
Apache HBase: the
Hadoop Database

Yuanru Qian, Andrew Sharp, Jiuling Wang

1

Agenda
● Motivation
● Data Model
● The HBase Distributed System
● Data Operations
● Access APIs
● Architecture

2

Motivation
● Hadoop is a framework that supports operations on a

large amount of data.
● Hadoop includes the Hadoop Distributed File System

(HDFS)
● HDFS does a good job of storing large amounts of data,

but lacks quick random read/write capability.
● That’s where Apache HBase comes in.

3

Introduction
● HBase is an open source, sparse, consistent

distributed, sorted map modeled after Google’s
BigTable.

● Began as a project by Powerset to process massive
amounts of data for natural language processing.

● Developed as part of Apache’s Hadoop project and runs
on top of Hadoop Distributed File System.

4

Big Picture

HDFS

HBase

Java Client

MapReduce
Hive/Pig

Thrift/REST
Gateway

Your Java
Application

ZooKeeper

5

An Example Operation
The Job:
A MapReduce job
needs to operate on a
series of webpages
matching *.cnn.com

row key column 1 column 2

“com.cnn.world” 13 4.5

“com.cnn.tech” 46 7.8

“com.cnn.money” 44 1.2

The Table:

6

The HBase Data Model

7

Data Model, Groups of Tables
RDBMS Apache HBase

database

table

namespace

table

8

Data Model, Single Table
RDBMS

table col1 col2 col3 col4

row1

row2

row3

9

Data Model, Single Table
Apache HBase

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1

row2

row3

columns are
grouped into
Column
Families

10

Sparse example
Row Key fam1:contents fam1:anchor

“com.cnn.www” contents:html =
“<html>...”

contents:html =
“<html>...”

“com.bbc.www” anchor:cnnsi.com =
"BBC"

anchor:cnnsi.com =
"BBC"

11

table fam1

fam1:col1 fam1:col2

row1

row2

fam2

fam2:col1 fam2:col2

row1

row2

Data is physically
stored by
Column Family

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1

row2

actuality

concept

12

table fam1

fam1:col1 fam1:col2

row1

row2

fam2

fam2:col1 fam2:col2

row1

row2

Column Families
and Sharding

table fam1

fam1:col1 fam1:col2

row3

row4

fam2

fam2:col1 fam2:col2

row3

row4

Shard A Shard B

13

Data Model, Single Table
Apache HBase

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1 v1

v2

row2 v1

v2

(row, column)
pairs are
Versioned,
sometimes
referred to as
Time Stamps

14

Data Model, Single Table
Apache HBase

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1 v1

v2

row2 v1

v2

A (row,
column,
version) tuple
defines a Cell.

15

Data Model
● The most basic unit is a column.
● Rows are composed of columns, and those, in turn, are

grouped into column families.
● Columns are often referenced as family:qualifier.
● A number of rows, in turn, form a table, and there can

be many of them.
● Each column may have multiple versions, with each

distinct version contained in a separate cell.
16

HBase’s Distributed
System

17

Scalability thru
Sharding

a complete table

billions of rows...

rows 1 through 1000

rows 1001 through 2000

Regions

etc.

split in
to

18

Scalability thru Sharding

rows 1 through 1000

rows 1001 through 2000

rows 2001 through 3000

Regions RegionServers

Server A

Server B

19

Scalability thru Division of Labor
An HBase Distributed System

Region

. Master

RegionServersZooKeeper

20

Scalability thru Division of Labor
HBase

Region

. Master

RegionServers

HDFS

ZooKeeper

21

ZooKeeper

Division of Labor, Master

Region

. Master

RegionServers

● Schema changes
● Moving Regions across

RegionServers (load balancing)

22

ZooKeeper

Division of Labor, ZooKeeper

Region

. Master

RegionServers

● Locating Regions

23

Division of Labor, RegionServer

Region

. Master

RegionServers

● Data operations (put, get,
delete, next, etc.)

● Some region splits

ZooKeeper

24

The HBase Distributed System
Region
● a subset of table’s rows, like a

range partition
● Automatically sharded

RegionServer
● Servers data for reads and

writes for a group of regions.

Master
● Responsible for coordinating the

RegionServers
● Assign regions, detects failures

of RegionServers
● Control some admin functions

ZooKeeper
● Locate data among

RegionServers

25

Availability thru Automatic Failover
● DataNode failures handled by HDFS(replication)

● RegionServer failures handled by Master re-assigning

Regions to available RegionServers.

● HMaster failover is handled automatic by having

multiple HMasters.

26

Region

. Master

RegionServersZooKeeper

27

How to Access to HBase?

