
Graph Databases
Prad Nelluru, Bharat Naik, Evan Liu, Bon Koo

1

Why are graphs important?

● Modeling chemical and biological data

● Social networks

● The web

● Hierarchical data

2

What is a graph database?

● A database built around a graph structure

● Nodes are indexed for fast initial lookup

● Property Graph
○ Each node/edge is uniquely identified

○ Each node has a set of incoming and outgoing edges

○ Each node/edge has a collection of properties

○ Each edge has a label that defines the relationship between its two nodes

3

Comparing with Relational DB

● Pros:
○ Schema Flexibility

○ More intuitive querying

○ Avoids “join bombs”

○ Local hops are not a function of total nodes

● Cons:
○ Not always advantageous

○ Query languages are not unified

4

Relational Database Example

5

Relational Database Example

6

Graph Database Example

7

Query Processing in Graph
Databases

8

Graph queries

• List nodes/edges that have this property

• List matching subgraphs

• Can these two nodes reach each other?

• How many hops does it take for two nodes to connect?

9

Neo4j

• Most popular commercial graph database

• Transactional queries

• Optimized for single-machine use-cases

• Cypher query language

10

Neo4j graph model

• Little schema enforcement
• No special support for a fixed schema

• A graph has nodes and edges
• Multiple edges between nodes possible

• Nodes and edges can have properties (key-value pairs)
• Node property: {name: “James”}
• Edge property: {duration: 10}

• Nodes and edges can have labels
• Node label: Person
• Edge label: Knows

• Additional constraints (only schema support)
• Person id must be unique

11

:Person
{name: “James”,

age: 74}

:Person
{name: “Avery”}

:Knows
{duration: 10}

:Person
{name: “Avery”}

:Website
{name: “Yahoo”}

:Likes

:Company
{name: “IBM”}

:WorksFor

:Person
{name: “Tom”}

:Knows

:Website
{name: “MSN”}

:Likes

12

Cypher: Neo4j’s query language

• Declarative query language based on SQL

• Matches patterns in graph to
• retrieve, add, update, delete data

• Manages indexes/constraints

13

Match older James

MATCH (customer:Person {name: “James”})

WHERE customer.age > 70

RETURN customer

declares
identifier

MATCH is like
SELECT

restricts
by node

label

restricts
by node
property
“name”

restricts
key value

what to
return

where
clause

restricts
age

Give me people named James older than 70.
14

Match James’s friends

MATCH (customer:Person {name: “James”}) – [:Knows] -> (friend:Person)

RETURN friend

restricts edge
label

Specifies
directed

edge

restricts
friend node’s

label

Give me James’s friends.

15

Match friends of James’s friends

MATCH (customer:Person {name: “James”}) – [:Knows * 2] -> (fof:Person)

RETURN fof

two hops

Give me friends of James’s friends.

16

Match James’s friends who like Yahoo

MATCH (customer:Person {name: “James”}) – [:Knows] -> (friend:Person)

–[:Likes]->(:Website {name: “Yahoo”})

RETURN friend
additional

requirement
on the friend

Give me James’s friends who like Yahoo.
17

Find the shortest path + it’s length

MATCH path = shortestPath

((:Person {name: “James”})-

[:Knows*..3]->

(:Person) {name: “Tom”})

RETURN path, length(path)

from James

to Tom

within 3 hops

assign identifier (type = path) to the shortest path

Give me the shortest path between Avery and James
within 3 hops, and the length of that path.

18

Create a new customer

CREATE (:Person {name: “Mike”})

Create a Person named “Mike.”

19

Add a new relationship

MATCH (customer:Person {name: “James”}), (site:Website {name: “Yahoo”})

CREATE (customer)-[:Likes]-> (site)

RETURN customer

returns are
optional in

create
queries

find the
website node

find James

make an
edge

between the
nodes

Store that James likes Yahoo.
20

Answering queries

• Parse query

• Determine starting nodes for traversals

• For each starting node, try to match relationships and/or neighboring
nodes with recursive backtracking

• If a match occurs, return

21

Query optimization

• Neo4j runs Cypher queries as specified

• Not much of an optimizer

• Queries directly translated to action plans

• For the following examples:
• Assume nodes don’t have labels

• No indexes are present

22

Global scan

START p = node(*)
MATCH (p {name: “James”})-[:Knows]->(friend)
RETURN friend

150ms w/ 30k nodes, 120k rels

*(Numbers from Wes Freeman and Mark Needham: Link)

Starting from all nodes, find
all nodes that know a node
named “James.”

23

http://www.slideshare.net/neo4j/optimizing-cypher-32550605

Introduce a label

Label your starting points

MATCH (p {name: “James”})

SET p:Person

Find a node named “James”
and add a Person label.

