
Principles of Transaction-Oriented Database Recovery

THEO HAERDER

Fachbereich Informatik, University of Kaiserslautern, West Germany

ANDREAS REUTER 1

IBM Research Laboratory, San Jose, California 95193

In this paper, a terminological framework is provided for describing different transaction-
oriented recovery schemes for database systems in a conceptual rather than an
implementation-dependent way. By introducing the terms materialized database,
propagation strategy, and checkpoint, we obtain a means for classifying arbitrary
implementations from a unified viewpoint. This is complemented by a classification
scheme for logging techniques, which are precisely defined by using the other terms. It is
shown that these criteria are related to all relevant questions such as speed and scope of
recovery and amount of redundant information required. The primary purpose of this
paper, however, is to establish an adequate and precise terminology for a topic in which
the confusion of concepts and implementational aspects still imposes a lot of problems.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability--fau/t
tolerance; H.1.0 [Models and Principles]: General; H.2.2 [Database Management]:
Physical Design--recovery and restart; H.2.4 [Database Management]: Systems--
transactmn processing; H.2.7 [Database Management]: Database Administration--
logging and recovery

General Terms: Databases, Fault Tolerance, Transactions

INTRODUCTION

Database technology has seen tremendous
progress during the past ten years. Con-
cepts and facilities that evolved in the sin-
gle-user batch environments of the early
days have given rise to efficient multiuser
database systems with user-friendly inter-
faces, distributed data management, etc.
From a scientific viewpoint, database sys-
tems today are established as a mature
discipline with well-approved methods and

1 Permanent address: Fachbereich Informatik, Uni-
versity of Kaiserslautern, West Germany.

technology. The methods and technology
of such a discipline should be well repre-
sented in the literature by systematic sur-
veys of the field. There are, in fact, a num-
ber of recent publications that attempt to
summarize what is known about different
aspects of database management [e.g., As-
trahan et al. 1981; Stonebraker 1980; Gray
et al. 1981; Kohler 1981; Bernstein and
Goodman 1981; Codd 1982]. These papers
fall into two categories: (1) descriptions of
innovative prototype systems and (2) thor-
ough analyses of special problems and their
solutions, based on a clear methodological
and terminological framework. We are con-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1983 ACM 0360-0300/83/1200-0287 $00.75

Computing Surveys, Vol. 1•, No. 4, December 1983

288 • T. Haerder and A. Reuter

CONTENTS

INTRODUCTION
1. DATABASE RECOVERY: WHAT IT IS

EXPECTED TO DO
1.1 What Is a Transaction?
1.2 Which Failures Have to Be Anticipated
1.3 Summary of Recovery Actions

2. THE MAPPING HIERARCHY OF A DBMS
2.1 The Mapping Process: Objects and Operations
2.2 The Storage Hierarchy: Implementational

Environment
2.3 Different Views of a Database
2.4 Mapping Concepts for Updates

3. CRASH RECOVERY
3.1 State of the Database after a Crash
3.2 Types of Log Information to Support

Recovery Actions
3.3 Examples of Recovery Techniques
3.4 Examples of Logging

and Recovery Components
3 5 Evaluation of Logging

and Recovery Concepts
4. ARCHIVE RECOVERY
5 CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

v

tributing to the second category in the field
of database recovery. In particular, we are
establishing a systematic framework for es-
tablishing and evaluating the basic con-
cepts for fault-tolerant database operation.

The paper is organized as follows. Sec-
tion 1 contains a short description of what
recovery is expected to accomplish and
which notion of consistency we assume.
This involves introducing the transaction,
which has proved to be the major paradigm
for synchronization and recovery in ad-
vanced database systems. This is also the
most important difference between this pa-
per and Verhofstadt's survey, in which
techniques for file recovery are described
without using a particular notion of con-
sistency [Verhofstadt 1978]. Section 2 pro-
vides an implementational model for data-
base systems, that is, a mapping hierarchy
of data types. Section 3 introduces the key
concepts of our framework, describing the
database states after a crash, the type of
log information required, and additional
measures for facilitating recovery. Crash

recovery is demonstrated with three sample
implementation techniques. Section 4 ap-
plies concepts addressed in previous sec-
tions on media recovery, and Section 5
summarizes the scope of our taxonomy.

1. DATABASE RECOVERY: WHAT IT IS
EXPECTED TO DO

Understanding the concepts of database re-
covery requires a clear comprehension of
two factors:

• the type of failure the database has to
cope with, and

• the notion of consistency that is assumed
as a criterion for describing the state to
be reestablished.

Before beginning a discussion of these
factors, we would like to point out that the
contents of this section rely on the descrip-
tion of failure types and the concept of a
transaction given by Gray et al. [1981].

1.1 What Is a Transaction?

It was observed quite early that manipulat-
ing data in a multiuser environment re-
quires some kind of isolation to prevent
uncontrolled and undesired interactions. A
user (or process) often does things when
working with a database that are, up to a
certain point in time, of tentative or prelim-
inary value. The user may read some data
and modify others before finding out that
some of the initial input was wrong, inval-
idating everything that was done up to that
point. Consequently, the user wants to re-
move what he or she has done from the
system. If other users (or processes) have
already seen the "dirty data" [Gray et al.
1981] and made decisions based upon it,
they obviously will encounter difficulties.
The following questions must be consid-
ered:

• How do they get the message that some
of their input data has disappeared, when
it is possible that they have already fin-
ished their job and left the terminal?

• How do they cope with such a situation?
Do they also throw away what they have
done, possibly affecting others in turn?
Do they reprocess the affected parts of
their program?

Computing Surveys, Vol. 15, No. 4, December 1983

Principles o/ Transaction-Oriented Database Recovery • 289

FUNDS_TRANSFER: PROCEDURE;
$BEGIN_TRANSACTION;
ON ERROR DO;

$RESTORE_TRANSACTION;
GET INPUT MESSAGE;
PUT MESSAGE ('TRANSFER FAILED');
GO TO COMMIT;
END;

GET INPUT MESSAGE;
EXTRACT ACCOUNT_DEBIT, ACCOUNT_CREDIT,

AMOUNT FROM MESSAGE;
$UPDATE ACCOUNTS

SET BALANCE -- BALANCE - AMOUNT
WHERE ACCOUNTS NUMBER = ACCOUNTS_DEBIT;

$UPDATE ACCOUNTS
SET BALANCE -- BALANCE + AMOUNT

WHERE ACCOUNTS NUMBER = ACCOUNTS_CREDIT;
$INSERT INTO HISTORY

(DATE, MESSAGE);
PUT MESSAGE ('TRANSFER DONE');

COMMIT:
$COMMIT_TRANSACTION;

END;

/*in case of error*/
/*undo all work*/

/*reacquire input*/
/*report failure*/

/*get and parse input*/

/*do debit*/

/*do credit*/

/*keep audit trail*/

/*report success*/
/*commit updates*/

/*end of program*/

Figure 1. Example of a transaction program. (From Gray et al. [1981].)

These situations and dependencies have
been investigated thoroughly by Bjork and
Davies in their studies of the so-called
"spheres of control" [Bjork 1973; Davies
1973, 1978]. They indicate that data being
operated by a process must be isolated in
some way that lets others know the degree
of reliability provided for these data, that
is,

• Will the data be changed without notifi-
cation to others?

• Will others be informed about changes?
• Will the value definitely not change any

more?

This ambitious concept was restricted to
use in database systems by Eswaran et al.
[1976] and given its current name, the
"transaction." The transaction basically re-
flects the idea that the activities of a par-
ticular user are isolated from all concurrent
activities, but restricts the degree of isola-
tion and the length of a transaction. Typi-
cally, a transaction is a short sequence of
interactions with the database, using oper-
ators such as FIND a record or MODIFY
an item, which represents one meaningful
activity in the user's environment. The
standard example that is generally used to

explain the idea is the transfer of money
from one account to another. The corre-
sponding transaction program is given in
Figure 1.

The concept of a transaction, which in-
cludes all database interactions between
$BEGIN_TRANSACTION and $COM-
MIT_TRANSACTION in the above ex-
ample, requires that all of its actions be
executed indivisibly: Either all actions are
properly reflected in the database or noth-
ing has happened. No changes are reflected
in the database if at any point in time
before reaching the $COMMIT_TRANS-
ACTION the user enters the ERROR
clause containing the $RESTORE_
TRANSACTION. To achieve this kind of
indivisibility, a transaction must have four
properties:

Atomicity. It must be of the all-or-noth-
ing type described above, and the user must,
whatever happens, know which state he or
she is in.

Consistency. A transaction reaching its
normal end (EOT, end of transaction),
thereby committing its results, preserves
the consistency of the database. In other
words, each successful transaction by defi-
nition commits only legal results. This con-

Computing Surveys, Vol. 15, No. 4, December 1983

290 * T. Haerder and A. Reuter

BEGIN
READ
WRITE
READ

WRITE
COMMIT

Figure 2. Three
(From Gray et al.

BEGIN BEGIN
READ READ
WRITE WRITE
READ READ

AB()RT ~-~YSTEM ABORTS
TRANSACTION

possible outcomes of a transaction.
[1981].)

dition is necessary for the fourth property,
durability.

Isolation. Events within a transaction
must be hidden from other transactions
running concurrently. If this were not the
case, a transaction could not be reset to its
beginning for the reasons sketched above.
The techniques that achieve isolation are
known as synchronization, and since Gray
et al. [1976] there have been numerous
contributions to this topic of database re-
search [Kohler 1981].

Durability. Once a transaction has been
completed and has committed its results to
the database, the system must guarantee
that these results survive any subsequent
malfunctions. Since there is no sphere of
control constituting a set of transactions,
the database management system (DBMS)
has no control beyond transaction bound-
aries. Therefore the user must have a guar-
antee that the things the system says have
happened have actually happened. Since,
by definition, each transaction is correct,
the effects of an inevitable incorrect trans-
action (i.e., the transaction containing
faulty data) can only be removed by coun-
tertransactions.

These four properties, atomicity, consist-
ency, isolation, and durability (ACID), de-
scribe the major highlights of the transac-
tion paradigm, which has influenced many
aspects of development in database sys-
tems. We therefore consider the question
of whether the transaction is supported by
a particular system to be the ACID test of
the system's quality.

In summary, a transaction can terminate
in the three ways illustrated in Figure 2. It
is hoped that the transaction will reach its
commit point, yielding the all case (as in
the all-or-nothing dichotomy). Sometimes

the transaction detects bad input or other
violations of consistency, preventing a nor-
mal termination, in which case it will reset
all that it has done (abort). Finally, a trans-
action may run into a problem that can
only be detected by the system, such as
time-out or deadlock, in which case its ef-
fects are aborted by the DBMS.

In addition to the above events occurring
during normal execution, a transaction can
also be affected by a system crash. This is
discussed in the next section.

1.2 Which Failures Have to Be Anticipated

In order to design and implement a recov-
ery component, one must know precisely
which types of failures are to be considered,
how often they will occur, how much time
is expected for recovery, etc. One must also
make assumptions about the reliability of
the underlying hardware and storage me-
dia, and about dependencies between dif-
ferent failure modes. However, the list of
anticipated failures will never be complete
for these reasons:

• For each set of failures that one can think
of, there is at least one that was forgotten.