28

Java Client Interfaces
● Configuration holds details where to find the cluster and tunable settings.

Roughly equivalent to JDBC connection string.

● HConnection represents connections to the cluster.

● HBaseAdmin handles DDL operations(create,list,drop,alter,etc)

● HTable is a handle on a single HBase table. Send “commands” to the

table.(Put,Get,Scan,Delete).

29

Scan
//Return the result of columns called cf:qualifier from row 1 to row 1000.
HTable table = ... // instantiate HTable
Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"));
scan.setStartRow(Bytes.toBytes("row1")); // start key is inclusive
scan.setStopRow(Bytes.toBytes("row1000")); // stop key is exclusive
ResultScanner scanner = table.getScanner(scan)
try {
 for(Result result : scanner) {
 // process Result instance
 }
} finally {
 scanner.close();
}

30

Scan
//Return the result of column family called cf from row 1 to row 1000
HTable table = ... // instantiate HTable
Scan scan = new Scan();
scan.addFamily(Bytes.toBytes("cf"));
scan.setStartRow(Bytes.toBytes("row1")); // start key is inclusive
scan.setStopRow(Bytes.toBytes("row1000")); // stop key is exclusive
ResultScanner scanner = table.getScanner(scan)
try {
 for(Result result : scanner) {
 // process Result instance
 }
} finally {
 scanner.close();
}

31

Get
Return an entire row
HTable htable = ... // instantiate HTable

Get get = new Get(Bytes.toBytes("row1"));

Result r = htable.get(get);

Return column family called cf
HTable htable = ... // instantiate HTable

Get get = new Get(Bytes.toBytes("row1"));

get.addFamily(Bytes.toBytes("cf"));

Result r = htable.get(get);

Return the column called cf:qualifier
HTable htable = ... // instantiate HTable
Get get = new Get(Bytes.toBytes("row1"));
get.addColumn(Bytes.toBytes("cf"),Bytes.
toBytes("qualifier"));
Result r = htable.get(get);

Return column family in version2.
HTable htable = ... // instantiate HTable
Get get = new Get(Bytes.toBytes("row1"));
get.addFamily(Bytes.toBytes("cf"));
get.setTimestamp(v2);
Result r = htable.get(get);

32

Delete
Delete an entire row
HTable htable = ... // instantiate HTable

Delete delete = new Delete(Bytes.toBytes("row1"));

htable.delete(delete);

Delete the latest version of a specified
column
HTable htable = ... // instantiate HTable

Delete delete = new Delete(Bytes.toBytes("row1"));

delete.deleteColumn(Bytes.toBytes("cf"),Bytes.

toBytes("qualifier"));

htable.delete(delete);

Delete a specified version of a
specified column

HTable htable = ... // instantiate HTable

Delete delete = new Delete(Bytes.toBytes

("row1"));

delete.deleteColumn(Bytes.toBytes("cf"),

Bytes.toBytes("qualifier"),version);

htable.delete(delete);

33

Put
Put a new version of a cell using
current timestamp by default

HTable htable = ... // instantiate HTable

Put put = new Put(Bytes.toBytes("row1"));

put.add(Bytes.toBytes("cf"),Bytes.toBytes

("qualifier"),Bytes.toBytes("data"));

htable.put(put);

Overwriting an existing value

HTable htable = ... // instantiate HTable

Put put = new Put(Bytes.toBytes("row1"));

put.add(Bytes.toBytes("cf"),Bytes.toBytes

("qualifier"),timestamp,Bytes.toBytes

("data"));

htable.put(put);

34

35

1. The client initiates an action that modifies data.
2. Modification is wrapped into a KeyValue object instance and

sent over to the HRegionServer that serves the matching
regions.

3. Once the KeyValue instance arrives, they are routed to the
HRegion instances that are responsible for the given rows.

4. The data is written to the Write-Ahead Log, and then put into
MemStore of the actual Store that holds the record.

5. When the memstores get to a certain size, the data is
persisted in the background to the filesystem.

Implementation Details of Put

36

Join?
● HBase does not support join.

○ NoSql is mostly designed for fast appends and key-based retrievals.
○ Joins are expensive and infrequent.

● What if you still need it?
○ Write a MapReduce join to make it.
○ At Map function, read two tables. The output key should be the value on the

joined attribute for table1 and table2.
○ At Reduce function, “join” the tuple that contains the same key.
○ Other implementations using Hive/Pig/...

37

Other Clients
Use some sort of proxy that translate your request into an
API call.
● These proxies wrap the native Java API into other

protocol APIs.
● Representational State Transfer(REST)
● Protocol Buffers, Thrift, Avro

38

REST
● is a protocol between the gateways and the clients.
● uses HTTP verbs to perform an action, giving

developers a wide choice of languages and programs to
use.

