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In this paper, a terminological framework is provided for describing different transaction- 
oriented recovery schemes for database systems in a conceptual rather than an 
implementation-dependent way. By introducing the terms materialized database, 
propagation strategy, and checkpoint, we obtain a means for classifying arbitrary 
implementations from a unified viewpoint. This is complemented by a classification 
scheme for logging techniques, which are precisely defined by using the other terms. It is 
shown that these criteria are related to all relevant questions such as speed and scope of 
recovery and amount of redundant information required. The primary purpose of this 
paper, however, is to establish an adequate and precise terminology for a topic in which 
the confusion of concepts and implementational aspects still imposes a lot of problems. 

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability--fau/t 
tolerance; H.1.0 [Models and Principles]: General; H.2.2 [Database Management]: 
Physical Design--recovery and restart; H.2.4 [Database Management]: Systems-- 
transactmn processing; H.2.7 [Database Management]: Database Administration-- 
logging and recovery 

General Terms: Databases, Fault Tolerance, Transactions 

INTRODUCTION 

Database technology has seen tremendous 
progress during the past ten years. Con- 
cepts and facilities that evolved in the sin- 
gle-user batch environments of the early 
days have given rise to efficient multiuser 
database systems with user-friendly inter- 
faces, distributed data management, etc. 
From a scientific viewpoint, database sys- 
tems today are established as a mature 
discipline with well-approved methods and 

1 Permanent address: Fachbereich Informatik, Uni- 
versity of Kaiserslautern, West Germany. 

technology. The methods and technology 
of such a discipline should be well repre- 
sented in the literature by systematic sur- 
veys of the field. There are, in fact, a num- 
ber of recent publications that attempt to 
summarize what is known about different 
aspects of database management [e.g., As- 
trahan et al. 1981; Stonebraker 1980; Gray 
et al. 1981; Kohler 1981; Bernstein and 
Goodman 1981; Codd 1982]. These papers 
fall into two categories: (1) descriptions of 
innovative prototype systems and (2) thor- 
ough analyses of special problems and their 
solutions, based on a clear methodological 
and terminological framework. We are con- 
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tributing to the second category in the field 
of database recovery. In particular, we are 
establishing a systematic framework for es- 
tablishing and evaluating the basic con- 
cepts for fault-tolerant database operation. 

The paper is organized as follows. Sec- 
tion 1 contains a short description of what 
recovery is expected to accomplish and 
which notion of consistency we assume. 
This involves introducing the transaction, 
which has proved to be the major paradigm 
for synchronization and recovery in ad- 
vanced database systems. This is also the 
most important difference between this pa- 
per and Verhofstadt's survey, in which 
techniques for file recovery are described 
without using a particular notion of con- 
sistency [Verhofstadt 1978]. Section 2 pro- 
vides an implementational model for data- 
base systems, that  is, a mapping hierarchy 
of data types. Section 3 introduces the key 
concepts of our framework, describing the 
database states after a crash, the type of 
log information required, and additional 
measures for facilitating recovery. Crash 

recovery is demonstrated with three sample 
implementation techniques. Section 4 ap- 
plies concepts addressed in previous sec- 
tions on media recovery, and Section 5 
summarizes the scope of our taxonomy. 

1. DATABASE RECOVERY: WHAT IT IS 
EXPECTED TO DO 

Understanding the concepts of database re- 
covery requires a clear comprehension of 
two factors: 

• the type of failure the database has to 
cope with, and 

• the notion of consistency that  is assumed 
as a criterion for describing the state to 
be reestablished. 

Before beginning a discussion of these 
factors, we would like to point out that the 
contents of this section rely on the descrip- 
tion of failure types and the concept of a 
transaction given by Gray et al. [1981]. 

1.1 What Is a Transaction? 

It was observed quite early that  manipulat- 
ing data in a multiuser environment re- 
quires some kind of isolation to prevent 
uncontrolled and undesired interactions. A 
user (or process) often does things when 
working with a database that  are, up to a 
certain point in time, of tentative or prelim- 
inary value. The user may read some data 
and modify others before finding out that 
some of the initial input was wrong, inval- 
idating everything that was done up to that 
point. Consequently, the user wants to re- 
move what he or she has done from the 
system. If other users (or processes) have 
already seen the "dirty data" [Gray et al. 
1981] and made decisions based upon it, 
they obviously will encounter difficulties. 
The following questions must be consid- 
ered: 

• How do they get the message that some 
of their input data has disappeared, when 
it is possible that they have already fin- 
ished their job and left the terminal? 

• How do they cope with such a situation? 
Do they also throw away what they have 
done, possibly affecting others in turn? 
Do they reprocess the affected parts of 
their program? 

Computing Surveys, Vol. 15, No. 4, December 1983 



Principles o/ Transaction-Oriented Database Recovery • 289 

FUNDS_TRANSFER: PROCEDURE; 
$BEGIN_TRANSACTION; 
ON ERROR DO; 

$RESTORE_TRANSACTION; 
GET INPUT MESSAGE; 
PUT MESSAGE ('TRANSFER FAILED'); 
GO TO COMMIT; 
END; 

GET INPUT MESSAGE; 
EXTRACT ACCOUNT_DEBIT, ACCOUNT_CREDIT, 

AMOUNT FROM MESSAGE; 
$UPDATE ACCOUNTS 

SET BALANCE -- BALANCE - AMOUNT 
WHERE ACCOUNTS NUMBER = ACCOUNTS_DEBIT; 

$UPDATE ACCOUNTS 
SET BALANCE -- BALANCE + AMOUNT 

WHERE ACCOUNTS NUMBER = ACCOUNTS_CREDIT; 
$INSERT INTO HISTORY 

(DATE, MESSAGE); 
PUT MESSAGE ('TRANSFER DONE'); 

COMMIT: 
$COMMIT_TRANSACTION; 

END; 

/*in case of error*/ 
/*undo all work*/ 

/*reacquire input*/ 
/*report failure*/ 

/*get and parse input*/ 

/*do debit*/ 

/*do credit*/ 

/*keep audit trail*/ 

/*report success*/ 
/*commit updates*/ 

/*end of program*/ 

Figure 1. Example of a transaction program. (From Gray et al. [1981].) 

These situations and dependencies have 
been investigated thoroughly by Bjork and 
Davies in their studies of the so-called 
"spheres of control" [Bjork 1973; Davies 
1973, 1978]. They indicate that  data being 
operated by a process must be isolated in 
some way that lets others know the degree 
of reliability provided for these data, that  
is, 

• Will the data be changed without notifi- 
cation to others? 

• Will others be informed about changes? 
• Will the value definitely not change any 

more? 

This ambitious concept was restricted to 
use in database systems by Eswaran et al. 
[1976] and given its current name, the 
"transaction." The transaction basically re- 
flects the idea that the activities of a par- 
ticular user are isolated from all concurrent 
activities, but restricts the degree of isola- 
tion and the length of a transaction. Typi- 
cally, a transaction is a short sequence of 
interactions with the database, using oper- 
ators such as FIND a record or MODIFY 
an item, which represents one meaningful 
activity in the user's environment. The 
standard example that is generally used to 

explain the idea is the transfer of money 
from one account to another. The corre- 
sponding transaction program is given in 
Figure 1. 

The concept of a transaction, which in- 
cludes all database interactions between 
$BEGIN_TRANSACTION and $COM- 
MIT_TRANSACTION in the above ex- 
ample, requires that all of its actions be 
executed indivisibly: Either all actions are 
properly reflected in the database or noth- 
ing has happened. No changes are reflected 
in the database if at any point in time 
before reaching the $COMMIT_TRANS- 
ACTION the user enters the ERROR 
clause containing the $RESTORE_ 
TRANSACTION. To achieve this kind of 
indivisibility, a transaction must have four 
properties: 

Atomicity. It must be of the all-or-noth- 
ing type described above, and the user must, 
whatever happens, know which state he or 
she is in. 

Consistency. A transaction reaching its 
normal end (EOT, end of transaction), 
thereby committing its results, preserves 
the consistency of the database. In other 
words, each successful transaction by defi- 
nition commits only legal results. This con- 
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BEGIN 
READ 
WRITE 
READ 

WRITE 
COMMIT 

Figure 2. Three 
(From Gray et al. 

BEGIN BEGIN 
READ READ 
WRITE WRITE 
READ READ 

AB()RT ~-~YSTEM ABORTS 
TRANSACTION 

possible outcomes of a transaction. 
[1981].) 

dition is necessary for the fourth property, 
durability. 

Isolation. Events within a transaction 
must be hidden from other transactions 
running concurrently. If this were not the 
case, a transaction could not be reset to its 
beginning for the reasons sketched above. 
The techniques that achieve isolation are 
known as synchronization, and since Gray 
et al. [1976] there have been numerous 
contributions to this topic of database re- 
search [Kohler 1981]. 

Durability. Once a transaction has been 
completed and has committed its results to 
the database, the system must guarantee 
that these results survive any subsequent 
malfunctions. Since there is no sphere of 
control constituting a set of transactions, 
the database management system (DBMS) 
has no control beyond transaction bound- 
aries. Therefore the user must have a guar- 
antee that the things the system says have 
happened have actually happened. Since, 
by definition, each transaction is correct, 
the effects of an inevitable incorrect trans- 
action (i.e., the transaction containing 
faulty data) can only be removed by coun- 
tertransactions. 

These four properties, atomicity, consist- 
ency, isolation, and durability (ACID), de- 
scribe the major highlights of the transac- 
tion paradigm, which has influenced many 
aspects of development in database sys- 
tems. We therefore consider the question 
of whether the transaction is supported by 
a particular system to be the ACID test of 
the system's quality. 