• Some failures are extremely rare. The
cost of redundancy needed to cope with
them may be so high that it may be a
sensible design decision to exclude these
failures from consideration. If one of
them does occur, however, the system will
not be able to recover from the situation
automatically, and the database will be
corrupted. The techniques for handling
this catastrophe are beyond the scope of
this paper.

We shall consider the following types of
failure:

Transaction Failure. The transaction of
failure has already been mentioned in the
previous section. For various reasons, the
transaction program does not reach its nor-
mal commit and has to be reset back to its
beginning, either at its own request or on
behalf of the DBMS. Gray indicates that 3
percent of all transactions terminate ab-
normally, but this rate is not likely to be a
constant [Gray et al. 1981]. From our own
experiences with different application da-

Computing Surveys, Vol. 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery

tabases, and from Gray's result [Effelsberg
et al. 1981; Gray 1981], we can conclude
that

* Within one application, the ratio of
transactions that abort themselves is
rather constant, depending only on the
amount of incorrect input data, the qual-
ity of consistency checking performed by
the transaction program, etc.

• The ratio of transactions being aborted
by the DBMS, especially those caused by
deadlocks, depends to a great extent on
the degree of parallelism, the granularity
of locking used by the DBMS, the logical
schema (there may be hot spot data, or
data that are very frequently referenced
by many concurrent transactions), and
the degree of interference between con-
current activities (which is, in turn, very
application dependent).

For our classification, it is sufficient to
say that transaction failures occur 10-100
times per minute, and that recovery from
these failures must take place within the
time required by the transaction for its
regular execution.

System Failure. The system failures that
we are considering can be caused by a bug
in the DBMS code, an operating system
fault, or a hardware failure. In each of these
cases processing is terminated in an uncon-
trolled manner, and we assume that the
contents of main memory are lost. Since
database-related secondary (nonvolatile)
storage remains unaffected, we require that
a recovery take place in the same amount
of time that would have been required for
the execution of all interrupted transac-
tions. If one transaction is executed within
the order of 10 milliseconds to 1 second,
the recovery should take no more than a
few minutes. A system failure is assumed
to occur several times a week, depending on
the stability of both the DBMS and its
operational environment.

Media Failure. Besides these more or
less normal failures, we have to anticipate
the loss of some or all of the secondary
storage holding the database. There are
several causes for such a problem, the most

• 291

common of which are

* bugs in the operating system routines for
writing the disk,

• hardware errors in the channel or disk
controller,

• head crash,
• loss of information due to magnetic de-

cay.

Such a situation can only be overcome
by full redundancy, that is, by a copy of the
database and an audit trail covering what
has happened since then.

Magnetic storage devices are usually very
reliable, and recovery from a media failure
is not likely to happen more often than
once or twice a year. Depending on the size of
a database, the media used for storing the
copy, and the age of the copy, recovery of
this type will take on the order of 1 hour.

1.3 Summary of Recovery Actions

As we mentioned in Section 1.1, the notion
of consistency that we use for defining the
targets of recovery is tied to the transaction
paradigm, which we have encapsulated in
the "ACID principle." According to this
definition, a database is consistent if and
only if it contains the results of successful
transactions. Such a state will hereafter be
called transaction consistent or logically
consistent. A transaction, in turn, must not
see anything but effects of complete trans-
actions (i.e., a consistent database in those
parts that it uses), and will then, by defi-
nition, create a consistent update of the
database. What does that mean for the
recovery component?

Let us for the moment ignore transac-
tions being aborted during normal execu-
tion and consider only a system failure (a
crash). We might then encounter the situ-
ation depicted in Figure 3. Transactions
T1, T2, and T3 have committed before the
crash, and therefore will survive. Recovery
after a system failure must ensure that the
effects of all successful transactions are
actually reflected in the database. But what
is to be done with T4 and T5? Transactions
have been defined to be atomic; they either
succeed or disappear as though they had
never been entered. There is therefore no
choice about what to do after a system

Computing ~turve~, Vol. 15, No. 4, D~mber 1988

292 • T. Haerder and A. Reuter

T1 I I <
T2 [, I <
T3 I ~ <
T4 I <
T5 I <

Time , ,) S Y S T E M
CRASH

Figure3. Scenario for discussing t ransact ion-or i -
en ted recovery. (From Gray e t al. [1981].)

failure; the effects of all incomplete trans-
actions must be removed from the database.
Clearly, a recovery component adhering to
these principles will produce a transaction-
consistent database. Since all successful
transactions have contributed to the data-
base state, it will be the most recent trans-
action-consistent state. We now can distin-
guish four recovery actions coping with dif-
ferent situations [Gray 1978]:

Transaction UNDO. If a transaction
aborts itself or must be aborted by the
system during normal execution, this will
be called "transaction UNDO." By defini-
tion, UNDO removes all effects of this
transaction from the database and does not
influence any other transaction.

Global UNDO. When recovering from a
system failure, the effects of all incomplete
transactions have to be rolled back.

Partial REDO. When recovering from a
system failure, since execution has been
terminated in an uncontrolled manner, re-
sults of complete transactions may not yet
be reflected in the database. Hence they
must be repeated, if necessary, by the re-
covery component.

Global REDO. Gray terms this recovery
action "archive recovery" [Gray et al.
1981]. The database is assumed to be phys-
ically destroyed; we therefore must start
from a copy that reflects the state of the
database some days, weeks, or months ago.
Since transactions are typically short, we
need not consider incomplete transactions
over such a long time. Rather we have to
supplement the copy with the effects of all
transactions that have committed since the
copy was created.

With these definitions we have intro-
duced the transaction as the only unit of
recovery in a database system. This is an
ideal condition that does not exactly match

reality. For example, transactions might be
nested, that is, composed of smaller sub-
transactions. These subtransactions also
are atomic, consistent, and isolated--but
they are not durable. Since the results of
subtransactions are removed whenever the
enclosing transaction is undone, durability
can only be guaranteed for the highest
transaction in the composition hierarchy.
A two-level nesting of transactions can be
found in System R, in which an arbitrary
number of save points can be generated
inside a transaction [Gray et al. 1981]. The
database and the processing state can be
reset to any of these save points by the
application program.

Another extension of the transaction
concept is necessary in fields like CAD.
Here the units of consistent state transi-
tions, that is, the design steps, are so long
{days or weeks) that it is not feasible to
treat them as indivisable actions. Hence
these long transactions are consistent, iso-
lated, and durable, but they are not atomic
[Gray 1981]. It is sufficient for the purpose
of our taxonomy to consider "ideal" trans-
actions only.

2. THE MAPPING HIERARCHY OF A DBMS

There are numerous techniques and algo-
rithms for implementing database recovery,
many of which have been described in detail
by Verhofstadt [1978]. We want to reduce
these various methods to a small set of basic
concepts, allowing a simple, yet precise
classification of all reasonable implemen-
tation techniques; for the purposes of illus-
tration, we need a basic model of the DBMS
architecture and its hardware environment.
This model, although it contains many fa-
miliar terms from systems like INGRES,
System R, or those of the CODASYL [1973,
1978] type, is in fact a rudimentary data-
base architecture that can also be applied
to unconventional approaches like CASSM
or DIRECT [Smith and Smith 1979], al-
though this is not our purpose here.

2.1 The Mapping Process:
Objects and Operations

The model shown in Table 1 describes the
major steps of dynamic abstraction from
the level of physical storage up to the user

Computing Surveys, Vol. 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery

Table 1. Description of the DB-Mapping Haerarchy
Level of abstraction Objects Auxiliary mapping data

Nonprocedural or alge- Relations, views tuples Logical schema descrip-
braic access tion

Record-oriented, navi- Logical and physical
gational access schema description

Record and access Free space tables, DB-
path management key translation tables

Propagation control Page tables, Bloom fil-
ters

Directories, VTOCs,
etc.

Records, sets, hierarchies,
networks

Physical records,
access paths

Segments, pages

File management Files, blocks

• 293

interface. At the bottom, the database con-
sists of some billions of bits stored on disk,
which are interpreted by the DBMS into
meaningful information on which the user
can operate. With each level of abstraction
(proceeding from the bottom up), the ob-
jects become more complex, allowing more
powerful operations and being constrained
by a larger number of integrity rules. The
uppermost interface supports one of the
well-known data models, whether rela-
tional, networklike, or hierarchical.

Note that this mapping hierarchy is vir-
tually contained in each DBMS, although
for performance reasons it will hardly be
reflected in the module structure. We shall
briefly sketch the characteristics of each
layer, with enough detail to establish our
taxonomy. For a more complete description
see Haerder and Reuter [1983].

File Management. The lowest layer op-
erates directly on the bit patterns stored on
some nonvolatile, direct access device like
a disk, drum, or even magnetic bubble
memory. This layer copes with the physical
characteristics of each storage type and
abstracts these characteristics into fixed-
length blocks. These blocks can be read,
written, and identified by a (relative) block
number. This kind of abstraction is usually
done by the data management system
(DMS) of a normal general-purpose oper-
ating system.

Propagation 2 Control. This level is not
usually considered separately in the current

2 This term is introduced in Section 2.4; its meaning
is not essential to the understanding of this paragraph.

database literature, but for reasons that will
become clear in the following sections we
strictly distinguish between pages and
blocks. A page is a fixed-length partition of
a linear address space and is mapped into
a physical block by the propagation control
layer. Therefore a page can be stored in
different blocks during its lifetime in the
database, depending on the strategy imple-
mented for propagation control.

Access Path Management. This layer im-
plements mapping functions much more
complicated than those performed by sub-
ordinate layers. It has to maintain all phys-
ical object representations in the database
(records, fields, etc.), and their related ac-
cess paths (pointers, hash tables, search
trees, etc.) in a potentially unlimited linear
virtual address space. This address space,
which is divided into fixed-length pages, is
provided by the upper interface of the sup-
porting layer. For performance reasons, the
partitioning of data into pages is still visible
on this level.

Navigational Access Layer. At the top of
this layer we find the operations and objects
that are typical for a procedural data ma-
nipulation language (DML). Occurrences
of record types and members of sets are
handled by statements like STORE, MOD-
IFY, FIND NEXT, and CONNECT [CO-
DASYL 1978]. At this interface, the user
navigates one record at a time through a
hierarchy, through a network, or along log-
ical access paths.

Nonprocedural Access Layer. This level
provides a nonprocedural interface to the

Computing Surveys, Vol. 15, No. 4, December 1983

294 • T . Haerder and A. Reuter

Host
Computer

DBMS !"~'~)~ Log Buffer
Code

Database Buffer m

t
Physical Copy of I ~
the Database ~

Archive Copy of (~
the Database ~

Temporary Log
Supports Transaction UN DO,
Global UNDO, partial REDO

-©
Archive Log
Supports Global R E DO

Figure 4. Storage hierarchy of a DBMS during normal mode of operation.

database. With each operation the user can
handle sets of results rather than single
records. A relational model with high-level
query languages like SQL or QUEL is a
convenient example of the abstract ion
achieved by the top layer [Chamberlin
1980; Stonebraker et al. 1976].

