

Trends in NoSQL
Technologies

Database Systems, CS386D

Instructor: Don Batory

Ankit, Prateek and Dheeraj

1

Agenda
 Fundamental Concepts

 Why NoSQL?

 What is NoSQL?

 NoSQL Taxonomy

 Case Studies

 Project Summary

 References

2

Why NoSQL?
New Trends

3

Growth in data
"Big Data" + "Unstructued data"

Source: http://www.couchbase.com

4

Connectedness
"Social networks"

Source: http://http://tjm.org/

5

Architecture
"Concurrency"

Source: http://www.couchbase.com

6

Architecture
"Concurrency"

Source: http://www.slideshare.net/thobe/nosql-for-dummies

7

Couchbase
NoSQL Survey
1. Flexibility (49%)
2. Scalability (35%)
3. Performance (29%)

8

Extending the scope of RDBMs
 Data Partitioning ("sharding")
 + Enables scalability
 - Difficult process
 - No-cross shard joins
 - Schema management on every shard

 Denormalizing
 + Increases speed
 + Provides flexibility to sharding
 - Eliminates relational query benefits

 Distributed Caching
 + Accelerated reads
 + Scale out : ability to serve larger number of requests
 - Another tier to manage

9

RDMBS

Not a "One Shoe fits all"
solution

Oracle has tried it

Need something different

10

Fundamental Concepts
ACID and CAP (A Quick Review)

11

ACID

 Atomicity * Consistency * Isolation * Durability

 Set of properties that guarantee that database transactions are processed
reliably

 Example:

 Transfer of funds from one bank account to another (lower the FROM account
and raise the TO account)

12

CAP
 It is impossible in a for a distributed computer system to simultaneously provide
all three of the following guarantees

 Cluster : A distributed network of nodes which acts as a gateway to the user

• Consistency
• Data is consistent across all the nodes of the cluster.

• Availability

• Ability to access cluster even if nodes in cluster go down.

• Partition Tolerance
• Cluster continues to function even if there is a “partition” between two nodes.

13

CAP

14

Categorization

15

What is different?
What is NoSQL database technology

16

Design Features
 Data Model
 No schema enforced by database - "Schemaless"

 Four major categories
 Key/Value stores

 Document Stores

 Columnar stores

 Graph Databases

17

Key Value Stores
Redis

BDB

Memcached

Membase

Voldemort

Dynamo

At the core all NoSQL databases are
key/value systems, the difference is whether
the database understands the value or not.

18

Key Value Stores - examples

• In memory / on disk
• Key/Value pair storage
• Purpose: Caching

• Persistent In-memory
• Key/Value pair storage
• Provides special data structures
• pub/sub capabilities.
• Purpose: Caching and beyond

• In memory / on disk
• Key/Value pair storage
• Transactional support
• Purpose: Lightweight DB

• Disk-based with built in memcache
• Cache refill on restart
• Highly Available (replication)
• Add/Remove live cluster
• Purpose: Caching

19

Document
Stores
MongoDB, Couchbase

• DB understands values
• Data store in JSON/XML/BSON objects
• Secondary Indexes possible
• Schemaless
• Query on attributes inside values possible

20

Document Stores - examples

• memcached + couchDB
• Data stored as JSON objects
• Autosharding (replication)*
• Highly Available
• Create indexes, views.
• Query against indexes.
• Native support for map-reduce

• Data stored as BSON
• Very easy to get started
• Disk based with in-memory caching
• Auto-sharding*
• Supports Ad-hoc queries
• Native support for map-reduce.