In summary, a transaction can terminate 
in the three ways illustrated in Figure 2. It 
is hoped that the transaction will reach its 
commit point, yielding the all case (as in 
the all-or-nothing dichotomy). Sometimes 

the transaction detects bad input or other 
violations of consistency, preventing a nor- 
mal termination, in which case it will reset 
all that  it has done (abort). Finally, a trans- 
action may run into a problem that can 
only be detected by the system, such as 
time-out or deadlock, in which case its ef- 
fects are aborted by the DBMS. 

In addition to the above events occurring 
during normal execution, a transaction can 
also be affected by a system crash. This is 
discussed in the next section. 

1.2 Which Failures Have to Be Anticipated 

In order to design and implement a recov- 
ery component, one must know precisely 
which types of failures are to be considered, 
how often they will occur, how much time 
is expected for recovery, etc. One must also 
make assumptions about the reliability of 
the underlying hardware and storage me- 
dia, and about dependencies between dif- 
ferent failure modes. However, the list of 
anticipated failures will never be complete 
for these reasons: 

• For each set of failures that one can think 
of, there is at least one that  was forgotten. 

• Some failures are extremely rare. The 
cost of redundancy needed to cope with 
them may be so high that it may be a 
sensible design decision to exclude these 
failures from consideration. If one of 
them does occur, however, the system will 
not be able to recover from the situation 
automatically, and the database will be 
corrupted. The techniques for handling 
this catastrophe are beyond the scope of 
this paper. 

We shall consider the following types of 
failure: 

Transaction Failure. The transaction of 
failure has already been mentioned in the 
previous section. For various reasons, the 
transaction program does not reach its nor- 
mal commit and has to be reset back to its 
beginning, either at its own request or on 
behalf of the DBMS. Gray indicates that 3 
percent of all transactions terminate ab- 
normally, but this rate is not likely to be a 
constant [Gray et al. 1981]. From our own 
experiences with different application da- 
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tabases, and from Gray's result [Effelsberg 
et al. 1981; Gray 1981], we can conclude 
that 

* Within one application, the ratio of 
transactions that abort themselves is 
rather constant, depending only on the 
amount of incorrect input data, the qual- 
ity of consistency checking performed by 
the transaction program, etc. 

• The ratio of transactions being aborted 
by the DBMS, especially those caused by 
deadlocks, depends to a great extent on 
the degree of parallelism, the granularity 
of locking used by the DBMS, the logical 
schema (there may be hot spot data, or 
data that are very frequently referenced 
by many concurrent transactions), and 
the degree of interference between con- 
current activities (which is, in turn, very 
application dependent). 

For our classification, it is sufficient to 
say that transaction failures occur 10-100 
times per minute, and that recovery from 
these failures must take place within the 
time required by the transaction for its 
regular execution. 

System Failure. The system failures that 
we are considering can be caused by a bug 
in the DBMS code, an operating system 
fault, or a hardware failure. In each of these 
cases processing is terminated in an uncon- 
trolled manner, and we assume that the 
contents of main memory are lost. Since 
database-related secondary (nonvolatile) 
storage remains unaffected, we require that 
a recovery take place in the same amount 
of time that would have been required for 
the execution of all interrupted transac- 
tions. If one transaction is executed within 
the order of 10 milliseconds to 1 second, 
the recovery should take no more than a 
few minutes. A system failure is assumed 
to occur several times a week, depending on 
the stability of both the DBMS and its 
operational environment. 

Media Failure. Besides these more or 
less normal failures, we have to anticipate 
the loss of some or all of the secondary 
storage holding the database. There are 
several causes for such a problem, the most 
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common of which are 

* bugs in the operating system routines for 
writing the disk, 

• hardware errors in the channel or disk 
controller, 

• head crash, 
• loss of information due to magnetic de- 

cay. 

Such a situation can only be overcome 
by full redundancy, that  is, by a copy of the 
database and an audit trail covering what 
has happened since then. 

Magnetic storage devices are usually very 
reliable, and recovery from a media failure 
is not likely to happen more often than 
once or twice a year. Depending on the size of 
a database, the media used for storing the 
copy, and the age of the copy, recovery of 
this type will take on the order of 1 hour. 

1.3 Summary of Recovery Actions 

As we mentioned in Section 1.1, the notion 
of consistency that we use for defining the 
targets of recovery is tied to the transaction 
paradigm, which we have encapsulated in 
the "ACID principle." According to this 
definition, a database is consistent if and 
only if it contains the results of successful 
transactions. Such a state will hereafter be 
called transaction consistent or logically 
consistent. A transaction, in turn, must not 
see anything but effects of complete trans- 
actions (i.e., a consistent database in those 
parts that it uses), and will then, by defi- 
nition, create a consistent update of the 
database. What does that  mean for the 
recovery component? 

Let us for the moment ignore transac- 
tions being aborted during normal execu- 
tion and consider only a system failure (a 
crash). We might then encounter the situ- 
ation depicted in Figure 3. Transactions 
T1, T2, and T3 have committed before the 
crash, and therefore will survive. Recovery 
after a system failure must ensure that  the 
effects of all successful transactions are 
actually reflected in the database. But  what 
is to be done with T4 and T5? Transactions 
have been defined to be atomic; they either 
succeed or disappear as though they had 
never been entered. There is therefore no 
choice about what to do after a system 
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T1 I I < 
T2 [, I < 
T3 I ~ < 
T4 I < 
T5 I < 

Time , ,  ) S Y S T E M  
CRASH 

Figure3. Scenario for discussing t ransact ion-or i -  
en ted  recovery. (From Gray e t  al. [1981].) 

failure; the effects of all incomplete trans- 
actions must be removed from the database. 
Clearly, a recovery component adhering to 
these principles will produce a transaction- 
consistent database. Since all successful 
transactions have contributed to the data- 
base state, it will be the most recent trans- 
action-consistent state. We now can distin- 
guish four recovery actions coping with dif- 
ferent situations [Gray 1978]: 

Transaction UNDO. If a transaction 
aborts itself or must be aborted by the 
system during normal execution, this will 
be called "transaction UNDO." By defini- 
tion, UNDO removes all effects of this 
transaction from the database and does not 
influence any other transaction. 

Global UNDO. When recovering from a 
system failure, the effects of all incomplete 
transactions have to be rolled back. 

Partial REDO. When recovering from a 
system failure, since execution has been 
terminated in an uncontrolled manner, re- 
sults of complete transactions may not yet 
be reflected in the database. Hence they 
must be repeated, if necessary, by the re- 
covery component. 

Global REDO. Gray terms this recovery 
action "archive recovery" [Gray et al. 
1981]. The database is assumed to be phys- 
ically destroyed; we therefore must start 
from a copy that reflects the state of the 
database some days, weeks, or months ago. 
Since transactions are typically short, we 
need not consider incomplete transactions 
over such a long time. Rather we have to 
supplement the copy with the effects of all 
transactions that have committed since the 
copy was created. 

With these definitions we have intro- 
duced the transaction as the only unit of 
recovery in a database system. This is an 
ideal condition that does not exactly match 

reality. For example, transactions might be 
nested, that  is, composed of smaller sub- 
transactions. These subtransactions also 
are atomic, consistent, and isolated--but 
they are not durable. Since the results of 
subtransactions are removed whenever the 
enclosing transaction is undone, durability 
can only be guaranteed for the highest 
transaction in the composition hierarchy. 
A two-level nesting of transactions can be 
found in System R, in which an arbitrary 
number of save points can be generated 
inside a transaction [Gray et al. 1981]. The 
database and the processing state can be 
reset to any of these save points by the 
application program. 

Another extension of the transaction 
concept is necessary in fields like CAD. 
Here the units of consistent state transi- 
tions, that is, the design steps, are so long 
{days or weeks) that it is not feasible to 
treat them as indivisable actions. Hence 
these long transactions are consistent, iso- 
lated, and durable, but they are not atomic 
[Gray 1981]. It is sufficient for the purpose 
of our taxonomy to consider "ideal" trans- 
actions only. 

2. THE MAPPING HIERARCHY OF A DBMS 

There are numerous techniques and algo- 
rithms for implementing database recovery, 
many of which have been described in detail 
by Verhofstadt [1978]. We want to reduce 
these various methods to a small set of basic 
concepts, allowing a simple, yet precise 
classification of all reasonable implemen- 
tation techniques; for the purposes of illus- 
tration, we need a basic model of the DBMS 
architecture and its hardware environment. 
This model, although it contains many fa- 
miliar terms from systems like INGRES, 
System R, or those of the CODASYL [1973, 
1978] type, is in fact a rudimentary data- 
base architecture that can also be applied 
to unconventional approaches like CASSM 
or DIRECT [Smith and Smith 1979], al- 
though this is not our purpose here. 

2.1 The Mapping Process: 
Objects and Operations 

The model shown in Table 1 describes the 
major steps of dynamic abstraction from 
the level of physical storage up to the user 
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Table 1. Description of the DB-Mapping Haerarchy 
Level of abstraction Objects Auxiliary mapping data 

Nonprocedural or alge- Relations, views tuples Logical schema descrip- 
braic access tion 

Record-oriented, navi- Logical and physical 
gational access schema description 

Record and access Free space tables, DB- 
path management key translation tables 

Propagation control Page tables, Bloom fil- 
ters 

Directories, VTOCs, 
etc. 

Records, sets, hierarchies, 
networks 

Physical records, 
access paths 

Segments, pages 

File management Files, blocks 

• 293 

interface. At the bottom, the database con- 
sists of some billions of bits stored on disk, 
which are interpreted by the DBMS into 
meaningful information on which the user 
can operate. With each level of abstraction 
(proceeding from the bottom up), the ob- 
jects become more complex, allowing more 
powerful operations and being constrained 
by a larger number of integrity rules. The 
uppermost interface supports one of the 
well-known data models, whether rela- 
tional, networklike, or hierarchical. 

