Trends in NoSQL

Technologies

Database Systems, CS386D
Instructor: Don Batory

Ankit, Prateek and Dheeraj

Fundamental Concepts
Why NoSQL?

What is NoSQL?
NoSQL Taxonomy

Case Studies

Project Summary

References

Goal of the presentation is to give an introduction of NoSQL databases, why they are
there.

We want to present "Why?" first to explain the need of something like "NoSQL" and
then in "What?" we go in detail.

In addition there are lots and lots of NoSQL databases available, we have chosen
some widely used databases in the industry.

We think it's important that one should be aware of these databases and have the
basic understanding of why they exist, and how they are different.

Why NoSQL?

New Trends

Justify their usage. Let's look at new trends in recent years.

Growth in data

"Big Data" + "Unstructued data"

Unstructured and
Semi-Structured Data

Text, Log Files,
Click Streams,
T 06 Blogs, Tweets,
- Audio, Video, etc.

Structured Data

2000

Source: http://www.couchbase.com

4

1. Each year more and more data is created. Over two years we create more digital
data than all the data created in history before that!

2. The rigidly defined, schema-based approach used by relational databases makes it
impossible to quickly incorporate new types of data.

3. RDBMs are really good at transactions. perfected over the years. but huge amount
of data today doesn't require transactional properties.

3. NoSQL provides a data model that maps better to these needs.

Connectedness

"Social networks"

Source: http://http://tjm.org/

5

1. Data now has much more complex relations. It has evolved from hyptertext, RSS,

blogs(have backlinks) to highly complex social graphs.
2. No more efficient to represent in strict tables. - We need different data models.

Graph databases.

= 9= 9

Application Scales Out
Just add more commodity web servers

Architecture

"Concurrency"

Application Response Time

Users

Database Scales Up
Get a bigger, more complex server

e Time

Application Respons

Source: http://www.couchbase.com

6

1. Relational databases are fundamentally centralized. 3-tier systems. Scale up
system.

2. To scale the application you add more web servers.

3. To support more concurrent users and/or store more data,

you need a bigger and bigger server with more CPUs, more memory, and more disk
storage to keep all the tables .

4. Maintaining this single server becomes a headache both in terms of man power
and cost.

e L - .
Application Scales Out

Just add more commodity web servers

B s Il Architecture

Application Response Time

NoSQL Database Servers

b b b) 2

Database Scales Out
Just add more commodity data servers

Users

Application Response Time

Source: http://www.slideshare.net/thobe/nosql-for-dummies

7

Now we are moving towards distributed databases.

We'll talk more about this later - ACID properties. Relational databases aims for
consistency .

In a distributed environment we need to make a choice because of CAP.

What is the biggest data management problem
driving your use of NoSQL in the coming year?

Lack of flexibility/rigid schemas

Inability to scale out data

High latency/low performance

Costs

All of these

Other

Soures: Couchbase NoSOL Survey, December 2011, n=1351

Couchbase
NoSQL Survey

1. Flexibility (49%)
2. Scalability (35%)
3. Performance (29%)

A survey done by couchbase.com shows that the major reason for choosing NoSQL

databases are Flexibility and Scalability.

Extending the scope of RDBMs

Data Partitioning ("sharding")
+ Enables scalability
- Difficult process
- No-cross shard joins
- Schema management on every shard

Denormalizing
+ Increases speed
+ Provides flexibility to sharding
- Eliminates relational query benefits

Distributed Caching
+ Accelerated reads
+ Scale out : ability to serve larger number of requests
- Another tier to manage

lots of traffic => buy bigger boxes. Lot of small boxes. SQL was designed to run on
single box.

1. SQL databases are very reliable and mature technologies.

People have tried to extend the scope by changing SQL databases to adapt to the
new trends that we saw.

Distributed caching - offload reads, in memory cached, using memcached over SQL
server. (highly common, lot of big companies use it)

Example: Zynga - roughly 600 memcached databases over 400 SQL databases.
Massive software - difficult management.

