
Query Optimization with
RDF using SPARQL

By Lori London, Raul Cardenas and Rezwana Rimpi

1

Introduction

Semantic Web: push towards the
creation of a web of data. It sets the
standards for the web.

“Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http:
//lod-cloud.net/” 2

RDF (Resource Description Framework)

RDF databases contain data in a form known as triples, formatted as:
(Subject, Predicate, Object) or (S, P, O)

● Subject - a URI that is used as a Resource
● Object - a URI or literal that can be any primitive data type (i,e.

float, String, integer)
● Predicate - a URI used as a relationship between the Subject and

the Object in the triple
Prefix Lori: www.example.com/Lori

Ex. (Lori, property:age, 23)
3

RDF (Resource Description Framework) cont.

● In SQL, we are used to having tables and attributes define what
data is in that particular table

● In RDF, we have the predicate column define what the triple is
representing

SID Title Singer

id1 “rain” pid1

PIDI Name POB

pid1 John Austin

Subject Predicate Object

id1 hasType “song”

id1 hastitle “rain”

id1 sungBy pid1

pid1 hasName “John”

pid1 bornIn “Austin”Song Person

RDF StoreRelational Database 4

Simple Protocol and RDF Query
Language (SPARQL)

Example SQL Select Statement
SELECT title from Books
WHERE book_id = “book1”

A triple pattern is a predicate defined in the SPARQL where clause that
indicates what kind of triple we are looking for
A query variable is a component with a “?” that will return every value of that
component in the database

Example SPARQL Select Statement
SELECT ?title
WHERE { book1 hasTitle ?title }

SPARQL is the W3C standard as query language to RDF.

5

Simple Protocol and RDF Query
Language (SPARQL) cont.

Examples Join Statements
SELECT ?title ?price SELECT ?title
WHERE { ?x ns:price ?price . WHERE { ?x ns:isType ?book.
 ?x dc:title ?title . } ?book dc:title ?title.}

6
Joins can happen on query variables only

Motivation
What is the difference from SQL querying on regular relational
databases?
● Movement from structured schemas to partially structured schemas
● Queries explore unknown data structures
● Enabling joining and obtaining information from multiple datasets

with one simple query
● Processing hundreds and hundreds of datasets is expensive … so we

optimize!

7

Topics for Today

○ Efficient Indexing Techniques
○ Optimization in Joins
○ Optimization using Selectivity Estimations

8

Efficient Indexing
Techniques

9

How do we Index Triples?

1. ?x, ?y, ?z
2. s, ?y, ?z
3. ?x, p, ?z
4. ?x, ?y, o

5. s, p, ?z
6. s, ?y, o
7. ?x, p, o
8. s, p, o

To index an RDF triple, we index through an access pattern. An access
pattern is a combination of how each component in the triple is specified, be

it a literal or a variable

10

Structure for Indexes
Multiple Access Pattern

(MAP)
ROOT

S P O

O P S O S P

P O O S P S

Example:
select ?x
where{ ?x property:student “UT” }

Triple Pattern - (?x, property:student, “UT”)

POS - (property:student, “UT”, ?x)
OR

OPS - (“UT”, property:student, ?x)

11

The RDF-3X Engine for
Scalable Management of

RDF data
Thomas Neumann · Gerhard Weikum

Published 1 September 2009. VLDB Journal

12

Triple Store Implementation

Mapping Dictionary - for each
component in an RDF triple, the
component is mapped to an
object id (OID)

Ex. (Lori, major, “CS”)

Composed of three different data structures, but today we are
only focused on two of the structures:

OID Dictionary

1 23

9 “CS”

4 Lori

15 “major”

24 “flower”
13

Triple Store Implementation (cont.)
Compressed Index - uses a
MAP index pattern of a
compressed RDF triple (a triple
formed of its OIDs)

Ex.
insert data {Lori, major, “CS” }

(Lori, major, “CS”) ->(4, 15, 9)

1. SPO-(4,15,9) 4. PSO-(15,4,9)
2. SOP-(4,9,15) 5. OPS-(9,15,4)
3. POS-(15,9,4) 6. OSP-(9,4,15)

14

Query Processing
Query Processing and Translation for SPARQL is very similar to SQL
with the exception of several nuances:
● Indexing on each Triple Pattern versus selecting one particular

index
● Query Graph is based on Triple patterns versus relations
● Favors Bushy Join Trees versus Deep Left/Right Trees of R*