● suffers from the verbosity level of the protocol. Human-
readable text, be in plain or XML-based, is used to
communicate between the client and server.

39

Gateway
Server

Region
Server

Rest Client
Server

Request following the
semantics defined by
REST.

Sent through HTTP.

Translate the
request into Java
API call.

REST

Rest Client

40

Improvements
Companies with large server farms,
extensive bandwidth usage, and many
disjoint services felt the need to reduce
the overhead and implemented their
own Remote Procedure Call(RPC)
layers.
● Google Protocol Buffers
● Facebook Thrift
● Apache Avro

41

Architecture
storage structures:

● B+ Trees (typical RDBMS storage)
● Log-Structured Merge-Trees(HBase)

42

B+ Trees

43

Log-Structured Merge-Tree
● Log-structured merge-trees, also known as LSM-trees, follow a different

approach. Incoming data is stored in a logfile first, completely
sequentially. Once the log has the modification saved, it then updates an
in-memory store that holds the most recent updates for fast lookup.

● When the system has accrued enough updates and starts to fill up the in-
memory store, it flushes the sorted list of key → record pairs to disk,
creating a new store file. Then the updates to the log can be thrown away,
as all modifications have been persisted.

44

Log-Structured Merge-Tree
How a multipage block is merged from the in-memory tree into the next on-disk tree:

45

Compare: Seek VS Transfer
● B+ trees work well until there are too many modifications, because they force you to perform

costly optimizations to retain that advantage for a limited amount of time. The more and faster
you add data at random locations, the faster the pages become fragmented again. Eventually,
you may take in data at a higher rate than the optimization process takes to rewrite the existing
files. The updates and deletes are done at disk seek rates, rather than disk transfer rates.

● LSM-trees work at disk transfer rates and scale much better to handle large amounts of data.
They also guarantee a very consistent insert rate, as they transform random writes into
sequential writes using the logfile plus in-memory store.

46

Compare: Seek VS Transfer
As discussed, there are two different database paradigms: one is seek and the
other is transfer.

Seek is typically found in RDBMS and is caused by the B-tree or B+ tree
structures used to store the data. It operates at the disk seek rate, resulting in
log(N) seeks per access.

Transfer, on the other hand, as used by LSM-trees, sorts and merges files
while operating at transfer rates, and takes log(updates) operations.

47

Compare: Seek VS Transfer
At scale seek, seek is inefficient compared to transfer:

48

Cluster Architecture

HDFS

RegionServer RegionServerRegionServer

Client
HMaster

HMaster

Zoo Keeper

client finds
Region Server’s

location provided
by ZooKeeper

Master assign
regions and

achieves load
balacing

Clients reads
and writes rows

by directly
accessing

Region Servers

49

-ROOT- and .META.
Zookeeper records the location of -ROOT- table
-ROOT- records Region information of .META. tables
.META. records Region information of user tables

The mapping of Regions to Region Server is kept in a system table called .
META. When trying to read or write data from HBase, the clients read the
required Region information from the .META table and directly communicate
with the appropriate Region Server. Each Region is identified by the start key
(inclusive) and the end key (exclusive)

50

Communication Flow

a new client contacts the ZooKeeper ensemble(a separate cluster of
ZooKeeper nodes).It does so by retrieving the server name (i.e., hostname)
that hosts the -ROOT- region from ZooKeeper.

query that region server to get the server name that hosts the .META. table
region containing the row key.

query the reported .META. server and retrieve the server name that has the
region containing the row key the client is looking for.

51

Communication Flow

52

53

Summary
● Motivation -> Random read/write access

● Data Model -> Column family and qualifier, Versions

● Distributed Nature -> Master, Region, RegionServer

● Data Operations -> Get,Scan,Put,Delete

● Access APIs -> Java, REST, Thrift

● Architecture -> LSM Tree, Communication Workflow

54

Questions?

55

ZooKeeper
● ZooKeeper is a high-performance coordination service for distributed applications(like HBase). It

exposes common services like naming, configuration management, synchronization, and group
services, in a simple interface so you don't have to write them from scratch. You can use it off-
the-shelf to implement consensus, group management, leader election, and presence protocols.
And you can build on it for your own, specific needs.

● HBase relies completely on Zookeeper. HBase provides you the option to use its built-in
Zookeeper which will get started whenever you start HBase.

● HBase depends on a running ZooKeeper cluster. All participating nodes and clients need to be
able to access the running ZooKeeper ensemble. Apache HBase by default manages a
ZooKeeper "cluster" for you. It will start and stop the ZooKeeper ensemble as part of the HBase
start/stop process.

56