Note that this mapping hierarchy is vir- 
tually contained in each DBMS, although 
for performance reasons it will hardly be 
reflected in the module structure. We shall 
briefly sketch the characteristics of each 
layer, with enough detail to establish our 
taxonomy. For a more complete description 
see Haerder and Reuter [1983]. 

File Management. The lowest layer op- 
erates directly on the bit patterns stored on 
some nonvolatile, direct access device like 
a disk, drum, or even magnetic bubble 
memory. This layer copes with the physical 
characteristics of each storage type and 
abstracts these characteristics into fixed- 
length blocks. These blocks can be read, 
written, and identified by a (relative) block 
number. This kind of abstraction is usually 
done by the data management system 
(DMS) of a normal general-purpose oper- 
ating system. 

Propagation 2 Control. This level is not 
usually considered separately in the current 

2 This term is introduced in Section 2.4; its meaning 
is not essential to the understanding of this paragraph. 

database literature, but for reasons that will 
become clear in the following sections we 
strictly distinguish between pages and 
blocks. A page is a fixed-length partition of 
a linear address space and is mapped into 
a physical block by the propagation control 
layer. Therefore a page can be stored in 
different blocks during its lifetime in the 
database, depending on the strategy imple- 
mented for propagation control. 

Access Path Management. This layer im- 
plements mapping functions much more 
complicated than those performed by sub- 
ordinate layers. It has to maintain all phys- 
ical object representations in the database 
(records, fields, etc.), and their related ac- 
cess paths (pointers, hash tables, search 
trees, etc.) in a potentially unlimited linear 
virtual address space. This address space, 
which is divided into fixed-length pages, is 
provided by the upper interface of the sup- 
porting layer. For performance reasons, the 
partitioning of data into pages is still visible 
on this level. 

Navigational Access Layer. At the top of 
this layer we find the operations and objects 
that are typical for a procedural data ma- 
nipulation language (DML). Occurrences 
of record types and members of sets are 
handled by statements like STORE, MOD- 
IFY, FIND NEXT, and CONNECT [CO- 
DASYL 1978]. At this interface, the user 
navigates one record at a time through a 
hierarchy, through a network, or along log- 
ical access paths. 

Nonprocedural Access Layer. This level 
provides a nonprocedural interface to the 
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Host 
Computer 

DBMS !"~'~)~ Log Buffer 
Code 

Database Buffer m 

t 
Physical Copy of I ~ 
the Database ~ 

Archive Copy of ( ~ 
the Database ~ 

Temporary Log 
Supports Transaction UN DO, 
Global UNDO, partial REDO 

-© 
Archive Log 
Supports Global R E DO 

Figure 4. Storage hierarchy of a DBMS during normal mode of operation. 

database. With each operation the user can 
handle sets of results rather than single 
records. A relational model with high-level 
query languages like SQL or QUEL is a 
convenient  example of the abstract ion 
achieved by the top layer [Chamberlin 
1980; Stonebraker et al. 1976]. 

On each level, the mapping of higher 
objects to more elementary ones requires 
additional data structures, some of which 
are shown in Table 1. 

2.2 The Storage Hierarchy: 
Implementational Environment 

Both the number of redundant data re- 
quired to support the recovery actions de- 
scribed in Section 1 and the methods of 
collecting such data are strongly influenced 
by various properties of the different stor- 
age media used by the DBMS. In particular, 
the dependencies between volatile and per- 
manent storage have a strong impact on 
algorithms for gathering redundant infor- 
mation and implementing recovery meas- 
ures [Chen 1978]. As a descriptional frame- 
work we shall use a storage hierarchy, as 

shown in Figure 4. It closely resembles the 
situation that must be dealt with by most 
of today's commercial database systems. 

The host computer, where the applica- 
tion programs and DBMS are located, has 
a main memory, which is usually volatile. 8 
Hence we assume that the contents of the 
database buffer, as well as the contents of 
the output buffers to the log files, are lost 
whenever the DBMS terminates abnor- 
mally. Below the volatile main memory 
there is a two-level hierarchy of permanent 
copies of the database. One level contains 
an on-line version of the database in direct 
access memory; the other contains an ar- 
chive copy as a provision against loss of the 
on-line copy. While both are functionally 
situated on the same level, the on-line copy 
is almost always up-to-date, whereas the 
archive copy can contain an old state of the 
database. Our main concern here is data- 
base recovery, which, like all provisions for 

3 In some real-time applications main memory is sup- 
ported by a battery backup. It is possible that in the 
future mainframes will have some stable buffer stor- 
age. However, we are not considering these conditions 
here. 
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fault tolerance, is based upon redundancy. 
We have mentioned one type of redun- 
dancy: the archive copy, kept as a starting 
point for reconstruction of an up-to-date 
on-line version of the database (global 
REDO). This is discussed in more detail in 
Section 4. To support this, and other recov- 
ery actions introduced in Section 1, two 
types of log files are required: 

Temporary Log. The information col- 
lected in this file supports crash recovery; 
that is, it contains information needed to 
reconstruct the most recent database (DB) 
buffer. Selective transaction UNDO re- 
quires random access to the log records. 
Therefore we assume that the temporary 
log is located on disk. 

Archive Log. This file supports global 
REDO after a media failure. It depends on 
the availability of the archive copy and 
must contain all changes committed to the 
database after the state reflected in the 
archive copy. Since the archive log is always 
processed in sequential order, we assume 
that the archive log is written on magnetic 
tape. 

2.3 Different Views of a Database 

In Section 2.1, we indicated that the data- 
base looks different at each level of abstrac- 
tion, with each level using different objects 
and interfaces. But this is not what we 
mean by "different views of a database" in 
this section. We have observed that the 
process of abstraction really begins at Level 
3, up to which there is only a more conven- 
ient representation of data in external stor- 
age. At this level, abstraction is dependent 
on which pages actually establish the linear 
address space, that is, which block is read 
when a certain page is referenced. In the 
event of a failure, there are different pos- 
sibilities for retrieving the contents of a 
page. These possibilities are denoted by 
different views of the database: 

The current database comprises all ob- 
jects accessible to the DBMS during normal 
processing. The current contents of all 
pages can be found on disk, except for those 
pages that have been recently modified. 
Their new contents are found in the DB 

buffer. The mapping hierarchy is com- 
pletely correct. 

The materialized database is the state 
that the DBMS finds at restart after a crash 
without having applied any log information. 
There is no buffer. Hence some page mod- 
ifications (even of successful transactions) 
may not be reflected in the on-line copy. It 
is also possible that a new state of a page 
has been written to disk, but the control 
structure that  maps pages to blocks has not 
yet been updated. In this case, a reference 
to such a page will yield the old value. This 
view of the database is what the recovery 
system has to transform into the most re- 
cent logically consistent current database. 

The physical database is composed of all 
blocks of the on-line copy containing page 
images--current or obsolete. Depending on 
the strategy used on Level 2, there may be 
different values for one page in the physical 
database, none of which are necessarily the 
current contents. This view is not normally 
used by recovery procedures, but  a salva- 
tion program would try to exploit all infor- 
mation contained therein. 

With these views of a database, we can 
distinguish three types of update opera- 
t i o n s - a l l  of which explain the mapping 
function provided by the propagation con- 
trol level. First, we have the modification of 
page contents caused by some higher level 
module. This operation takes place in the 
DB buffer and therefore affects only the 
current database. Second, there is the write 
operation, transferring a modified page to 
a block on disk. In general, this affects only 
the physical database. If the information 
about the block containing the new page 
value is stored in volatile memory, the new 
contents will not be accessible after a crash; 
that is, it is not yet part of the materialized 
database. The operation that makes a pre- 
viously written page image part of the ma- 
terialized database is called propagation. 
This operation writes the updated control 
structures for mapping pages to blocks in a 
safe, nonvolatile place, so that  they are 
available after a crash. 

If pages are always written to the same 
block (the so-called "update-in-place" op- 
eration, which is done in most commercial 
DBMS), writing implicitly is the equivalent 

Computing Surveys, Voi. 15, No. 4, December 1983 



296 * T. Haerder and A. Reuter 

Direct Page Allocation (update in place) Indirect Page Allocation 

Write After 
Modif,cation 

Write After 
Modification 

Figure 5. Page allocation principles. 

of propagation. However, there is an im- 
portant difference between these opera- 
tions if a page can be stored in different 
blocks. This is explained in the next sec- 
tion. 

2.4 Mapping Concepts for Updates 

In this section, we define a number of con- 
cepts related to the operation of mapping 
changes in a database from volatile to non- 
volatile storage. They are directly related 
to the views of a database introduced pre- 
viously. The key issue is that each modifi- 
cation of a page (which changes the current 
database) takes place in the database buffer 
and is allocated to volatile storage. In order 
to save this state, the corresponding page 
must be brought to nonvolatile storage, that 
is, to the physical database. Two different 
schemes for accomplishing this can be ap- 
plied, as sketched in Figure 5. 

With direct page allocation, each page of 
a segment is related to exactly one block of 
the corresponding file. Each output of a 
modified page causes an update in place. 
By using an indirect page allocation scheme, 
each output is directed to a new block, 
leaving the old contents of the page un- 
changed. It provides the option of holding 
n successive versions of a page. The mo- 
ment when a younger version definitively 
replaces an older one can be determined by 
appropriate (consistency-related) criteria; 
it is no longer bound to the moment of 
writing. This update scheme has some very 
attractive properties in case of recovery, as 
is shown later on. Direct page allocation 
leaves no choice as to when to make a new 
version part of the materialized database; 
the output operation destroys the previous 
image. Hence in this case writing and prop- 
agating coincide. 

There is still another important differ- 
ence between direct and indirect page allo- 
cation schemes, which can be characterized 
as follows: 

• In direct page allocation, each single 
propagation (physical write) is interrupt- 
able by a system crash, thus leaving the 
materialized, and possibly the physical, 
database in an inconsistent state. 