Lot of vendors have tried to extend the scope but what's evident is that one solution

is not enough.

RDMBS

Not a "One Shoe fits all"
solution

Oracle has tried it

Need something different

10

Fundamental Concepts

11

Atomicity * Consistency * Isolation * Durability

Set of properties that guarantee that database transactions are processed
reliably

Example:

Transfer of funds from one bank account to another (lower the FROM account
and raise the TO account)

12

Will spend a minute or two on ACID slides, basically a very quick review.

12

It is impossible in a for a distributed computer system to simultaneously provide
all three of the following guarantees

Cluster : A distributed network of nodes which acts as a gateway to the user

* Consistency
* Datais consistent across all the nodes of the cluster.

* Availability
* Ability to access cluster even if nodes in cluster go down.

* Partition Tolerance
* Cluster continues to function even if there is a “partition” between two nodes.

13

Single machines: partition tolerance is irrelevant. consistency and availability can be
achieve on a single machine.

Consistency: so you can read or write to/from any node and get the same data.

Consistency

«CA

AP Partition

Availability roleriiice

14

We will not spend much time on this, since there is a group that's presenting CAP in
quite a detail. Only thing to take from this slide is that all three properties cannot be
achieved at the same time.

14

Visual Guide to NoSQL Systems

évailahilily; Relational (comparison)

ach client can

always read Data Models | Key-Value

and write Column-Oriented/Tabular
' Document-Oriented

Categorization

CA

RDBMSs Aster Data
(MySQL, Greenplum
Postgres, Vertica

AP

Dynamo Cassandra
Voldemort SimpleDB
Tokyo Cabinet CouchDB

etc) KAl Riak
Consistency: cpP Partition Tolerance:
The system works
:gv‘:';?elss:l;:ﬁew BigTable MongoDB Berkeley DB well ‘,Zpi,e physical
of the data. Hypertable Terrastore MemcacheDB network partiions.

Hbase Scalaris dis
cofy

An illustration to show where most of the NoSQL and Relational databases lie on the
CAP spectrum.

It is interesting to see that the databases following CA model are primarily relational
databases, this is because, they are not built for partitioning and distributed
structure.

NoSQL databases either show CP model or AP model. We will discuss a single
database from each as our case study.

What is different?

Not just SQL

16

Data Model

No schema enforced by database - "Schemaless”

Four major categories
Key/Value stores
Document Stores
Columnar stores
Graph Databases

17

1. A paradigm shift from the traditional data model. SQL databases enforce a strict
schema, whereas NoSQL databases has a week notion of schema.

At the core all NoSQL databases are key/value systems, the difference is whether the
database understands the value or not.

Different type of NoSQL databases have different properties. We'll see four major
data models in a minute.

2. As we are moving towards distributed databases and not all the data is
transactional we need a separate set of guarantees.

17

At the core all NoSQL databases are
key/value systems, the difference is whether
the database understands the value or not.

Key Value Stores

Key N Key A\
f—\ o ———————— . {
Opaque Blob
Binary List
Value Set
Hash
-« -

18

1. Key/Value stores don't understand the data in value. To query a key/value database
you must have the key.

2. Redis is a very popular database with support of special data structures where
values are of special kind. It can perform common operations on the provided
dataset.

3. Another database that deserves a mention here is membase. It's an in-memory
only database. Disk-based, fill cache, ADD/Remove nodes on the fly.

So you have datastores with different features like only in-memory, persistent,
support for data structures -> this shows amount of diversity in NoSQL databases.

18

Persistent In-memory
Key/Value pair storage
Provides special data structures
pub/sub capabilities.

Purpose: Caching and beyond

* Inmemory/ on disk
ORACLE « Key/Value pair storage
BERKELEY DB + Transactional support .

