Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Baadtle, WA, June 1998, pp. 237-248 1

Incremental Distance Join Algorithms
for Spatial Databases*

Gisli R. Hjaltason and Hanan Samet
Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
grh@cs.umd.edu and hjs@cs.umd.edu

Abstract fies arorder on the result, based on distance. The distance is usually
defined in terms of spatial attributes, but this need not be the case.
Two new spatial join operationsljstance join anddistance semi- When the distance of the resulting pairs is limited to a range, we
join, are introduced where the join output is ordered by the distance have a generalization of a spatial join based on a within predicate.
between the spatial attribute values of the joined tuples. Incremental The “distance semi-join” is a useful special case of the distance join
algorithms are presented for computing these operations, which canwhich for each object im finds the nearest object i. Figure 1

be usedin a pipelined fashion, thereby obviating the need to wait for defines the distance join and distance semi-join operations using a
their completion when only afew tuples are needed. The algorithms syntax loosely adapted from SQL-92, including 80P AFTER

can be used with a large class of hierarchical spatial data structuresclause extension proposed in [10]. TWEERE andSTCP AFTER

and arbitrary spatial data types in any dimensions. In addition, any clauses, specifying limits on the distance and/or the number of result
distance metric may be employed. A performance study using R- tuples, are optional. These basic queries could be made more com-
trees shows that the incremental algorithms outperform non-incre- plicated by adding further selection conditions in WHERE clause.
mental approaches by an order of magnitude if only a small part of

the result is needed, while the penalty, if any, for the incremental

processing is modest if the entire join result is required. SELECT = .

FROM R1, R2, distance(Rl.sl, R2.s2) AS
. d

1 Introduction [WHERE d >= <dmin> AND d <= <dmax>]
ORDER BY d

The spatial join operation is similar to the join operation in rela- [STOP AFTER <n>]

tional databases. It is defined on two sets of objects, and computes

a subset of the Cartesian product of the two sets, determined by a @)

spatial predicate, which prescribes a certain spatial relationship be- SELECT *, mi n(d)

tween the objects in the result. The most common spatial predi- FROM R1, R2, distance(Rl.sl, R2.s2) AS

cate isintersect, i.e., the geometry of the objects are required to d

intersect [1, 7, 8, 19, 21, 22]. A generalization of thisaighin, [WHERE d >= <dnmin> AND d <= <dnax>]

where the objects are required to lie within some distance of each

GROUP BY Ri1.s1

other [24, 29]. Other spatial predicates have been considered as
well, and general methods to compute a spatial join proposed[4, 14].
Some of these methods involve spepiiih indexes[14, 24].

In this paper, we define a “distance join” operation, which com-
putes a subset of the Cartesian product of deasid B, and speci-

ORDER BY d
[STOP AFTER <n>]

(b)

Figure 1: Definition of (a) distancejoin and (b) distance semi-

*This work was supported in part by the National Science Foun- join using SOL.

dation under Grant IRI-9712715 and the Department of Energy un-
der Contract DEFG0295ER25237.

The distance join and distance semi-join have numerous useful
applications in spatial databases. For example, given a spatial data-
base of rivers and cities, we can use partial computation of them to
“find the city nearest to any river”, “find the city nearestto any river,
suchthat the city has a population of more than 5 million”, and “find
cities within 5 miles of any river”. The distance semi-join is useful
as a clustering operation. For example, suppose we are given two
relations consisting of the locations of stores and of warehouses, re-
spectively, and for each store we wish to determine the closest ware-
house. Thisis achieved by taking the distance semi-join of the stores
relation with the warehouse relation. The distance semi-join works

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Baadtle, WA, June 1998, pp. 237-248 2

by reporting the (store,warehouse) pairs in order of distance. Note the basic incremental algorithm for the distance join, followed by
that once we have determined the closest warehouse to a particulatan outline of a number of methods for extending its functionality
store, that store does not participate in other tuples with the remain-as well as improving its performance. Section 2.3 presents modi-
ing warehouses. fications to the basic algorithm to enable it to compute the distance
Computing the complete distance semi-join yields a clustering semi-join operation.
of the stores. In fact, for point data, the result partitions the space in
a manner analogous to a discrete Voronoi diagram, i.e., each point2 1 R-trees
in the stores relation is associated with the closest point in the ware- "
house relation (thus, in the terminology of Voronoi diagrams, the lo- The R-tree [15] (see Figure 2) is one of many proposed spatial data
cations of the warehouses are the sites). The attractiveness of thisstructures. It is an object hierarchy in the form of a balanced struc-
analogy lies in providing users a mechanism to perform a geomet- ture inspired by the B-tree [12]. Each R-tree node contains an ar-
ric operation such as the Voronoi diagram using a data base prim- ray of (key, pointer) entries wher&ey is a hyper-rectangle that min-
itive without having to invoke a special purpose algorithm from a imally bounds the data objects in the subtree pointed gobyter.
geometric library to perform the operation. Note that this operation In an R-tree leaf node, thminter is an object identifier (e.g., atuple
is not symmetric. In particular, the result of computing the distance ID in a relational system), while in a non-leaf node it is a pointer to
semi-join of the warehouse relation and the stores relation is that for a child node on the next lower level. The maximum number of en-
each warehouse, we get the closest store. tries in each node is termed itede capacity or fan-out and may be
Theclusteringjoin [32] is similar to the distance semi-join with different for leaf and non-leaf nodes. The node capacity is usually
the difference being that the clustering join is symmetric. An algo- chosen so that a node fills up one (or a small number of) disk pages.
rithm for computing the clustering join is also given in [32]. How- R-trees can be used to index a space of arbitrary dimension and ar-
ever, that algorithm is not well suited for spatial data that resides bitrary spatial objects rather than just points.
in d-dimensional Euclidean space. The reason is that [32] deals Asdescribedabove, R-tree leaf nodes contain a minimal bound-
with more general objects—such as patterns, strings, trees, graphsing rectangle and an objectidentifier for each object in the node, i.e.,
etc.—whose internal structure is unknown as far as the algorithm the geometric description of the objects is stored external to the R-
is concerned. The only knowledge about the objects comes from treeitself. Another possibility is to store the actual object, or only its
a distance measure that returns the distance between two objectsgeometric description, in the leaf instead of the bounding rectangle.
Furthermore, the distance measures are assumed to be expensive tohis is usually only useful if the object representation is relatively
compute, so that the overall goal is to compute as few distances assmall (e.g., similar in size to a bounding rectangle) and is fixed in
possible. In contrast, spatial data allows the use of spatial indexeslength. If the entire object data (i.e., all relevantattributes) are stored
which in effect summarize the data and enable avoiding many dis- in the leaf nodes, then the object identifiers need not be stored. The
tance calculations (which, however, are not necessarily the most ex-disadvantage of this approachis that objects will not have a fixed ad-
pensive component of query algorithms involving distances). dress, as some objects must be moved upon each R-tree node split.
In this paper we present incremental algorithms for computing
the distance join and distance semi-join in the sense that the pairs re-
sulting from the corresponding operation are reported one-by-one.
This enablesa query engineto use the algorithmsin a pipelined fash- a b
ion. Furthermore, the algorithms aim to deliver results as soon as = il
possible. Such “fast first” pipelined join methods have recently be- 9 7 R e

Ro: [R2]

come a focus of attention [3, 33]. They have become importantin ||, - - a)
enabling the development of more user friendly and interactive in- e
terfaces to database systems [16]. Recent proposals for extending
SQL [10] also benefit greatly from the presence of such algorithms. (@) (b)
A variation of our incremental distance join algorithm can be
used to compute intersecting pairs [30], closest pair [6], and all near- Figure2: An R-treefor a set of 9line segments. (a) Spatial ren-
est neighbors [2, 11, 31] in a set of objects. While our incremental dering of the line ssgmentsand bounding rectangles, and (b) a
distance join algorithm may not always be competitive with some treeaccessstructurefor (a). Boundingrectanglesfor individual
of the above algorithms in terms of computational complexity, it linesegmentsare omitted from (a) in theinterest of clarity.
may nevertheless be a reasonable alternative given that a spatial data
structure has already been built. In addition, unlike most of these ~ We make use of an R-tree variant called thetRee [5]. It dif-
methods, it is not limited to point or rectangle objects. fers from the conventional R-tree in employing a more sophisticated
The rest of this paper is organized as follows. Section 2 de- insertion and node-splitting algorithms that attempt to minimize a
scribes the incremental algorithms for computing the distance join combination of overlap and area increase between minimum bound-
and distance semi-join. Section 3 describes the environment in ing rectangles.
which we perform our experiments, and Section 4 presents the re-
sults. Section 5 concludes with a number of future tasks. 292 Computi ng Distance Join

R3:[a]b] R4:[d]g]h] Re:[c]i] Re:[e]f]

2 Incremental Distance Join Algorithms Our incremental distance join algorithm may be viewed as simul-
taneously applying an incremental nearest neighbor algorithm [18]

In this section we describe our incremental distance join algorithm. (€€ [17] for the application of a similar approach to the LSD tree)
Although our algorithm is general in the sense that it can be used 0 the two spatial data structures corresponding to the spatial at-
with most spatial data structures, for concreteness we present it intributes of the joined relations. The algorithm works for any spa-
the context of the R-tree. Also, performance tests were conductedtial data structure based on a hierarchical decomposition. In our
with R-trees (see Section 4). The rest of this Section is organized description, we assume a spatial data structure that forms a tree

as follows. Section 2.1 reviews the R-tree. Section 2.2 describesStructure, where each tree node represents some region of space and
where objects (or pointers to them in external storage) are stored in

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Bagdtle, WA, June 1998, pp. 237-248 3

the leaf nodes whose region intersects the objects. Further, we as-obr) are stored in leaves, then these will become the third type of
sume that each object is stored in only one leaf. We handle both pair items, resulting in nine possible kinds of pairs, of which we use
the case that the objects are stored directly in the leaf as well asfive: node/node, node/obr, obr/node, obr/obr, and object/dbject
the case that the leaf nodes contain the minimum bounding rect- The key used to order the queue elements is the distance between
angles of objects along with a pointer to the actual object repre- each pair. We later discuss howto handleties, i.e., howto order pairs
sentation. This set of assumptions was chosen as it holds for thewith equal distance.