• In indirect page allocation, there is al- 
ways a way back to the old state. Hence 
propagation of an arbitrary set of pages 
can be made uninterruptable by system 
crashes. References to such algorithms 
will be given. 

On the basis of this observation, we can 
distinguish two types of propagation strat- 
egies: 

ATOMIC. Any set of modified pages can 
be propagated as a unit, such that either all 
or none of the updates become part of the 
materialized database. 

~ATOMIC. Pages are written to blocks 
according to an update-in-place policy. 
Since no set of pages can be written indi- 
visibly (even a single write may be inter- 
rupted somewhere in between), propaga- 
tion is vulnerable to system crashes. 

Of course, many details have been omit- 
ted from Figure 5. In particular, there is no 
hint of the techniques used to make prop- 
agation take place atomically in case of 
indirect page mapping. We have tried to 
illustrate aspects of this issue in Figure 6. 
Figure 6 contains a comparison of the cur- 
rent and the materialized database for the 
update-in-place scheme and three different 
implementations of indirect page mapping 
allowing for ATOMIC propagation. Figure 
6b refers to the well-known shadow page 
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mechanism [Lorie 1977]. The mapping of 
page numbers to block numbers is done by 
using page tables. These tables have one 
entry per page containing the block number 
where the page contents are stored. The 
shadow pages, accessed via the shadow page 
Table V, preserve the old state of the ma- 
terialized database. The current version is 
defined by the current page Table V'. Be- 
fore this state is made stable (propagated), 
all changed pages are written to their new 
blocks, and so is the current page table. If 
this fails, the database will come up in its 
old state. When all pages have been written 
related to the new state, ATOMIC propa- 
gation takes place by changing one record 
on disk (which now points to V' rather 
than V) in a way that cannot be confused 
by a system crash. Thus the problem of 
indivisibly propagating a set of pages has 

been reduced to safely updating one record, 
which can be done in a simple way. For 
details, see Lorie [1977]. 

There are other implementations for 
ATOMIC propagation. One is based on 
maintaining two recent versions of a page. 
For each page access, both versions have to 
be read into the buffer. This can be done 
with minimal overhead by storing them in 
adjacent disk blocks and reading them with 
chained I/O. The latest version, recognized 
by a time stamp, is kept in the buffer; the 
other one is immediately discarded. A mod- 
ified page replaces the older version on disk. 
ATOMIC propagation is accomplished by 
incrementing a special counter that is re- 
lated to the time stamps in the pages. De- 
tails can be found in Reuter [1980]. An- 
other approach to ATOMIC propagation 
has been introduced under the name "dif- 
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ferential files" by Severance and Lohman 
[1976]. Modified pages are written to a 
separate (differential) file. Propagating 
these updates to the main database is not 
ATOMIC in itself, but once all modifica- 
tions are written to the differential file, 
propagation can be repeated as often as 
wished. In other words, the process of copy- 
ing modified pages into the materialized 
database can be made to appear ATOMIC. 
A variant of this technique, the "intention 
list," is described by Lampson and Sturgis 
[1979] and Sturgis et al. [1980]. 

Thus far we have shown that arbitrary 
sets of pages can be propagated in an 
ATOMIC manner using indirect page allo- 
cation. In the next section we discuss how 
these sets of pages for propagation should 
be defined. 

3. CRASH RECOVERY 

In order to illustrate the consequences of 
the concepts introduced thus far, we shall 
present a detailed discussion of crash re- 
covery. First, we consider the state in which 
a database is left when the system termi- 
nates abnormally. From this we derive the 
type of redundant (log) information re- 
quired to reestablish a transaction-consist- 
ent state, which is the overall purpose of 
DB recovery. After completing our classi- 
fication scheme, we give examples of recov- 
ery techniques in currently available data- 
base systems. Finally, we present a table 
containing a qualitative evaluation of all 
instances encompassed by our taxonomy 
(Table 4). 

Note that the results in this section also 
apply to transaction UNDO--a  much sim- 
pler case of global UNDO, which applies 
when the DBMS is processing normally 
and no information is lost. 

3.1 State of the Database 
after a Crash 

After a crash, the DBMS has to restart by 
applying all the necessary recovery actions 
described in Section 1. The DB buffer is 
lost, as is the current database, the only 
view of the database to contain the most 
recent state of processing. Assuming that 
the on-line copy of the database is intact, 
there are the materialized database and the 

temporary log file from which to start re- 
covery. We have not discussed the contents 
of the log files for the reason that the type 
and number of log data to be written during 
normal processing are dependent upon the 
state of the materialized database after a 
crash. This state, in turn, depends upon 
which method of page allocation and prop- 
agation is used. 

In the case of direct page allocation and 
~ATOMIC propagation, each write opera- 
tion affects the materialized database. The 
decision to write pages is made by the buffer 
manager according to buffer capacity at 
points in time that appear arbitrary. Hence 
the state of the materialized database after 
a crash is unpredictable: When recent mod- 
ifications are reflected in the materialized 
database, it is not possible (without further 
provisions) to know which pages were mod- 
ified by complete transactions (whose con- 
tents must be reconstructed by partial 
REDO) and which pages were modified by 
incomplete transactions (whose contents 
must be returned to their previous state by 
global UNDO). Further possibilities for 
providing against this situation are briefly 
discussed in Section 3.2.1. 

In the case of indirect page allocation 
and ATOMIC propagation, we know much 
more about the state of the materialized 
database after crash. ATOMIC propagation 
is indivisible by any type of failure, and 
therefore we find the materialized database 
to be exactly in the state produced by the 
most recent successful propagation. This 
state may still be inconsistent in that not 
all updates of complete transactions are 
visible, and some effects of incomplete 
transactions are. However, ATOMIC prop- 
agation ensures that a set of related pages 
is propagated in a safe manner by restrict- 
ing propagation to points in time when the 
current database fulfills certain consistency 
constraints. When these constraints are 
satisfied, the updates can be mapped to the 
materialized database all at once. Since the 
current database is consistent in terms of 
the access path management level--where 
propagation occurs--this also ensures that  
all internal pointers, tree structures, tables, 
etc. are correct. Later on, we also discuss 
schemes that allow for transaction-consist- 
ent propagation. 
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The state of the materialized database 
after a crash can be summarized as follows: 

-nATOMIC Propagation. Nothing is 
known about the state of the materialized 
database; it must be characterized as "cha- 
otic." 

ATOMIC Propagation. The materialized 
database is in the state produced by the 
most recent propagation. Since this is 
bound by certain consistency constraints, 
the materialized database will be consistent 
(but not necessarily up-to-date) at least up 
to the third level of the mapping hierarchy. 

In the case of ~ATOMIC propagation, 
one cannot expect to read valid images for 
all pages from the materialized database 
after a crash; it is inconsistent on the prop- 
agation level, and all abstractions on higher 
levels will fail. In the case of ATOMIC 
propagation, the materialized database is 
consistent at least on Level 3, thus allowing 
for the execution of operations on Level 4 
(DML statements). 

3.2 Types of Log Information 
to Support Recovery Actions 

The temporary log file must contain all the 
information required to transform the ma- 
terialized database "as found" into the most 
recent transaction-consistent state (see 
Section 1). As we have shown, the mate- 
rialized database can be in more or less 
defined states, may or may not fulfill con- 
sistency constraints, etc. Hence the number 
of log data will be determined by what is 
contained in the materialized database at 
the beginning of restart. We can be fairly 
certain of the contents of the materialized 
database in the case of ATOMIC propaga- 
tion, but the result of "~ATOMIC schemes 
have been shown to be unpredictable. 
There are, however, additional measures to 
somewhat reduce the degree of uncertainty 
resulting from -nATOMIC propagation, as 
discussed in the following section. 

3.2.1 Dependencies between Buffer Manager 
and Recovery Component 

3.2.1.1 Buffer Management and UNDO 
Recovery Actions. During the normal mode 
of operation, modified pages are written to 

disk by some replacement algorithm man- 
aging the database buffer. Ideally, this hap- 
pens at points in time determined solely by 
buffer occupation and, from a consistency 
perspective, seem to be arbitrary. In gen- 
eral, even dirty data, that is, pages modified 
by incomplete transactions, may be written 
to the physical database. Hence the UNDO 
operations described earlier will have to 
recover the contents of both the material- 
ized database and the external storage me- 
dia. The only way to avoid this requires 
that the buffer manager be modified to 
prevent it from writing or propagating dirty 
pages under all circumstances. In this case, 
UNDO could be considerably simplified: 

• If no dirty pages are propagated, global 
UNDO becomes virtually unnecessary 
that is, if there are no dirty data in the 
materialized database. 

• If no dirty pages are written, transaction 
UNDO can be limited to main storage 
(buffer) operations. 

The major disadvantage of this idea is 
that very large database buffers would be 
required (e.g., for long batch update trans- 
actions), making it generally incompatible 
with existing systems. However, the two 
different methods of handling modified 
pages introduced with this idea have im- 
portant implications with UNDO recovery. 
We shall refer to these methods as: 

STEAL. Modified pages may be written 
and/or propagated at any time. 

~STEAL. Modified pages are kept in 
buffer at least until the end of the trans- 
action (EOT). 

The definition of STEAL can be based 
on either writing or propagating, which are 
not discriminated in "~ATOMIC schemes. 
In the case of ATOMIC propagation both 
variants of STEAL are conceivable, and 
each would have a different impact on 
UNDO recovery actions; in the case of 
-~STEAL, no logging is required for UNDO 
purposes. 

3.2.1.2 Buffer Management and REDO 
Recovery Actions. As soon as a transaction 
commits, all of its results must survive any 
subsequent failure {durability). Committed 
updates that  have not been propagated to 
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the materialized database would definitely 
be lost in case of a system crash, and so 
there must be enough redundant informa- 
tion in the log file to reconstruct these 
results during restart (partial REDO). It is 
conceivable, however to avoid this kind of 
recovery by the following technique. 