* Purpose: Lightweight DB red 'S

Disk-based with built in memcache

* Inmemory / on disk f— b » Cache refill on restart
+ Key/Value pair storage ,._\mem CSE -+ Highly Available (replication)
AERERETED * Purpose: Caching * Add/Remove live cluster
* Purpose: Caching
19

1. Key/Value stores don't understand the data in value. To query a key/value database
you must have the key.

2. Redis is a very popular database with support of special data structures where
values are of special kind. It can perform common operations on the provided
dataset.

So you have datastores with different features like only in-memory, persistent,
support for data structures -> this shows amount of diversity in NoSQL databases.

3. Apache Dynamo is also one of them, which we will discuss in detail as a case study.

19

DB understands values

Data store in JSON/XML/BSON objects
Secondary Indexes possible

Schemaless DOCU ment
Query on attributes inside values possible Sto res

“string” : “string”;
"string” s value;

20

Instead of Value the database takes in a document which is semi structured
data. Some use JSON, some XML and other BSON.

20

ﬁ “ mongoDB

CoucHBase
* memcached + couchDB + Data stored as BSON
+ Data stored as JSON objects * \Very easy to get started
* Autosharding (replication)* + Disk based with in-memory caching
+ Highly Available * Auto-sharding*
* Create indexes, views. * Supports Ad-hoc queries
* Query against indexes. * Native support for map-reduce.

* Native support for map-reduce

* Auto-sharding - As system load changes, assignment of data to shards is rebalanced automatically
21

1. BSON - binary version of JSON objects. Higher performance on the wire and
compact storage .

2. In couchbase you need to materialize views to make ad-hoc queries. Declare what
your indexes will be, you can query.

MongoDB doesn't require xanti declaration of indexes to query.

Ad-hoc queries are queries that are created on the fly with a variable parameters.

21

= DB understands values

* You don't need to model all the columns required by your
application upfront.

= Technically It's a partitioned row store, where rows are organized
into tables with a required primary key.

Normal column family:
row
col col col ...
val val val ...

Super column family:

row
supercol supercol
(sub)col (sub)col ... (sub)col (sub)col ...
val val ses val val

source: http://stackoverflow.com
22

Column
Oriented Stores

Column 1

Column 2 —

Column 3
(not present)

Concept is still the same. Key -> Value

Notion of column forms - i.e, instead of writing the whole document at a single
physical location the document is now written split across these column

forms/families.

Say a document has 10 columns or 10 attributes: you could write subsets of columns
at particular locations so that queries on those columns are answered faster. This

works well for predefined schema - HP Vertica.

Cassandra is a little different from this type of storage. Cassandra writes these to
different family objects which by themselves are column dependent stores. This is
driven not by the schema but by the queries that are expected to be answered.

22

Column Family :: table blog keyspace

blog relational database ok =
B oo | petis | ceor |

Dynamic Columns
23 http://www.datastax.com/docs/0.8/ddl|/index

BigTable coined the column oriented structure.

Joins as in relational databases is not supported. Usually different column family
objects are there in a keyspace, each supporting one or more queries. To achieve the
effect of joins, some extent of denormalization is necessary.

23

Open source clone to Google's
BigTable
Runs only on top of HDFS

(3

oy
cassandra

Modeled after Google's BigTable
Clustered like Dynamo
Good cross datacenter support

* CP based system Supports efficient queries on
columns
+ Eventually consistent

* AP based system

24

1. HBase runs only on top of HDFS while Cassandra can run on various file systems
2. Both are modeled as per BigTable's model

3. CP : Handles Consistency, Partioning out of the three in CAP.

4. AP : Handles Availability, Partioning out of the three in CAP.

Cassandra supports reads and writes in case of network partition and patches it up
later thus resulting in eventual consistency whereas Couchbase prevents these
network partitioned writes thus maintaining consistency at any time.

24

* Apply Graph Theory to the storage of
information about the relationship
between entries

+ Used for recommendation engines.

source: http://stackoverflow.com
25

Concept is still the same. Key -> Value

Graph
Databases

25

Graph DB - example Wait for

more in the
o . Graph DB
| Ne°4.] presentation!

