and 
talk more about how they allow the user to tell them to switch 
consistencies.
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Pay Only When It Matters: Summary
● Pay only what you need too.
● Allow application to switch between consistencies at runtime.
● Allow application to have different consistencies in the same 

database. 
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UC Berkeley, VLDB 2014
Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, 
Joseph M. Hellerstein, Ion Stoica

Highly Available Transactions: 
Virtues and Limitations
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● ACID = Atomicity Consistency Isolation Durability
● Set of guarantees that database transactions are processed 

reliably.

● The acronym is more mnemonic than precise.
● The guarantees are not independent of each other.

○ Choice of Isolation level affects the Consistency guarantees.
○ Providing Atomicity implicitly provides some Isolation 

guarantees.

Recap: ACID
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Recap: Isolation Levels
● Isolation levels defined in terms of possibility or impossibility 

of following anomalies
○ Dirty Read:  Transaction T1 modifies a data item which 

T2 reads before T1 commits or aborts. If T1 aborts then 
anomaly. 

○ Non-Repeatable Read: T1 reads a data item. T2 
modifies that data item and then commits. If T1 re-reads 
data item then anomaly. 

○ Phantoms: T1 reads a set of data items satisfying some 
predicate. T2 creates data item(s) that satisfy T1’s 
predicate and commits. If T1 re-reads then anomaly.
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Recap: Isolation Levels
Isolation Level Dirty Read Non-Repeatable 

Read
Phantoms

Read 
Uncommitted+

Possible* Possible Possible

Read 
Committed

Not Possible Possible Possible

Repeatable 
Read

Not Possible Not Possible Possible

Serializable Not Possible Not Possible Not Possible

+ Implicit that Dirty Writes are not allowed
*  Standard does not say anything about recovery
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● C in CAP = single-copy consistency (i.e. replication consistency)
● C in ACID = preserving database rules e.g. unique keys
● C in CAP is a strict subset of C in ACID.

● Common Misunderstanding: “CAP Theorem →  inability to provide 
ACID database properties with high availability”.

● CAP only prohibits serializable transactions with availability in the 
presence of partitions.
○ No need to abandon Atomicity or Durability.
○ Can provide weaker Isolation guarantees.

CAP and ACID
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● Most research on Wide-Area Distributed Databases chooses 
serializability. 
○ i.e. Choose C over A (in terms of CAP)

● Question: What guarantees are provided by commercial, single-site 
databases?
○ Survey of 18 popular databases promising “ACID”
○ Only 3 out of 18 provided serializability as default option.
○ 8 out of 18 did not provide serializability as an option at all
○ Often the default option was Read Committed.

● Conclusion: If weak isolation is acceptable for single-site DBs then 
it should be ok for highly available environments.

ACID in the Wild
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● Answers the question: “Which transactional semantics can be 
provided with high availability ? ”

● Proposes HATs (Highly Available Transactions)
○ Transactional Guarantees that do not suffer unavailability 

during system partitions or incur high network latency. 

Goal of the paper
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Definitions of Availability
● High Availability: If client can contact any correct replica, then it 

receives a response to a read or write operation, even if replicas 
are arbitrarily network partitioned.

● Authors provide a couple of more definitions:
○ Sticky Availability: If a client’s transactions are executed 

against a replica that reflects all of its prior operations then …

○ Transactional Availability: If a transaction can contact at least 
one replica for every item it accesses, the transaction 
eventually commits or internally aborts
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Overview of HAT guarantees
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Example (HAT possible): Read Uncommitted
● Read Uncommitted = “No Dirty Writes”. 
● Writes to different objects should be ordered consistently.
● For example consider the following transactions:

T1: w1[x=1] w1[y=1]
   T2: w2[x=2] w2[y=2]

○ We should not have w1[x=1] w2[x=2] w2[y=2] w1[y=1] 
interleaving on any replica.

● HAT Implementation: 
○ Mark each write of a transaction with the same globally unique 

timestamp (e.g. ClientID + Sequence Number).
○ Apply last writer wins at every replica based on this timestamp.
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Example (HAT possible): Read Committed
● Read Committed =  “No Dirty Writes” and “No Dirty Reads”. 
● Example: T3 should never see a = 1, and, if T2 aborts, T3 should 

not read a = 3:

● HAT Implementation: 
○ Clients can buffer their writes until commit OR
○ Send them to servers, who will not deliver their value to other 

readers until notified that writes have committed.
● In contrast to lock-based implementations, this does not provide 

recency guarantees.