24

Label scan

MATCH (p:Person {name: “James”})-[:Knows]->(friend)
RETURN friend

80ms w/ 30k nodes, 120k rels

Starting from all Person
nodes, find all nodes that
know a node named
“James.”

25

Creating indexes

CREATE INDEX ON :Person(name)

26

Index lookup

MATCH (p:Person {name: “James”})-[:Knows]->(friend)
RETURN friend

6ms w/ 30k nodes, 120k rels

27

Optimization lessons

• Use labels

• Use indexes on labels

• Order of predicates matter

• Avoid cross products

• Future: query optimizer will do this for you

28

Graph DB v/s Relational DB for
Social Networks

29

Benchmarking database systems
for social network applications

Angles et al in GRADES, 2013

30

Motivation

● No standard performance benchmarks for social network datasets

● Studies have shown that social network use case is richest in variety

● Authors propose simple microbenchmark - contains very common operations in
such networks :

○ Getting friends of friend

○ Looking for similar like pages

○ Shortest path between persons

● Queries are basic primitives, more complex graph-oriented queries can be
constructed:

○ Page Rank

○ Recommender Systems

31

Setup

● Neo4j (v1.8.2 Community) v/s PostgreSQL (v9.1)

● Data model has 2 entities:

○ Person (pid, name, [age], [location])

○ Webpage (wpid, URL, [creation time])

● Graph generation:

○ Stream edge data generation based on R-MAT model

○ Social data generated synthetically to mimic Facebook

Person
Webpage

like

friend

32

Queries evaluated

● Get all persons having name N (Select)

● Get the webpage that person P likes (Adjacency)

● Get the webpages liked by the friends of a given person P (Reachability)

● Get shortest path between two people (Reachability)

● Get the common web pages that two people like (Pattern Matching)

● Get the number of friends of a person P (Summarization)

33

Performance Metrics

● Data Loading time
○ Time required to load data from source file

○ Build index structures

● Query Execution time
○ Central Performance metric

○ Time spent to execute a single query (averaged over several instances)

34

Experimental setup

● Benchmark implemented on Java 1.6

● Indexes were created for primary keys and attributes according to the query
requirements

● 1K nodes to 10M nodes

● Focussed only on the queries presented before

● Ran 10K query instances for each query, 3 consecutive runs

● System characteristics:

○ Intel Xeon E5530 CPU at 2.4 GHz

○ 32 GB of Registered ECC DDR3 memory at 1066 MHz

○ 1Tb hard drive with ext3

○ OS: Linux Debian with 2.6.32-5-amd64 kernel

35

Performance Comparison

36

Shortest Path Query

37

Experimental Results

● Broadly speaking, better performance results on Graph DBs

● Neo4j executed queries in the shortest time with good scalability

● Reachability queries stressed the database systems the most

● For other queries, both systems scaled well independent of graph size

● Neo4j performs best for the shortest path query:

○ Exploit graph-oriented structures

○ Good implementation of BFS

● PostgreSQL:

○ less specialized for path-traversal oriented graph queries

○ Very sensitive to length of paths, scales well till 3 hops (recursive joins)

38

Conclusions

● Query set mimics real-life queries well : selection, adjacency, reachability, pattern
matching and summarization

● Reachability queries were most stressful

● Relational DBs weren’t able to complete query for hops > 4

● Overall, Graph DBs benefit from the benchmark for all query types

● Future work:

○ Stress concurrent user sessions that social networks have to process

○ Composite of several smaller queries that will interact to form a user session

○ Include update operations as part of workload

39

Distributed Graph Database
Systems

40

Distributed Frameworks

● Existing distributed frameworks are ill-suited for graph operations

● Hadoop (based on MapReduce), for instance, cannot
divide graph operation to sub-graph operations
to be distributed across workers

● A current step of a graph operation is largely depended on results of
its previous steps

41

Pregel System

● “Pregel: A System for Large-Scale Graph Processing”

● Scalability through Pregel instances

● Fault tolerance via Master/Worker model

● Input: Graph

● Output: a set of vertices, an aggregated value, or a subgraph

42

Algorithm

● [Initialization] Graph is divided into n partitions, which are distributed
to n workers, or Pregel instance

● Queries to workers mapping

● All vertices are initially “active”

● Apply superstep, a routine defined by Pregel, repeatedly until all
vertices become “halt”

43

Superstep (for single worker)

● Save its current states of vertices (fault tolerance)

● Apply user-defined graph operation to all “active”
vertices in parallel

● Send messages to neighboring vertices

● A vertex may vote to halt if it believes to have no
more work to do

● A vertex may go from “halt” to “active” when it
receives incoming message(s)

44

Max Value Propagation Example

Max Value Propagation Example

46

Max Value Propagation Example

47

Max Value Propagation Example

48

Partitioning Graph

● Pregel’s partitioning scheme
○ Divide vertices based on their hash values (mod n) to distribute them to n

workers (randomly distributed)

