

1

Goal of the presentation is to give an introduction of NoSQL databases, why they are
there.

We want to present "Why?" first to explain the need of something like "NoSQL" and
then in "What?" we go in detail.

In addition there are lots and lots of NoSQL databases available, we have chosen
some widely used databases in the industry.
We think it's important that one should be aware of these databases and have the
basic understanding of why they exist, and how they are different.

2

Justify their usage. Let's look at new trends in recent years.

3

1. Each year more and more data is created. Over two years we create more digital
data than all the data created in history before that!
2. The rigidly defined, schema-based approach used by relational databases makes it
impossible to quickly incorporate new types of data.
3. RDBMs are really good at transactions. perfected over the years. but huge amount
of data today doesn't require transactional properties.
3. NoSQL provides a data model that maps better to these needs.

4

1. Data now has much more complex relations. It has evolved from hyptertext, RSS,
blogs(have backlinks) to highly complex social graphs.
2. No more efficient to represent in strict tables. - We need different data models.
Graph databases.

5

1. Relational databases are fundamentally centralized. 3-tier systems. Scale up
system.
2. To scale the application you add more web servers.
3. To support more concurrent users and/or store more data,
you need a bigger and bigger server with more CPUs, more memory, and more disk
storage to keep all the tables .
4. Maintaining this single server becomes a headache both in terms of man power
and cost.

6

Now we are moving towards distributed databases.
We'll talk more about this later - ACID properties. Relational databases aims for
consistency .
In a distributed environment we need to make a choice because of CAP.

7

A survey done by couchbase.com shows that the major reason for choosing NoSQL
databases are Flexibility and Scalability.

8

lots of traffic => buy bigger boxes. Lot of small boxes. SQL was designed to run on
single box.

1. SQL databases are very reliable and mature technologies.
People have tried to extend the scope by changing SQL databases to adapt to the
new trends that we saw.
Distributed caching - offload reads, in memory cached, using memcached over SQL
server. (highly common, lot of big companies use it)
Example: Zynga - roughly 600 memcached databases over 400 SQL databases.
Massive software - difficult management.

9

Lot of vendors have tried to extend the scope but what's evident is that one solution
is not enough.

10

11

Will spend a minute or two on ACID slides, basically a very quick review.

12

Single machines: partition tolerance is irrelevant. consistency and availability can be
achieve on a single machine.

Consistency: so you can read or write to/from any node and get the same data.

13

We will not spend much time on this, since there is a group that's presenting CAP in
quite a detail. Only thing to take from this slide is that all three properties cannot be
achieved at the same time.

14

An illustration to show where most of the NoSQL and Relational databases lie on the
CAP spectrum.

It is interesting to see that the databases following CA model are primarily relational
databases, this is because, they are not built for partitioning and distributed
structure.

NoSQL databases either show CP model or AP model. We will discuss a single
database from each as our case study.

15

Not just SQL

16

1. A paradigm shift from the traditional data model. SQL databases enforce a strict
schema, whereas NoSQL databases has a week notion of schema.
At the core all NoSQL databases are key/value systems, the difference is whether the
database understands the value or not.
Different type of NoSQL databases have different properties. We'll see four major
data models in a minute.
2. As we are moving towards distributed databases and not all the data is
transactional we need a separate set of guarantees.

17

1. Key/Value stores don't understand the data in value. To query a key/value database
you must have the key.
2. Redis is a very popular database with support of special data structures where
values are of special kind. It can perform common operations on the provided
dataset.
3. Another database that deserves a mention here is membase. It's an in-memory
only database. Disk-based, fill cache, ADD/Remove nodes on the fly.
So you have datastores with different features like only in-memory, persistent,
support for data structures -> this shows amount of diversity in NoSQL databases.

18

1. Key/Value stores don't understand the data in value. To query a key/value database
you must have the key.
2. Redis is a very popular database with support of special data structures where
values are of special kind. It can perform common operations on the provided
dataset.
So you have datastores with different features like only in-memory, persistent,
support for data structures -> this shows amount of diversity in NoSQL databases.
3. Apache Dynamo is also one of them, which we will discuss in detail as a case study.

19

Instead of Value the database takes in a document which is semi structured
data. Some use JSON, some XML and other BSON.

20

1. BSON - binary version of JSON objects. Higher performance on the wire and
compact storage .

2. In couchbase you need to materialize views to make ad-hoc queries. Declare what
your indexes will be, you can query.
MongoDB doesn't require xanti declaration of indexes to query.
Ad-hoc queries are queries that are created on the fly with a variable parameters.

21

Concept is still the same. Key -> Value
Notion of column forms - i.e, instead of writing the whole document at a single
physical location the document is now written split across these column
forms/families.
Say a document has 10 columns or 10 attributes: you could write subsets of columns
at particular locations so that queries on those columns are answered faster. This
works well for predefined schema - HP Vertica.
Cassandra is a little different from this type of storage. Cassandra writes these to
different family objects which by themselves are column dependent stores. This is
driven not by the schema but by the queries that are expected to be answered.