O

* Disk-based system

* External caching required

* Nodes, relationships and paths

* Properties on nodes
* Complex query on relations

26

When performing a write transaction on a slave each write operation will be
synchronized with the master (locks will be acquired on both master and
slave). When the transaction commits it will first be committed on the master
and then, if successful, on the slave. To ensure consistency, a slave has to be
up to date with the master before performing a write operation

NoSQL catalog

Key-Value Data Structure Document Column Graph
= ™
| W =
@
S g memcached redis
S E
v
E
.| @ (=) K
§ 3 membase couchbase cassandra Neodj
S5
-
E ORACLE’
BERKELEY DB
mongoDB

27

Couchbase = Membase(front backend for HA)+ CouchDB (deeper backend to provide
guery functionality)

BDB can be setup as a persistent database. Depends on the config. Mostly used as
embedded database.

BDB when compared to membase has much much lower concurrency rates
supporting only in the lower tens.

Also membase is memcached cluster compatible whereas there is no implemented
notion of bdb cluster.

27

In-house solutions

Google amazoncom Linked [T

* No schema required before inserting data

* No schema change required to change data format
* Auto-sharding without application participation

+ Distributed queries

* Integrated main memory caching

+ Data Synchronization (multi-datacenter)

28

To address above problems lot of big companies developed their in-house solutions.
Non-relational, cluster friendly, open-source,

Case Studies

Amazon's Dynamo and Google's Bigtable

29

Y . ”
" BE R YN
fioit Lk ol

DY e SN G

Google's BigTable

30

BigTable

Designed to scale.
And the scale we are talking is of Petabytes!

A distributed store for managing structured data.
Three dimensional Table structure.
Uninterpretated bytes storage.

CP - Choses Consistency over Availability in the case of network partitioning (CAP
theorem)

Basically, it is just a sparse, distributed, persistent sorted map store.

31

Structured because data is stored in an indexed map.

3-dimensional structure because it is just a large map that is indexed by a row key,
column key, and a timestamp, which act as the dimensions. Will be more clear in the
next slide.

Uninterpretated becuase Each value within the map is just an array of bytes that is
eventually interpreted by the application.

Consistency over Availability: BigTable will preserve the guarantees of its atomic
reads and writes by refusing to respond to some requests. It may decide to shut
down entirely (like the clients of a single-node data store), refuse writes (like Two-
Phase Commit), or only respond to reads and writes for pieces of data whose
“master” node is inside the partition component (like Membase).It responds only
after having quorom of locks [Paxos] which is managed by Chubby. [not in current

31

scope]

31

Sparse FeatUI"ES

Most of the columns are empty
sparse

Persistent . distributed
Data gets stored permanently in the disk . scalable
Sorted . persistent

Data kept in heirarchical fashion sorted

Spatial Locality

consistent
map store

Consistent

32

Sparse : The table is sparse, meaning that different rows in a table may use different
columns, with many of the columns empty for a particular row.

Distributed : BigTable's data is distributed among many independent machines. At
Google, BigTable is built on top of GFS (Google File System). The Apache open source
version of BigTable, HBase, is built on top of HDFS (Hadoop Distributed File System) or
Amazon S3. The table is broken up among rows, with groups of adjacent rows
managed by a server. A row itself is never distributed.

Scalable : Without changing applications, more and more nodes can be added to the
network to make the cluster more scalable.

Sorted

A key is hashed to a position in a table. BigTable sorts its data by keys. This helps
keep related data close together, usually on the same machine — assuming that one
structures keys in such a way that sorting brings the data together. For example, if

32

domain names are used as keys in a BigTable, it makes sense to store them in reverse
order to ensure that related domains are close together.

map A map is an associative array; a data structure that allows one to look up a value
to a corresponding key quickly. BigTable is a collection of (key, value) pairs where the
key identifies a row and the value is the set of columns.