On each level, the mapping of higher
objects to more elementary ones requires
additional data structures, some of which
are shown in Table 1.

2.2 The Storage Hierarchy:
Implementational Environment

Both the number of redundant data re-
quired to support the recovery actions de-
scribed in Section 1 and the methods of
collecting such data are strongly influenced
by various properties of the different stor-
age media used by the DBMS. In particular,
the dependencies between volatile and per-
manent storage have a strong impact on
algorithms for gathering redundant infor-
mation and implementing recovery meas-
ures [Chen 1978]. As a descriptional frame-
work we shall use a storage hierarchy, as

shown in Figure 4. It closely resembles the
situation that must be dealt with by most
of today's commercial database systems.

The host computer, where the applica-
tion programs and DBMS are located, has
a main memory, which is usually volatile. 8
Hence we assume that the contents of the
database buffer, as well as the contents of
the output buffers to the log files, are lost
whenever the DBMS terminates abnor-
mally. Below the volatile main memory
there is a two-level hierarchy of permanent
copies of the database. One level contains
an on-line version of the database in direct
access memory; the other contains an ar-
chive copy as a provision against loss of the
on-line copy. While both are functionally
situated on the same level, the on-line copy
is almost always up-to-date, whereas the
archive copy can contain an old state of the
database. Our main concern here is data-
base recovery, which, like all provisions for

3 In some real-time applications main memory is sup-
ported by a battery backup. It is possible that in the
future mainframes will have some stable buffer stor-
age. However, we are not considering these conditions
here.

Computing Surveys, VoL 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery • 295

fault tolerance, is based upon redundancy.
We have mentioned one type of redun-
dancy: the archive copy, kept as a starting
point for reconstruction of an up-to-date
on-line version of the database (global
REDO). This is discussed in more detail in
Section 4. To support this, and other recov-
ery actions introduced in Section 1, two
types of log files are required:

Temporary Log. The information col-
lected in this file supports crash recovery;
that is, it contains information needed to
reconstruct the most recent database (DB)
buffer. Selective transaction UNDO re-
quires random access to the log records.
Therefore we assume that the temporary
log is located on disk.

Archive Log. This file supports global
REDO after a media failure. It depends on
the availability of the archive copy and
must contain all changes committed to the
database after the state reflected in the
archive copy. Since the archive log is always
processed in sequential order, we assume
that the archive log is written on magnetic
tape.

2.3 Different Views of a Database

In Section 2.1, we indicated that the data-
base looks different at each level of abstrac-
tion, with each level using different objects
and interfaces. But this is not what we
mean by "different views of a database" in
this section. We have observed that the
process of abstraction really begins at Level
3, up to which there is only a more conven-
ient representation of data in external stor-
age. At this level, abstraction is dependent
on which pages actually establish the linear
address space, that is, which block is read
when a certain page is referenced. In the
event of a failure, there are different pos-
sibilities for retrieving the contents of a
page. These possibilities are denoted by
different views of the database:

The current database comprises all ob-
jects accessible to the DBMS during normal
processing. The current contents of all
pages can be found on disk, except for those
pages that have been recently modified.
Their new contents are found in the DB

buffer. The mapping hierarchy is com-
pletely correct.

The materialized database is the state
that the DBMS finds at restart after a crash
without having applied any log information.
There is no buffer. Hence some page mod-
ifications (even of successful transactions)
may not be reflected in the on-line copy. It
is also possible that a new state of a page
has been written to disk, but the control
structure that maps pages to blocks has not
yet been updated. In this case, a reference
to such a page will yield the old value. This
view of the database is what the recovery
system has to transform into the most re-
cent logically consistent current database.

The physical database is composed of all
blocks of the on-line copy containing page
images--current or obsolete. Depending on
the strategy used on Level 2, there may be
different values for one page in the physical
database, none of which are necessarily the
current contents. This view is not normally
used by recovery procedures, but a salva-
tion program would try to exploit all infor-
mation contained therein.

With these views of a database, we can
distinguish three types of update opera-
t i o n s - a l l of which explain the mapping
function provided by the propagation con-
trol level. First, we have the modification of
page contents caused by some higher level
module. This operation takes place in the
DB buffer and therefore affects only the
current database. Second, there is the write
operation, transferring a modified page to
a block on disk. In general, this affects only
the physical database. If the information
about the block containing the new page
value is stored in volatile memory, the new
contents will not be accessible after a crash;
that is, it is not yet part of the materialized
database. The operation that makes a pre-
viously written page image part of the ma-
terialized database is called propagation.
This operation writes the updated control
structures for mapping pages to blocks in a
safe, nonvolatile place, so that they are
available after a crash.

If pages are always written to the same
block (the so-called "update-in-place" op-
eration, which is done in most commercial
DBMS), writing implicitly is the equivalent

Computing Surveys, Voi. 15, No. 4, December 1983

296 * T. Haerder and A. Reuter

Direct Page Allocation (update in place) Indirect Page Allocation

Write After
Modif,cation

Write After
Modification

Figure 5. Page allocation principles.

of propagation. However, there is an im-
portant difference between these opera-
tions if a page can be stored in different
blocks. This is explained in the next sec-
tion.

2.4 Mapping Concepts for Updates

In this section, we define a number of con-
cepts related to the operation of mapping
changes in a database from volatile to non-
volatile storage. They are directly related
to the views of a database introduced pre-
viously. The key issue is that each modifi-
cation of a page (which changes the current
database) takes place in the database buffer
and is allocated to volatile storage. In order
to save this state, the corresponding page
must be brought to nonvolatile storage, that
is, to the physical database. Two different
schemes for accomplishing this can be ap-
plied, as sketched in Figure 5.

With direct page allocation, each page of
a segment is related to exactly one block of
the corresponding file. Each output of a
modified page causes an update in place.
By using an indirect page allocation scheme,
each output is directed to a new block,
leaving the old contents of the page un-
changed. It provides the option of holding
n successive versions of a page. The mo-
ment when a younger version definitively
replaces an older one can be determined by
appropriate (consistency-related) criteria;
it is no longer bound to the moment of
writing. This update scheme has some very
attractive properties in case of recovery, as
is shown later on. Direct page allocation
leaves no choice as to when to make a new
version part of the materialized database;
the output operation destroys the previous
image. Hence in this case writing and prop-
agating coincide.

There is still another important differ-
ence between direct and indirect page allo-
cation schemes, which can be characterized
as follows:

• In direct page allocation, each single
propagation (physical write) is interrupt-
able by a system crash, thus leaving the
materialized, and possibly the physical,
database in an inconsistent state.

• In indirect page allocation, there is al-
ways a way back to the old state. Hence
propagation of an arbitrary set of pages
can be made uninterruptable by system
crashes. References to such algorithms
will be given.

On the basis of this observation, we can
distinguish two types of propagation strat-
egies:

ATOMIC. Any set of modified pages can
be propagated as a unit, such that either all
or none of the updates become part of the
materialized database.

~ATOMIC. Pages are written to blocks
according to an update-in-place policy.
Since no set of pages can be written indi-
visibly (even a single write may be inter-
rupted somewhere in between), propaga-
tion is vulnerable to system crashes.

Of course, many details have been omit-
ted from Figure 5. In particular, there is no
hint of the techniques used to make prop-
agation take place atomically in case of
indirect page mapping. We have tried to
illustrate aspects of this issue in Figure 6.
Figure 6 contains a comparison of the cur-
rent and the materialized database for the
update-in-place scheme and three different
implementations of indirect page mapping
allowing for ATOMIC propagation. Figure
6b refers to the well-known shadow page

Computing Surveys, Vol. 15, No. 4, December 1983

(a)

(b)

Principles o/Transaction-Oriented Database Recovery

System A'
Buffer C'

D'

Materlahzed Database

Current'Database

Sys,er,,l A' I V'la'' b'c'l""
Buffer I C'

I D' ,I vla'lblcld'l ~
Materialized Database, V + {A',B,C,D' I

Current Database
v'+ {A',B,C'.D'}

* 297

TWIST Storage Structure

Mater=ahzed Database Differential Fdes Copy

Rgum 6. Current versus materialized database in "~ATOMIC (a) and ATOMIC
(b and c) propagation.

mechanism [Lorie 1977]. The mapping of
page numbers to block numbers is done by
using page tables. These tables have one
entry per page containing the block number
where the page contents are stored. The
shadow pages, accessed via the shadow page
Table V, preserve the old state of the ma-
terialized database. The current version is
defined by the current page Table V'. Be-
fore this state is made stable (propagated),
all changed pages are written to their new
blocks, and so is the current page table. If
this fails, the database will come up in its
old state. When all pages have been written
related to the new state, ATOMIC propa-
gation takes place by changing one record
on disk (which now points to V' rather
than V) in a way that cannot be confused
by a system crash. Thus the problem of
indivisibly propagating a set of pages has

been reduced to safely updating one record,
which can be done in a simple way. For
details, see Lorie [1977].

There are other implementations for
ATOMIC propagation. One is based on
maintaining two recent versions of a page.
For each page access, both versions have to
be read into the buffer. This can be done
with minimal overhead by storing them in
adjacent disk blocks and reading them with
chained I/O. The latest version, recognized
by a time stamp, is kept in the buffer; the
other one is immediately discarded. A mod-
ified page replaces the older version on disk.
ATOMIC propagation is accomplished by
incrementing a special counter that is re-
lated to the time stamps in the pages. De-
tails can be found in Reuter [1980]. An-
other approach to ATOMIC propagation
has been introduced under the name "dif-

Computing Surveys, Vol. 15, No. 4, December 1983

298 • T. Haerder and A. Reuter

ferential files" by Severance and Lohman
[1976]. Modified pages are written to a
separate (differential) file. Propagating
these updates to the main database is not
ATOMIC in itself, but once all modifica-
tions are written to the differential file,
propagation can be repeated as often as
wished. In other words, the process of copy-
ing modified pages into the materialized
database can be made to appear ATOMIC.
A variant of this technique, the "intention
list," is described by Lampson and Sturgis
[1979] and Sturgis et al. [1980].

Thus far we have shown that arbitrary
sets of pages can be propagated in an
ATOMIC manner using indirect page allo-
cation. In the next section we discuss how
these sets of pages for propagation should
be defined.

3. CRASH RECOVERY

In order to illustrate the consequences of
the concepts introduced thus far, we shall
present a detailed discussion of crash re-
covery. First, we consider the state in which
a database is left when the system termi-
nates abnormally. From this we derive the
type of redundant (log) information re-
quired to reestablish a transaction-consist-
ent state, which is the overall purpose of
DB recovery. After completing our classi-
fication scheme, we give examples of recov-
ery techniques in currently available data-
base systems. Finally, we present a table
containing a qualitative evaluation of all
instances encompassed by our taxonomy
(Table 4).

Note that the results in this section also
apply to transaction UNDO--a much sim-
pler case of global UNDO, which applies
when the DBMS is processing normally
and no information is lost.