R-tree. However, the algorithm can be easily adapted to handle At each step in the algorithm, the element at the head of the pri-
most spatial data structures that do not satisfy these assumptionsority queue is retrieved, i.e., the element with the smallest distance
such as the hB-tree [23] (which forms a directed acyclic graph), and key. If the element stores a pair of data objects, then the pair is re-
quadtrees [26, 27] (where non-point objects may be stored in more ported as the next closest pair. No pair that is subsequently reported
than one leaf node). In the remainder of this section, we do not make will have a smaller distance due to this pair having the smallest key
a distinction between a node and the region that it represents; thein the queue. Furthermore, the consistency constraints on the dis-

meaning should be clear from the context. tance functions guarantee that no pair on the queue will resultin gen-
The input to the incremental distance join algorithm is two spa- erating a pair of data objects with a smaller distandeone of the
tial indexes,R1 andR». The algorithm maintains a set of paifs items in the dequeued elementis a node, then the algorithm pairs up

with one item from each ok, andR-, eachitem being eitheranode the entries of the node (objects for leaf nodes, child nodes for non-
or an object. Initially,P contains just one pair correspondingto the leaf nodes) with the other item.
root nodes ofR; andR.. We obtain the set of all pairs, i.e., the The basic algorithm is presented in Figure 3 for the case that the
Cartesian product of the sets of objectsiin and R, as follows. leaf nodes of the spatial indexes contain object bounding rectangles.
As long asP contains a paip with at least one item being a node, Inthe figure, item 1 in a queue element is frdta, while item 2 is
replacep in P by all the pairs resulting from replacing the node by from R,. The INCDISTJOIN procedure contains the high level con-
its entries (child nodes for non-leaf nodes, objects for leaf nodes). It trol structure for the algorithm, while procedure®CESINODEL
should be intuitively obvious that this process will resuliircon- and FRROCESNODEZ2 enqueue new pairs for each entry in a node
taining the set of all pairs. The algorithm essentially compites from R; and R, respectively. In lines 6 and 11 ofitDISTJOIN,
in this way, but processes the pairsfmin order of their distance, the next closest pair of objects is reported. The entire state of the
thereby attempting to report object pairs as soon as possible. algorithm is represented by the priority queue. Thus, at this point,
The algorithm works for data objects of arbitrary type and di- control can be passed to the process that invoked the incremental
mension (although our experiments use two-dimensional points), distance join algorithm, which may or may not decide to retrieve
provided that consistent distance functions are used. Four dis- more pairs. If one of the items in the dequeued element is a node,
tance functions are needed: one between objects of each collectionthen one of the procedure BCESNODEL and RROCESSNODE2
two between objects of one collection and nodes of the spatial in- is called. This version of the algorithm arbitrarily chooses to call
dex of the other collection, and one between nodes of each spa-PROCESINODEL if both items are nodes.

tial index. More accurately, the functions we needdsgo1, 02), In line 4 of PROCESNODEL, [O] denotes the bounding rectan-
don(01,12), dno(n1,02), aNddyy (n1, n2), whereo; andrn; arean gle of O (note that in practice the object reference must be enqueued
object and a node fromk1, respectively, and, andn. are an ob- along with the bounding rectangle). If the object geometry is repre-
ject and a node fronR., respectively. If the leaf nodes store min- sented directly in the leaf nodes, then the actual objects would be
imum bounding rectangle for objects, then the functidps and used here instead of the bounding rectangles. Also, in this case, the
dno are not required. Instead, we need the functidng b, n2), if statementin line 7 ofNcDIsTJoIN would not be needed.
dns(n1,62), in addition todys (b1, b2), whereb; andb, denote a The connection of the incremental distance join to our incremen-
minimum bounding rectangle for objects B and R, respec- tal nearest neighbor algorithm [18] is easy to see from Figure 3, as
tively. If node regions are rectangles, thép, can serve the pur- PROCESNODEL and RROCESNODE? are essentially the same as
pose of all three functions. the basic loop of the nearest neighbor algorithm. In particular, in

Usually, the distance functions are all based on a distance met- PROCESNODEL, item 2 serves the role of the query object.
ric for points,d(p:, p2), such as the Chessboard, Manhattan or Eu-
clidean metrics. However, this need not be the case. As long as thep 2 2 Priority Queue Ordering and Tree Traversal
distance functions are “consistent”, the algorithm will function cor-
rectly. Informally, by consistent, we mean that no pair can have a The key for ordering the priority queue of pairs is the distance be-
smaller distance than a pair that gives rise to it during the process-tween the items. Animportant questionis how to break ties for pairs

ing of the algorithm. For example, ifi ando, are objects ink, with the same distance. Different choices will lead to vastly differ-
andR,, respectively, and; is a leaf node that contains, then we ent traversal patterns. Since our goal is to produce result pairs as

must havel,.(01, 02) > dno(n1, 02). If the distance functionsare soon as possible, it is obvious that we want to order pairs containing
all based on the same metric, this condition will hold due to the tri- objects or object bounding rectangles ahead of (i.e., with greater pri-
angle inequality property. In what follows, we usually refer to the ority than) pairs of nodes. Furthermore, given two pairs with nodes,
distance functions collectively with the symhblas the particular the pair containing nodes at a deeper level is given a higher priority.
distance function to be used can be inferred from the context. This leads to a depth-first-like traversal pattern of the tree hierarchy
of the spatial indexes for pairs having the same distance (a version

22.1 Basic Algorithm ! Note that objects only appear in one of the combinations that we
We first describe the basic version of the algorithm, and then intro- allowin order to reduce the number of accessesto the object storage.
duce extensions to it as well as ways to improve its performance. With our scheme, each object must be accessedat most once for each
The heart of the algorithm is a priority queue, where each element Object/object pair.

contains a pair of items, one from each of the input spatial indexes A pair (i1, i>) is said to be generated from a péif, 1) if the

Ry andR-. Anitem can be either a data objector a node, so there are Pair (i1, i2) results from a sequence of algorithm operations starting
four kinds of possible pairs, node/node, node/object, object/node, with (11, i3). As an example, all object/object pairs are ultimately
and object/object. If object bounding rectangles (abbreviated by generated from the initial pair of root nodes.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Bagdtle, WA, June 1998, pp. 237-248 4

INCDISTJOIN(R1, R2)

1 @ — NEWPRIORITYQUEUE()
2 ENQUEUEQ, 0, (R;.ROOTNODE, R,.ROOTNODE))
3 whilenot ISEMPTY(Q) do
4 Elem— DEQUEUHQ®)
5 if both items inElem are data objectien
6 ReportElem
7 €seif both items are object bounding rectandlean
8 letO; and O; be the corresponding object references
9 D~ DIsT(04, 02)
10 if ISEMPTY(Q) or D < FRONT(@).DisTthen
11 Reporf{O1, O2)

12 dse
13 ENQUEUE@, D, {01, 02))
14 endif

15 dseifitem 1 inElemis a nodehen
16 ProceESNODEL(Q, Elem)

outlined is not always the best one, our experiments have shown it
to perform well overall.

An alternative to processing only one of the nodes for node/node
pairs is to process both simultaneously (termed “Simultaneous” in
Section4.1.1). Thisis more in line with traditional spatial join algo-
rithms [8, 21]. In fact, if this is done, then many of the optimization
techniques developed for spatial join can be applied [8], such as the
usage of plane sweep and the restriction of the search space. The
idea is that when processing péir:, n2), we first mark the entries
in n1 that are within the specified distance range (see Section 2.2.3)
from the space spannedby, and similarly for the entries in, we
mark the ones that are within the specified distance range from the
space spanned hy;. This serves to eliminate entries that cannot
possibly become members of any of the new pairs. Next, a plane
sweep along one of the axis is used to pair up the entries in the two
nodes (which have previously been sorted along that axis). Figure 4
illustrates the plane-sweep process, whiek@andr 2 are entries in
n1, andsl, s2, s3 ands4 are entries im;. Without plane sweep,

17 ese r 1 would have to be checked for intersection with all the entries in

18 PROCESSNODE2(Q, Elem) n2, but with plane sweep we only have to check intersectianlof

%8 egglf with s1 ands2. The plane-sweep algorithm given in [8] has to be
enddo

modified to work for a non-zero maximum distance (recall that [8]
focuses on spatial join with the intersection predicate). For exam-
ple, if the rectangle currently being used has the coordinate range
(z1, z2) along the sweep axis, then the algorithm must sweep along
the entries in the other node up to the coordinate valué¢ D ax,
whereD.x is the maximum distance. As an example, in Figure 4,
we would have to check whethgB is within the proper distance of

r 1, in additiontos1 ands2.