Optimizer

15

Nuance 1: Index Access Pattern for
each Triple Pattern

Example:
select ?u where{
?u <crime> .
?u <likes> “A.C. Doyle” .
?u <friend> ?f .
?f <romance> .
?f <likes> “J. Austen” .
}

Indexing Patterns

PS - (crime, ?u)
OPS - (“A.C. Doyle”, likes, ?u)
POS - (friend, ?f, ?u)
PS - (romance, ?f)
OPS - (“J.Austen”, likes, ?f)

16

Nuance 2: Triple Pattern Query
Graph

SQL
P1 - ?u1 <crime> .
P2 - ?u2 <likes> “A.C. Doyle” .
P3 - ?u3 <friend> ?f1 .
P4 - ?f2 <romance> .
P5 - ?f3 <likes> “J. Austen” .

SPARQL
?u <crime> .
?u <likes> “A.C. Doyle” .
?u <friend> ?f .
?f <romance> .
?f <likes> “J. Austen” .

17

Nuance 3: Bushy Join Trees versus
Left/Right Deep Trees

● Attempts to use merge
joins as much as possible

● Bottom-Top Dynamic
Program is implemented
to cache joins to increase
efficiency

SQL R*

SPARQL RDF-3X

18

Optimization of Joins
Scalable Join Processing on Very Large RDF Graphs

Thomas Neumann and Gerhard Weikum

19

SQL & SPARQL
SPARQL queries over RDF map to SQL SELECT statements

○ So why not query RDF graph with the performance of SQL
○ Algorithms have been proven to be complete and sound
○ Adaption of relational databases algorithms to RDF and

SPARQL

20

SQL & SPARQL
● SPARQL Basic Graph Pattern is the conjunction of triple patterns,

where each is matches the given attributes
● Assumptions of relational operations:

○ Complete
○ Sound
○ Sequential

● Idea run sequential operations on parallel
SELECT ?title ?price
WHERE { ?x ns:price ?price .T1

 ?x dc:title ?title .T2} T1 Joins T2 on ?x

21

SPARQL Joins

22

SPARQL & MapReduce
Scan = Each triple pattern filters
the graph
1. Merge Join

2. Hash Join

SQL Joins => SPARQL Joins
RDBMS
Scan = Simple predicates filter the
relations
1. Merge Join

2. Hash Join

23

SPARQL on Very Large RDF Graphs
Triples of the form : ?x <isType> ?y
is not really selective and will return a large data set.

?x ?y ?z is a really big problem. Hopefully, there are not many queries
using this triple pattern.

This is true because for some queries only the conjunction of triple
patterns as whole is selective.

24

Execution Plan on SPARQL
● A typical set of possible execution plans would include bushy trees!
● Bushy trees give more opportunity for parallelization
● Only 1 option for scan:

○ Index Scan
● Only 2 options for Joins:

○ Hash Join
○ Merge Join

25

Execution
● The scan operations are launched as

the entry point of the pipeline
● Merge Joins are the next step in the

pipeline
● A Hash Join would merge the two

output streams into single pipeline
● Bushy trees implies multiple joins

running in different jobs

26

Execution Tree Plan

27

Sideways-Information-Passing SIP
SIP: Pass relevant information between separate joins at query
runtime

Goal: Highly effective filters on the input stream of joins
(Similar to magic sets)

This is a RDF-specific application of SIP. It enhances the filter on
subject, predicate and object

28

Sideways-Information-Passing SIP
“Sideways”: Pass information across
operators in a way that cuts through the
execution tree
● Restrict scans
● Prune the input stream
● Holistic, there is no data flow

29

Sideways-Information-Passing SIP

30

Merge Join
● Ascending order on the

index value
● New constraint for each

scan
○ f1>= f2
○ f2 >= max(f1,f3)
○ f3 >= max(f1,f2)

● The last values are
recorded in the shared
structure

Sideways-Information-Passing SIP

31

Hash Join
● There is not direct

comparison index value
● Use of domain filter(min,

max)
○ 2 domains

■ Observed Domain
■ Potential Domain

○ Intersection of both

Sideways-Information-Passing SIP
Index Scan
● It uses two previous techniques to skip and find “gaps” in the scan
● Index Scan are triple store in a B+tree

32

Sideways-Information-Passing SIP
● Results:

○ SIP aims to reduce the overhead of intermediate results
○ The higher in the tree the more accurate the domain filters

become
○ SIP is still dependent on the execution order

■ Bad join order may to poor performance
■ Can we do better? Use selectivity and cardinality

33

Query Optimization using Selectivity
Estimations

“SPARQL Basic Graph Pattern Optimization Using
Selectivity Estimation”

Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, Dave Reynolds

34

Basic Graph Pattern

○ Basic Graph Pattern or BGP? - set of triple patterns
?x type Person .