3.1 State of the Database
after a Crash

After a crash, the DBMS has to restart by
applying all the necessary recovery actions
described in Section 1. The DB buffer is
lost, as is the current database, the only
view of the database to contain the most
recent state of processing. Assuming that
the on-line copy of the database is intact,
there are the materialized database and the

temporary log file from which to start re-
covery. We have not discussed the contents
of the log files for the reason that the type
and number of log data to be written during
normal processing are dependent upon the
state of the materialized database after a
crash. This state, in turn, depends upon
which method of page allocation and prop-
agation is used.

In the case of direct page allocation and
~ATOMIC propagation, each write opera-
tion affects the materialized database. The
decision to write pages is made by the buffer
manager according to buffer capacity at
points in time that appear arbitrary. Hence
the state of the materialized database after
a crash is unpredictable: When recent mod-
ifications are reflected in the materialized
database, it is not possible (without further
provisions) to know which pages were mod-
ified by complete transactions (whose con-
tents must be reconstructed by partial
REDO) and which pages were modified by
incomplete transactions (whose contents
must be returned to their previous state by
global UNDO). Further possibilities for
providing against this situation are briefly
discussed in Section 3.2.1.

In the case of indirect page allocation
and ATOMIC propagation, we know much
more about the state of the materialized
database after crash. ATOMIC propagation
is indivisible by any type of failure, and
therefore we find the materialized database
to be exactly in the state produced by the
most recent successful propagation. This
state may still be inconsistent in that not
all updates of complete transactions are
visible, and some effects of incomplete
transactions are. However, ATOMIC prop-
agation ensures that a set of related pages
is propagated in a safe manner by restrict-
ing propagation to points in time when the
current database fulfills certain consistency
constraints. When these constraints are
satisfied, the updates can be mapped to the
materialized database all at once. Since the
current database is consistent in terms of
the access path management level--where
propagation occurs--this also ensures that
all internal pointers, tree structures, tables,
etc. are correct. Later on, we also discuss
schemes that allow for transaction-consist-
ent propagation.

Computing Surveys, Vol. 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery • 299

The state of the materialized database
after a crash can be summarized as follows:

-nATOMIC Propagation. Nothing is
known about the state of the materialized
database; it must be characterized as "cha-
otic."

ATOMIC Propagation. The materialized
database is in the state produced by the
most recent propagation. Since this is
bound by certain consistency constraints,
the materialized database will be consistent
(but not necessarily up-to-date) at least up
to the third level of the mapping hierarchy.

In the case of ~ATOMIC propagation,
one cannot expect to read valid images for
all pages from the materialized database
after a crash; it is inconsistent on the prop-
agation level, and all abstractions on higher
levels will fail. In the case of ATOMIC
propagation, the materialized database is
consistent at least on Level 3, thus allowing
for the execution of operations on Level 4
(DML statements).

3.2 Types of Log Information
to Support Recovery Actions

The temporary log file must contain all the
information required to transform the ma-
terialized database "as found" into the most
recent transaction-consistent state (see
Section 1). As we have shown, the mate-
rialized database can be in more or less
defined states, may or may not fulfill con-
sistency constraints, etc. Hence the number
of log data will be determined by what is
contained in the materialized database at
the beginning of restart. We can be fairly
certain of the contents of the materialized
database in the case of ATOMIC propaga-
tion, but the result of "~ATOMIC schemes
have been shown to be unpredictable.
There are, however, additional measures to
somewhat reduce the degree of uncertainty
resulting from -nATOMIC propagation, as
discussed in the following section.

3.2.1 Dependencies between Buffer Manager
and Recovery Component

3.2.1.1 Buffer Management and UNDO
Recovery Actions. During the normal mode
of operation, modified pages are written to

disk by some replacement algorithm man-
aging the database buffer. Ideally, this hap-
pens at points in time determined solely by
buffer occupation and, from a consistency
perspective, seem to be arbitrary. In gen-
eral, even dirty data, that is, pages modified
by incomplete transactions, may be written
to the physical database. Hence the UNDO
operations described earlier will have to
recover the contents of both the material-
ized database and the external storage me-
dia. The only way to avoid this requires
that the buffer manager be modified to
prevent it from writing or propagating dirty
pages under all circumstances. In this case,
UNDO could be considerably simplified:

• If no dirty pages are propagated, global
UNDO becomes virtually unnecessary
that is, if there are no dirty data in the
materialized database.

• If no dirty pages are written, transaction
UNDO can be limited to main storage
(buffer) operations.

The major disadvantage of this idea is
that very large database buffers would be
required (e.g., for long batch update trans-
actions), making it generally incompatible
with existing systems. However, the two
different methods of handling modified
pages introduced with this idea have im-
portant implications with UNDO recovery.
We shall refer to these methods as:

STEAL. Modified pages may be written
and/or propagated at any time.

~STEAL. Modified pages are kept in
buffer at least until the end of the trans-
action (EOT).

The definition of STEAL can be based
on either writing or propagating, which are
not discriminated in "~ATOMIC schemes.
In the case of ATOMIC propagation both
variants of STEAL are conceivable, and
each would have a different impact on
UNDO recovery actions; in the case of
-~STEAL, no logging is required for UNDO
purposes.

3.2.1.2 Buffer Management and REDO
Recovery Actions. As soon as a transaction
commits, all of its results must survive any
subsequent failure {durability). Committed
updates that have not been propagated to

Computing Surveys, Vol. 15, No. 4, December 1983

300 • T. Haerder and A. Reuter

the materialized database would definitely
be lost in case of a system crash, and so
there must be enough redundant informa-
tion in the log file to reconstruct these
results during restart (partial REDO). It is
conceivable, however to avoid this kind of
recovery by the following technique.

During Phase 1 of EOT processing all
pages modified by this transaction are
propagated to the materialized database;
that is, their writing and propagation are
enforced. Then we can be sure that either
the transaction is complete, which means
that all of its results are safely recorded (no
partial REDO), or in case of a crash, some
updates are not yet written, which means
that the transaction is not successful and
must be rolled back (UNDO recovery ac-
tions).

Thus we have another criterion concern-
ing buffer handling, which is related to the
necessity of REDO recovery during restart:

FORCE. All modified pages are written
and propagated during EOT processing.

~FORCE. No propagation is triggered
during EOT processing.

The implications with regard to the gath-
ering of log data are quite straightforward
in the case of FORCE. No logging is re-
quired for part&l REDO; in the case of
-~FORCE such information is required.
While FORCE avoids partial REDO, there
must still be some REDO-log information
for global REDO to provide against loss of
the on-line copy of the database.

3.2.2 Classification of Log Data

Depending on which of the write and prop-
agation schemes introduced above are being
implemented, we will have to collect log
information for the purpose of

• removing invalid data (modifications ef-
fected by incomplete transactions) from
the materialized database and

* supplementing the materialized database
with updates of complete transactions
that were not contained in it at the time
of crash.

In this section, we briefly describe what
such log data can look like and when such

Table 2. Classification Scheme for Log Data

State Transition

Logical I - - Actions (DML

I
statements)

Physical Before images EXOR differ-
After images ences

data are applicable to the crash state of the
materialized database.

Log data are redundant information, col-
lected for the sole purpose of recovery from
a crash or a media failure. They do not
undergo the mapping process of the data-
base objects, but are obtained on a certain
level of the mapping hierarchy and written
directly to nonvolatile storage, that is, the
log files. There are two different, albeit not
fully orthogonal, criteria for classifying log
data. The first is concerned with the type
of objects to be logged. If some part of the
physical representation, that is, the bit pat-
tern, is written to the log, we refer to it as
physical logging; if the operators and their
arguments are recorded on a higher level,
this is called logical logging. The second
criterion concerns whether the state of the
database--before or after a change--or the
transition causing the change is to be
logged. Table 2 contains some examples for
these different types of logging, which are
explained below.

Physical State Logging on Page Level.
The most basic method, which is still ap-
plied in many commercial DBMSs, uses the
page as the unit of log information. Each
time a part of the linear address space is
changed by some modification, insertion,
etc., the whole page containing this part of
the linear address space is written to the
log. If UNDO logging is required, this will
be done before the change takes place,
yielding the so-called before image. For
REDO purposes, the resulting page state is
recorded as an after image.

Physical Transition Logging on Page
Level. This logging technique is based also
on pages. However, it does not explicitly
record the old and new states of a page;
rather it writes the difference between them
to the log. The function used for computing
the "difference" between two bit strings is

Computing Surveys, VoL 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery . 301

the exclusive-or, which is both commuta-
tive and associative as required by the re-
covery algorithm. If this difference is ap-
plied to the old state of a page, again using
the exclusive-or, the new state will result.
On the other hand, applying it to the new
state will yield the old state. There are some
problems in the details of this approach,
but these are beyond the scope of the paper.

The two methods of page logging that we
have discussed can be compared as follows:

• Transition logging requires only one log
entry (the difference), whereas state log-
ging uses both a before image and an after
image. If there are multiple changes ap-
plied to the same page during one trans-
action, transition logging can express
these either by successive differences or
by one accumulated difference. With
state logging, the first before image and
the last after image are required.

• Since there are usually only a small num-
ber of data inside a page affected by a
change, the exclusive-or difference will
contain long strings of O's, which can be
removed by well-known compression
techniques. Hence transition logging can
potentially require much less space than
does state logging.

Physical State Logging on Access Path
Level. Physical logging can also be applied
to the objects of the access path level,
namely, physical records, access path struc-
tures, tables, etc. The log component has
to be aware of these storage structures and
record only the changed entry, rather than
blindly logging the whole page around it.
The advantage of this requirement is ob-
vious: By logging only the physical objects
actually being changed, space requirements
for log files can be drastically reduced. One
can save even more space by exploiting the
fact that most access path structures con-
sist of fully redundant information. For
example, one can completely reconstruct a
B*-tree from the record occurrences to
which it refers. In itself, this type of recon-
struction is certainly too expensive to be-
come a standard method for crash recovery.
But if only the modifications in the records
are logged, after a crash the corresponding
B* tree can be recovered consistently, pro-

vided that an appropriate write discipline
has been observed for the pages contain-
ing the tree. This principle, stating that
changed nodes must be written bottom up,
is a special case of the "careful replace-
ment" technique explained in detail by Ver-
hofstadt [1978]. For our taxonomy it makes
no difference whether the principle is ap-
plied or not.

Transition Logging on the Access Path
Level. On the access path level, we are
dealing with the entries of storage struc-
tures, but do not know how they are related
to each other with regard to the objects of
the database schema. This type of infor-
mation is maintained on higher levels of
the mapping hierarchy. If we look only at
the physical entry representation {physical
transition logging), state transition on this
level means that a physical record, a table
entry, etc. is added to, deleted from, or
modified in a page. The arguments pertain-
ing to these operations are the entries
themselves, and so there is little difference
between this and the previous approach. In
the case of physical state logging on the
access path level, we placed the physical
address together with the entry represen-
tation. Here we place the operation code
and object identifier with the same type of
argument. Thus physical transition logging
on this level does not provide anything
essentially different.