During Phase 1 of EOT processing all 
pages modified by this transaction are 
propagated to the materialized database; 
that is, their writing and propagation are 
enforced. Then we can be sure that either 
the transaction is complete, which means 
that all of its results are safely recorded (no 
partial REDO), or in case of a crash, some 
updates are not yet written, which means 
that the transaction is not successful and 
must be rolled back (UNDO recovery ac- 
tions). 

Thus we have another criterion concern- 
ing buffer handling, which is related to the 
necessity of REDO recovery during restart: 

FORCE. All modified pages are written 
and propagated during EOT processing. 

~FORCE. No propagation is triggered 
during EOT processing. 

The implications with regard to the gath- 
ering of log data are quite straightforward 
in the case of FORCE. No logging is re- 
quired for part&l REDO; in the case of 
-~FORCE such information is required. 
While FORCE avoids partial REDO, there 
must still be some REDO-log information 
for global REDO to provide against loss of 
the on-line copy of the database. 

3.2.2 Classification of Log Data 

Depending on which of the write and prop- 
agation schemes introduced above are being 
implemented, we will have to collect log 
information for the purpose of 

• removing invalid data (modifications ef- 
fected by incomplete transactions) from 
the materialized database and 

* supplementing the materialized database 
with updates of complete transactions 
that were not contained in it at the time 
of crash. 

In this section, we briefly describe what 
such log data can look like and when such 

Table 2. Classification Scheme for Log Data 

State Transition 

Logical I - -  Actions (DML 

I 
statements) 

Physical Before images EXOR differ- 
After images ences 

data are applicable to the crash state of the 
materialized database. 

Log data are redundant information, col- 
lected for the sole purpose of recovery from 
a crash or a media failure. They do not 
undergo the mapping process of the data- 
base objects, but are obtained on a certain 
level of the mapping hierarchy and written 
directly to nonvolatile storage, that is, the 
log files. There are two different, albeit not 
fully orthogonal, criteria for classifying log 
data. The first is concerned with the type 
of objects to be logged. If some part of the 
physical representation, that is, the bit pat- 
tern, is written to the log, we refer to it as 
physical logging; if the operators and their 
arguments are recorded on a higher level, 
this is called logical logging. The second 
criterion concerns whether the state of the 
database--before or after a change--or the 
transition causing the change is to be 
logged. Table 2 contains some examples for 
these different types of logging, which are 
explained below. 

Physical State Logging on Page Level. 
The most basic method, which is still ap- 
plied in many commercial DBMSs, uses the 
page as the unit of log information. Each 
time a part of the linear address space is 
changed by some modification, insertion, 
etc., the whole page containing this part of 
the linear address space is written to the 
log. If UNDO logging is required, this will 
be done before the change takes place, 
yielding the so-called before image. For 
REDO purposes, the resulting page state is 
recorded as an after image. 

Physical Transition Logging on Page 
Level. This logging technique is based also 
on pages. However, it does not explicitly 
record the old and new states of a page; 
rather it writes the difference between them 
to the log. The function used for computing 
the "difference" between two bit strings is 
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the exclusive-or, which is both commuta- 
tive and associative as required by the re- 
covery algorithm. If this difference is ap- 
plied to the old state of a page, again using 
the exclusive-or, the new state will result. 
On the other hand, applying it to the new 
state will yield the old state. There are some 
problems in the details of this approach, 
but these are beyond the scope of the paper. 

The two methods of page logging that we 
have discussed can be compared as follows: 

• Transition logging requires only one log 
entry (the difference), whereas state log- 
ging uses both a before image and an after 
image. If there are multiple changes ap- 
plied to the same page during one trans- 
action, transition logging can express 
these either by successive differences or 
by one accumulated difference. With 
state logging, the first before image and 
the last after image are required. 

• Since there are usually only a small num- 
ber of data inside a page affected by a 
change, the exclusive-or difference will 
contain long strings of O's, which can be 
removed by well-known compression 
techniques. Hence transition logging can 
potentially require much less space than 
does state logging. 

Physical State Logging on Access Path 
Level. Physical logging can also be applied 
to the objects of the access path level, 
namely, physical records, access path struc- 
tures, tables, etc. The log component has 
to be aware of these storage structures and 
record only the changed entry, rather than 
blindly logging the whole page around it. 
The advantage of this requirement is ob- 
vious: By logging only the physical objects 
actually being changed, space requirements 
for log files can be drastically reduced. One 
can save even more space by exploiting the 
fact that most access path structures con- 
sist of fully redundant information. For 
example, one can completely reconstruct a 
B*-tree from the record occurrences to 
which it refers. In itself, this type of recon- 
struction is certainly too expensive to be- 
come a standard method for crash recovery. 
But if only the modifications in the records 
are logged, after a crash the corresponding 
B* tree can be recovered consistently, pro- 

vided that an appropriate write discipline 
has been observed for the pages contain- 
ing the tree. This principle, stating that 
changed nodes must be written bottom up, 
is a special case of the "careful replace- 
ment" technique explained in detail by Ver- 
hofstadt [1978]. For our taxonomy it makes 
no difference whether the principle is ap- 
plied or not. 

Transition Logging on the Access Path 
Level. On the access path level, we are 
dealing with the entries of storage struc- 
tures, but do not know how they are related 
to each other with regard to the objects of 
the database schema. This type of infor- 
mation is maintained on higher levels of 
the mapping hierarchy. If we look only at 
the physical entry representation {physical 
transition logging), state transition on this 
level means that a physical record, a table 
entry, etc. is added to, deleted from, or 
modified in a page. The arguments pertain- 
ing to these operations are the entries 
themselves, and so there is little difference 
between this and the previous approach. In 
the case of physical state logging on the 
access path level, we placed the physical 
address together with the entry represen- 
tation. Here we place the operation code 
and object identifier with the same type of 
argument. Thus physical transition logging 
on this level does not provide anything 
essentially different. 

We can also consider logical transition 
logging, attempting to exploit the syntax of 
the storage structures implemented on this 
level. The logical addition, a new record 
occurrence, for example, would include all 
the redundant table updates such as the 
record id index, the free space table, etc., 
each of which was explicitly logged with the 
physical schemes. Hence we again have a 
potential saving of log space. However, it is 
important to note that the logical transi- 
tions on this level generally affect more 
than one page. If they (or their inverse 
operators for UNDO) are to be applied 
during recovery, we must be sure that  all 
affected pages have the same state in the 
materialized database. This is not the case 
with direct page allocation, and using the 
more expensive indirect schemes cannot be 
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Figure 7. Logical transition logging as implemented in System R. (From 
Gray et al. [1981].) 

justified by the comparatively few benefits 
yielded by logical transition logging on the 
access path level. Hence logical transition 
logging on this level can generally be ruled 
out, but will become more attractive on the 
next higher level. 

Logical Logging on the Record-Oriented 
Level. At one level higher, it is possible 
to express the changes performed by the 
transaction program in a very compact 
manner by simply recording the update 
DML statements with their parameters. 
Even if a nonprocedural query language is 
being used above this level, its updates will 
be decomposed into updates of single rec- 
ords or tuples equivalent to the single- 
record updates of procedural DB languages. 
Thus logging on this level means that only 
the INSERT, UPDATE, and DELETE op- 
erations, together with their record ids and 
attribute values, are written to the log. The 
mapping process discerns which entries are 
affected, which pages must be modified, etc. 
Thus recovery is achieved by reexecuting 
some of the previously processed DML 
statements. For UNDO recovery, of course, 
the inverse DML statement must be exe- 
cuted, that is, a DELETE to compensate 
an INSERT and vice versa, and an UP- 
DATE returned to the original values. 
These inverse DML statements must be 
generated automatically as part of the reg- 
ular logging activity, and for this reason 
this approach is not viable for network- 
oriented DBMSs with information-bearing 
interrecord relations. In such cases, it can 
be extremely expensive to determine, for 
example, the inverse for a DELETE. De- 
tails can be found in Reuter [1981]. 

System R is a good example of a system 
with logical logging on the record-oriented 
level. All update operations performed on 
the tuples are represented by one general- 
ized modification operator, which is not 
explicitly recorded. This operator changes 

a tuple identified by its tuple identifier 
(TID) from an old value to a new one, both 
of which are recorded. Inserting a tuple 
entails modifying its initial null value to 
the given value, and deleting a tuple entails 
the inverse transition. Hence the log con- 
tains the information shown in Figure 7. 

Logical transition logging obviously re- 
quires a materialized database that is con- 
sistent up to Level 3; that  is, it can only 
be combined with ATOMIC propagation 
schemes. Although the number of log data 
written are very small, recovery will be 
more expensive than that  in other schemes, 
because it involves the reprocessing of some 
DML statements, although this can be 
done more cheaply than the original proc- 
essing. 

Table 3 is a summation of the properties 
of all logging techniques that  we have de- 
scribed under two considerations: What  is 
the cost of collecting the log data during 
normal processing? and, How expensive is 
recovery based on the respective type of log 
information? Of course, the entries in the 
table are only very rough qualitative esti- 
mations; for more detailed quantitative 
analysis see Reuter [1982]. 

Writing log information, no matter what 
type, is determined by two rules: 

* UNDO information must be written to 
the log file before the corresponding up- 
dates are propagated to the materialized 
database. This has come to be known as 
the "write ahead log" (WAL) principle 
[Gray 1978]. 

• REDO information must be written to 
the temporary and the archive log file 
before EOT is acknowledged to the trans- 
action program. Once this is done, the 
system must be able to ensure the trans- 
action's durability. 