32

rowkeys column family column family column family Ta blet .
(_H f_H (_Aﬁ A .

r Al
“language:” “contents:” anchor:cnnsi.com anchor:mylook.ca

o| omm[o Tmmrew ! BigTable's basic
g| omeme] o [| ow | ower unit of storage
3 com.cnn.www/TECH EN Eiz“—’:: I

BigTable's basic data storage structure

Tablet
dimensions

column_family: referring sites

1. Rows

com.aaa | “b.us

2. Column Families
com.cnnwww | “CNN" [“BBC" | “WIKI" | “GOOGLE"

3. Timestamps

Sparsity demonstrated in the table

33

A table is indexed by rows. Each row contains one or more named column families.
Column families are defined when the table is first created. Within a column family,
one may have one or more named columns. All data within a column family is usually
of the same type.

The implementation of BigTable usually compresses all the columns within a column
family together. Columns within a column family can be created on the fly. Rows,
column families and columns provide a three-level naming hierarchy in identifying
data.

To get data from BigTable, you need to provide a fully-qualified name in the form
column-family:column.

Storage
Hierarchy

Other METADATA
tablets

Root tablet
(1% METADATA tablet)

Tablet

Metadata tablet

BigTable indexing hierarchy ROOt ta blet

Chubby file

34

Chubby is a highly available and persistent distributed lock service that manages
leases for resources and stores configuration information.

In BigTable, Chubby is used to:

* ensure there is only one active master

* store the bootstrap location of BigTable data

» discover tablet servers

Locating rows within a BigTable is managed in a three-level hierarchy. The root (top-
level) tablet stores the location of all Metadata tablets in a special Metadata tablet.
Each Metadata table contains the location of user data tablets. This table is keyed by
node IDs and each row identifies a tablet's table ID and end row. For efficiency, the
client library caches tablet locations.

34

Keys to test Optimizations

. Bloom Filters

* Caching

Bloom Filter : Drastically reduces the number of disk
seeks requirgg for read!

Need of Bloom Filters:

Typically, a read operation has to read from the user tables that make up the state of
a tablet. If these are not in memory , we may end up doing many disk accesses. We
reduce the number of accesses by allowing clients to specify that Bloom filters should
be created for these user tables. A Bloom filter allows us to ask whether an user table
might contain any data for a specified row/column pair. Thus, a small amount of
tablet server memory used for storing Bloom filters drastically reduces the number of
disk seeks required for read operations. Interesting, isn't it!

35

Tablet Server

Higher Level Cache

s For scenarios where
same data is read
repeatedly

Optimizations

. Bloom Filters

* Caching

Lower Level Cache

* For spatial locality

Google File System
36

To improve read performance, tablet servers use two levels of caching.

The Scan Cache is a higher level cache that caches the key-value pairs returned by the
user table interface to the tablet server code. It is most useful for applications that
tend to read the same data repeatedly.

The Block Cache is a lower-level cache that caches row blocks that were read from
GFS. It is useful for applications that tend to read data that is close to the data they
recently read (e.g., sequential reads, or random reads of different columns in the
same locality group within a hot row)

36

£xmazon DynamoDB

Amazon DynamoDB

Amazon DynamoDB

Motivation:
“ Customers should be able to view and add items to their shopping cart even if
network routes are broken or data centers are being destroyed by tornadoes.”

AP: It chooses availability over consistency in the case of network
partitioning

38

DynamoDB is database from amazon that they designed to solve their availability
issues. Lot of their services didn't need transactional capabilities, and they required
simple key value access. They were ready to tolerate some inconsistency (for
example, an item may appear in the shopping cart after you have deleted it), however
you should always be able to add items to the shopping cart even in presence of

failures.

38

Highly Available key-value

High performance (low latency)
Highly scalable (hundreds of nodes) Featu res
"Always on" available (esp. for writes)
Partition/Fault-tolerant

Eventually consistent

39

low latency, SLA (service level agreement) of serving 99.9% of requests with response
within 300ms at a max rate of 500req/sec

39

Consistent Hashing
For data partitioning, replicating and load balancing

Sloppy Quorums
Boosts availability in present of failures

40

Key techniques that the dynamo chooses.