We can also consider logical transition
logging, attempting to exploit the syntax of
the storage structures implemented on this
level. The logical addition, a new record
occurrence, for example, would include all
the redundant table updates such as the
record id index, the free space table, etc.,
each of which was explicitly logged with the
physical schemes. Hence we again have a
potential saving of log space. However, it is
important to note that the logical transi-
tions on this level generally affect more
than one page. If they (or their inverse
operators for UNDO) are to be applied
during recovery, we must be sure that all
affected pages have the same state in the
materialized database. This is not the case
with direct page allocation, and using the
more expensive indirect schemes cannot be

Computing Surveys, Vol. 15, No. 4, December 1983

302 • T. Haerder and A. Reuter

TRANSACTION LOG

TRANSACTION I T
DESCRIPTOR ~* I RECORD ID, OLDVAL, NEWVAL

Figure 7. Logical transition logging as implemented in System R. (From
Gray et al. [1981].)

justified by the comparatively few benefits
yielded by logical transition logging on the
access path level. Hence logical transition
logging on this level can generally be ruled
out, but will become more attractive on the
next higher level.

Logical Logging on the Record-Oriented
Level. At one level higher, it is possible
to express the changes performed by the
transaction program in a very compact
manner by simply recording the update
DML statements with their parameters.
Even if a nonprocedural query language is
being used above this level, its updates will
be decomposed into updates of single rec-
ords or tuples equivalent to the single-
record updates of procedural DB languages.
Thus logging on this level means that only
the INSERT, UPDATE, and DELETE op-
erations, together with their record ids and
attribute values, are written to the log. The
mapping process discerns which entries are
affected, which pages must be modified, etc.
Thus recovery is achieved by reexecuting
some of the previously processed DML
statements. For UNDO recovery, of course,
the inverse DML statement must be exe-
cuted, that is, a DELETE to compensate
an INSERT and vice versa, and an UP-
DATE returned to the original values.
These inverse DML statements must be
generated automatically as part of the reg-
ular logging activity, and for this reason
this approach is not viable for network-
oriented DBMSs with information-bearing
interrecord relations. In such cases, it can
be extremely expensive to determine, for
example, the inverse for a DELETE. De-
tails can be found in Reuter [1981].

System R is a good example of a system
with logical logging on the record-oriented
level. All update operations performed on
the tuples are represented by one general-
ized modification operator, which is not
explicitly recorded. This operator changes

a tuple identified by its tuple identifier
(TID) from an old value to a new one, both
of which are recorded. Inserting a tuple
entails modifying its initial null value to
the given value, and deleting a tuple entails
the inverse transition. Hence the log con-
tains the information shown in Figure 7.

Logical transition logging obviously re-
quires a materialized database that is con-
sistent up to Level 3; that is, it can only
be combined with ATOMIC propagation
schemes. Although the number of log data
written are very small, recovery will be
more expensive than that in other schemes,
because it involves the reprocessing of some
DML statements, although this can be
done more cheaply than the original proc-
essing.

Table 3 is a summation of the properties
of all logging techniques that we have de-
scribed under two considerations: What is
the cost of collecting the log data during
normal processing? and, How expensive is
recovery based on the respective type of log
information? Of course, the entries in the
table are only very rough qualitative esti-
mations; for more detailed quantitative
analysis see Reuter [1982].

Writing log information, no matter what
type, is determined by two rules:

* UNDO information must be written to
the log file before the corresponding up-
dates are propagated to the materialized
database. This has come to be known as
the "write ahead log" (WAL) principle
[Gray 1978].

• REDO information must be written to
the temporary and the archive log file
before EOT is acknowledged to the trans-
action program. Once this is done, the
system must be able to ensure the trans-
action's durability.

We return to different facets of these
rules in Section 3.4.

Computing Surveys, Vol. 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery

Table 3. Qualitative Companson of Various Logging Techniques"

Expenses during Expenses for recov-
Logging technique Level no. normal processing ery operations

Physical state 2 High Low
Physical transition 2 Medium Low
Physical state 3 Low Low
Logical transition 4 Very low Medium

"Costs are basically measured in units of physical I/O operations. Recovery in
this context means crash recovery.

• 303

33 Examples of Recovery Techniques

3.3.1 Optimization of Recovery Actions
by Checkpoints

An appropriate combination of redundancy
provided by log protocols and mapping
techniques is basically all that we need for
implementing transaction-oriented data-
base recovery as described in Section 1. In
real systems, however, there are a number
of important refinements that reduce the
amount of log data required and the costs
of crash recovery. Figure 8 is a very general
example of crash recovery. In the center,
there is the temporary log containing
UNDO and REDO information and special
entries notifying the begin and end of a
transaction (BOT and EOT, respectively).
Below the temporary log, the transaction
history preceding the crash is shown, and
above it, recovery processing for global
UNDO and partial REDO is related to the
log entries. We have not assumed a specific
propagation strategy.

There are two questions concerning the
costs of crash recovery:

• In the case of the materialized DB being
modified by incomplete transactions, to
what extent does the log have to be proc-
essed for UNDO recovery?

• If the DBMS does not use a FORCE
discipline, which part of the log has to
processed for REDO recovery?

The first question can easily be an-
swered: If we know that updates of incom-
plete transactions can have affected the
materialized database (STEAL), we must
scan the temporary log file back to the BOT
entry of the oldest incomplete transaction
to be sure that no invalid data are left in
the system. The second question is not as
simple. In Figure 8, REDO is started at a

point that seems to be chosen arbitrarily.
Why is there no REDO recovery for object
A? In general, we can assume that in the
case of a FORCE discipline modified pages
will be written eventually because of buffer
replacement. One might expect that only
the contents of the most recently changed
pages have to be redone--if the change
was caused by a complete transaction. But
look at a buffer activity record shown in
Figure 9.

The situation depicted in Figure 9 is typ-
ical of many large database applications.
Most of the modified pages will have been
changed "recently," but there are a few hot
spots like Pi, pages that are modified again
and again, and, since they are referenced so
frequently, have not been written from the
buffer. After a while such pages will contain
the updates of many complete transactions,
and REDO recovery will therefore have to
go back very far on the temporary log. This
makes restart expensive. In general, the
amount of log data to be processed for
partial REDO will increase with the inter-
val of time between two subsequent
crashes. In other words, the higher the
availability of the system, the more costly
recovery will become. This is unacceptable
for large, demanding applications.

For this reason additional measures are
required for making restart costs independ-
ent of mean time between failure. Such
provisions will be called checkpoints, and
are defined as follows.

Generating a checkpoint means collect-
ing information in a safe place, which has
the effect of defining and limiting the
amount of REDO recovery required after a
crash.

Whether this information is stored in the
log or elsewhere depends on which imple-
mentation technique is chosen; we give

Computing Surveys, Vol. 15, No. 4, December 1983

c=
z

o
=
m
=

A

I A

' i
I
I

t t

t

. |

~ o

ku
0g

~L

~ I ~ 1

o

f

u .

i

t

I

T
E

X X

o o

o o

o ~
~ E

o ~
o ~
Z ~

~ o o

QoXX

.<

=1

Time

J

Principles of Transaction-Oriented Database Recovery • 305

Pages re-
siding in
buffer at
the mo-
ment of
crash

>

X X X X X XXX X X X X XX

x <
x <

<
<

x x <
<
<

<

<

crash

Pl
P2

P,

Pk

Figure 9. Age of buffer page modifications (x, page modification).

some examples in this section. Checkpoint
generation involves three steps [Gray
1978]:

• Write a BEGIN_CHECKPOINT record
to the temporary log file.

• Write all checkpoint data to the log file
and/or the database.

• Write an E N D _ C H E C K P O I N T record
to the temporary log file.

During restart , the B E G I N - E N D
bracket is a clear indication as to whether
a checkpoint was generated completely or
interrupted by a system crash. Sometimes
checkpointing is considered to be a means
for restoring the whole database to some
previous state. Our view, however, focuses
on transaction recovery. Therefore to us a
checkpoint is a technique for optimizing
crash recovery rather than a definition of a
distinguished state for recovery itself. In
order to effectively constrain partial
REDO, checkpoints must be generated at
well-defined points in time. In the following
sections, we shall introduce four separate
criteria for determining when to start
checkpoint activities.

3.3.2 Transaction-Oriented Checkpoints

As previously explained, a FORCE disci-
pline will avoid partial REDO. All modified
pages are propagated before an EOT record
is written to the log, which makes the trans-
action durable. If this record is not found
in the log after a crash, the transaction will

T1 I

T2 I

T3 I

Time

Transaction-Oriented
Checkpoints

c(T1) c(T2)

/
System
Crash

Figure 10. Scenario for transaction-oriented check-
points.

be considered incomplete and its effects
will be undone. Hence the EOT record
of each transaction can be interpreted as
a BEGIN_CHECKPOINT and E N D _
CHECKPOINT, since it agrees with our
definition of a checkpoint in that it limits
the scope of REDO. Figure 10 illustrates
transaction-oriented checkpoints (TOC).

As can be seen in Figure 10, transaction-
oriented checkpoints are implied by a
FORCE discipline. The major drawback to
this approach can be deduced from Figure
9. Hot spot pages like Pi will be propagated
each time they are modified by a transac-
tion even though they remain in the buffer
for a long time. The reduction of recovery
expenses with the use of transaction-ori-
ented checkpoints is accomplished by im-
posing some overhead on normal process-
ing. This is discussed in more detail in
Section 3.5. The cost factor of unnecessary
write operations performed by a FORCE
discipline is highly relevant for very large

Computing Surveys, Vol. 15, No. 4, December 1983

306 • T. Haerder and A. Reuter

Figure 11. Scenario for transaction-con-
sistent checkpoints.

TI I

CI-I

Time

database buffers. The longer a page re-
mains in the buffer, the higher is the prob-
ability of multiple updates to the same page
by different transactions. Thus for DBMSs
supporting large applications, transaction-
oriented checkpointing is not the proper
choice.

3.3.3 Transaction-Consistent Checkpoints

The following transaction-consistent check-
points (TCC) are global in that they save
the work of all transactions that have mod-
ified the database. The first TCC, when
successfully generated, creates a transac-
tion-consistent database. It requires that
all update activities on the database be
quiescent. In other words, when the check-
point generation is signaled by the recovery
component, all incomplete update transac-
tions are completed and new ones are not
admitted. The checkpoint is actually gen-
erated when the last update is completed.
After the END_CHECKPOINT record
has been successfully written, normal op-
eration is resumed. This is illustrated in
Figure 11.

Checkpointing connotes propagating all
modified buffer pages and writing a record
to the log, which notifies the materialized
database of a new transaction-consistent
state, hence the name "transaction-consist-
ent checkpoint" (TCC). By propagating all
modified pages to the database, TCC estab-
lishes a point past which partial REDO will
not operate. Since all modifications prior
to the recent checkpoint are reflected in the
database, REDO-log information need only
be processed back to the youngest END_
CHECKPOINT record found on the log.
We shall see later on that the time between

Computing Surveys, Vol. 15, No. 4, December 1983

Checkpoint Signal

I
T21 I I

I
I T 3 |
I
L

Processing" Delay for
New Transactions

Checkpoint
c~ Generated

V T4 I

c, System
Crash

two subsequent checkpoints can be ad-
justed to minimize overall recovery costs.