PROCESINODEL(Q, Elem)
1 Node «— item 1 ofElem
2 ltems «— item 2 of Elem
3 if Nodeis a leaf nodehen
4 for each entry@] in Node do
5 ENQUEUEQ, DIST([O], Itemy), ([O], Items))

6 enddo
7 dse D e
8 for eachChild node ofNode do L S P T2
9 ENQUEUEQ, DIST(Child, Items), (Child, Items)) A S R
10 enddo > Sweep .
11 endif direction : g3
PROCESSNODE2(Q), Elem) re -
1 Same as RocesNODEL, with items 1 and 2 exchanged , — S2:
. Seeropecccecerpeecd
. >
Figure 3: Basic version of incremental distancejoin algorithm Diax X

whereleaf nodescontain bounding rectangles.

Figure4: Planesweep along z-axisover theentriesin twonodes.

using this approach is termed “DepthFirst” in Section 4.1.1). Alter- Processing both nodessimultaneously for node/nodepairsisnot
natively, if nodes at a higher level are given priority, a breadth-first- always better than processing only one node asin our original for-
like traversal would result (termed “BreadthFirst” in Section 4.1.1). mulation. Intuitively, it seems likely that the optimizations that it
This could be of advantage if we wanted to compute a large por- affords will only yield significant benefits if the distance range is
tion of the distance join operation (i.e., generate a very large num- rather narrow. Asan extremecase, if the minimum is0 and the max-
ber of pairs), as it would in certain cases enable the algorithm to bet-imum is unbounded, then all possible pairs of entries from the two
ter schedule node and object accesses [21]. However, given our Usmodeswill haveto be generated, atotal of |1 |- |n2| (|»| denotesthe
age assumptions, much of the work may be wasted, as a breadth-firshumber of entriesin node). In contrast, if only one of the nodes
traversal would require processing all pairs at one level before any is processed, say n1, then only |n:| pairs will result. All of these
pairs with the same distance at the next level are considered. pairs may have a greater distance than the next closest pair. Thus,
In the version of theNcDISTJOIN procedure that we presented in best case, only |n1| pairs are generated from (n1, no) with our
in Figure 3, when the dequeued pair contains two no@des,n2), original formulation of the incremental distance join algorithm be-
noden, is arbitrarily chosen to be processed (i.e., its entries exam- fore the next object pair is reported. The downside, of course, is
ined) rather tham,. This is not a good strategy, as it will cauBe that processing only one node at atime may lead to each nodebeing
to be traversed down to the leaf level before the rookefis pro- accessed more times from disk when the algorithm hasto produce
cessed. A better strategy would attempt to traverse the two indexesmany result pairs.
more evenly so that the level of the nodes in node/node pairs does | both nodesin node/node pairs are processed simultaneously,
not differ by much. This is done by choosing to process the node then the incremental distance join algorithm resembles somewhat
that is at a shallower depth. If both nodes are at the same level inthe spatial join algorithm introduced in [21]. The difference is
their respective trees, then the algorithm choosesto process the nodehat [21] is breadth-first and is limited to finding intersecting object
whose region has a larger area. Although the strategy that we havepairs, although it would be straightforward to generalize it to com-

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 5

pute aspatial join with awithin predicate (however, unlikewith our
algorithm, if the pairs are desired in order of distance, then the en-
tire result would haveto be computed and sorted before thefirst pair
can be reported).

Some widely used spatial data structures form unbalanced tree
hierarchies(e.g., quadtrees[27] and thebuddy-tree[28]). Bounding
rectangles are not always present in the leaf nodes of these struc-
tures, even when objects are not represented directly in the leaves
(i.e., the leaves only contain pointers to the objects). If thisisthe
case, then it is better to defer processing leaf nodes until both items
in node/node pairs are leaf nodes, at which time both leaf nodes
are processed simultaneously. This strategy will tend to reduce the
number of times each object needsto be accessed from disk.

2.2.3 Distance Range

A shortcoming of the algorithm as stated in Section 2.2.1 is that a
very large number of pairswill be inserted into the priority queue,
even when computing a modest number of object pairs for rela-
tively small object relations. Most of the pairs inserted in the pri-
ority queuewill havealarge distance, and will most likely never be
retrieved from the queue unless avery large number of object pairs
is requested. However, for object relations of non-trivial size, the
number of pairsin the Cartesian product of the two relations (recall
that afull distancejoin operation computesthe Cartesian product) is
immense. For example, for two relations with 50,000 objects each,
the Cartesian product contains2.5 billion pairs. Typical querieswill
only require computing a very small fraction of this high number.
Thus, itisunlikely that pairswith alarge distance are ever retrieved
from the queue. The large number of pairs put on the queue and
never requested occupies a great deal of memory space and slows
down queue operations®. Thus, we need away of limiting the num-
ber of pairsinsertedintothequeue. Oneway of doing soistoimpose
a maximum distance on object pairs. Any pair that has a distance
larger than the maximum can be rejected, asno object pair with less
distancecan bederivedfrom it (thisis guaranteed by the consistency
of the distancefunctions).

Above, we haveestablished the need to be ableto imposeamax-
imum on the distance of object pairs. In addition, it may be use-
ful for some queriesto impose aminimum on the distance of object
pairs. Theincremental distancejoin algorithm iseasily modified so
that it limits the distance of the pairsthat are returned to arange of
values. In order to effectively prune pairs based on a minimum dis-
tance, we need functions that compute an upper bound on the dis-
tance of any object pair that can be generated from a pair (i1, 12)
(such afunction is clearly not needed for object/object pairs). In
other words, for any object pair (o1, 02) generated from (i1, i2),
wehaved(o1,02) < dmax(11, 12), Where dmax is the upper bound
function appropriate for (i1, 12). Thismeansthat if dmax(?1,22) is
smaller than the minimum distance bound, then we can discard the
pair (i1, 12}, asno object pair with a distance larger than the mini-
mum will be generated from (i1, 12).

Now, the question is how to compute d . .x for the varioustypes
of pairs. For pairs of nodes, (n1,n2), we have dmax(n1,n2) =
MaXp, eny,psens 4(P1,p2). FOr a node/object pair (ni,02), we
have dmax(n1,02) = maxy, en, d(p1,02), and similar for ob-
ject/node pairs. The functions for node/obr, obr/node, and obr/obr
pairs can be defined in a similar manner as for node/node pairs.
However, a closer approximation to the upper bound is possi-
ble for these types of pairs through the use of a distance metric

?But see Section 3.2 for adescription of apriority queueimple-
mentation that puts part of the queue on disk if its sizeistoo large
to fit in memory.

that has been termed MINMAXDIST [25]. The object bound-
ing rectangles are required to minimally bound the objects. The
key idea behind the MINMAXDIST metric is that if b is the d-
dimensional minimum bounding rectangle of object o, then each
of thed — 1 dimensional faces* of b must touch o at some point.
Thus, given a point p, we have d(p,0) < maxp,csd(p,ps),
for each f € F(b), where F'(b) denotes the set of faces of
b. The face f causing the right hand side of the inequality to
reach its minimum is the best approximation of d(p, o) given
the bounding rectangle 4, so the function computing the MIN-
MAXDIST for a point and a bounding rectangle is dmwm(p, b)) =
min ;¢ popy(maxy, e d(p, py)). A practical way of computing the
value of dim(p, b) isto first compute the maximum distance from
p to avertex of b, say vmax, and then to determine the vertex ad-
jacent to vmax (i.€., dong an edge) that is closest to p [25]. Now,
wecandefinedmax(n1,b2) = maxpen, dmm(p, b2), andsimilarly
for obr/node pairs. The MINMAXDIST definition of dmax for two
object bounding rectangles is more complicated: dmax(b1,b2) =
minflGF(bl)7f2€F(b2)(maXP1€f17P2€f2 d(p1,p2))- The price of
basing the d.x functionsfor pairs with at least one bounding rect-
angleonthe MINMAXDIST metricis that they are more expensive
to compute than the simpler d.,.x function for node/node pairs.