○ Increase inter-machine communications

● “Sedge: Self Evolving Distributed Graph Management Environment”
○ Pregel-based graph partition management system

49

Two-Level Partition Management

● Primary Partition
○ Each vertex must belong to exactly one primary

partition
○ When repartitioned, all cross-partition edges

become internal edges

● Secondary Partition
○ Copy of primary partition
○ On-demand partitioning (allocate only when

needed)

50

Partition Replication

● Internal hotspot
○ A frequently accessed part of a graph that is

located only within one partition
○ Cause uneven workloads among workers

● Copy internal hotspot(s) to secondary partition(s) of
slack workers

● Distributed workloads to increase parallelism

51

Dynamic Partitioning

● Cross-Partition hotspot
○ A hotspot that spans on 2+ partitions
○ Cause uneven workloads as well as increased

inter-machine communications

● Group parts of a cross-partition hotspot together,
and allocate the new partition to slack workers

● Increased parallelism and reduced inter-machine
communication overhead

52

Questions?

53

Backup slides ahead….

54

Time-varying Social Networks in a Graph Database

● Focus on time varying social graphs
○ Nodes represent individuals

○ Edges represent interactions between them

○ Graph structure and attributes of nodes/edges change over time

● Data gathered from mobile devices and wearable sensors

● Queries involve:

○ Topology of the social network

○ Temporal information on the presence and interactions of nodes

● Challenges:
○ Data curation

○ Cleaning

○ Linking

○ Post-processing

○ Data analysis 55

Setup

● Social Networks from Wearable Sensors

● Measured by the SocioPatterns collaboration

○ Built a high-resolution atlas of human contact in a variety of indoor social
environments

○ Participants wear badges with active RFID devices

○ Spatial range for proximity can be tuned from several meters down to face-
to-face proximity

● Data provides detailed sequence of contacts with beginning and ending times

● Represented as time-varying proximity networks, temporal frame of 20s

● For each frame, proximity graph is built with individuals as nodes and interactions
as edges

56

Technical Challenges

● Modeling time-varying networks

○ Can’t use adjacency matrices/lists

■ Face scalability issues with large datasets

■ Provide constrained semantics for querying and exposing data

■ Do not allow flexibility for rich queries involving temporal information

● Storage & Retrieval of Large Networks

○ Topology of real-world graphs is heterogeneous (structural and temporal)

○ Power law distribution i.e. small fraction of nodes have high connectivity

○ Graph problems are data-driven, poor spatial memory locality

○ Runtime dominated by memory access

57

Data Model

● FRAME nodes

● RUN nodes

● RUN_FRAME relations, RUN_FRAM_FIRST, RUN_FRAME_LAST

● FRAME_NEXT relation

● ACTOR nodes

● FRAME_ACTOR relations

● INTERACTION nodes

● FRAME_INTERACTION relations

● INTERACTION_ACTOR relations

58

Temporal Indexing

● Suitably index the time-stamped sequence of FRAME nodes

● Attach to the FRAME nodes temporal attributes that can be indexed

● Build tree that explicitly represents the temporal hierarchy of the dataset

● Nodes of tree are TIMELINE nodes

● Top-level node, entry-point for the temporal index, is reachable from the RUN
node through a HAS_TIMELINE relation

● Nodes at each level have NEXT_LEVEL relations to nodes at the level below

● At each level, time attributes are associated with the NEXT_LEVEL relation

● Nodes at the bottom level correspond to the finest scale of temporal aggregation

59

Test Queries

● Get all time frames of run “HT2009”, recorded between 9:00-13:00 of July 1st, 2009, ordered by
timestamp

● Get the names of all persons present in a given frame

● Get the weighted proximity graph during a given frame, filtering out the weak contacts

● Get a list of all persons, and for each person, get the number of frames in which they were present

● Get the names of all persons that were present in more than 1000 frames, ranked by time of
presence

● List all distinct days on which an actor was present

● Return people in proximity of a given user, sorted alphabetically

● Find common neighbours of any two users

● Compute degree of all persons in contact graph

60

Results

● Insert table here with median, 5% and 95% quantile times

61

Conclusion

● Performance:

○ Performed well for exploratory data analysis, querying, data mining

○ Combination of chosen data model and Neo4j proved optimal

○ Issues were encountered while processing densely connected nodes

● Takeaways

○ Graph DBs work well when queries need to be run concurrently with data
ingestion

○ Expensive / frequent operations can be pre-computed

○ For densely connected nodes, additional indexing structures are needed to
improve performance

62

Why Neo4j?

● Rich graph data model support

● Reliable storage of large graphs

● Efficient execution of complex queries on large
heterogeneous graphs

● Support for property graph data model

● Persistent, transactional storage of very large graphs

● Support for deep graph analytics via efficient many-hop
traversals

● Support for Cypher
63