In Figure 11, T3 must be redone com-
pletely, whereas T4 must be rolled back.
There is nothing to be done about T1 and
T2, since their updates have been propa-
gated by generating c, Favorable as that
may sound, the TCC approach is quite un-
realistic for large multiuser DBMSs, with
the exception of one special case, which is
discussed in Section 3.4. There are two
reasons for this:

• Putting the system into a quiescent state
until no update transaction is active may
cause an intolerable delay for incoming
transactions.

• Checkpoint costs will be high in the case
of large buffers, where many changed
pages will have accumulated. With a
buffer of 6 megabytes and a substantial
number of updates, propagating the mod-
ified pages will take about 10 seconds.

For small applications and single-user sys-
tems, TCC certainly is useful.

3.3.4 Action-Consistent Checkpoints

Each transaction is considered a sequence
of elementary actions affecting the data-
base. On the record-oriented level, these
actions can be seen as DML statements.
Action-consistent checkpoints (ACC) can
be generated when no update action is being
processed. Therefore signaling an ACC
means putting the system into quiescence
on the action level, which impedes opera-
tion here much less than on the transaction
level. A scenario is shown in Figure 12.

The checkpoint itself is generated in the
very same way as was described for the

T I :

T4 I r'-I

T 7 - -

Principles of Transaction-Oriented Database Recovery

E] I

Cl-1

Time

T21 []

[] E3 I

T51 []

Checkpoint Checkpoint
Signal ~ ~'- ci Generated

~_ E3 []
[] m

II

',I [] :
II
i I

I I T6', .'~.

c~ System
Processing Delay Crash
for Act=ons

Figure 12. Scenario for action-consistent checkpoints.

• 307

TCC technique. In the case of ACC, how-
ever, the END_CHECKPOINT record in-
dicates an action-consistent 4 rather than a
transaction-consistent database. Obviously
such a checkpoint imposes a limit on partial
REDO. In contrast to TCC, it does not
establish a boundary to global UNDO; how-
ever, it is not required by definition to do
so. Recovery in the above scenario means
global UNDO for T1, T2, and T3. REDO
has to be performed for the last action of
T5 and for all of T6. The changes of T4
and T7 are part of the materialized data-
base because of checkpointing. So again,
REDO-log information prior to the recent
checkpoint is irrelevant for crash recovery.
This scheme is much more realistic, since
it does not cause long delays for incoming
transactions. Costs of checkpointing, how-
ever, are still high when large buffers are
used.

3.3.5 Fuzzy Checkpoints

In order to further reduce checkpoint costs,
propagation activity at checkpoint time has
to be avoided whenever possible. One way
to do this is indirect checkpointing. Indirect
checkpointing means that information
about the buffer occupation is written to

4 This means that the materialized database reflects a
state produced by complete actions only; tha t is, it is
consistent up to Level 3 at the moment of checkpoint.
ing.

the log file rather than the pages them-
selves. This can be done with two or three
write operations, even with very large buff-
ers, and helps to determine which pages
containing committed data were actually in
the buffer at the moment of a crash. How-
ever, if there are hot spot pages, their
REDO information will have to be traced
back very far on the temporary log. So,
although indirect checkpointing does re-
duce the costs of partial REDO, this does
not in general make partial REDO inde-
pendent of mean time between failure. Note
also that this method is only applicable
with ~ATOMIC propagation. In the case
of ATOMIC schemes, propagation always
takes effect at one well-defined moment,
which is a checkpoint; pages that have only
been written (not propagated) are lost after
a crash. Since this checkpointing method
is concerned only with the temporary log,
leaving the database as it is, we call it
"fuzzy." A description of a particular imple-
mentation of indirect, fuzzy checkpoints is
given by Gray [1978].

The best of both worlds, low checkpoint
costs with fixed limits to partial REDO, is
achieved by another fuzzy scheme de-
scribed by Lindsay et al. [1979]. This
scheme combines ACC with indirect check-
pointing: At checkpoint time the numbers
of all pages (with an update indicator) cur-
rently in buffer are written to the log file.
If there are no hot spot pages, nothing else

Computing Surveys, Vol. 15, No. 4, December 1983

308 • T Haerder and A. Reuter

ATOM IC

/ \
STEAL

/ \
FORCE ~FORCE

/k
TOC

~STEAL

/ \
FORCE

I
TCC ACC fuzzy TOC

_1

~FORCE

/ \ I
TCC fuzzy TOC

Propagation
ATOMIC Strategy

~ ~ Page
STEAL ~ STEAL Replacement

/ \ /\
FORCE ~FORCE FORCE ~FORCE Processing

TCC ACC TOC TCC

E

Checkpoint
Scheme

Example

Figure 13. Classif icat ion s cheme for recovery concepts .

is done. If, however, a modified page is
found at two subsequent checkpoints with-
out having been propagated, it will be prop-
agated during checkpoint generation.
Hence the scope of partial REDO is limited
to two checkpoint intervals. Empiric stud-
ies show that the I/O activity for check-
pointing is only about 3 percent of what is
required with ACC [Reuter 1981]. This
scheme can be given general applicability
by adjusting the number of checkpoint in-
tervals for modified pages in buffer.

Another fuzzy checkpoint approach has
been proposed by Elhardt [1982]. Since a
description of this technique, called data-
base cache, would require more details than
we can present in this paper, readers are
referred to the literature.

In this section, we attempt to illustrate
the functional principles of three different
approaches found in well-known database
systems. We particularly want to elaborate
on the cooperation between mapping, log-
ging, and recovery facilities, using a sample
database constituting four pages, A, B, C,
and D, which are modified by six transac-
tions. What the transactions do is sketched
in Figure 14. The indicated checkpoint c, is
relevant only to those implementations ac-
tually applying checkpoint techniques.
Prior to the beginning of Transaction 1
(T1), the DB pages were in the states A, B,
C, and D, respectively.

3.4.1 Implementation Technique:
-1ATOMIC, STEAL, FORCE, TOC

3.4 Examples of Logging
and Recovery Components

The introduction of various checkpoint
schemes has completed our taxonomy. Da-
tabase recovery techniques can now be
classified as shown in Figure 13. In order
to make the classification more vivid, we
have added the names of a few existing
DBMSs and implementation concepts to
the corresponding entries.

An implementation technique involving
the principles of -~ATOMIC, STEAL,
FORCE, and TOC can be found in many
systems, for example, IMS [N.d.] and UDS
[N.d.]. The temporary log file contains only
UNDO data (owing to FORCE), whereas
REDO information is written to the archive
log. According to the write rules introduced
in Section 3.2, we must be sure that UNDO
logging has taken effect before a changed
page is either replaced in the buffer or

Computing Surveys, Vol. 15, No. 4, December 1983

T1

T2

T3

T4

A j

Principles of Transaction-Oriented Database Recovery o /
I)(

c'
"" I " o C "

I : ~ :

I s "
I I .
I

c,

System Crash

• 309

Figure 14. Transaction scenario for illustrating re-
covery techniques.

forced at EOT. Note that in ~ATOMIC
schemes EOT processing is interruptable
by a crash.

In the scenario given in Figure 15, we
need only consider T1 and T2; the rest is
irrelevant to the example. According to the
scenario, A' has been replaced from the
buffer, which triggered an UNDO entry to
be written. Pages B' and C' remained in
buffer as long as T2 was active. T2 reached
its normal end before the crash, and so the
following had to be done:

* Write UNDO information for B and C
(in case the FORCE fails).

• Propagate B' and C'.
• Write REDO information for B' and C'

to the archive log file.
• Discard the UNDO entries for B and C.
• Write an EOT record to the log files and

acknowledge EOT to the user.

Of course, there are some obvious op-
timizations as regards the UNDO data
for pages that have not been replaced be-
fore EOT, but these are not our concern
here. After the crash, the recovery com~
ponent finds the database and the log
files as shown in the scenario. The mate-
rialized database is inconsistent owing to
-~ATOMIC propagation, and must be made
consistent by applying all UNDO infor-
mation in reverse chronological order.

3.4.2 Implementation Technique:
-~A TOMIC, -~TEAL, "~FORCE, TCC

Applications with high transaction rates
require large DB buffers to yield satisfac-
tory performance. With sufficient buffer
space, a "~STEAL approach becomes fea-
sible; that is, the materialized database will

never contain updates of incomplete trans-
actions. -~FORCE is desirable for efficient
EOT processing, as discussed previously
(Section 3.3.2). The IMS/Fast Path in its
"main storage database" version is a system
designed with this implementation tech-
nique [IMS N.d.; Date 1981]. The -~STEAL
and "~FORCE principles are generalized to
the extent that there are no write opera-
tions to the database during normal proc-
essing. All updates are recorded to the log,
and propagation is delayed until shutdown
(or some other very infrequent checkpoint),
which makes the system belong to the TCC
class. Figure 16 illustrates the implications
of this approach.

With "~STEAL, there is no UNDO infor-
mation on the temporary log. Accordingly,
there are only committed pages in the ma-
terialized database. Each successful trans-
action writes REDO information during
EOT processing. Assuming that the crash
occurs as indicated in Figure 14, the mater-
ialized database is in the initial state, and,
compared with the former current data-
base, is old. Everything that has been done
since start-up must therefore be applied to
the database by processing the entire tem-
porary log in chronological order. This, of
course, can be very expensive, and hence
the entire environment should be as stable
as possible to minimize crashes. The bene-
fits of this approach are extremely high
transaction rates and short response times,
since physical I/O during normal process-
ing is reduced to a minimum.

The database cache, mentioned in Sec-
tion 3.3, also tries to exploit the desirable
properties of ~STEAL and ~FORCE, but,
in addition, attempts to provide very fast
crash recovery. This is attempted by imple-
menting a checkpointing scheme of the
"fuzzy" type.

3.4.3 Implementation Technique:
ATOMIC, STEAL, -~FORCE, ACC

ATOMIC propagation is not yet widely
used in commercial database systems. This
may result from the fact that indirect page
mapping is more complicated and more ex-
pensive than the update-in-place tech-
nique. However, there is a well-known ex-

Computing Surveys, Vol. 15, No. 4, December 1983

310 • T. Haerder and A. Reuter

Before System Crash After Restart

Figure 15. Recovery scenario
for -~ATOMIC, STEAL, FORCE,
TOC.

Committed: C'
T2: B',C' B"

Log: UNDO(TI:A), REDO(T2:B',C')

Before System Crash After Restart

System Buffer

Currently Active: A'
TI: A',D' B"
T4. B" C"

D'

Figure16. Recovery scenario for
-1ATOMIC, -~STEAL, -~FORCE,
TCC.