 ?x hasSocialSecurityNumber “555−05−7880”

○ Query Optimization Goal
■ To find an optimized execution plan
■ That means, to find the optimized order of

executing the triple patterns
35

Triple Pattern Selectivity

● Def.: Fraction of RDF data triples satisfying the triple
pattern.

● Selectivity of a triple pattern t = (s, p, o),
○ sel(t) = sel(s) * sel(p) * sel(o)
○ Assumption: sel(s), sel(p), sel(o) are statistically

independent.

36

Triple Pattern Selectivity

● Selectivity of Predicate
○ sel(p) = TP/T, when p is bound

here, Tp = number of triples matches P
 T = Total number of triples in RDF

○ sel(p) = 1, when p is a variable

37

Joined Triple Pattern
● Joined Triple pattern

○ A pair of triple patterns that share a variable
 Return the name of person who have SocialSecurityNumber = “555-05-7880”.

select ?x where{
?x type Person .

 ?x hasSocialSecurityNumber “555−05−7880”}

○ Size - the size of the result set satisfying the two patterns

38

Joined Triple Pattern Selectivity

● Let P represents a Joined Triple pattern

sel(P) = Sp/T2 ,where

Sp = upper bound size Joined Triple pattern P

T= total number of triples in RDF dataset

39

Basic Graph Pattern Optimization
BGP
1 ?X rdf : type ub : GraduateStudent .
2 ?Y rdf : name ub : University .
3 ?Z rdf : dept ub : Department .
4 ?X ub :memberOf ?Z .
5 ?Z ub : subOrganizationOf ?Y .
6 ?X ub : undergraduateDegreeFrom ?Y .

node: a triple pattern
edge: joined triple pattern

Graph

G 40

Basic Graph Pattern Optimization
BGP
1 ?X rdf : type ub : GraduateStudent .
2 ?Y rdf : name ub : University .
3 ?Z rdf : dept ub : Department .
4 ?X ub :memberOf ?Z .
5 ?Z ub : subOrganizationOf ?Y .
6 ?X ub : undergraduateDegreeFrom ?Y
.

Execution plan: an order of nodes.
An order to join the triple patterns

Ex. 1, 2, 4, 3, 5, 6

Graph

G 41

Deterministic Execution Plan
Generation

Node selectivity is Triple Pattern
Selectivity
Edge selectivity is Joined Triple Pattern
Selectivity

42

Input

Output Execution plan

Execution Plan Generation(contd.)
Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Step 1

Sink: 5
43

Execution Plan Generation(contd.)

Step 2

Sink: 5-6
44

Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Execution Plan Generation(contd.)

Step 3

Sink: 5-6-2Sink: 5-6-2
45

Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Execution Plan Generation(contd.)

Step 4

Sink: 5-6-2

Skip

46

Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Execution Plan Generation(contd.)

Step 4 (contd.)

Sink: 5-6-2-1
47

Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Execution Plan Generation(contd.)

Step 5

Sink: 5-6-2-1-3
48

Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Execution Plan Generation(contd.)

Step 6

Execution Plan: 5, 6, 2, 1, 3, 4
Sink: 5-6-2-1-3-4 49

Edges is ascending
order of selectivity

(6,5)
(6,2)
(3,4)
(1,6)
(3,5)
(4,5)
(4,6)
(5,2)
(1,4)

Deterministic Algorithm
Select Sink (Deterministically):

select the minimum selectivity edge xy
if sel(x) <= sel(y) then

sink = x
else sink = y

Main Loop: While there is a non-visited node
xy <- Next minimum selectivity edge
if one of its endpoint is visited (say x is

visited), then
add y to the execution plan
make y visited

50

What about disconnected graph?

● Graph G may have more than one component
● Like System-R algorithm, take cross product of result

sets of components.

51

Properties

● Deterministic execution plan based on selectivity
estimations.

● Size of intermediate result set is reduced.
● Cartesian product of intermediate results is avoided

within a component.

52

Summary
You now know about basic Query Optimization in RDF with SPARQL!
SPARQL optimizer will have all of three fundamentals that we spoke
about today:

○ Due to the simplicity of the RDF model, we are allowed to index
on every component in an RDF triple

○ SPARQL involves many joins in their queries, and thus we must
be aware of only executing the most optimal of query plans

○ With SPARQL having deterministic solutions, we do not have
to exhaust the entire search space

53

Questions?

Thank You