Figure 5 presents a version of PROCESSNODEL that restricts
distancesto arangeof values. We must also modify theif statement
inline 7 of the INCDISTJOIN procedure in Figure 3 to check that
the distance D fdls in the desired range. The arguments Min and
Max in Figure 5 specify the minimum and maximum desired dis-
tance. MINDIST denotesthe regular distance functions (i.e., DIST
in Figure 3) while MAXDI1ST denotes the dm.x functions. Again,
thisversion of PROCESSNODE1 assumesthat the leaf nodes of the
spatial indexes store bounding rectangles. If the object geometry is
represented directly in the leaf nodes, then the actual objectswould
beusedinline4 of Figure5. Also, inthat case, if item 2isan object,
then MAXDIST isequivalentto MINDISTinline 5.

PrRocEsSNODEL(Q, Elem, Min, Max)

Node «— item 1 of Elem
Items — item 2 of Elem
if Nodeisaleaf nodethen
for each [Q] in Node do
if MAXDIST([O], ltem2) > Min and
MINDIST([O], Item2) < Maxthen
ENQUEUE(Q, MINDIST([O], Itemz), {[Q], {tems))
endif
enddo
9 ese
10 for each Child node of Node do
11 if MAXDIsT(Child, Item2) > Minand
MINDIST(Child, Item,) < Maxthen
12 ENQUEUE(Q, MINDIST(Child, Item>), (Child, Item:))
13 endif
14 enddo
15 endif

ObrWNPE

0O ~NO®

Figure 5: Portion of incremental distance join algorithm with
distancerangerestriction.

*In two dimensions, the faces are line segments.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 6

2.2.4 Estimating Maximum Distance

As we pointed out in Section 2.2.3, a reasonably narrow distance
range (i.e., smal interval between minimum and maximum dis-
tance) is crucial for the incremental distance algorithm to perform
well. However, it is often not practical to require the user to set a
maximum distance. Furthermore, the maximum distanceislikely to
be greatly overestimated. It is therefore important to have another
way of estimating the maximum distance, given some other infor-
mation. Oneway of doing soisto set an upper bound on the number
of pairsthat the algorithm must compute. In many applications, es-
pecially involving interactive queries, afairly low number of pairs
areknownto be needed. Thisisaided by query languageextensions
that enablelimiting the number of tuplesintheresult of queries(e.g.,
the “STOP AFTER” clause proposed for the “ SELECT” statement
of SQL [10]).

Given that the algorithm must compute amaximum of K pairs,
the algorithm can estimate the maximum distance based on the pairs
that have been seen so far. Obvioudly, if K object/object pairshave
been seen, then the pair with the largest distance among those K
pairs will provide alower bound on the maximum distance neces-
sary to compute the K closest pairs. However, we can do better
than this by also making use of other typesof pairs (e.g., nhode/node
pairs). In general, more than one object/object pair may be gen-
erated from a pair (i1,42). This means that much fewer than K
pairs are sufficient for estimating the maximum distance of K ob-
ject/object pairs.

Inthefollowing, Drmin and D ax denotethe minimum and max-
imum distance imposed on the pairs to be computed by the algo-
rithm, d denotes a regular distance function (i.e., computing min-
imum distance between two items) and d.,.x denotesthe functions
computing the upper bound on the distance of any object pairs gen-
erated from a pair. If the query specifies no maximum on the dis-
tance, then D, .« isinitialy co. Our goal isto reduce Dr,ax asmuch
as possible, given K, the maximum number of pairs requested.
Whenever apair (i1, 12) isinserted into the priority queue, we show
below how to usethepair for the purposeof estimating alower value
for Dmax. Doing this addsoverheadto the algorithm, but unless K’
is very large, it reduces considerably the number of pairs inserted
into the priority queue, and thereby improves the overall running
time of the algorithm.

A pair (i1,12) is eligible to be used for estimating Dmay if
d(i1,72) > Dmin @ddmax (21, 42) < Dmax. This guaranteesthat
all object/object pairs generated from (i1, 22) will have a distance
in therange [Dmin, Dmax]. Since we cannot know in advance how
many object pairsaregeneratedfrom apair (i1, é2}, wemust instead
determine alower bound on this number. This can be derived from
the minimum number of objectsin thesubtreeof 1 and 2, assuming
they are nodes (if they are objects or object rectangles, this number
isone). The minimum number of objectsin the subtree of a node
can, inturn, bederived from the minimum fan-out and the height of
the corresponding tree. For the R-tree, for example, the minimum
fan-out of nodesis typically 40% of the maximum fan-out (except
for theroot node). A more aggressivestrategy would result from us-
ing the expected number of pairs generated from (z1, i) based on
the average node occupancy. However, if the number of pairs gen-
erated from (i1, ¢2) is over-estimated, then this may lead to avalue
of Dmax that istoo small (i.e., smaller than the K" object/object
pair), thereby causing usto find lessthan K pairs which will force
usto restart the query. The reason we need to restart is that the pri-
ority queue does not provide us any useful information as we will
have pruned too many entries by our maximum distance heuristic.

Theprocessfor estimating A maintainsaset of pairs M , each of
which hasbeeninserted in the priority queuebut not retrieved from
it. When an dligible pair (i.e., with the distance function values as

specified above) isinserted into the priority queue, it isalsoinserted
into M. If this causesthe sum of the number of object/object pairs
(actually, the lower bound of object/object pairs asdescribed above)
that can be generated for the pairsin M to be larger than K, then
we remove pairs from M until thisisnot the case, setting Dmax to
the dmax Value of the pair removed last. The pair to remove next
is chosen based on the largest d max Value. When apair isretrieved
from the priority queue, we must also removethe pair from M if it
ispresent. However, when reporting the next object/object pair, we
can reducethe value of K by one.

The question is how to organize the set M. The operationsthat
are performed on M, in addition to insertion, are to removethe pair
with largest drax @ well asto remove a pair given the particular
itemsinthe pair. Thereisno single datastructure that supports effi-
cient execution of both of these operations. In our implementation,
we chose to use a priority queue @ »s organized on the dmax val-
uesto support finding the largest value, and a hash table to support
locating a particular pair. The hash table entries contain a pointer
to the corresponding priority queue entry, thereby enabling deleting
the entry from @@, for apair that must be removed. It isimportant
not to confuse @ »s with the main priority queue of the algorithm
(i.e, @ inFigure 3). @as will not be discussed further in the re-
mainder of this paper.

2.25 Other Extensions

A number of other extensions of the incremental distance join are
possible. Thefirst isto add some spatia criterion to one or both of
therelations involved in the join. As an example, the objects may
berequired to fall inside a given rectangle, or they may be required
to have someminimum area. Such an extension can actually be ap-
plied equally to other spatial join algorithms, and does not necessar-
ily involve modifying the algorithm. Instead, the distancefunctions
(which may be parametrized) can check the additional spatial cri-
teria, and return some specia vaueif the pair should be discarded.
Of course, if thespatial criterion hasahigh selectivity (i.e., suchthat
few objectsin each relation participating in the join satisfy the cri-
terion), then it may be better to first restrict the number of objects
by using the spatial criterion before computing the join. However,
the cost of that alternative will include building a spatial index on
the resulting restricted relations, or it will require using some algo-
rithm other than theincremental distancejoin. In either case, it may
take longer to produce the first few pairs with the alternative than
with the incremental distancejoin, sinceit it highly geared towards
producing pairs early.

Thesecond extensionisto impose asecondary ordering on pairs
produced by the al gorithm, besidesthe distance between the objects.
Thisis probably most useful if the resulting pairsarerequired to in-
tersect, i.e., the maximum distanceis 0. For example, we may wish
to find the intersections of roadsand riversin order of distancefrom
agiven house. In the general case, this extension requires modify-
ing the algorithm. However, for the specia case of finding inter-
sections, the distance functions could return oo for nonintersecting
pairs, but for intersecting pairs, the functionswould return some or-
dering value (such as the distance from the housein our example).

Another possible extension is to find the pairs in reverse order
of distance, i.e., the farthest pair first, etc. Thisisrelatively simple
to achieve. Instead of ordering the elements on the priority queue
in ascending order of distance, we would order them in descending
order of distance(for example, this can be doneby simply usingthe
negative of the distance as akey). In addition, instead of using the
regular distance functions as a key to order the pairs on the priority
queue, the dm.x functionsmust be used for al typesof pairs except
object/object pairs(recall that the dr,.x functions compute an upper
bound on the distance of object/object pairs generated from pairs).

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 7

As before, the algorithm will perform better if the distancerangeis
rather narrow. However, in this case, we can estimate the minimum
distancein the presenceof an upper bound K~ on the number of ob-

ject pairs that will be requested. Thisisinstead of estimating the
maximum distance aswas described in Section 2.2.4.

2.3 Computing Distance Semi-Join

Recall that distance semi-join is a subset of a distance join, where
an object pair {01, 02) appearsin theresult only if none of the prior
pairscontaino; asthefirstitem. Thus, we must keeptrack of the set
S, of objectso; whosepairs (o1, 02) havebeenreported. Theeasi-
est way to extendtheincremental distancejoinalgorithm to compute
a distance semi-join is to use the algorithm unchanged and check
outside of the algorithm if object o1 in output pairs (o1, 02) has
been seen before (i.e, if it ispresent in the set S,). However, that
approach (termed “Outside” in Section 4.2.1) does not take advan-
tage of the special structure of the distance semi-join to reduce the
amount of work expended by the algorithm. In thissection weiden-
tify several possiblewaysto modify theincremental distancejoinal-
gorithm such that it computesthe distance semi-join operation more
efficiently. Also, we discuss how the extensions and optimizations
described in section 2.2 for the incremental distancejoin agorithm
apply for computing the distance semi-join operation.