Log: REDO(T2:B',C'), REDO(T3:C")

ample of this type of implementation, based
on the shadow-page mechanism in System
R. This system uses action-consistent
checkpointing for update propagation, and
hence comes up with a consistent material-
ized database after a crash. More specifi-
cally, the materialized database will be con-
sistent up to Level 4 of the mapping hier-
archy and reflect the state of the most
recent checkpoint; everything occurring
after the most recent checkpoint will have
disappeared. As discussed in Section 3.2,
with an action-consistent database one can
use logical transition logging based on
DML statements, which System R does.
Note that in the case of ATOMIC propa-
gation the WAL principle is bound to the
propagation, that is, to the checkpoints. In
other words, modified pages can be written,
but not propagated, without having written
an UNDO log. If the modified pages pertain
to incomplete transactions, the UNDO in-
formation must be on the temporary log
before the pages are propagated. The same
is true for STEAL: Not only can dirty pages
be written; in the case of System R they
can also be propagated. Consider the scen-
ario in Figure 17.

T1 and T2 were both incomplete at
checkpoint. Since their updates (A' and B')
have been propagated, UNDO information
must be written to the temporary log. In
System R, this is done with logical transi-

tions, as described in Section 3.2. EOT
processing of T2 and T3 includes writing
REDO information to the log, again using
logical transitions. When the system
crashes, the current database is in the state
depicted in Figure 17; at restart the mater-
ialized database will reflect the most recent
checkpoint state. Crash recovery involves
the following actions:

• UNDO the modification of A'. Owing to
the STEAL policy in System R, incom-
plete transactions can span several
checkpoints. Global UNDO must be ap-
plied to all changes of failed transactions
prior to the recent checkpoint.

* REDO the last action of T2 (modifi-
cation of C') and the whole transaction
T3 {modification of C"). Although they
are committed, the corresponding page
states are not yet reflected in the mate-
rialized database.

* Nothing has to be done with D' since this
has not yet become part of the material-
ized database. The same is true of T4.
Since it was not present when ci was
generated, it has had no effect on the
materialized database.

3.5 Evaluation of Logging
and Recovery Concepts

Combining all possibilities of propagating,
buffer handling, and checkpointing, and

Computing Surveys, Vol. 15, No. 4, December 1983

Principles o[Transaction-Oriented Database Recovery

Before System Crash A f te r Restart

311

Current ly Act ive'
T I : A ' , D '
T4: B"

Commit ted"
T2: B', C'
T3: C"

Current Page Table

v, I a' lb"lc"l d' I

Shadow Page Table Shadow Page Table

~ vla'lb'lc Idl vlalb'lc"lal

Log: . UNDO(T1 :A), UNDO(T2:B), C=, REDO(T2 B',C'), REDO(T3:C")

Figure 17. Recovery scenario for ATOMIC, STEAL, "~FORCE, ACC.

Table 4. Evaluation of Logging and Recovery Techniques Based on the Introduced Taxonomy

propagatmn strategy ~ATOMIC ATOMIC

I~uffer replacement STEAL

EOT processing

checkpoint type

rnatermhzed DB statq
after system failure

cost of transact=on
UNDO

cost of partial REDO
at restart

cost of global UNDO
at restart

)verhead during
normal processing

frequency of check-
)omts

checkpoint cost

FORCE ~FORCE

TOC TCC ACC!FUZZY

DC DC OC DC

=STEAL

FORCE ~FORCE

TOC TCC FUZZY

DC DC DC

STEAL

FORCE ~FORCE

TOC TCC ACC

TC TC AC

4. 4. 4.

+ 4. 4"

4- - -

÷ 4.4. 4.4.

÷

+ . .

+

4.

4. 4.+ 4.

+ ÷

÷

+ ÷÷

÷

+

÷÷

~STEAL

FORCE ~FORCE

TOC TCC

TC TC

+ +

+

@ ++

N o t e s :

A b b r e v i a t i o n s : DC, d e v i c e c o n s i s t e n t (c h a o t i c) ; A C , a c t i o n c o n s i s t e n t ; T C , T r a n s a c t i o n c o n s i s t e n t .

E v a l u a t i o n s y m b o l s : - - , v e r y low; - , l ow; + , h i g h ; + + , v e r y high.

considering the overall properties of each
scheme that we have discussed, we can
derive the evaluation given in Table 4.

Table 4 can be seen as a compact sum-
mary of what we have discussed up to this
point. Combinations leading to inherent
contradictions have been suppressed (e.g.,

-~STEAL does not allow for ACC). By re-
ferring the information in Table 4 to Figure
13; one can see how existing DBMSs are
rated in this qualitative comparison.

Some criteria of our taxonomy divide the
world of DB recovery into clearly distinct
areas:

C o m p u t i n g Smweys , Voi. 15, No . 4, D e c e m b e r 1983

312 • T. Haerder and A. Reuter

• ATOMIC propagation achieves an ac-
tion- or transaction-consistent material-
ized database in the event of a crash.
Physical as well as logical logging tech-
niques are therefore applicable. The
benefits of this property are offset by
increased overhead during normal proc-
essing caused by the redundancy required
for indirect page mapping. On the other
hand, recovery can be cheap when
ATOMIC propagation is combined with
TOC schemes.

• ~ATOMIC propagation generally results
in a chaotic materialized database in the
event of a crash, which makes physical
logging mandatory. There is almost no
overhead during normal processing, but
without appropriate checkpoint schemes,
recovery will more expensive.

• All t r ansac t ion-or ien ted and t rans-
action-consistent schemes cause high
checkpoint costs. This problem is
emphasized in t r ansac t ion -o r i en t ed
schemes by a relatively high checkpoint
frequency.

It is, in general, important when deciding
which implementation techniques to
choose for database recovery to carefully
consider whether optimizations of crash re-
covery put additional burdens on normal
processing. If this is the case, it will cer-
tainly not pay off, since crash recovery, it
is hoped, will be a rare event. Recovery
components should be designed with mini-
mal overhead for normal processing, pro-
vided that there is fixed limit to the costs
of crash recovery.

This consideration rules out schemes of
the ATOMIC, FORCE, TOC type, which
can be implemented and look very appeal-
ing at first sight. According to the classi-
fication, the materialized database will
always be in the most recent transaction-
consistent state in implementations of
these schemes. Incomplete transactions
have not affected the materialized data-
base, and successful transactions have
propagated indivisibly during EOT proc-
essing. However appealing the schemes
may be in terms of crash recovery, the
overhead during normal processing is too
high to justify their use [Haerder and Reu-
ter 1979; Reuter 1980].

There are, of course, other factors influ-
encing the performance of a logging and
recovery component: The granule of log-
ging (pages or entries), the frequency of
checkpoints (it depends on the transaction
load), etc. are important. Logging is also
tied to concurrency control in that the
granule of logging determined the granule
of locking. If page logging is applied, DBMS
must not use smaller granules of locking
than pages. However, a detailed discussion
of these aspects is beyond the scope of this
paper; detailed analyses can be found in
Chandy et al. [1975] and Reuter [1982].

4. ARCHIVE RECOVERY

Throughout this paper we have focused on
crash recovery, but in general there are two
types of DB recovery, as is shown in Figure
18. The first path represents the standard
crash recovery, depending on the physical
(and the materialized) database as well as
on the temporary log. If one of these is lost
or corrupted because of hardware or soft-
ware failure, the second path, archive re-
covery, must be tried. This presupposes
that the components involved have inde-
pendent failure modes, for example, if tem-
porary and archive logs are kept on differ-
ent devices. The global scenario for archive
recovery is shown in Figure 19; it illustrates
that the component "archive copy" actually
depends on some dynamically modified
subcomponents. These subcomponents cre-
ate new archive copies and update existing
ones. The following is a brief sketch of some
problems associated with this.

Creating an archive copy, that is, copying
the on-line version of the database, is a
very expensive process. If the copy is to be
consistent, update operation on the data-
base has to be interrupted for a long time,
which is unacceptable in many applica-
tions. Archive recovery is likely to be rare,
and an archive copy should not be created
too frequently, both because of cost and
because there is a chance that it will never
be used. On the other hand, if the archive
copy is very old, recovery starting from such
a copy will have to redo too much work and
will take too long. There are two methods
to cope with this. First, the database can
be copied on the fly, that is, without inter-

Computing Surveys, Vol. 15, No. 4, December 1983

Failure

Principles of Transaction-Oriented Database Recovery •

,hY,,c,, I I''m0orary . Database + Log File

~ - - ~ 1 Copy Arch've I +] Arch,ve Log

Consistent
Database

Figure 18. Two ways of DB recovery and the components involved.

313

Normal DBMS Execution Updating the Archive Copy
I by an Independent Process

© J

~ During Normal Execution I ~ ('Generat,o
) ,,oz ,0u 0, i n'"

Supplement the ~ Arc ~n r~ , , M,~et R=.~l=nt
.Archive Vers,on by,^, ~ ' ~ , ~ e c o v e r y ~ Arcl~ive~ersion"('l)

t"° "°st "ecen'
Transaction Consistent State ~

I
©

Figure 19. Scenario for archive recovery (global REDO).

rupting processing, in parallel with normal
processing. This will create an inconsistent
copy, a so-called "fuzzy dump."

The other possibility is to write only the
changed pages to an incremental dump,
since a new copy will be different from an
old one only with respect to these pages.
Either type of dump can be used to create
a new, more up-to-date copy from the pre-
vious one. This is done by a separate off-
line process with respect to the database
and therefore does not affect DB operation.
In the case of DB applications running 24
hours per day, this type of separate process
is the only possible way to maintain archive
recovery data. As shown in Figure 19, at-

chive recovery in such an environment re-
quires the most recent archive copy, the
latest incremental modifications to it (if
there are any), and the archive log. When
recovering the database itself, there is little
additional cost in creating an identical new
archive copy in parallel.

There is still another problem hidden in
this scenario: Since archive copies are
needed very infrequently, they may be sus-
ceptible to magnetic decay. For this reason
several generations of the archive copy are
usually kept. If the most recent one does
not work, its predecessor can be tried, and
so on. This leads to the consequences illus-
trated in Figure 20.

Computing Surveys, Vol. 15, No. 4, December 1983

314 T. Haerder and A. Reuter

Time
D

0 O_ O_
Archive Copy Archive Copy Archive Copy

Generation n-2 Generation n-1 Generation n
I I Actual

I ~ (Transaction
Consistent)

Distance to be Covered by the Archive Log State of DB

Figure 20. Consequences of multigeneration archive copies.

f ~

V
'~ PhtYaS~:~e I / / [TempOrary ~ Log

Log (11

~ _ . [Archwe
DMuUs:bepSy;: h ro ~ ~ DedT Log(2)

\ /
(a)

Temp°rarY '/Mus'beSynchr°°'z
Log(l) During Phase 1 of EOT

t Physmal Database
"em0or r l J / Log(2)

Archive J Temporary Log(1) Log(1)

I Archive
Copy

Archwe Temporary
Log(2) Log(2)

(b)

Figure 21. Two possibilities for duplicating the archive log.

We must anticipate the case of starting
archive recovery from the oldest generation,
and hence the archive log must span the
whole distance back to this point in time.

That makes the log susceptible to magnetic
decay, as well, but in this case generations
will not help; rather we have to duplicate
the entire archive log file. Without taking

Computing Surveys, Vol. 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery

storage costs into account, this has severe
impact on normal DB processing, as is
shown in Figure 21.