T1:  w1[x=1] w1[x=2]
T2:  w2[x=3]
T3:  r3[x=a]
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Example (HAT possible): Atomicity
● Once some effects of a transaction Ti are observed by another 

transaction Tx , afterwards, all effects of Ti are observed by Tx

● Useful for contexts such as:
○ Maintaining foreign key constraints
○ Maintenance of derived data

● Example: T2 must observe b=c=1. However it can observe a=1 or a 
= _|_ ( where _|_ is the initial value).

T1: w1[x=1] w1[y=1] w1[z=1]
   T2: r2[x=a] r2[y=1] r2[x=b] r2[z=c]
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Example (HAT possible): Atomicity
● HAT system (Strawman implementation) : 

○ Replicas store all versions ever written to every data item and 
gossip information about versions they have observed. 

○ Construct a lower bound on versions found on every replica.
○ At start of a transaction, clients can choose read timestamp 

lower than or equal to this global lower bound.
○ Replicas return the latest version of each item that is not 

greater than the client’s chosen timestamp.
○ If the lower bound is advanced along transactional boundaries, 

clients will observe atomicity.

● More efficient implementation in the paper.
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Example (HAT sticky possible): Read-my-writes
● Read-my-writes is a session guarantee.

● Not provided by a highly available system. 
○ Consider a client that executes the following transactions, 

as part of a session against different replicas partitioned 
from each other.

                             T1:  w1[x=1]
                             T2:  r2[x=a]

● However if a client remains sticky with one replica then this 
guarantee can be provided.

46



Examples (HAT Impossible)
● Fundamental problem with HATs is that the cannot prevent 

concurrent updates.
● Thus they cannot prevent anomalies like Lost Updates and Write 

Skew. 
● Consider the following examples where clients submit T1 and T2 

on opposite sides of a network partition.
○ Lost Update:  

T1:  r1[x=100] w1[x=100 + 20 = 120]
T2:  r2[x=100] w2[x=100 + 30 = 130]

○ Write Skew:
                   T1:  r1[y=0] w1[x=1]
                      T2:  r2[x=0] w2[y=1] 47



Examples (HAT Impossible)
● Following Isolation guarantees require no Lost Updates:

○ Cursor Stability
○ Snapshot Isolation
○ Consistent Read

● Following Isolation guarantees require no Lost Updates and no 
Write Skew:
○ Repeatable Reads
○ Serializability

● As a result all of these are unachievable with high-availability.
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Conclusions
● The paper provides a broad review of how ACID guarantees relate 

to the CAP theorem.

● Shows that a number of ACID guarantees which are provided by 
default in most conventional databases can be provided in a highly 
available environment.

● Draws a line between what ACID guarantees are achievable and 
not-achievable with HATs.
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Summary
● The CAP Theorem is not a barrier which prevents the development 

of replicated datastores with useful consistency and availability 
guarantees

● Only prevents a tiny part of the design space
● We can still provide useful guarantees (even transactional 

guarantees)
● Leverage application information to maximize both availability and 

consistency relevant for a particular application scenario
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Extra Slides



Overview of HAT guarantees

● Serializability, Snapshot Isolation and Repeatable Read Isolation 
are not HAT-compliant
○ Intuition: They require detecting conflicts between concurrent 

updates.
● Read Committed, Transactional Atomicity and many other weaker 

isolation guarantees are possible.
○ via algorithms that rely on multi-versioning and client-side 

caching.
● Causal Consistency possible with sticky availability.



Example (HAT possible): Cut Isolation
● Transactions read from a non-changing cut or snapshot over the 

data items.
● If a transaction reads the same data more than once, it sees the 

same value each time.
● Not quite Repeatable Read since this allows Lost Updates or Write 

Skew anomalies due to concurrent writes.

● HAT Implementation:
○ Clients store any read data such that the values they read for 

each item never changes unless they overwrite themselves.
○ Alternatively can be accomplished on sticky replicas using 

multi-versioning.



ACID and NewSQL Db Isolation Levels