First, we must bring into the algorithm the knowledge of the
set S, the set of objects from the first collection that has already
been seen. Thisis straightforward to do, and requires minor mod-
ifications to the INCD1STJOIN procedure of Figure 3 (termed “In-
sidel” in Section 4.2.1) as well as to procedure PROCESSNODE1
(termed “Inside2” in Section 4.2.1). Specificaly, in line 4 of IN-
cDisTJoIN, if in the dequeued element (1, 22}, 11 iS an object or
an object bounding rectangle, then we check if ¢; is presentin S,.
If so, then we discard the pair. In PROCESSNODEL, if the nodeis
aleaf node, then in line 5 we must ignore entries that correspond to
objectsthat are presentin S,.

Bringing the knowledgeof theset S, into thea gorithm isadefi-
nite improvement, but we can do better still. The nextimprovement
isbased onthefact that for eachpair {01, 02} intheoutput of the dis-
tancesemi-join of A and B, o2 istheobjectin B nearestto o,. This
can be exploited locally in the PROCESSN ODE2 procedure (termed
“Local” in Section 4.2.1). To see how, notethat for apair (o1, n2),
the object in the subtree of n closestto o1 ismost likely in some of
the entries of n, whoseregionisnear o,. Specifically, we compute
dmax(01, e2) for each entry e in n2, and determine the minimum
value, Drm. Any entry inn, that isfarther away from o, than Dy
can be discarded asit is guaranteed not to contain the object in the
subtree of n, nearest to oq. This principle can be applied in PRO-
cessNoODE2 evenfor pairs (i1, n2) wheres; isan object bounding
rectangleor anode, sinced .« (i1, n2) isanupper bound onthedis-
tance of any object pair derived from (i1, n2). Observethat thisap-
proach isanalogousto the downward pruning strategy of the nearest
neighbor algorithm of [25].

A more aggressive strategy can be obtained by using the same
insight in aglobal fashion. In other words, for each object and node
in R, (thespatial datastructurerepresentingthe objectsin A), main-
tain the smallest d...x distance that has been seen so far (termed
“GlobalAll” in Section 4.2.1). Any time we consider enqueuing a
pair (i1, i), wewould first make sure that the distanceof the pair is
smaller than the smallest dr.x distancefor :1. Employing thisstrat-
egy requiresaconsiderableamount of memory spaceif R1 contains
many objects. Nevertheless, it is useful as a comparison with the
other strategies. Moreover, we can compromise by only maintain-
ing the globally smallest dmax distance for the nodesof R+, which
requires an order of magnitude |ess spacethan doing so also for the
objectsin R, (termed “GlobaNode” in Section 4.2.1).

Asin the case of computing the distancejoin incrementally, we
can estimate the maximum distance needed to produce a maximum
of K pairsfor the distancesemi-join. Thisisdonein muchthe same
way as described in Section 2.2.4. The difference, here, isthat in
theset M of the pairs being used in the estimation process, the first
item in each pair is unique. In other words, if (i1, i) isapair in
M , thenno other pair in M hasi, asthefirstitem®. Also, the num-
ber of pairs generated from a pair (i1, 22} is bounded by the num-
ber of objectsin the subtree of 1, assuming ¢1 isanode. When an
item (21, 12) is about to be inserted into M, we must first check if
another item (i1, 45) existsin M. If so, then we replace (i1, i5) by
(i1, 12) if thelatter hasasmaller dm.x valueandignore (i1, i2), oth-
erwise. Thereare two additional subtle differences. When (o1, 02)
is reported, any pair {o1,12) in M must be removed. Also, a pair
(n1, i2) may only beinsertedinto M if n1 hasnever been processed
for any pair {n1,15). Otherwise, some of the objectsin the subtree
of n1 would be counted more than once (since processingn 1 inthe
pair (n1,i5) may lead to some pairs (e, 15} to beinserted into M
wheree; isanentry in n1). Thismay lead to an estimate of D,ax
that is too low thereby causing usto find lessthan K pairs which
forces usto restart the query. The reason we need to restart is that
the priority queue doesnot provide us any useful information aswe
will have pruned too many entries by our maximum distanceheuris-
tic.

Theextensionsdiscussedin Section 2.2.5 also apply for the dis-
tance semi-join version of the our incremental agorithm. However,
modifying the algorithm to find pairs in reverse order of distance
leadsto what may seem an unintuitive, and perhapsnot very useful,
result. There are two possible ways of defining a reverse distance
semi-join operation on relations A and B. Thefirst isto report in
reverse order of distancethe object in B closest to each object in A.
The secondis to report in reverse order of distancethe objectin B
farthest from each object in A. The straightforward way of apply-
ing the incremental distance join to the reverse distance semi-join
will bein accordanceto the second definition since it corresponds
to reporting for each object o1 thefirst pair (o1, 02) that occursina
reverse distancejoin. The first definition would mean reporting for
eachobject o, thelast pair (o1, 02} that occursin areverse distance
join, which would be extremely inefficient.

3 Experimental Environment
3.1 System and Data

All of our experimentswere run on a Sun Ultra1 Model 170E ma-
chine, rated at 6.17 SPECint95 and 11.80 SPECfp95, with 64MB
in main memory and a 2.1GB internal disk drive. The spatial data
structure that we used is an R*-tree [5]. The size of the nodeswas
1K, for amaximum fan-out of 50, with 256K of memory used for
buffers. The spatial objects were represented directly in the leaves
of the R*-trees. We chose that approach in order to simplify the
analysisof the executiontime results. Also, the organization of the
external object storage has a large effect on the performance, and
thus introduces an additional variable. The software was compiled
with a GNU C++ compiler set for maximum optimization (-O3).
The distance functions were based on the Euclidean metric.

Asin other evaluations of spatial algorithms (e.g., [8, 21]), we
derived our test datafrom the TIGER/Line File [9]. We used two
setsof pointsfrom the coverage of the Washington, DC area: Water
containsthe centroids of water features (37,495 points), and Roads
containsthe centroids of road features (200,482 points). It should be

As far as M is concerned, an object bounding rectangle is
treated in the same way as the corresponding object; both are rep-
resented by the object identifier.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 8

clear that dealing with line datais much more complex than points.
Making experiments with line data and more complex spatial fea
turesisasubject for future study.

3.2 Implementation Details

An important issue is the implementation of the priority queue. It
should be clear that the number of object pairsin the result of a
full distancejoin operation is extremely large, or the sameasin the
Cartesian product of the relations (in the absence of distance range
restrictions). Even when computing the entire distance join (thisis
not likely to bevery useful in practice, however), the size of the pri-
ority queuein theincremental distancejoin algorithm remains much
smaller than the size of the result. Nevertheless, a small fraction of
avery large number is still alarge number. Thus, the size of the pri-
ority queue may be too large to fit in memory. However, an exclu-
sively disk-based scheme for representing the priority queueis not
desirable, dueto poor performance.

In our experiments, we use a simple hybrid memory/disk
scheme that stores parts of the priority queue in a memory-based
heap structure (we chose the pairing heap structure [13]), while the
rest isoffloaded to disk. If arelatively small number of object pairs
isrequested, then the vast majority of pairs put on the priority queue
will never be needed. Thus, our goal in developing the schemewas
that the contents of the priority queuethat were put on disk would
only be neededwhen alarge number of object pairs were requested.
Another reason for limiting the contents of the memory-based heap
to pairs that are likely to be needed is that the algorithmic com-
plexity of heap operationsis directly related to the size of the heap.
We choseto use a three-tiered scheme for representing the priority
queue, based on the distance of the pairs. Pairswith adistanceless
than D1 are stored in the memory-based heap, pairs with adistance
lessthan D2 are stored in an unorganizedlist in memory, while pairs
with adistance of D2 or greater are stored on disk. If the heap be-
comes empty, then the contents of the unorganized list is put into
the heap, the value of D1 is changed to D2, a hew valueis chosen
for D2, and pairs on disk with distance between the new values of
D1 and D2 are put into the unorganized list (actualy, we avoid ac-
cessing the pairson disk unlessthey needto be inserted into the pri-
ority queue). Inour implementation, afixed distanceincrement D1
is used to update D1 and D2, with their initial valuesbeing D+ and
2D, respectively. The part of the queuestored on disk isorganized
inlinked lists of pageswith the pairsin eachlist having distancesin
therange [k D, (k + 1)Dr).

The drawback of our priority queue schemeis that it depends
on afixed constant 1+ rather than responding dynamically to the
distribution of the queue contents. In the experiments, we chose a
valuefor D that worked well for the input relations. Developing
away of choosing D r based on theinput relations, or finding some
other dynamic method of deciding what part of the priority queueis
stored on disk, are subjectsfor further investigation.