Figure 21a shows the straightforward so-
lution: two archive log files that are kept
on different devices. If this scheme is to
work, all three log files must be in the same
state at any point in time. In other words,
writing to these files must be synchronized
at each EOT. This adds substantial costs to
normal processing and particularly affects
transaction response times. The solution in
Figure 21b assumes that all log information
is written only to the temporary log during
normal processing. An independent process
that runs asynchronously then copies the
REDO data to the archive log. Hence ar-
chive recovery finds most of the log entries
in the archive log, but the temporary log is
required for the most recent information.
In such an environment, temporary and
archive logs are no longer independent from
a recovery perspective, and so we must
make the temporary log very reliable by
duplicating it. The resulting scenario looks
much more complicated than the first one,
but in fact the only additional costs are
those for temporary log storage--which are
usually small. The advantage here is that
only two files have to be synchronized dur-
ing EOT, and moreover--as numerical
analysis shows--this environment is more
reliable than the first one by a factor of 2.

These arguments do not, of course, ex-
haust the problem of archive recovery. Ap-
plications demanding very high availability
and fast recovery from a media failure will
use additional measures such as duplexing
the whole database and all the hardware
{e.g., see TANDEM [N.d.]). This aspect of
database recovery does not add anything
conceptually to the recovery taxonomy es-
tablished in this paper.

5. CONCLUSION

We have presented a taxonomy for classi-
fying the implementation techniques for
database recovery. It is based on four cri-
teria:

Propagation. We have shown that update
propagation should be carefully distin-
guished from the write operation. The

• 315

ATOMIC/~ATOMIC dichotomy defines
two different methods of handling low-level
updates of the database, and also gives rise
to different views of the database, both the
materialized and the physical database.
This proves to be useful in defining differ-
ent crash states of a database.

Buffer Handling. We have shown that
interfering with buffer replacement can
support UNDO recovery. The STEAL/
-~STEAL criterion deals with this concept.

EOT Processing. By distinguishing
FORCE policies from -~FORCE policies we
can distinguish whether successful trans-
actions will have to be redone after a crash.
It can also be shown that this criterion
heavily influences the DBMS performance
during normal operation.

Checkpointing. Checkpoints have been
introduced as a means for limiting the costs
of partial REDO during crash recovery.
They can be classified with regard to the
events triggering checkpoint generation
and the number of data written at a check-
point. We have shown that each class has
some particular performance characteris-
tics.

Some existing DBMSs and implementa-
tion concepts have been classified and de-
scribed according to the taxonomy. Since
the criteria are relatively simple, each sys-
tem can easily be assigned to the appropri-
ate node of the classification tree. This
classification is more than an ordering
scheme for concepts: Once the parameters
of a system are known, it is possible to draw
important conclusions as to the behavior
and performance of the recovery compo-
nent.

ACKNOWLEDGMENTS

We would like to thank Jim Gray (TANDEM Com-
puters, Inc.) for his detailed proposals concerning the
structure and contents of this paper, and his enlight-
ening discussions of logging and recovery. Thanks are
also due to our colleagues Flaviu Cristian, Shel Fin-
kelstein, C. Mohan, Kurt Shoens, and Ire Traiger
(IBM Research Laboratory) for their encouraging
comments and critical remarks.

REFERENCES

ASTRAHAN, M. M., BLASGEN, M. W., CHAMBERLIN,
D. D., GRAY, J. N., KING, W. F., LINDSAY, B. G.,

Computing Surveys, Voi. 15, No. 4, December 1983

316 • T. Haerder and A. Reuter

LORIE, R., MEHL, J. W., PRICE, T. G., PUTZOLU,
F., SEL1NGER, P. G., SCHKOLNICK, M., SLUTZ,
D. R., TRAIGER, I. L., WADE, B. W., AND YOST,
R. A. 1981. History and evaluation of System
R. Commun. ACM 24, 10 (Oct.), 632-646.

BERNSTEIN, P. A., AND GOODMAN, N. 1981. Con-
currency control in distributed database systems.
ACM Comput. Surv. 13, 2 (June), 185-221.

BJORK, L. A. 1973. Recovery scenario for a DB/DC
system. In Proceedings of the ACM 73 National
Conference (Atlanta, Ga., Aug. 27-29). ACM, New
York, pp. 142-146.

CHAMBERLIN, D. D. 1980. A summary of user expe-
rience with the SQL data sublanguage. In Pro-
ceedings of the International Conference on Da-
tabases (Aberdeen, Scotland, July), S. M. Deen
and P. Hammersley, Eels. Heyden, London, pp.
181-203.

CHANDY, K. M., BROWN, J. C., DISSLEY, C. W., AND
UHRIG, W. R. 1975. Analytic models for roll-
back and recovery strategies in data base systems.
IEEE Trans So#w Eng. SE-1, 1 (Mar.), 100-
110.

CHEN, T. C. 1978. Computer technology and the
database user. In Proceedings of the 4th Interna-
tional Conference on Very Large Database Sys-
tems (Berlin, Oct.). IEEE, New York, pp. 72-86.

CODASYL 1973. CODASYL DDL Journal of Devel-
opment June Report. Available from IFIP Admin-
istrative Data Processing Group, 40 Paulus Pot-
terstraat, Amsterdam.

CODASYL 1978. CODASYL: Report of the Data
Description Language Committee. Inf. Syst. 3, 4,
247-320.

CODD, E. F. 1982. Relational database: A practical
foundation for productivity. Commun. ACM 25,
2 (Feb.), 109-117.

DATE, C. J. 1981. An Introduction to Database Sys-
tems, 3rd ed. Addison-Wesley, Reading, Mass.

DAVIES, C. T. 1973. Recovery semantics for a DB/
DC System. In Proceedings of the ACM 73 Na-
tmnal Conference, (Atlanta, Ga., Aug. 27-29).
ACM, New York, pp. 136-141.

DAVIES, C. T. 1978. Data processing spheres of con-
trol. IBM Syst. J. 17, 2, 179-198.

EFFELSBERG, W., HAERDER, T., REUTER, A., AND
SCHULZE-BOHL, J. 1981. Performance mea-
surement in database systems--Modeling, inter-
pretation and evaluation. In Informatik Fachber-
whte 41. Springer-Verlag, Berlin, pp. 279-293 (in
German).

ELHARDT, K. 1982. The database cache--Principles
of operation. Ph.D. dissertation, Technical Uni-
versity of Munich, Munich, West Germany (in
German).

ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND
TRAIGER, I. L. 1976. The notions of consistency

and predicate locks in a database system. Com-
mun. ACM 19, 11 (Nov.), 624-633.

GRAY, J. 1978. Notes on data base operating systems.
In Lecture Notes on Computer Science, vol. 60, R.
Bayer, R. N. Graham, and G. Seegmueller, Eds.
Springer-Verlag, New York.

GRAY, J. 1981. The transaction concept: Virtues and
limitations. In Proceedings of the 7th Interna-
tional Con[erence on Very Large Database Sys-
tems (Cannes, France, Sept. 9-11). ACM, New
York, pp. 144-154.

GRAY, J., LORIE, R., PUTZOLU, F., AND TRAIGER, I.
L. 1976. Granularity of locks and degrees of
consistency in a large shared data base. In Mod-
eling in Data Base Management Systems. Elsevier
North-Holland, New York, pp. 365-394.

GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B.,
LORIE, R., PRICE, T., PUTZOLU, F., AND
TRAIGER, I. L. 1981. The recovery manager of
the System R database manager. ACM Comput.
Surv. 13, 2 (June), 223-242.

HAERDER, T., AND REUTER, A. 1979. Optimization
of logging and recovery in a database system. In
Database Architecture, G. Bracchi, Ed. Elsevier
North-Holland, New York, pp. 151-168.

HAERDER, T., AND REUTER, A. 1983. Concepts for
implementing a centralized database manage-
ment system. In Proceedings of the International
Computing Symposium (Invited Paper) (Nuern-
berg, W. Germany, Apr.), H. J. Schneider, Ed.
German Chapter of ACM, B. G. Teubner, Stutt-
gart, pp. 28-6O.

IMS/VS-DB N.d. IMS/VS-DB Primer, IBM World
Trade Center, Palo Alto, July 1976.

KOHLER, W. H. 1981. A survey of techniques for
synchronization and recovery in decentralized
computer systems. ACM Comput. Surv. 13, 2
(June), 149-183.

LAMPSON, B. W., AND STURGIS, H. E. 1979. Crash
recovery in a distributed data storage system.
XEROX Res. Rep. Palo Alto, Calif. Submitted
for publication.

LINDSAY, B. G., SEL1NGER, P. G., GALTIERI, C., GRAY,
J. N., LORIE, R., PRICE, T. G., PUTZOLU, F.,
TRAIGER, I. L., AND WADE, B. W. 1979. Notes
on distributed databases. IBM Res. Rep. RJ 2571,
San Jose, Calif.

LOmE, R. A. 1977. Physical integrity in a large seg-
mented database. ACM Trans. Database Sys. 2, 1
(Mar.), 91-104.

REUTER, A. 1980. A fast transaction-oriented log-
ging scheme for UNDO-recovery. IEEE Trans.
So#w. Eng. SE-6 (July), 348-356.

REUTER, A. 1981. Recovery in Database Systems.
Carl Hanser Verlag, Munich (in German).

REUTER, A. 1982. Performance Analysis of Recovery
Techniques, Res. Rep., Computer Science De-

Computing Surveys, Vol. 15, No. 4, December 1983

Principles of Transaction-Oriented Database Recovery

partment, Univ. of Kaiserslautern, 1982. To be
published.

SENKO, M. E., ALTMAN, E. B., ASTRAHAN, M. M.,
AND FEHBER, P. L. 1973. Data structures and
accessing in data base systems. IBM Syst. J. 12,
1 (Jan), 30-93.

SEVERANCE, D. G., AND LOHMAN, G. M. 1976.
Differential files: Their application to the main-
tenance of large databases. ACM Trans Database
Syst. 1, 3 (Sept.), 256-267.

SMITH, D. D. P., AND SMITH, J. M. 1979. Relational
database machines. IEEE Comput. 12, 3 28-38.

STONEBRAKER, M. 1980. Retrospection on a data-
base system. ACM Trans. Database Syst. 5, 2
(June), 225-240.

STONEBRAKER, M., WONG, E., KREPS, P., AND HELD,

• 3 1 7

G. 1976. The design and implementation of
INGRES. ACM Trans. Database Syst. I, 3 (Sept.),
189-222.

STURGIS, H., MITCHELL, J., AND ISRAEL, J.
1980. Issues in the design and use of a distrib-
uted file system. ACM Oper. Syst. Rev. 14, 3
(July), 55-69.

TANDEM. N.d. TANDEM 16, ENSCRIBE Data
Base Record Manager, Programming Manual,
TANDEM Computer Inc., Cupertino.

UDS, N.d. UDS, Universal Data Base Management
System, UDS-V2 Reference Manual Package,
Siemens AG, Munich, West Germany.

VERHOFSTADT, J. M. 1978. Recovery techniques for
database systems. ACM Comput. Surv. 10, 2
(June), 167-195.

Rece=ved January 1980; Revised May 1982; final revision accepted January 1984

Computing Surveys, Vol. 15, No, 4, December 1983