We return to different facets of these 
rules in Section 3.4. 
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Table 3. Qualitative Companson of Various Logging Techniques" 

Expenses during Expenses for recov- 
Logging technique Level no. normal processing ery operations 

Physical state 2 High Low 
Physical transition 2 Medium Low 
Physical state 3 Low Low 
Logical transition 4 Very low Medium 

"Costs are basically measured in units of physical I/O operations. Recovery in 
this context means crash recovery. 
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33 Examples of Recovery Techniques 

3.3.1 Optimization of Recovery Actions 
by Checkpoints 

An appropriate combination of redundancy 
provided by log protocols and mapping 
techniques is basically all that we need for 
implementing transaction-oriented data- 
base recovery as described in Section 1. In 
real systems, however, there are a number 
of important refinements that reduce the 
amount of log data required and the costs 
of crash recovery. Figure 8 is a very general 
example of crash recovery. In the center, 
there is the temporary log containing 
UNDO and REDO information and special 
entries notifying the begin and end of a 
transaction (BOT and EOT, respectively). 
Below the temporary log, the transaction 
history preceding the crash is shown, and 
above it, recovery processing for global 
UNDO and partial REDO is related to the 
log entries. We have not assumed a specific 
propagation strategy. 

There are two questions concerning the 
costs of crash recovery: 

• In the case of the materialized DB being 
modified by incomplete transactions, to 
what extent does the log have to be proc- 
essed for UNDO recovery? 

• If the DBMS does not use a FORCE 
discipline, which part of the log has to 
processed for REDO recovery? 

The first question can easily be an- 
swered: If we know that updates of incom- 
plete transactions can have affected the 
materialized database (STEAL), we must 
scan the temporary log file back to the BOT 
entry of the oldest incomplete transaction 
to be sure that no invalid data are left in 
the system. The second question is not as 
simple. In Figure 8, REDO is started at a 

point that seems to be chosen arbitrarily. 
Why is there no REDO recovery for object 
A? In general, we can assume that  in the 
case of a FORCE discipline modified pages 
will be written eventually because of buffer 
replacement. One might expect that  only 
the contents of the most recently changed 
pages have to be redone--if  the change 
was caused by a complete transaction. But 
look at a buffer activity record shown in 
Figure 9. 

The situation depicted in Figure 9 is typ- 
ical of many large database applications. 
Most of the modified pages will have been 
changed "recently," but there are a few hot 
spots like Pi, pages that  are modified again 
and again, and, since they are referenced so 
frequently, have not been written from the 
buffer. After a while such pages will contain 
the updates of many complete transactions, 
and REDO recovery will therefore have to 
go back very far on the temporary log. This 
makes restart expensive. In general, the 
amount of log data to be processed for 
partial REDO will increase with the inter- 
val of time between two subsequent 
crashes. In other words, the higher the 
availability of the system, the more costly 
recovery will become. This is unacceptable 
for large, demanding applications. 

For this reason additional measures are 
required for making restart costs independ- 
ent of mean time between failure. Such 
provisions will be called checkpoints, and 
are defined as follows. 

Generating a checkpoint means collect- 
ing information in a safe place, which has 
the effect of defining and limiting the 
amount of REDO recovery required after a 
crash. 

Whether this information is stored in the 
log or elsewhere depends on which imple- 
mentation technique is chosen; we give 
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Figure 9. Age of buffer page modifications (x, page modification). 

some examples in this section. Checkpoint 
generation involves three steps [Gray 
1978]: 

• Write a BEGIN_CHECKPOINT record 
to the temporary log file. 

• Write all checkpoint data to the log file 
and/or the database. 

• Write an E N D _ C H E C K P O I N T  record 
to the temporary log file. 

During restart ,  the B E G I N - E N D  
bracket is a clear indication as to whether 
a checkpoint was generated completely or 
interrupted by a system crash. Sometimes 
checkpointing is considered to be a means 
for restoring the whole database to some 
previous state. Our view, however, focuses 
on transaction recovery. Therefore to us a 
checkpoint is a technique for optimizing 
crash recovery rather than a definition of a 
distinguished state for recovery itself. In 
order to effectively constrain partial 
REDO, checkpoints must be generated at 
well-defined points in time. In the following 
sections, we shall introduce four separate 
criteria for determining when to start 
checkpoint activities. 

3.3.2 Transaction-Oriented Checkpoints 

As previously explained, a FORCE disci- 
pline will avoid partial REDO. All modified 
pages are propagated before an EOT record 
is written to the log, which makes the trans- 
action durable. If this record is not found 
in the log after a crash, the transaction will 

T1 I 

T2 I 

T3 I 

Time 

Transaction-Oriented 
Checkpoints 

c(T1) c(T2) 

/ 
System 
Crash 

Figure 10. Scenario for transaction-oriented check- 
points. 

be considered incomplete and its effects 
will be undone. Hence the EOT record 
of each transaction can be interpreted as 
a BEGIN_CHECKPOINT and E N D _  
CHECKPOINT,  since it agrees with our 
definition of a checkpoint in that it limits 
the scope of REDO. Figure 10 illustrates 
transaction-oriented checkpoints (TOC). 

As can be seen in Figure 10, transaction- 
oriented checkpoints are implied by a 
FORCE discipline. The major drawback to 
this approach can be deduced from Figure 
9. Hot spot pages like Pi will be propagated 
each time they are modified by a transac- 
tion even though they remain in the buffer 
for a long time. The reduction of recovery 
expenses with the use of transaction-ori- 
ented checkpoints is accomplished by im- 
posing some overhead on normal process- 
ing. This is discussed in more detail in 
Section 3.5. The cost factor of unnecessary 
write operations performed by a FORCE 
discipline is highly relevant for very large 
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Figure 11. Scenario for transaction-con- 
sistent checkpoints. 

TI I  

CI-I 

Time 

database buffers. The longer a page re- 
mains in the buffer, the higher is the prob- 
ability of multiple updates to the same page 
by different transactions. Thus for DBMSs 
supporting large applications, transaction- 
oriented checkpointing is not the proper 
choice. 

3.3.3 Transaction-Consistent Checkpoints 

The following transaction-consistent check- 
points (TCC) are global in that  they save 
the work of all transactions that have mod- 
ified the database. The first TCC, when 
successfully generated, creates a transac- 
tion-consistent database. It requires that  
all update activities on the database be 
quiescent. In other words, when the check- 
point generation is signaled by the recovery 
component, all incomplete update transac- 
tions are completed and new ones are not 
admitted. The checkpoint is actually gen- 
erated when the last update is completed. 
After the END_CHECKPOINT record 
has been successfully written, normal op- 
eration is resumed. This is illustrated in 
Figure 11. 

Checkpointing connotes propagating all 
modified buffer pages and writing a record 
to the log, which notifies the materialized 
database of a new transaction-consistent 
state, hence the name "transaction-consist- 
ent checkpoint" (TCC). By propagating all 
modified pages to the database, TCC estab- 
lishes a point past which partial REDO will 
not operate. Since all modifications prior 
to the recent checkpoint are reflected in the 
database, REDO-log information need only 
be processed back to the youngest END_ 
CHECKPOINT record found on the log. 
We shall see later on that  the time between 
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two subsequent checkpoints can be ad- 
justed to minimize overall recovery costs. 

In Figure 11, T3 must be redone com- 
pletely, whereas T4 must be rolled back. 
There is nothing to be done about T1 and 
T2, since their updates have been propa- 
gated by generating c,  Favorable as that 
may sound, the TCC approach is quite un- 
realistic for large multiuser DBMSs, with 
the exception of one special case, which is 
discussed in Section 3.4. There are two 
reasons for this: 

• Putting the system into a quiescent state 
until no update transaction is active may 
cause an intolerable delay for incoming 
transactions. 

• Checkpoint costs will be high in the case 
of large buffers, where many changed 
pages will have accumulated. With a 
buffer of 6 megabytes and a substantial 
number of updates, propagating the mod- 
ified pages will take about 10 seconds. 

For small applications and single-user sys- 
tems, TCC certainly is useful. 

3.3.4 Action-Consistent Checkpoints 

Each transaction is considered a sequence 
of elementary actions affecting the data- 
base. On the record-oriented level, these 
actions can be seen as DML statements. 
Action-consistent checkpoints (ACC) can 
be generated when no update action is being 
processed. Therefore signaling an ACC 
means putting the system into quiescence 
on the action level, which impedes opera- 
tion here much less than on the transaction 
level. A scenario is shown in Figure 12. 

The checkpoint itself is generated in the 
very same way as was described for the 



T I :  

T4 I r'-I 

T 7 - -  

Principles of Transaction-Oriented Database Recovery 

E ] I  

Cl-1 

Time 

T21 [ ]  

[ ]  E3 I 

T51 [ ]  

Checkpoint Checkpoint 
Signal ~ ~'- ci Generated 

~_ E3 [] 
[] m 

II 

',I [] : 
II 
i I 

I I  T6', .'~. 

c~ System 
Processing Delay Crash 
for Act=ons 

Figure 12. Scenario for action-consistent checkpoints. 

• 307 

TCC technique. In the case of ACC, how- 
ever, the END_CHECKPOINT record in- 
dicates an action-consistent 4 rather than a 
transaction-consistent database. Obviously 
such a checkpoint imposes a limit on partial 
REDO. In contrast to TCC, it does not 
establish a boundary to global UNDO; how- 
ever, it is not required by definition to do 
so. Recovery in the above scenario means 
global UNDO for T1, T2, and T3. REDO 
has to be performed for the last action of 
T5 and for all of T6. The changes of T4 
and T7 are part of the materialized data- 
base because of checkpointing. So again, 
REDO-log information prior to the recent 
checkpoint is irrelevant for crash recovery. 
This scheme is much more realistic, since 
it does not cause long delays for incoming 
transactions. Costs of checkpointing, how- 
ever, are still high when large buffers are 
used. 

