1. I created the following Feature Model (feature diagram + cross-tree constraints) from a text on Mathematical Structures. Mathematical features are Closure, Associativity, Identity, Invertibility, and Base. Of the 16 possible structures, only 9 are legal (and have specific names, which I don’t show).

Questions: are the following combinations legal?

a) \((\text{closure, assoc, id, inv})\) ○ legal ○ illegal

b) \((\neg\text{closure, }\neg\text{assoc, id, }\neg\text{inv})\) ○ legal ○ illegal

c) \((\text{closure, assoc, id, }\neg\text{inv})\) ○ legal ○ illegal

Each of the questions below I start with no selected features. Then I select:

d) \((\text{id for identity})\) what other assignments are selected for me?

e) \((\neg\text{closure, id})\) what other assignments are selected for me?
2. When I was a graduate student, it was common to find in database and data structure textbooks figures like the 4 below showing different ways of implementing lists: (a) singly-linked, (b) double-linked, (c) with delete flags (elements aren’t physically removed, just marked deleted and ignored henceforth), and (d) sorted. Note: these figures may exhibit combinations of features, not just a single feature.

(a) What is the feature model of this product line (include constraints)? You can use GuiDSI notation.

(b) Shown below is a sketch of the single SPL class that implements above. “Color” this code to indicate what feature adds what fragment.

```java
class MyList<R> implements Comparator<R> {
    private class ListNode<R> implements Comparator<R> {
        R value;
        ListNode next;
        ListNode prior;
        boolean deleted;
    }
    ListNode<R> head;
    ListNode<R> tail;
}
```
3. A common refactoring is to push an association “through” an abstract class to its subclasses:

By making class A associations reference abstract class B’s subclasses, a constraint must be added: each A instance is bound to a B1 or B2 instance, but never both.

Using the above refactoring and any that we have discussed in class along with their names – show that the left model can (or cannot) be mapped to the right model.

Constraint: oval is connected to Box or Diamond, but not both.
4. Short answer

a) What is the relationship between a category and a domain-specific language? What do both represent?

b) What does an arrow of a category mean in MDE?

c) What does a composition of arrows in a category mean in MDE?

d) Give an example of a metamodel that cannot be used for bootstrapping and explain why.
1.
 a) \((\text{closure, assoc, id, inv})\) -- group

 b) \((\neg\text{closure, } \neg\text{assoc, id, } \neg\text{inv})\) -- invalid/wrong

 c) \((\text{closure, assoc, id, } \neg\text{inv})\) -- monoid

 d) \((\text{ident})\) what other assignments are selected for me? (None)

 e) \((\neg\text{closure, id})\) what other assignments are selected for me (hard)? ans: only associativity,

 \(\neg\text{closure}\) implies associativity. so \((\neg\text{closure, associativity, id})\) is the set of selections so far. Can we add invert?

 suppose Invert is false, then \(\neg\text{invert } \land \text{identity implies Assoc, which is OK.}\)

 suppose Invert is true, then (say nothing).

 no. So only associativity is added.

2a)
MyList : [sorted] [delete] [double] base ; // base == singly-linked list
(no constraints—order of optional features is permutable)

2b)

class MyList<R implements Comparator<R>> {
 private class ListNode<R implements Comparator<R>> {
 R value;
 ListNode next;
 ListNode prior;
 boolean deleted;
 }
 ListNode<R> head;
 ListNode<R> tail;
}
3) Solution:

```
constraint: oval is connected to Box or Diamond, but not both
```

```
constraint: oval is connected to Box or Diamond, but not both
```
4. Short answer

a) What is the relationship between a category and a domain-specific language? What do both represent?

Ans: a category is a DSL.
both express all possible computations that can be invoked. It is a language of (legal) expressions.

b) What does an arrow of a category mean in MDE?

Ans: one possible / legal computation that can be invoked.

c) What does a composition of arrows in a category mean in MDE?

Ans: one of many possible expressions to evaluate.

d) Give an example of a metamodel that cannot be used for MDE bootstrapping and explain why.

Ans: most any metamodel can NOT be used for bootstrapping; it has to be special. Ex: a class diagram of all possible FSMs cannot be used for bootstrapping itself. It can be used to create a tool for FSMs, but not for class diagrams. A class diagram of all class diagrams CAN be used to bootstrap an MDE tools. A category diagram of a category diagram COULD be used to bootstrap an MDE tool. An ER diagram of all class diagrams could NOT be used to used to bootstrap itself.