10

5

o

10

10

15

15

15

15

5

15

oo |® (oo o |®

15

15

15

[ooB N fe)N

5

a
b

5

C

5

Total

175

Name:

CS 341
First Midterm Exam
Practice

1. Use extra paper to determine your solutions theneatly transcribe
them (including intermediate steps) onto these shise

2. It's possible that you won’t be able to finish.Read through the
whole exam once and start working on the problemsog’re sure you
know how to do. Come back to the harder ones as ydave time.

(1) Consider the following problem: Given a databsend a quer®, what result is returned
whenQ is executed againgt?

L ={<D, Q, R> : Ris the result of executinQ againsD}.

(2) LetL ={wO{a, b}*:

w does not end iab}

(a) Show a regular expression that generhtes

e0b 0 (a0b)* (a0 bb)

(b) Show an FSM that accepts

G
L, o

a

(3) Show a (possibly nondeterministic) FSM that aceé¢ptl] {a, b}* : w contains at least one
instance ohaba, bbb orababa}.

(4) For each of the following languagesstate whether it is regular or not and prove yanswer.
(@) {x#y: x, y 0 {0, 1}*, when viewed as binary numbersty = 3y}. Example:1000#100 L.

Not regular, which we show using the Pumping Theor&V/e must start by choosing a string that isagt fn
L. Letw=100"%10% Thenw O L sincex (100 is equal to ¢ (wherey is 10%). We must consider three
cases for wherg can fall:

y=1 Pump out. Arithmetic is wrong. The left sidibut right side isn't.

y =10* Pump out. Arithmetic is wrong. "

y=0° Pump out. Arithmetic is wrong. Decreased lefeshut not right. So, in particular, it is no l@nghe

case thak >y (required since % 0).

(b) Letx ={a, b}. L={wDZX*: (w contains the substrirgp) - (w contains the substrirgg)}

Regular. It helps to rewrite as:
L ={w O Z*: - (w contains the substrirap) [(w contains the substrirza)}
L= b*a* O (@ 0 b)* ba (a O b)*

You can also do this with an FSM.

() {w=xyzy:xy,z0{0, 1}"}.

Regular. The key to why this is so is to obsehat we can ley be just a single character. Then the rest of
can generated byandz. So any stringvin {0, 1} " is in L iff:

» the last letter ofv occurs in at least one other place in the string,

» that place is not the next to the last character,

* noris it the first character, and

e wcontains least 4 letters.

Either the last character@sor 1. So:

L=(©O01)"0@0D01)*0)0(001)"1(001)"1).

(d{w=st:s0{a, b}*andt{b, c}* and #,(s) = 2&.(s) and #(t) = 3F(t)}.

Not regular, which we show by pumping. et b*a*c®*b*. y must occur in the firdt region. It isbP, for
some nonzerp. Note that, when we pump, the boundary betwees dndt regions cannot move because
there can be na'sinsorc’sint. Letq= 0 (i.e., pump out). The resulting strindo&P a*c*b*. Thesregion
isb*Pa*. It doesn't have twice as mahjs asa’s. So this string is not ih.

(5) Recall thamaxstring(L) = {w: w0 L and0z0x* (z# € - wz L)}
(a) What ismaxstring(L,L,), whereL; = {we {a, b}*: contains exactly ona} and L, = {a}?

Lilo
(b) Prove that the regular languages are closed umaletring.

The proof is by construction. Ifis regular, then it is accepted by some DA (K, 2, A, s, A). We
construct a new DFSNI* = (K*, 2*, A*, s¥, A*), such that (M*) = maxstring(L). The idea is tha¥1* will
operate exactly ag would have except thadt will include only states that are accepting ssateM and from
which there exists no path of at least one charaéctany accepting state (back to itself or to ather). So an
algorithm to construd* is:

1. Initially, let M* = M.
/* Check each accepting stateNhto see whether there are paths from it to somepdicy state.
2. For each statg in A do:
2.1. Follow all paths out of) for K| steps or until the path reaches an elemeAt@mfsome state
it has already visited.
2.2. If the path reached an element®fthenq is not an element @f*.
2.3. If the path ended without reaching an elemem,dhenq is an element oA*.

Comments on this algorithm:
1. Why do we need to start with a deterministic maefinSupposk is ba*a. maxstring(L) = {}.
But suppose thad¥l were:

If we executed our algorithm with this machine, w@uld accepba* a rather than {}.

2. Your initial thought may be that the acceptingetabfM* should be simply the accepting states
of M that have no transitions out of them. But theveld be transitions that themselves lead no
where, in which case they don't affect the compaitabf maxstring. So we must start by finding
exactly those accepting statesMfsuch that there is no continuation (other thaihat leads
again to an accepting state.

(c) If maxstring(L) is regular, must also be regular? Prove your answer.

No. Consider Primg= {a" : nis prime}. Primgis not regular. Bumaxstring(Prime) = I, which is regular.

(6) Consider the following NDFSN. Usendfsmtodfsm to construct an equivalent DFSM. Begin
by showing the value aps(q) for each state:

&QL 9 (DO

eps(1) = {1, 2, 3}
eps(2) = {2, 3, 1}

There is one accepting state, {1, 2, 3, 5}.

(7) Define a decision procedure to answer the follgwjoestion. You may use as subroutines all
the procedures that we have discussed in cladsx £4a, b} and leta andf3 be regular
expressions. Is the following sentence true:

(L(B) =a*) O(Ow (w{a, b}* Ow| even)- w O L(a))

1. From, build FSMM;. Make it deterministic. Minimize it, producinds.
2. Build M,, the simple one-state machine that accepts
3. If M, andM,, are identical except for state names then retum tElse continue.

/* Observe that the second condition says lthathe language of even length stringaf andb’s, is a subset
of L(a). This is equivalent to saying tHat - L(a) is empty. So:

4. Froma, build FSMMa.

5. Build Mg that accepts exactly, the language of even length stringatf andb’s.

6. Build Mp, that accepts(Mg) - L(Ms).

7. See ifL(Mp) is empty. Ifitis, returifrue. Else returrFalse.

(8) Prove or disprove each of the following statements:
(a) It is possible that the intersection of an infnitumber of regular languages is not regular.

True. Letxy, X3, X3, ...be the sequence 0, 1, 4, 6, 8, 9, ... of nonprimanegative integers. Lat' be a string
of x, a’s. LetL; be the language* - {a*}.

Now considei = the infinite intersection of the sequence oblaaged ;, L,, ... Note thatl. = {a®, wherep is
prime}. We have proved thétis not regular.

(b) Every subset of a regular language is regular.
False.

LetL = a*, which is regular.
Let L' =aP, wherep is prime. L' is not regular, but it is a subsetlof

(c) LetLs =L3LsLs. If Ly andL, are regular ants is not regular, it is possible thiat is regular.

True. Example:

LetL, = {eg}. L 1 is regular.
LetlL,=a*. L, is regular.
LetL 3 =aP, wherep is prime. L ;is not regular.

L,=a* wherek>2 L 4is regular, because it is defined dga*.