3.3.5 Fuzzy Checkpoints 

In order to further reduce checkpoint costs, 
propagation activity at checkpoint time has 
to be avoided whenever possible. One way 
to do this is indirect checkpointing. Indirect 
checkpointing means that information 
about the buffer occupation is written to 

4 This means that  the materialized database reflects a 
state produced by complete actions only; tha t  is, it is 
consistent up to Level 3 at  the moment of checkpoint. 
ing. 

the log file rather than the pages them- 
selves. This can be done with two or three 
write operations, even with very large buff- 
ers, and helps to determine which pages 
containing committed data were actually in 
the buffer at the moment of a crash. How- 
ever, if there are hot spot pages, their 
REDO information will have to be traced 
back very far on the temporary log. So, 
although indirect checkpointing does re- 
duce the costs of partial REDO, this does 
not in general make partial REDO inde- 
pendent of mean time between failure. Note 
also that this method is only applicable 
with ~ATOMIC propagation. In the case 
of ATOMIC schemes, propagation always 
takes effect at one well-defined moment, 
which is a checkpoint; pages that have only 
been written (not propagated) are lost after 
a crash. Since this checkpointing method 
is concerned only with the temporary log, 
leaving the database as it is, we call it 
"fuzzy." A description of a particular imple- 
mentation of indirect, fuzzy checkpoints is 
given by Gray [1978]. 

The best of both worlds, low checkpoint 
costs with fixed limits to partial REDO, is 
achieved by another fuzzy scheme de- 
scribed by Lindsay et al. [1979]. This 
scheme combines ACC with indirect check- 
pointing: At checkpoint time the numbers 
of all pages (with an update indicator) cur- 
rently in buffer are written to the log file. 
If there are no hot spot pages, nothing else 
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Figure 13. Classif icat ion s cheme  for recovery concepts .  

is done. If, however, a modified page is 
found at two subsequent checkpoints with- 
out having been propagated, it will be prop- 
agated during checkpoint generation. 
Hence the scope of partial REDO is limited 
to two checkpoint intervals. Empiric stud- 
ies show that the I/O activity for check- 
pointing is only about 3 percent of what is 
required with ACC [Reuter 1981]. This 
scheme can be given general applicability 
by adjusting the number of checkpoint in- 
tervals for modified pages in buffer. 

Another fuzzy checkpoint approach has 
been proposed by Elhardt [1982]. Since a 
description of this technique, called data- 
base cache, would require more details than 
we can present in this paper, readers are 
referred to the literature. 

In this section, we attempt to illustrate 
the functional principles of three different 
approaches found in well-known database 
systems. We particularly want to elaborate 
on the cooperation between mapping, log- 
ging, and recovery facilities, using a sample 
database constituting four pages, A, B, C, 
and D, which are modified by six transac- 
tions. What the transactions do is sketched 
in Figure 14. The indicated checkpoint c, is 
relevant only to those implementations ac- 
tually applying checkpoint techniques. 
Prior to the beginning of Transaction 1 
(T1), the DB pages were in the states A, B, 
C, and D, respectively. 

3.4.1 Implementation Technique: 
-1ATOMIC, STEAL, FORCE, TOC 

3.4 Examples of Logging 
and Recovery Components 

The introduction of various checkpoint 
schemes has completed our taxonomy. Da- 
tabase recovery techniques can now be 
classified as shown in Figure 13. In order 
to make the classification more vivid, we 
have added the names of a few existing 
DBMSs and implementation concepts to 
the corresponding entries. 

An implementation technique involving 
the principles of -~ATOMIC, STEAL, 
FORCE, and TOC can be found in many 
systems, for example, IMS [N.d.] and UDS 
[N.d.]. The temporary log file contains only 
UNDO data (owing to FORCE), whereas 
REDO information is written to the archive 
log. According to the write rules introduced 
in Section 3.2, we must be sure that UNDO 
logging has taken effect before a changed 
page is either replaced in the buffer or 

Computing Surveys, Vol. 15, No. 4, December 1983 



T1 

T2 

T3 

T4 

A j 

Principles of Transaction-Oriented Database Recovery o / 
I )( 

c' 
"" I " o C "  

I : ~ : 

I s "  
I I . 
I 

c, 

System Crash 

• 309 

Figure 14. Transaction scenario for illustrating re- 
covery techniques. 

forced at EOT. Note that in ~ATOMIC 
schemes EOT processing is interruptable 
by a crash. 

In the scenario given in Figure 15, we 
need only consider T1 and T2; the rest is 
irrelevant to the example. According to the 
scenario, A' has been replaced from the 
buffer, which triggered an UNDO entry to 
be written. Pages B' and C' remained in 
buffer as long as T2 was active. T2 reached 
its normal end before the crash, and so the 
following had to be done: 

* Write UNDO information for B and C 
(in case the FORCE fails). 

• Propagate B' and C'. 
• Write REDO information for B' and C' 

to the archive log file. 
• Discard the UNDO entries for B and C. 
• Write an EOT record to the log files and 

acknowledge EOT to the user. 

Of course, there are some obvious op- 
timizations as regards the UNDO data 
for pages that have not been replaced be- 
fore EOT, but these are not our concern 
here. After the crash, the recovery com~ 
ponent finds the database and the log 
files as shown in the scenario. The mate- 
rialized database is inconsistent owing to 
-~ATOMIC propagation, and must be made 
consistent by applying all UNDO infor- 
mation in reverse chronological order. 

3.4.2 Implementation Technique: 
-~A TOMIC, -~TEAL, "~FORCE, TCC 

Applications with high transaction rates 
require large DB buffers to yield satisfac- 
tory performance. With sufficient buffer 
space, a "~STEAL approach becomes fea- 
sible; that is, the materialized database will 

never contain updates of incomplete trans- 
actions. -~FORCE is desirable for efficient 
EOT processing, as discussed previously 
(Section 3.3.2). The IMS/Fast Path in its 
"main storage database" version is a system 
designed with this implementation tech- 
nique [IMS N.d.; Date 1981]. The -~STEAL 
and "~FORCE principles are generalized to 
the extent that there are no write opera- 
tions to the database during normal proc- 
essing. All updates are recorded to the log, 
and propagation is delayed until shutdown 
(or some other very infrequent checkpoint), 
which makes the system belong to the TCC 
class. Figure 16 illustrates the implications 
of this approach. 

With "~STEAL, there is no UNDO infor- 
mation on the temporary log. Accordingly, 
there are only committed pages in the ma- 
terialized database. Each successful trans- 
action writes REDO information during 
EOT processing. Assuming that the crash 
occurs as indicated in Figure 14, the mater- 
ialized database is in the initial state, and, 
compared with the former current data- 
base, is old. Everything that has been done 
since start-up must therefore be applied to 
the database by processing the entire tem- 
porary log in chronological order. This, of 
course, can be very expensive, and hence 
the entire environment should be as stable 
as possible to minimize crashes. The bene- 
fits of this approach are extremely high 
transaction rates and short response times, 
since physical I/O during normal process- 
ing is reduced to a minimum. 

The database cache, mentioned in Sec- 
tion 3.3, also tries to exploit the desirable 
properties of ~STEAL and ~FORCE, but, 
in addition, attempts to provide very fast 
crash recovery. This is attempted by imple- 
menting a checkpointing scheme of the 
"fuzzy" type. 

3.4.3 Implementation Technique: 
ATOMIC, STEAL, -~FORCE, ACC 

ATOMIC propagation is not yet widely 
used in commercial database systems. This 
may result from the fact that  indirect page 
mapping is more complicated and more ex- 
pensive than the update-in-place tech- 
nique. However, there is a well-known ex- 
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Figure 15. Recovery scenario 
for -~ATOMIC, STEAL, FORCE, 
TOC. 
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Figure16. Recovery scenario for 
-1ATOMIC, -~STEAL, -~FORCE, 
TCC. 

Log: REDO(T2:B',C'), REDO(T3:C") 

ample of this type of implementation, based 
on the shadow-page mechanism in System 
R. This system uses action-consistent 
checkpointing for update propagation, and 
hence comes up with a consistent material- 
ized database after a crash. More specifi- 
cally, the materialized database will be con- 
sistent up to Level 4 of the mapping hier- 
archy and reflect the state of the most 
recent checkpoint; everything occurring 
after the most recent checkpoint will have 
disappeared. As discussed in Section 3.2, 
with an action-consistent database one can 
use logical transition logging based on 
DML statements, which System R does. 
Note that in the case of ATOMIC propa- 
gation the WAL principle is bound to the 
propagation, that is, to the checkpoints. In 
other words, modified pages can be written, 
but  not propagated, without having written 
an UNDO log. If the modified pages pertain 
to incomplete transactions, the UNDO in- 
formation must be on the temporary log 
before the pages are propagated. The same 
is true for STEAL: Not only can dirty pages 
be written; in the case of System R they 
can also be propagated. Consider the scen- 
ario in Figure 17. 

T1 and T2 were both incomplete at 
checkpoint. Since their updates (A' and B')  
have been propagated, UNDO information 
must be written to the temporary log. In 
System R, this is done with logical transi- 

tions, as described in Section 3.2. EOT 
processing of T2 and T3 includes writing 
REDO information to the log, again using 
logical transitions. When the system 
crashes, the current database is in the state 
depicted in Figure 17; at restart the mater- 
ialized database will reflect the most recent 
checkpoint state. Crash recovery involves 
the following actions: 

• UNDO the modification of A'. Owing to 
the STEAL policy in System R, incom- 
plete transactions can span several 
checkpoints. Global UNDO must be ap- 
plied to all changes of failed transactions 
prior to the recent checkpoint. 

* REDO the last action of T2 (modifi- 
cation of C') and the whole transaction 
T3 {modification of C"). Although they 
are committed, the corresponding page 
states are not yet reflected in the mate- 
rialized database. 

* Nothing has to be done with D'  since this 
has not yet become part of the material- 
ized database. The same is true of T4. 
Since it was not present when ci was 
generated, it has had no effect on the 
materialized database. 