Key Techniques

40

A Simple Example

Consistent
Hashing

Sharding

Imagine that our consistent hash
is mappedto a continuum of values

All values are mapped to the Key1
continuum using some hash
algorithm like MD5.

This results in unpredictable
assignments which can
cause very imbalanced
distribution of

“key space”.

Key 2

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

41

Dynamo uses consistent hashing to distribute content to nodes. Ring is the core of
consistent hashing. In consistent hashing you map your data to points on ring.
Ring is divided into regions and each region is then mapped to physical servers.

However this approach may lead to load imbalance.

allows you to have diverse set of machines by assigning diff. virtual nodes. Moreover
it allows you add/remove nodes on the fly.

41

Adding a Node

Consistent
Hashing

Dynamically add nodes

limportant!

Adding a node does not cause
the entire key-space to
rebalance. This is very important
to the implementation: adding
nodes should not changes all
the answers, it should only
“claim” key space from a single
node.

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

42

adding a node requires on an average 1/n+1 nodes to move.

42

Removing a Node

Consistent
Hashing

Dynamically remove nodes

limportant!

Removing a Node should cause
the hash to rebalance such that
only the now vacant key space
is reclaimed. As with adding,
removing a node should not
remap the entire key space.

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

43

Removing a node requires only content of removed node to be shifted.

Improving Distribution

Consistent
Hashing

load balancing

Virtual Keys
By calculating virtual keys we can decrease the
standard deviation in key space for each node.
The important factor here is making sure that
the approach generating the virtual keys
Is not random and is reproducable.

@ Key 1's Virtual Keys
@ Key 2’s Virtual Keys
@ Key 3's Virtual Keys

source: http://sharplearningcurve.com/blog/2010/09/27 /consistent-hashing/

44

Dynamo uses virtual nodes where multiple virtual nodes are assigned to physical
nodes. This helps in balancing of load

Hash | Node :Replicas Replication

A[0,10)
= 3 A B.C
FI5059) o B1020) 12 B CD
19 B CD
\ 20 c D.E

5 m
E.[40,50) ¥ ¢:[20,30) 37 D EF
. &>

40 E FA

D:[30,40)
54 F AB

45

Now we know how to distribute data. Consistent hashing also makes it easier to
replicate data. Simply choose next two nodes in the cycle and replicate the data to
those nodes.

In the above figure N = 3. So the data is replicated to total 3 nodes. In the given
example, if the hash maps to 3, then it lies in the region of A. We put the datain A,
now we follow the cycle and replicate the data to two more available nodes.

45

- R number of nodes that need to participate in read
- W number of nodes that need to participate in write

-R+ W >N (a quorum system)

Sloppy Quorums

Availability in presence of failures

Dynamo:

W =1 (Always available for write)
Yields R=N(reads pay penality)
Typical: R=2, W=2, N=4

46

"Sloppy quorums" choose the first N healthy nodes. This may lead to inconsistencies.
Strict quorum systems become unavailable in case of simplest of failures, so sloppy
quorums are used.

46

Dynamo Summary

An eventually consistent highly available key/value store
AP in CAP space

Focuses on low latency, SLAs
Very low latency writes, reconciliation in reads

Key technigues used in many other distributed systems

Consistent hashing, (sloppy) quorum-based replication, vector clocks, gossip-hased membership,
merkel tree synchronization

47

Key ranges because one tree per key range. Merkel tree used for synchronizing
replicas.

Each node keep route information to all other nodes. Routing can be done by load
balancer or client library.

Using client lib. it directly goes the node in the "preference list", however in case of
load balancer - node routes the request to first node in list

Also uses unreliable failure detection to identify failed nodes. Keeps checking in case
of partitions also...built into the nodes and not a separate entities.

47

Project Summary

To be SQL or Not to be SQL

48

AR ERperTISe
IN sQL?
Bright future of
NoSQL
'g Companies using NoSQL
g .,\" .'\“ - Google

- Facebook

- Amazon

- Twitter

- Linkedin

... many many more.