* Auto-sharding - As system load changes, assignment of data to shards is rebalanced automatically
21

Column
Oriented Stores
Cassandra

• DB understands values
• You don't need to model all the columns required by your

application upfront.
• Technically It's a partitioned row store, where rows are organized

into tables with a required primary key.

source: http://stackoverflow.com
22

Column Family :: table

Dynamic Columns

http://www.datastax.com/docs/0.8/ddl/index 23

Column oriented store - examples

• Open source clone to Google's
BigTable

• Runs only on top of HDFS
• CP based system

• Modeled after Google's BigTable
• Clustered like Dynamo
• Good cross datacenter support
• Supports efficient queries on

columns
• Eventually consistent
• AP based system

24

Graph
Databases
Neo4J, GraphDB, Pregel

source: http://stackoverflow.com

• Apply Graph Theory to the storage of
information about the relationship
between entries

• Used for recommendation engines.

25

Wait for
more in the
Graph DB
presentation!

• Disk-based system
• External caching required
• Nodes, relationships and paths
• Properties on nodes
• Complex query on relations

Graph DB - example

26

27

In-house solutions

• No schema required before inserting data
• No schema change required to change data format
• Auto-sharding without application participation
• Distributed queries
• Integrated main memory caching
• Data Synchronization (multi-datacenter)

28

Case Studies
Amazon's Dynamo and Google's Bigtable

29

Google's BigTable
30

BigTable
 Designed to scale.

 And the scale we are talking is of Petabytes!

 A distributed store for managing structured data.

 Three dimensional Table structure.

 Uninterpretated bytes storage.

 CP - Choses Consistency over Availability in the case of network partitioning (CAP
theorem)

 Basically, it is just a sparse, distributed, persistent sorted map store.

31

 Sparse

 Most of the columns are empty

 Persistent

 Data gets stored permanently in the disk

 Sorted

 Data kept in heirarchical fashion

 Spatial Locality

 Consistent

• sparse
• distributed
• scalable
• persistent
• sorted
• consistent
• map store

Features

32

Tablet
dimensions
1. Rows

2. Column Families

3. Timestamps

BigTable's basic data storage structure

Tablet :
BigTable's basic
unit of storage

33

Sparsity demonstrated in the table

Storage
Hierarchy

BigTable indexing hierarchy

Metadata tablet

Root tablet

Chubby file

Tablet

34

Optimizations
• Bloom Filters

• Caching

Bloom Filter : Drastically reduces the number of disk
seeks required for read!

35

Optimizations
Higher Level Cache

• For scenarios where
same data is read
repeatedly

Lower Level Cache

• For spatial locality

• Bloom Filters

• Caching

36

GFS

HLC

LLC

Tablet Server

Google File System

Amazon DynamoDB
37

Amazon DynamoDB

Motivation:

 “ Customers should be able to view and add items to their shopping cart even if
network routes are broken or data centers are being destroyed by tornadoes.”

AP: It chooses availability over consistency in the case of network
partitioning

38

Features

 Highly Available key-value

 High performance (low latency)

 Highly scalable (hundreds of nodes)

 "Always on" available (esp. for writes)

 Partition/Fault-tolerant

 Eventually consistent

39

Key Techniques

 Consistent Hashing

 For data partitioning, replicating and load balancing

 Sloppy Quorums

 Boosts availability in present of failures

40

Consistent
Hashing
Sharding

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

41

Consistent
Hashing
Dynamically add nodes

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

42

Consistent
Hashing
Dynamically remove nodes

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

43

Consistent
Hashing
load balancing

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

44

Replication
N = 3

45

Sloppy Quorums

 - R number of nodes that need to participate in read

 - W number of nodes that need to participate in write

 - R + W > N (a quorum system)

Availability in presence of failures

Dynamo:

 W = 1 (Always available for write)

 Yields R=N(reads pay penality)

 Typical: R=2, W=2, N=4

46

Dynamo Summary
 An eventually consistent highly available key/value store

 AP in CAP space

 Focuses on low latency, SLAs

 Very low latency writes, reconciliation in reads

 Key techniques used in many other distributed systems

 Consistent hashing, (sloppy) quorum-based replication, vector clocks, gossip-based membership,
merkel tree synchronization

47

Project Summary
To be SQL or Not to be SQL

48

Bright future of
NoSQL
Companies using NoSQL

- Google

- Facebook

- Amazon

- Twitter

- Linkedin

... many many more.