3.5 Evaluation of Logging 
and Recovery Concepts 

Combining all possibilities of propagating, 
buffer handling, and checkpointing, and 
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Table 4. Evaluation of Logging and Recovery Techniques Based on the Introduced Taxonomy 

propagatmn strategy ~ATOMIC ATOMIC 

I~uffer replacement STEAL 

EOT processing 

checkpoint type 

rnatermhzed DB statq 
after system failure 

cost of transact=on 
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cost of partial REDO 
at restart 

cost of global UNDO 
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)verhead during 
normal processing 

frequency of check- 
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checkpoint cost 
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N o t e s :  

A b b r e v i a t i o n s :  DC,  d e v i c e  c o n s i s t e n t  ( c h a o t i c ) ;  A C ,  a c t i o n  c o n s i s t e n t ;  T C ,  T r a n s a c t i o n  c o n s i s t e n t .  

E v a l u a t i o n  s y m b o l s :  - - ,  v e r y  low;  - ,  l ow;  + ,  h i g h ;  + + ,  v e r y  high.  

considering the overall properties of each 
scheme that we have discussed, we can 
derive the evaluation given in Table 4. 

Table 4 can be seen as a compact sum- 
mary of what we have discussed up to this 
point. Combinations leading to inherent 
contradictions have been suppressed (e.g., 

-~STEAL does not allow for ACC). By re- 
ferring the information in Table 4 to Figure 
13; one can see how existing DBMSs are 
rated in this qualitative comparison. 

Some criteria of our taxonomy divide the 
world of DB recovery into clearly distinct 
areas: 
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• ATOMIC propagation achieves an ac- 
tion- or transaction-consistent material- 
ized database in the event of a crash. 
Physical as well as logical logging tech- 
niques are therefore applicable. The 
benefits of this property are offset by 
increased overhead during normal proc- 
essing caused by the redundancy required 
for indirect page mapping. On the other 
hand, recovery can be cheap when 
ATOMIC propagation is combined with 
TOC schemes. 

• ~ATOMIC propagation generally results 
in a chaotic materialized database in the 
event of a crash, which makes physical 
logging mandatory. There is almost no 
overhead during normal processing, but 
without appropriate checkpoint schemes, 
recovery will more expensive. 

• All t r ansac t ion-or ien ted  and t rans-  
action-consistent  schemes cause high 
checkpoint  costs. This  problem is 
emphasized in t r ansac t ion -o r i en t ed  
schemes by a relatively high checkpoint 
frequency. 

It is, in general, important when deciding 
which implementation techniques to 
choose for database recovery to carefully 
consider whether optimizations of crash re- 
covery put additional burdens on normal 
processing. If this is the case, it will cer- 
tainly not pay off, since crash recovery, it 
is hoped, will be a rare event. Recovery 
components should be designed with mini- 
mal overhead for normal processing, pro- 
vided that there is fixed limit to the costs 
of crash recovery. 

This consideration rules out schemes of 
the ATOMIC, FORCE, TOC type, which 
can be implemented and look very appeal- 
ing at first sight. According to the classi- 
fication, the materialized database will 
always be in the most recent transaction- 
consistent state in implementations of 
these schemes. Incomplete transactions 
have not affected the materialized data- 
base, and successful transactions have 
propagated indivisibly during EOT proc- 
essing. However appealing the schemes 
may be in terms of crash recovery, the 
overhead during normal processing is too 
high to justify their use [Haerder and Reu- 
ter 1979; Reuter 1980]. 

There are, of course, other factors influ- 
encing the performance of a logging and 
recovery component: The granule of log- 
ging (pages or entries), the frequency of 
checkpoints (it depends on the transaction 
load), etc. are important. Logging is also 
tied to concurrency control in that the 
granule of logging determined the granule 
of locking. If page logging is applied, DBMS 
must not use smaller granules of locking 
than pages. However, a detailed discussion 
of these aspects is beyond the scope of this 
paper; detailed analyses can be found in 
Chandy et al. [1975] and Reuter [1982]. 

4. ARCHIVE RECOVERY 

Throughout this paper we have focused on 
crash recovery, but in general there are two 
types of DB recovery, as is shown in Figure 
18. The first path represents the standard 
crash recovery, depending on the physical 
(and the materialized) database as well as 
on the temporary log. If one of these is lost 
or corrupted because of hardware or soft- 
ware failure, the second path, archive re- 
covery, must be tried. This presupposes 
that  the components involved have inde- 
pendent failure modes, for example, if tem- 
porary and archive logs are kept on differ- 
ent devices. The global scenario for archive 
recovery is shown in Figure 19; it illustrates 
that the component "archive copy" actually 
depends on some dynamically modified 
subcomponents. These subcomponents cre- 
ate new archive copies and update existing 
ones. The following is a brief sketch of some 
problems associated with this. 

Creating an archive copy, that is, copying 
the on-line version of the database, is a 
very expensive process. If the copy is to be 
consistent, update operation on the data- 
base has to be interrupted for a long time, 
which is unacceptable in many applica- 
tions. Archive recovery is likely to be rare, 
and an archive copy should not be created 
too frequently, both because of cost and 
because there is a chance that it will never 
be used. On the other hand, if the archive 
copy is very old, recovery starting from such 
a copy will have to redo too much work and 
will take too long. There are two methods 
to cope with this. First, the database can 
be copied on the fly, that is, without inter- 
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Figure 19. Scenario for archive recovery (global REDO). 

rupting processing, in parallel with normal 
processing. This will create an inconsistent 
copy, a so-called "fuzzy dump." 

The other possibility is to write only the 
changed pages to an incremental dump, 
since a new copy will be different from an 
old one only with respect to these pages. 
Either type of dump can be used to create 
a new, more up-to-date copy from the pre- 
vious one. This is done by a separate off- 
line process with respect to the database 
and therefore does not affect DB operation. 
In the case of DB applications running 24 
hours per day, this type of separate process 
is the only possible way to maintain archive 
recovery data. As shown in Figure 19, at- 

chive recovery in such an environment re- 
quires the most recent archive copy, the 
latest incremental modifications to it (if 
there are any), and the archive log. When 
recovering the database itself, there is little 
additional cost in creating an identical new 
archive copy in parallel. 

There is still another problem hidden in 
this scenario: Since archive copies are 
needed very infrequently, they may be sus- 
ceptible to magnetic decay. For this reason 
several generations of the archive copy are 
usually kept. If the most recent one does 
not work, its predecessor can be tried, and 
so on. This leads to the consequences illus- 
trated in Figure 20. 
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Figure 21. Two possibilities for duplicating the archive log. 

We must anticipate the case of starting 
archive recovery from the oldest generation, 
and hence the archive log must span the 
whole distance back to this point in time. 

That makes the log susceptible to magnetic 
decay, as well, but in this case generations 
will not help; rather we have to duplicate 
the entire archive log file. Without taking 
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storage costs into account, this has severe 
impact on normal DB processing, as is 
shown in Figure 21. 

Figure 21a shows the straightforward so- 
lution: two archive log files that are kept 
on different devices. If this scheme is to 
work, all three log files must be in the same 
state at any point in time. In other words, 
writing to these files must be synchronized 
at each EOT. This adds substantial costs to 
normal processing and particularly affects 
transaction response times. The solution in 
Figure 21b assumes that all log information 
is written only to the temporary log during 
normal processing. An independent process 
that runs asynchronously then copies the 
REDO data to the archive log. Hence ar- 
chive recovery finds most of the log entries 
in the archive log, but the temporary log is 
required for the most recent information. 
In such an environment, temporary and 
archive logs are no longer independent from 
a recovery perspective, and so we must 
make the temporary log very reliable by 
duplicating it. The resulting scenario looks 
much more complicated than the first one, 
but in fact the only additional costs are 
those for temporary log storage--which are 
usually small. The advantage here is that 
only two files have to be synchronized dur- 
ing EOT, and moreover--as numerical 
analysis shows--this environment is more 
reliable than the first one by a factor of 2. 

These arguments do not, of course, ex- 
haust the problem of archive recovery. Ap- 
plications demanding very high availability 
and fast recovery from a media failure will 
use additional measures such as duplexing 
the whole database and all the hardware 
{e.g., see TANDEM [N.d.]). This aspect of 
database recovery does not add anything 
conceptually to the recovery taxonomy es- 
tablished in this paper. 

5. CONCLUSION 

We have presented a taxonomy for classi- 
fying the implementation techniques for 
database recovery. It is based on four cri- 
teria: 

Propagation. We have shown that update 
propagation should be carefully distin- 
guished from the write operation. The 
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ATOMIC/~ATOMIC dichotomy defines 
two different methods of handling low-level 
updates of the database, and also gives rise 
to different views of the database, both the 
materialized and the physical database. 
This proves to be useful in defining differ- 
ent crash states of a database. 

Buffer Handling. We have shown that 
interfering with buffer replacement can 
support UNDO recovery. The STEAL/ 
-~STEAL criterion deals with this concept. 

EOT Processing. By distinguishing 
FORCE policies from -~FORCE policies we 
can distinguish whether successful trans- 
actions will have to be redone after a crash. 
It can also be shown that  this criterion 
heavily influences the DBMS performance 
during normal operation. 

Checkpointing. Checkpoints have been 
introduced as a means for limiting the costs 
of partial REDO during crash recovery. 
They can be classified with regard to the 
events triggering checkpoint generation 
and the number of data written at a check- 
point. We have shown that  each class has 
some particular performance characteris- 
tics. 

Some existing DBMSs and implementa- 
tion concepts have been classified and de- 
scribed according to the taxonomy. Since 
the criteria are relatively simple, each sys- 
tem can easily be assigned to the appropri- 
ate node of the classification tree. This 
classification is more than an ordering 
scheme for concepts: Once the parameters 
of a system are known, it is possible to draw 
important conclusions as to the behavior 
and performance of the recovery compo- 
nent. 
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