In Section 2.3, a set S, is maintained of objects from A for
whom apair hasbeen reported by theincremental agorithm for the
distance semi-join. In our experiments, we use a bit string repre-
sentation for S,. Thereasonisthat abit string representationis ex-
tremely efficient, both for membership testsandinsertions. Thereis
certainly a space/timetradeoff involved, sinceabit string represen-
tation of aset occupiesafixed amount of space, regardlessof thesize
of the set. For sets of only afew elements, it would be much more
space efficient to use some other approach. Nevertheless, given the
memory capacity of modern computers, the size of the bit stringsis
modest even for large data sets. For example, abit string represen-
tation of a subset of 1 million elementswould occupy 122K.

4 Performance Results

In this section, we evaluate the effectiveness of the strategies pre-
sented for enhancing the efficiency of the incremental distancejoin
algorithm, as well as compare its performance to competing ap-
proachesfor computing the distancejoin and distance semi-join. In
the experiments, we|joined Water with Roads, except where noted®.

4.1 DistanceJoin
4.1.1 Priority Queue Ordering and Tree Traversal

Section 2.2.2 discussed the effect of choosing a different priority
queue ordering (i.e., how ties are resolved for pairs with the same
distance) as well as how to process pairs of two nodes. Table 1
lists the values of some performance measures (the number of ob-
ject distance cal cul ations, the maximum queue size, and the number
of node /O operations) for producing up to 100,000 result pairs of
the distance join. The algorithm version used in these experiments
wassuch that pairs with the same distance are ordered so that the al -
gorithm performsadepth-first traversal (i.e., nodesat adeeper level
aregivenpriority); only onenodeisprocessedat atimein node/node
pairs, and the two spatial indexes are traversed evenly”. In all ex-
periments below, except where otherwise noted, this type of queue
order and traversal isused. In Figure 6, we plot the execution times
of this version (labeled “ Even/DepthFirst”) against three other ver-
sions: (1) “Even/BreadthFirst” orders pairs with the same distance
suchthat it leadsto breadth-first traversal; (2) “Basic/DepthFirst” is
the basic algorithm of Figure 3, where we always process the first
nodein node/node pairs; and (3) “ Simultaneous/DepthFirst” where
both nodes of node/node pairs are processed simultaneously.

Overadll, the shape of the graphsis similar. For the versions us-
ing the priority queue order leading to depth-first traversal (“ Depth-
First”, “Basic” and “ Simultaneous’), obtaining thefirst pair isrela-
tively inexpensive, while the cost does not rise much for between 10
and 10,000 pairs. However, for computing alarger number of pairs,
the cost rises dramatically.

The difference in execution times for the four versionsis due
to differencesin the values of all performance measuresin Table 1.
However, the dominant factor, although not shown here, isthe num-
ber of distance calculationsand the size of the priority queue, which
aremuch larger for “Basic” and“ Simultaneous’. Since amaximum
distanceis not specified for these experiments, the “ Simultaneous’
versionis not ableto benefit from itsfiltering and plane-sweeptech-
niques. The reason for “DepthFirst” being somewhat faster than
“BreadthFirst” for retrieving onepair isthat there is one object pair
with a distance of 0. Thispair is reported as soon asit is found by
“DepthFirst”, but in “BreadthFirst” it isonly reported after all inter-
secting nodes have been processed. After the first pair, the differ-
ence between these methodsis negligible.

An interesting question is what the reason is for the sharply
higher cost for computing 100,000 pairs compared to computing
10,000 pairs. Table 1 reveals that there is a relatively larger in-
crease in node 1/0O between computing 10,000 and 100,000 pairs

5Sincethe distancejoinissymmetric, the result of joining Roads
with Water is the same. However, the incremental distancejoin al-
gorithmis not necessarily symmetric in its execution pattern, so that
the executiontime may be different based on the order of the joined
relations. Thedistance semi-join operationis not symmetric, sothat
result of a distance semi-join of Roadswith Water is different from
adistance semi-join of Water with Roads.

"Recall that by traversing evenly we mean that if the nodesin a
node/node pair are at a different level in their respectivetrees, then
we chooseto processthe node at a shallower level.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 9

Time | Dist Queue | Node

Pairs | (sec) | Cadc. Size 110
1 6.9 | 307994 | 1002536 | 3019
10 9.0 | 393758 | 1333856 | 4087
100 9.4 | 395780 | 1356985 | 4652
1,000 9.8 | 403281 | 1434160 | 6487
10,000 | 12.6 | 422392 | 1632895 | 11502
100,000 | 23.8 | 479262 | 2229874 | 28356

Table 1: Values of performance measuresfor incremental dis-
tancejoin algorithm using depth-first traversal, processing one
nodeat atime, and using even traversal.

(node 1/O countsthe number of times a requested nodeis not in the
node buffer). The number of node accesses(not shownin thetable)
increases by about 43%, and amost all of the additional accesses
are for nodes that are not present in the node buffer. A larger node
buffer, or a better buffer strategy, will most likely improve the per-
formancefor computing 100,000 pairs. Another factor in the higher
cost of computing 100,000 pairsisthat for that many pairs, parts of
the priority queue contents that were written to disk must be read
back into memory.

The values of the performance measures when joining Roads
with Water, instead of Water with Roads, is virtually the same for
these versions of the algorithm, except for “Basic”. Since Roads
islarger, many more pairs are generated (in this case, Roadsis tra-
versed first). In fact, for producing result 100,000 pairs, too many
pairs were generated for the priority queueto fit on disk. Thus, the
treatment of node/node pairsin “Basic” is clearly too smplistic.

S0 T

1000 and 10,000 pairs (setting the maximum to 100,000 was slower
thanthe“Regular” version). Thepurposeof showingthe“MaxDist”
plotsis to demonstrate the effect of setting the maximum distance,
and it also provides a useful benchmark of the effectiveness of the
maximum distance estimation of “MaxPair”. Of course, in practice
wewill not know in advancethe distance of pair number 1000, etc.

Figure 7 confirms the benefit of setting the maximum distance.
The performance was very similar for the three valuesfor the max-
imum distance. Setting the maximum number of pairsis seento be
only beneficial for arelatively small number of pairs. For a maxi-
mum of 1000 pairs, we get a similar performance as for setting the
maximum distance. When the maximumis set to 10,000 pairs, there
isless benefit, as the maximum distance estimate is not astight and
the overhead of the estimation processis greater.

In Section 4.1.1 we confirmed that processing both nodessimul-
taneously for node/node pairs is worse than processing only one at
atimeif no maximum distanceis specified. We performed the same
experiments as shown in Figure 7 using the “Simultaneous’ ver-
sion of theincremental distancejoin algorithm. Althoughwe do not
explicitly present these results here, as expected, the performance
of “Simultaneous” was better than that of “DepthFirst” when arel-
atively small maximum distance was specified, or up to 20% for
“MaxDist 1000”. However, theimprovement wasmost pronounced
for retrieving only afew pairs, and was much smaller for retrieving
10 or more pairs, or usually about 3-5%. Specifying amaximum on
the number of pairswasalso alittle faster using the “ Simultaneous’
versionfor avery small number of pairs. For 10 pairsor more, how-
ever, it proved better to processonly onenodeat atime in node/node
pairs, although the improvement was not great (typicaly ~2-4%).

N
o o1 O »;

| Simultaneous,DepthFirst -+--

Basic,DepthFirst <-—

Even,BreadthFirst -B-- /
Even,DepthFirst - /" 4

Execution time (seconds)
P RN a w W b

0 4
5 P
- ¢
O e Rz B 1
5 - -
0 N PR PR 2l PR L
1 10 100 1000 10000 100000

Number of result pairs (log scale)

Figure 6: Execution time for different queue order and node
processing.

4.1.2 Maximum Distance and Maximum Pairs

In Section 2.2.3 we discussed the importance of imposing a maxi-
mum distance, andin Section 2.2.4 we described how the maximum
distance can be estimated based on an upper bound on the number
of object pairsthat will be requested. Figure 7 comparesthe execu-
tion time of the regular algorithm (i.e., “DepthFirst” from the pre-
ceding section) to two versions of the algorithm applied to distance
join: (1) “MaxDist” istheregular algorithm with maximum distance
set to the distance of pair number 1000, 10,000, and 100,000 (for
“MaxDist 1000”, weonly computeupto 1000 pairs, etc.); (2) “Max-
Pair” uses the maximum distance estimation for an upper bound of

16 HE B L B
14 b Regular <— i
g MaxDist 1000 —+---
< 12 MaxDist 10,000 -&-- i
3 MaxDist 100,000
810 MaxPair 1000 i
) X
E 8 7
s B
S 6§~ : 7
g 4E= i
X
a5 |
o | - PR 2l P

1 10 100 1000 10000 100000
Number of result pairs (log scale)

Figure 7: Execution time for different maximum distance and
maximum pairsfor distancejoin.