22

BigTable coined the column oriented structure.

Joins as in relational databases is not supported. Usually different column family
objects are there in a keyspace, each supporting one or more queries. To achieve the
effect of joins, some extent of denormalization is necessary.

23

1. HBase runs only on top of HDFS while Cassandra can run on various file systems
2. Both are modeled as per BigTable's model
3. CP : Handles Consistency, Partioning out of the three in CAP.
4. AP : Handles Availability, Partioning out of the three in CAP.

Cassandra supports reads and writes in case of network partition and patches it up
later thus resulting in eventual consistency whereas Couchbase prevents these
network partitioned writes thus maintaining consistency at any time.

24

Concept is still the same. Key -> Value

25

When performing a write transaction on a slave each write operation will be

synchronized with the master (locks will be acquired on both master and

slave). When the transaction commits it will first be committed on the master

and then, if successful, on the slave. To ensure consistency, a slave has to be

up to date with the master before performing a write operation

26

Couchbase = Membase(front backend for HA)+ CouchDB (deeper backend to provide
query functionality)
BDB can be setup as a persistent database. Depends on the config. Mostly used as
embedded database.
BDB when compared to membase has much much lower concurrency rates
supporting only in the lower tens.
Also membase is memcached cluster compatible whereas there is no implemented
notion of bdb cluster.

27

To address above problems lot of big companies developed their in-house solutions.
Non-relational, cluster friendly, open-source,

28

29

30

Structured because data is stored in an indexed map.

3-dimensional structure because it is just a large map that is indexed by a row key,
column key, and a timestamp, which act as the dimensions. Will be more clear in the
next slide.

Uninterpretated becuase Each value within the map is just an array of bytes that is
eventually interpreted by the application.

Consistency over Availability: BigTable will preserve the guarantees of its atomic
reads and writes by refusing to respond to some requests. It may decide to shut
down entirely (like the clients of a single-node data store), refuse writes (like Two-
Phase Commit), or only respond to reads and writes for pieces of data whose
“master” node is inside the partition component (like Membase).It responds only
after having quorom of locks [Paxos] which is managed by Chubby. [not in current

31

scope]

31

Sparse : The table is sparse, meaning that different rows in a table may use different
columns, with many of the columns empty for a particular row.

Distributed : BigTable's data is distributed among many independent machines. At
Google, BigTable is built on top of GFS (Google File System). The Apache open source
version of BigTable, HBase, is built on top of HDFS (Hadoop Distributed File System) or
Amazon S3. The table is broken up among rows, with groups of adjacent rows
managed by a server. A row itself is never distributed.

Scalable : Without changing applications, more and more nodes can be added to the
network to make the cluster more scalable.

Sorted
 A key is hashed to a position in a table. BigTable sorts its data by keys. This helps
keep related data close together, usually on the same machine — assuming that one
structures keys in such a way that sorting brings the data together. For example, if

32

domain names are used as keys in a BigTable, it makes sense to store them in reverse
order to ensure that related domains are close together.
map A map is an associative array; a data structure that allows one to look up a value
to a corresponding key quickly. BigTable is a collection of (key, value) pairs where the
key identifies a row and the value is the set of columns.

32

A table is indexed by rows. Each row contains one or more named column families.
Column families are defined when the table is first created. Within a column family,
one may have one or more named columns. All data within a column family is usually
of the same type.

The implementation of BigTable usually compresses all the columns within a column
family together. Columns within a column family can be created on the fly. Rows,
column families and columns provide a three-level naming hierarchy in identifying
data.
To get data from BigTable, you need to provide a fully-qualified name in the form
column-family:column.

33

Chubby is a highly available and persistent distributed lock service that manages
leases for resources and stores configuration information.
In BigTable, Chubby is used to:
• ensure there is only one active master
• store the bootstrap location of BigTable data
• discover tablet servers
Locating rows within a BigTable is managed in a three-level hierarchy. The root (top-
level) tablet stores the location of all Metadata tablets in a special Metadata tablet.
Each Metadata table contains the location of user data tablets. This table is keyed by
node IDs and each row identifies a tablet's table ID and end row. For efficiency, the
client library caches tablet locations.

34

Need of Bloom Filters:

 Typically, a read operation has to read from the user tables that make up the state of
a tablet. If these are not in memory , we may end up doing many disk accesses. We
reduce the number of accesses by allowing clients to specify that Bloom filters should
be created for these user tables. A Bloom filter allows us to ask whether an user table
might contain any data for a specified row/column pair. Thus, a small amount of
tablet server memory used for storing Bloom filters drastically reduces the number of
disk seeks required for read operations. Interesting, isn't it!

35

To improve read performance, tablet servers use two levels of caching.

The Scan Cache is a higher level cache that caches the key-value pairs returned by the
user table interface to the tablet server code. It is most useful for applications that
tend to read the same data repeatedly.