49

Conclusion
 Even NoSQL - Not a "One Size fits all" kinda shoe.

 Shoe horning your database is just bad, bad, bad!

 Use when
 Data schema keeps on varying often
 Scalability really becomes an issue
 Not to use when
 The data is inherently relational
 Lots of complex queries to write
 You need good helping resources
 eg. debugger, performance tools

50

References - 1
 Dynamo: amazon's highly available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles (SOSP '07). ACM, New York, NY, USA,
205-220

 Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst. 26, 2,
Article 4 (June 2008). Fay Chang et. al

 http://docs.mongodb.org/manual/core/sharding-introduction

 http://mongodb.com/learn/nosql"http://www.mongodb.com/learn/nosql

 http://www.cs.rutgers.edu/~pxk/417/notes/content/bigtable.html

 http://en.wikipedia.org/wiki/ACID

51

References - 2
 http://www.slideshare.net/mongodb/mongodb-autosharding-at-mongo-seattle

 http://www.slideshare.net/danglbl/schemaless-
databases"http://www.slideshare.net/danglbl/schemaless-databases

 http://infoq.com/presentations/NoSQL-Survey-
Comparison"www.infoq.com/presentations/NoSQL-Survey-Comparison

 http://info.mongodb.com/rs/mongodb/images/10gen_Top_5_NoSQL_Considerations.pdf

 http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-
for.html

 http://technosophos.com/2014/04/11/nosql-no-more.html

52

Questions

Backup Slides
Basic Concepts

• Trees

• Graphs

• Key-value

• XML

• etc.

Any storage
model other
than tabular
relations.

12

Auto-sharding

TODO:
http://www.scalebase.com/

extreme-scalability-with-
mongodb-and-mysql-part-

1-auto-sharding/

Impedence Mismatch
 You break structured data into pieces and spread it across different tables.

 leads to object relational mapping

 lots of traffic => buy bigger boxes. Lot of small boxes. SQL was designed to run on
single box.

Key Techniques

 Consistent Hashing
 For data partitioning, replicating and load

balancing

 Sloppy Quorums
 Boosts availability in present of failures

 Vector Clocks
 For tracking casual dependencies among different

versions of the same key (data)

 Gossip-based group membership protocol
 For maintaining information about live nodes

 Anti-entropy protocol using hash/merkle trees
 Background synchronization of divergent replicas

46

Availability

 Consistent Hashing

Replication and partitioning

48

Vector Clocks
Tracking causal dependencies

49

Gossip and Anti-
entropy

Merkel Trees
 Each node keeps a merkel tree for each of
its key ranges

 Compare the root of the tree with replicas
 if equal => replicas in synch
 Traverse the tree and synch those keys that differ

Synchronization and book-keeping
of live nodes

Membership:

 Node contacts a random node every 1s.

 Gossip used for exchanging and
partitioning/placement metadata

51

Merkel Trees

Atomicity

 Atomicity requires that each
transaction is "all or nothing"

ACID

26

Consistency

 The consistency property ensures that
any transaction will bring the database
from one valid state to another valid
state.

ACID

27

b

a+b

a+b-10

Isolation

 The isolation property ensures that the
concurrent execution of transactions results in
a system state that would be obtained if
transactions were executed serially, i.e. one
after the other.

ACID

28

Durability

 Durability means that once a
transaction has been committed, it
will remain so, even in the event of
power loss, crashes, or errors

ACID

29

• sparse
• distributed
• scalable
• persistent
• sorted
• map store

Features Persistent
 Data gets stored permanently in

the disk

 Sorted
 Data kept in heirarchical fashion
 Spatial Locality

 Map Store
 Just a collection of (key, value)

pairs

40

BASE

 An alternative to ACID

• Basically Available
• Support partial failures without total system failure.

• Soft state
• optimistic and accepts that consistency will be in state of flux.

• Eventual Consistency
• Given a sufficiently long period of time over which no changes are sent, all updates can be

expected to propagate eventually.

33