4.1.3 Priority Queue Implementation

In Section 3.2 we discussed a hybrid implementation of the prior-
ity queue that offloads parts of the queue to disk. Figure 8 gives
the execution time for a purely memory-based queue implementa-
tion aswell asthe hybrid one, wheretwo different valuesof D1 are
used for the hybrid approach®. The memory-based queueis only
alittle slower for up to 10,000 pairs. However, for 100,000 pairs,
it is almost an order of magnitude slower, due to excessive virtual
memory thrashing, taking over 180 secondsto compute. The hy-
brid approach performed almost equally well for the different val-
ues of D7, except when retrieving 100,000 pairs. In that case, the

#The valuesof D7, chosen somewhat arbitrarily, correspond to
thedistancesof pairsnumber 7,663 and 34,906. Thelatter valuewas
used for all the other experiments.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 10

higher D+ value (i.e., “Hybrid2") was better, most likely because
it required fewer reads from the disk portion of the priority queue.
For fewer than 100,000 pairs, the lower D1 value (i.e., “Hybrid1")
gavedlightly better performance, asahigher number of unnecessary
priority queue elementswere kept out of the memory based part of
the queue. The best valuefor D+ dependsboth on the nature of the
data sets and the amount of available memory.

30 — 1 T T I
Memory —<— 1
Hybridl -+- A
Hybrid2 -5-- /N

N
a1
T

N
o

=
o

3
£
=
\

I

Execution time (seconds)
[
6]

1 10 100 1000 10000 100000
Number of result pairs (log scale)

o

Figure8: Execution timefor storingthepriority queueentirely
in memory vs. offloading partson disk.

4.1.4 Alternative Implementations

Thedistancejoin operation can be computedin other waysthanwith
the incremental distance join algorithm. If amaximum distanceis
imposed, then aspatial join with awithin predicate can be executed,
with theoutput being sorted onceit isdone. If no maximum distance
is imposed, then some distance must be guessed at if an algorithm
for the spatial join with within predicateisto beused. If the distance
istoo small and not enough pairsresult, then the spatial join must be
executed again with alarger distance. Due to this problem, we do
not use a spatial join algorithm for comparison.

Another way of computing adistancejoinisto useanestedloop
approach and compute the distance between al possible pairs of
objects. However, this will not compare favorably with using the
incremental distance join algorithm unless a very large number of
pairsis needed, which is unlikely to arisein practice (for example,
thefull join for our data sets contains about 7.5 billion pairs). Nev-
ertheless, we did an experiment with this approach using the Water
and Roadsdata sets. For simplicity sake, weonly computedthe dis-
tance valuesbut didn’t store them nor did we sort at the end, which
would be necessary for areal implementation. The data set of the
inner loop was read completely into memory in order to avoid re-
readingit. Thetimeto executethe experiment wasover 3 1/2 hours.
In that amount of time, theincremental distancejoinisableto com-
pute at least 100 million pairs. Unfortunately, for that many pairs,
the priority queue becomes so large that the incremental distance
joinisnot practical unlessavery largedisk spaceisavailable. How-
ever, alarge disk spacewould also be required to generate and sort
100 million pairs using the nested loop approach.

4.2 Distance Semi-Join

In this section we discuss some results of our experimentsfor com-
puting the distance semi-join with variants of the incremental dis-
tance join agorithm. Since we are joining Water with Roads, this
resultsin finding the nearest neighbors of pointsin Water.

4.2.1 Pair Filtering and Smallest d.,,.x Distance

In Section 2.3 we enumerated several ways of filtering out pairs
(i1, 12) where 4, is an object or an object bounding rectangle and
11 has aready been reported. Also, we presented ways of limit-
ing the number of pairs generated based on the d.,.x distance of
pairs. Figure 9 gives the execution time for these various filtering
methods: (1) “Outside” executes the regular incremental distance
join agorithm and filters out resulting pairs that contain objectsthat
havealready beenreported; (2) “Insidel”filtersonly intheINCDIs-
TJOIN procedure of Figure 3; and (3) “Inside2” filters also in the
PROCESSNODE1 procedure. There are three schemes that exploit
the dmax distance, al of which use the filtering of “Inside2”: (1)
“Local” only workslocally in the PROCESSNODE1 procedure; (2)
“GlobalNodes” usesthelocal strategy, aswell asglobally maintain-
ing the smallest d.,.x distance of nodes; and (3) “GlobalAll” glob-
aly maintainsthe smallest d...x distanceof both nodesand objects.

Filtering pairs outside the INCDI1STJOIN procedure appears to
be dlightly better for up to 1000 pairs. However, the priority queue
becametoo largeto find theneighborsof al pointsin Water and thus
is not shown beyond 10,000 pairs. Filtering inside INCDISTJOIN
and/or PROCESSNODE1 saves somedistance cal culations and node
accessesfor retrieving 1000 or more pairs, but thiswas outweighed
by more member checks against the S, set, at least for up to 1000
pairs. For more pairs the benefit of more filtering becomes greater,
andfor findingtheneighborsof all pointsin Water “Insidel” isabout
47% dower than “Inside2” (530 vs. 362 seconds; thisis not shown
in Figure 9 in order not to obscure the time difference for smaller
numbers of pairs).

The three schemesfor exploiting d..x distances also are very
similar for up to 10,000 pairs. However, for much larger number
of pairs, the benefit of maintaining the d-,.x distance of al objects
and nodes (“ Globa All™) becomes more pronounced. Doing it only
for nodes (“ GlobalNode”) did not seem to result in appreciableim-
provement comparedto “Local”.

VDT T T X
35 | Outside <— 3 i
w Insidel -+ [
a3k Inside2 -&-- ol
3 Local -x- P
8251 GlobalNode -2--- bk
" GlobalAll - [y
E 20 1
S15 1
3
g 10 R
X
b g i
o 1 P 1 P 1 1 1 P
1 10 100 1000 10000 100000

Number of result pairs (log scale)

Figure 9: Execution time for storing priority queue entirely in
memory vs. offloading partson disk.

4.2.2 Maximum Distance and Maximum Pairs

Asin Section 4.1.2, we now report on experiments testing the ef-
fect of setting a maximum distance or an upper bound on the num-
bersof pairsfor computing the distance semi-join operation with the
incremental distance join algorithm. Figure 10 shows the result of
doing this using the “Local” version of Section 4.2.1. In thefigure,
“MaxDist All” istheresult of setting the maximum distanceto bethe
largest possibledistancebetween two objectsin theresult of the dis-

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 11

tancesemi-join andfor “MaxPair All”, the upper bound on the num-
ber of pairsis set to the number of pointsin Water. The figure con-
firms the benefit of restricting the maximum distance. Notice that
setting the maximum number of pairs to 1000 doesindeed improve
the execution time, making it virtually identical to setting the maxi-
mum distanceto the distanceof the 1000 ™ pair. However, choosing
10,000 or more as the maximum number of pairs makes the algo-
rithm slower, assuch alarge limit doesnot give atight estimate for
the maximum distance, and the overhead cost incurred in estimating
the maximum distance exceeds its benefit. The cost of computing
the neighbor of al pointsin River (not shown in the figure) is about
35 seconds for “MaxDist All” and 44 seconds for “MaxPair All”.
These numbers are about 14% lower and 13% higher, respectively,
than when maximum distanceis not set. Thus, we can seethat im-
posing amaximum distanceor setting an upper bound onthe number
of pairsto be generated only yields significant savingsin execution
time when the maximum islow (up to 50% savingsor more), while
high values on the maximum yields little if any savings.

18 R | AN | T
Regular <—
516 MaxDist 1000 —+-- i
T 14 MaxDist 10,000 -8--]
] MaxDist All -
o 12 - MaxPair 1000 -&--- 9
L MaxPair 10,000 -%-- Tk
g 101 MaxPair All -o-- o~
£ g B i
= — SV - |
S 69 i
3 ¥ fmm—=
5 4 de=s .
2 - -
0 PR | PR | PR | PRI
1 10 100 1000 10000

Number of result pairs (log scale)

Figure 10: Execution timefor different maximum distanceand
maximum pairsfor distance semi-join.

4.2.3 Alternative Implementations

The distance semi-join can aso be implemented using a nearest
neighbor agorithm. For each object in relation A, we perform a
nearest neighbor computation in relation B, and sort the resulting
array of distancesonce all neighbors have been computed. For the
data sets in question, the execution time for doing thisis about 27
seconds. The incremental distance join methods reported in Fig-
ure 9 compare favorably with this method for computing the entire
distance semi-join, especialy “Globa All” (which took around 25
seconds). An even better result isobtained if we switch the order of
therelations (i.e., compute the distance semi-join of Roadsand Wa-
ter), in which case “Globa All” takes about 102 secondswhile the
nearest neighbor implementation takes 141 seconds.

Observe that the “GlobalAll” strategy must keep track of the
dmax distancefor all objectsand nodesin the R-tree for relation A,
which can occupy considerable storage. However, an implementa-
tion that uses a nearest neighbor algorithm must also store distance
valuesfor al objects.