The Block Cache is a lower-level cache that caches row blocks that were read from
GFS. It is useful for applications that tend to read data that is close to the data they
recently read (e.g., sequential reads, or random reads of different columns in the
same locality group within a hot row)

36

37

DynamoDB is database from amazon that they designed to solve their availability
issues. Lot of their services didn't need transactional capabilities, and they required
simple key value access. They were ready to tolerate some inconsistency (for
example, an item may appear in the shopping cart after you have deleted it), however
you should always be able to add items to the shopping cart even in presence of
failures.

38

low latency, SLA (service level agreement) of serving 99.9% of requests with response
within 300ms at a max rate of 500req/sec

39

Key techniques that the dynamo chooses.

40

Dynamo uses consistent hashing to distribute content to nodes. Ring is the core of
consistent hashing. In consistent hashing you map your data to points on ring.
Ring is divided into regions and each region is then mapped to physical servers.

However this approach may lead to load imbalance.

allows you to have diverse set of machines by assigning diff. virtual nodes. Moreover
it allows you add/remove nodes on the fly.

41

adding a node requires on an average 1/n+1 nodes to move.

42

Removing a node requires only content of removed node to be shifted.

43

Dynamo uses virtual nodes where multiple virtual nodes are assigned to physical
nodes. This helps in balancing of load

44

Now we know how to distribute data. Consistent hashing also makes it easier to
replicate data. Simply choose next two nodes in the cycle and replicate the data to
those nodes.
In the above figure N = 3. So the data is replicated to total 3 nodes. In the given
example, if the hash maps to 3, then it lies in the region of A. We put the data in A,
now we follow the cycle and replicate the data to two more available nodes.

45

"Sloppy quorums" choose the first N healthy nodes. This may lead to inconsistencies.
Strict quorum systems become unavailable in case of simplest of failures, so sloppy
quorums are used.

46

Key ranges because one tree per key range. Merkel tree used for synchronizing
replicas.

Each node keep route information to all other nodes. Routing can be done by load
balancer or client library.
Using client lib. it directly goes the node in the "preference list", however in case of
load balancer - node routes the request to first node in list
Also uses unreliable failure detection to identify failed nodes. Keeps checking in case
of partitions also...built into the nodes and not a separate entities.

47

48

Hot topic in tech industry
More and more companies handling a lot of data are adding NoSQL to their workflow

49

50

51

52

53

54

1. Social networks are often persisted in the form of trees and graphs.

2. Other NoSQL models resemble storing blobs against a key or even a complete XML
documents against a key.

3. The main characterstic of these models are that they do not interact with each
other unlike relations. Here model can be referred to the data structure used for the
data storage in the database. By interacting, we mean that one data structure is
independent in itself. It would never need to "join" with other data structure to get
any other data.

55

56

57

Key techniques that the dynamo chooses.

58

59

Each write to a key K is associated with a vector clock VC(K)
Track the version of data.

60

Key ranges because one tree per key range. Merkel tree used for synchronizing
replicas.

Each node keep route information to all other nodes. Routing can be done by load
balancer or client library.
Using client lib. it directly goes the node in the "preference list", however in case of
load balancer - node routes the request to first node in list
Also uses unreliable failure detection to identify failed nodes. Keeps checking in case
of partitions also...built into the nodes and not a separate entities.

61

62

In an atomic transaction, a series of database operations either all occur, or nothing
occurs. A guarantee of atomicity prevents updates to the database occurring only
partially, which can cause greater problems than rejecting the whole series outright.

Atomicity is said to be fulfilled in the example if either A and B both occur or neither
of A or B occurs, i.e. all or none.

63

Consistency of the transaction in the above example requires that the total sum of A
and B remain constant before and after the transaction. If after transactions, the total
sum of A and B becomes a+b-10, then the database is not consistent.

64

Concurrency control comprises the underlying mechanisms in a DBMS which handles
isolation and guarantees related correctness. It is heavily utilized by the database and
storage engines both to guarantee the correct execution of concurrent transactions.
(All discussed in detail in the class)

65

http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/DBMS

Durability is the ACID property which guarantees that transactions that have
committed will survive permanently. For example, if a flight booking reports that a
seat has successfully been booked, then the seat will remain booked even if the
system crashes.

66

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Database_transaction

Sorted
 A key is hashed to a position in a table. BigTable sorts its data by keys. This helps
keep related data close together, usually on the same machine — assuming that one
structures keys in such a way that sorting brings the data together. For example, if
domain names are used as keys in a BigTable, it makes sense to store them in reverse
order to ensure that related domains are close together.
map A map is an associative array; a data structure that allows one to look up a value
to a corresponding key quickly. BigTable is a collection of (key, value) pairs where the
key identifies a row and the value is the set of columns.

67

According to CAP you can pick only two of the alternatives.

BASE focuses on Availability and Partition tolerance whereas ACID focuses on
Consistency and Availability.

68