Leverage the hﬂ%SQL boom

Hot topic in tech industry
More and more companies handling a lot of data are adding NoSQL to their workflow

49

Conclusion

Even NoSQL - Not a "One Size fits all" kinda shoe.
Shoe horning your database is just bad, bad, bad!

Use when
Data schema keeps on varying often
Scalability really becomes an issue
Not to use when
The data is inherently relational
Lots of complex queries to write
You need good helping resources
eg. debugger, performance tools

50

50

References - 1

Dynamo: amazon's highly available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles (SOSP '07). ACM, New York, NY, USA,
205-220

Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst. 26, 2,
Article 4 (June 2008). Fay Chang et. al

http://docs.mongodb.org/manual/core/sharding-introduction
http://mongodb.com/learn/nosgl"http://www.mongodb.com/learn/nosql
http://www.cs.rutgers.edu/~pxk/417/notes/content/bigtable.html
http://en.wikipedia.org/wiki/ACID

51

51

References - 2

http://www.slideshare.net/mongodb/mongodb-autosharding-at-mongo-seattle

http://www.slideshare.net/danglbl/schemaless-
databases"http://www.slideshare.net/danglbl/schemaless-databases

http://infog.com/presentations/NoSQL-Survey-
Comparison"www.infog.com/presentations/NoSQL-Survey-Comparison

http://info.mongodb.com/rs/mongodb/images/10gen_Top_5 NoSQL_Considerations.pdf

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-
for.html

http://technosophos.com/2014/04/11/nosql-no-more.html

52

52

Backup Slides

Any storage
model other
than tabular
relations.

1. Social networks are often persisted in the form of trees and graphs.

2. Other NoSQL models resemble storing blobs against a key or even a complete XML
documents against a key.

3. The main characterstic of these models are that they do not interact with each
other unlike relations. Here model can be referred to the data structure used for the
data storage in the database. By interacting, we mean that one data structure is
independent in itself. It would never need to "join" with other data structure to get
any other data.

55

Auto-sharding

Config client
Servers I
mor:god \ / l\
mor:god ’
[MTongoI{ | Tongola] lr:\onga |
9| [2| |9 2| |
E| |& E| |E g] |8
Shards

TODO:
http://www.scalebase.com/
extreme-scalability-with-
mongodb-and-mysql-part-
1-auto-sharding/

56

You break structured data into pieces and spread it across different tables.
leads to object relational mapping

lots of traffic => buy bigger boxes. Lot of small boxes. SQL was designed to run on
single box.

57

Consistent Hashing
For data partitioning, replicating and load
balancing

Sloppy Quorums
Boosts availability in present of failures

Vector Clocks

For tracking casual dependencies among different
versions of the same key (data)

Gossip-based group membership protocol
For maintaining information about live nodes

Anti-entropy protocol using hash/merkle trees
Background synchronization of divergent replicas

46

Key techniques that the dynamo chooses.

Key Techniques

58

Consistent Hashing

Availability

Node 1 is responsible for

Node 14 is responsible for keys K hose hash = 15, 0, 1
whose hash = 11, 12, 13, 14 / ypuhone e =

Node 3 is responsible for
/ keys whose hash =2, 3

Node 10 is responsible for
keys whose hash =9, 10

Node 8 is responsible for keys
whose hash=4,5,6,7,8

48

59

write
handled by Sx

D1 ([Sx,1])
write
handled by Sx
D2 ([Sx,2])
write write
handled by Sy handled by Sz

D3 ([Sx,2].[Sy.1]) D4 ([Sx,2],[Sz.1])

reconciled
and written by
Sx

D5 ([Sx,3],[Sy.1][Sz,1])
Figure 3: Version evolution of an object over time.

49

Each write to a key K is associated with a vector clock VC(K)
Track the version of data.