5 ConcludingRemarksand Directionsfor Fu-
ture Research

Two new spatial join operations have been defined where the join
output isordered by the distance between the spatial attribute values

of the joined tuples, and a number of different incremental strate-
giesfor computing them have been examined. Therationale behind
our solutions is that frequently only a small part of the join result
will actually be needed. Our experiments revealed that for distance
join, thevariant of theincremental distancejoin algorithmsthat per-
formed best overall was the one that processed only one node in
node/nodepairs at atime, attempted to traversethetwo trees evenly
(i.e., so asnot to descend much farther into one than the other), and
ordered pairs with the same distanceto result in adepth-first traver-
sal. Setting alimit on the distance of pairs was shown to improve
performance considerably, even if the maximum distance limit is
relatively large. However, imposing an upper bound on the number
of pairsisonly worthwhile if the upper boundisnot very large (e.g.,
inour experiments, an upper bound of 100,000 pairsdid notimprove
performance). Neverthel ess, in many of the applicationsthat ween-
vision for our algorithm—most notably for interactive query inter-
faces, which quickly present the user with the most relevant part of
the query result—a small upper bound can be established.

For the distance semi-join, the strategies for improving the per-
formance of the incremental distancejoin were shownto yield sig-
nificant improvements, especially for computing alarge part of the
result. The strategies use different meansfor eliminating from con-
sideration pairs that are sure not to be needed to compute the out-
put of the algorithm. The best overall strategy used every possi-
ble opportunity for eliminating pairs containing object o1 if a pair
{01, 02) has been reported earlier, and uses globa knowledge of
distance bounds to further eliminate pairs when processing nodes
(“GlobaAll” inFigure9). Thisversionwasfoundto bebetter than a
non-incremental approach that computes the distance semi-join us-
ing a nearest neighbor algorithm. However, maintaining the global
knowledgeof distance boundsrequires asomewhat |arge amount of
storage. A reasonablecompromiseisto exploit the distance bounds
only locally within anode asiit is being processed (“Loca”). The
effect of restricting the maximum distance or the maximum number
of pairswas found to yield similar benefits as when computing the
distancejoin.

Our agorithm findsuse for processing queries such as “fi nd the
city nearest to any river, suchthat the city has a population of more
than 5 million”. There are at least two optionsfor aquery engineto
usethe incremental distancejoin agorithm to answer this query:

1. Executethe agorithm onthe city and river relations and filter
out the result pairs where the city hastoo small a population,
and

2. First find the cities with a population greater than 5 million
and usethat in the incremental distancejoin algorithm.

For the second option, a spatial index must be built on the result of
finding cities with a population of more than 5 million for the al-
gorithm to be applicable. Hence, this option is most appropriate if
the population criteria has a high selectivity. However, if the pop-
ulation criteria has alow selectivity, then the first option would be
superior. More query plans may even exist, employing some other
algorithm. To enableaquery optimizer to choose between these op-
tions requires a cost model for the relevant algorithms (e.g., as de-
veloped in [20] for the traditional R-tree spatial join). Developing
such cost models for the incremental distance join algorithms pre-
sented in this paper is a subject for further study.

Other issues for further investigation include developing tech-
niques to dynamically partition the priority queue between a
memory-based structure and a disk-based one. Our experiments
were limited to using two-dimensional points. Further work is
needed to determine how appropriate our approachisfor more com-
plex spatial objects(i.e., with extent, such aslinesand polygons), as
well asfor higher dimensions.

Proceedings of the 1998 ACM SIGMOD Intl. Conference on Management of Data, Segttle, WA, June 1998, pp. 237-248 12

6 Acknowledgements

We wish to thank Bjorn b. Jonsson and Dr. Robert E. Webber for
their critical comments.

References

(1]

(2]

(3]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

W. G. Aref and H. Samet. The spatial filter revisited. Proc.
of 6th International Symposiumon Spatial Data Handling, pp.
190208, Edinburgh, Scotland, September 1994.

F. Bartling and K. Hinrichs. Probabilistic analysis of an al-
gorithm for solving the k-dimensional all-nearest-neighbors
problem by projection. BIT, 31(4):558-565, 1991.

R. J. Bayardo and D. P. Miranker. Processing queriesfor first
few answers. In Proc. of 5th CIKM, pp. 45-52, Rockville, MD,
November 1996.

L. Becker, K. Hinrichs, and U. Finke. A new agorithm for
computingjoinswith grid files. Proc. of 9th IEEE Int. Conf. on
Data Engineering, pp. 190-197, Vienna, Austria, April 1993.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. Proc. of ACM SSGMOD, pp. 322-331, Atlantic
City, NJ, June 1990.

S. N. Bespamyatnikh. An optimal agorithm for closest pair
maintenance. Proc. of 11th Symp. on Computational Geome-
try, pp. 152—161, Vancouver, British Columbia, June 1995.

T. Brinkhoff, H. P. Kriegel, R. Schneider, and B. Seeger. Mullti-
step processing of spatia joins. Proc. of ACM SSGMOD, pp.
197-208, Minneapolis, MN, June 1994.

T. Brinkhoff, H. P. Kriegel, and B. Seeger. Efficient process-
ing of spatial joinsusing R-trees. Proc. of ACM SGMOD, pp.
237-246, Washington, DC, May 1993.

Bureau of the Census. Tiger/Line precensusfiles. Washington,
DC, 1989.

M. J. Carey and D. Kossmann. On saying “enough al ready!”
in SQL. Proc. of ACM SSIGMOD, pp. 219-230, Tucson, AZ,
May 1997.

K. L. Clarkson. Fast algorithm for the all nearest neighbors
problem. Proc. of 24th IEEE Symp. on the Foundations of
Computer Science, pp. 226-232, Tucson, November 1983.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys,
11(2):121-137, June 1979.

M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan.
The pairing heap: A new form of self-adjusting hesp. Algo-
rithmica, 1(1):111-129, 1986.

O. Gunther. Efficient computation of spatial joins. Proc. of
9th IEEE Int. Conf. on Data Engineering, pp. 50-59, Vienna,
Austria, April 1993.

A. Guttman. R-trees: a dynamic index structure for spatial
searching. Proc. of ACM SGMOD, pp. 47-57, Boston, MA,
June 1984.

J.M. Hellerstein, P. J. Haas, and H. Wang. Online aggregation.
Proc. of ACM SGMOD, pp. 171-182, Tucson,AZ, May 1997.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

A. Henrich. A distance-scanalgorithm for spatial accessstruc-
tures. Proc. of 2nd ACM Workshop on GIS, pp. 136-143,
Gaithersburg, MD, December 1994.

G. R. Hjaltason and H. Samet. Ranking in spatial databases.
Advancesin Spatial Databases— 4th Int. Symp., SSD’95, pp.
83-95, Portland, ME, August 1995. (Also Springer-Verlag
Lecture Notesin Computer Science 951).

E. Hoel and H. Samet. Data-parallel spatial join algorithms.
Proc. of 23rd Int. Conf. on Parallel Processing, pp. 227-234,
St. Charles, IL, August 1994.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A cost model
for estimating the performance of spatia joins using r-trees.
Proc. of 9th Int. Conf. on Scientific and Satistical Database
Management, pp. 30—38, Olympia, WA, August 1997.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins
usingr-trees: breadth-first traversal with global optimizations.
Proc. of 23rd VLDB Conf., pp. 396405, Athens, Greece, Au-
gust 1997.

M. Kitsuregawa, L. Harada, and M. Takagi. Join strategies
on k-d—treeindexed relations. Proc. of 5th |EEE Int. Conf. on
Data Engineering, pp. 85-93, Los Angeles, February 1989.

D. Lomet and B. Salzberg. A robust multi-attribute search
structure. Proc. of the 5th IEEE Int. Conf. on Data Engineer-
ing, pp. 296-304, Los Angeles, February 1989.

D. Rotem. Spatial joinindices. Proc. of 7th Int. Conf. on Data
Engineering, pp. 500-509, Kobe, Japan, April 1991.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. Proc. of ACM SSIGMOD, pp. 71-79, San Jose, CA,
May 1995.

H. Samet. Applications of spatial data structures. Computer
graphics, image processing, and GIS. Addison-Wesley, Read-
ing, MA, 1990.

H. Samet. The design and analysis of spatial data structures.
Addison-Wesley, Reading, MA, 1990.

B. Seeger and H. P. Kriegel. The buddy-tree: an efficient and
robust access method for spatial data base systems. Proc. of
16th VLDB Conf., pp. 590-601, Brisbane, Australia, August
1990.

J. C. Shafer and R. Agrawal. Parallel algorithms for high-
dimensional proximity joins. Proc. of 23rd VLDB Conf., pp.
176-185, Athens, Greece, August 1997.

H. W. Six and D. Wood. Counting and reporting intersections
of d—ranges. |EEE Transactionson Computers, 31(3):181—
187, March 1982.

P. M. Vaidya. An O(nlogn) agorithm for the all-nearest-
neighbor problem. Discrete & Computational Geometry,
4(2):101-115, 1989.

T. L. Wang and D. Shasha. Query processingfor distance met-
rics. Proc. of 16th VLDB Conf., pp. 602—613, Brisbane, Aus-
tralia, August 1990.

A.N. Wilschut and P. M. G. Apers. Dataflow query execution
inaparallel main-memory environment. Proc. of 1st Int. Conf.
on Parallel and Distributed Information Systems, pp. 6877,
Miami, FL, December 1991.