Vector Clocks

60

Merkel Trees
Each node keeps a merkel tree for each of

its key ranges Gossip and Anti-
Compare the root of the tree with replicas entropy

if equal => replicas in synch
Traverse the tree and synch those keys that differ

Membership:
Node contacts a random node every 1s.

Gossip used for exchanging and
partitioning/placement metadata

51

Key ranges because one tree per key range. Merkel tree used for synchronizing
replicas.

Each node keep route information to all other nodes. Routing can be done by load
balancer or client library.

Using client lib. it directly goes the node in the "preference list", however in case of
load balancer - node routes the request to first node in list

Also uses unreliable failure detection to identify failed nodes. Keeps checking in case
of partitions also...built into the nodes and not a separate entities.

61

hash(H00||HO1)

H1=

hash(H1O[H11)

A Swe A S

~ Hot=_
hash(V2)

 H10=

H11=
hash(V4)

1

1

|

1

Vi

V2

V4

Data

Merkel Trees

62

Atomicity requires that each
transaction is "all or nothing"

Atomicity
Success Failure
Ara+x Ara+x
N
A
B:a- x B:a- x

26

In an atomic transaction, a series of database operations either all occur, or nothing
occurs. A guarantee of atomicity prevents updates to the database occurring only
partially, which can cause greater problems than rejecting the whole series outright.

Atomicity is said to be fulfilled in the example if either A and B both occur or neither
of A or B occurs, i.e. all or none.

63

The consistency property ensures that
any transaction will bring the database
from one valid state to another valid

state. _
Consistency
Success Failure
A:a+x A+B= atb
N
VN
B:b- X A+B= a+h-10

27

Consistency of the transaction in the above example requires that the total sum of A
and B remain constant before and after the transaction. If after transactions, the total
sum of A and B becomes a+b-10, then the database is not consistent.

The isolation property ensures that the .
concurrent execution of transactions results in
a system state that would be obtained if
transactions were executed serially, i.e. one
after the other.

Isolation
Success Failure
Ti:a-x Tira-x
T1:b +x T2:b-x
T2 :b-x T2:a+x ;
o 4__,__._fallure
arx T1: b+ x

28

Concurrency control comprises the underlying mechanisms in a DBMS which handles
isolation and guarantees related correctness. It is heavily utilized by the database and
storage engines both to guarantee the correct execution of concurrent transactions.
(All discussed in detail in the class)

65

http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/DBMS

Durability means that once a
transaction has been committed, it
will remain so, even in the event of
power loss, crashes, or errors

Durability
Success Failure
T1:a-x > the changes
T bt are lost
Power
T2:b-x Outage
T2:a+x

29

Durability is the ACID property which guarantees that transactions that have
committed will survive permanently. For example, if a flight booking reports that a
seat has successfully been booked, then the seat will remain booked even if the

system crashes.

66

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Database_transaction

Features

Persistent
Data gets stored permanently in sparse
the disk distributed
Sorted scalable
. . . . persistent
Data. keptin _he|rarch|ca| fashion sorted
Spatial Locality map store
Map Store
Just a collection of (key, value)
pairs
40
Sorted

A key is hashed to a position in a table. BigTable sorts its data by keys. This helps
keep related data close together, usually on the same machine — assuming that one
structures keys in such a way that sorting brings the data together. For example, if
domain names are used as keys in a BigTable, it makes sense to store them in reverse
order to ensure that related domains are close together.
map A map is an associative array; a data structure that allows one to look up a value
to a corresponding key quickly. BigTable is a collection of (key, value) pairs where the
key identifies a row and the value is the set of columns.

67

An alternative to ACID

* Basically Available
* Support partial failures without total system failure.
* Soft state
* optimistic and accepts that consistency will be in state of flux.
* Eventual Consistency
* Given a sufficiently long period of time over which no changes are sent, all updates can be
expected to propagate eventually.

33

According to CAP you can pick only two of the alternatives.

BASE focuses on Availability and Partition tolerance whereas ACID focuses on
Consistency and Availability.

68

