
Designing Better Playlists with Monte Carlo Tree Search

Elad Liebman,‡ Piyush Khandelwal,‡ Maytal Saar-Tsechansky,† Peter Stone‡
‡CS Department, The University of Texas at Austin, {eladlieb, piyushk, pstone}@cs.utexas.edu

†McCombs School of Business, The University of Texas at Austin, Maytal.Saar-Tsechansky@mccombs.utexas.edu

Abstract

In recent years, there has been growing interest in the study
of automated playlist generation - music recommender sys-
tems that focus on modeling preferences over song sequences
rather than on individual songs in isolation. This paper ad-
dresses this problem by learning personalized models on the
fly of both song and transition preferences, uniquely tailored
to each user’s musical tastes. Playlist recommender sys-
tems typically include two main components: i) a preference-
learning component, and ii) a planning component for select-
ing the next song in the playlist sequence. While there has
been much work on the former, very little work has been de-
voted to the latter. This paper bridges this gap by focusing on
the planning aspect of playlist generation within the context
of DJ-MC, our playlist recommendation application. This
paper also introduces a new variant of playlist recommen-
dation, which incorporates the notion of diversity and nov-
elty directly into the reward model. We empirically demon-
strate that the proposed planning approach significantly im-
proves performance compared to the DJ-MC baseline in two
playlist recommendation settings, increasing the usability of
the framework in real world settings.

Introduction
Individual songs are seldom listened to in isolation, and it
is well established that music is experienced in a temporal
manner (Kahnx, Ratner, and Kahneman 1997). Good mu-
sic recommendation systems can take advantage of this fact
while generating customized playlists. Such playlists need
to take into account not only the enjoyment experienced by
a given listener when listening to a certain song, but also
how songs can be put in sequence appropriately to provide
greater enjoyment than simply listening to songs in an arbi-
trary order.

While several recent papers have looked into the algo-
rithmic generation of music playlists, they have predomi-
nantly focused on the learning aspect of modeling user pref-
erences, rather than the planning aspect of utilizing learned
knowledge effectively to generate good sequences. In this
paper, we address this gap by applying the adaptation of an
advanced planning approach, Upper Confidence Bound in
Trees (UCT) (Kocsis and Szepesvári 2006), to generate bet-
ter song sequences.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

UCT is a member of the Monte Carlo Tree Search
(MCTS) family of planning algorithms, which approxi-
mately solve sequential decision making problems. These
algorithms are anytime, meaning that they can iteratively im-
prove results given additional computational time. MCTS
algorithms execute a number of planning simulations,
i.e. Monte Carlo rollouts, and keep track of encountered
states and actions within a tree structure. UCT was first pop-
ularized in Computer Go (Gelly and Wang 2006), and in the
past few months played a key role in enabling a computer-
ized Go program, AlphaGo, to surpass the highest echelons
of human level performance (Silver et al. 2016).

In a recent paper, we have proposed a music recom-
mender system called DJ-MC (Liebman, Saar-Tsechansky,
and Stone 2015), which treats playlist generation as a se-
quential decision making task, and applies techniques from
the Reinforcement Learning (RL) literature to learn and
model user preferences over both songs and song transi-
tions on the fly. In this paper, we build on this approach and
demonstrate how more sophisticated Monte Carlo planning,
based on Upper Confidence Bound in Trees (UCT) (Koc-
sis and Szepesvári 2006), can improve performance over the
naive planning method used in the original DJ-MC frame-
work. Then, to further understand the importance of ad-
vanced planning techniques in generating meaningful song
sequences, we introduce an alternative framework for music
playlist recommendation, which aims to maximize diversity
over a sequence of preferred songs.

This paper makes two main contributions. First, we
demonstrate the effectiveness of a UCT planning approach
in a music recommendation platform that has been tested
on human participants. To our knowledge, this is the first
application of such approaches in a music recommendation
domain. This extension makes DJ-MC practical for rec-
ommending songs using realistically large music corpora.
Second, we extend the previous framework by introducing a
new recommendation objective, namely novelty search, and
show that our proposed approach is well suited for this set-
ting as well.

RL Applied to Playlist Recommendation

This section provides the technical details of the applica-
tion considered in this paper. Specifically, it introduces how
playlist recommendation can be modeled as an MDP, de-

Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17))

4715



scribes the DJ-MC framework, and introduces our adapta-
tion of UCT planning to playlist recommendation.

Playlists as Markov Decision Processes

If we consider playlists as depending on the specific se-
quence of songs, such that the enjoyment of each song is
dependent on the songs chosen before it, then at each point
in the playlist generation process, the selection of a new song
affects the choice of possible songs in the future. From
this perspective, playlist recommendation is a sequential
decision-making task, and as such, is suitably formulated as
a Markov Decision Process (MDP) (Sutton and Barto 1998).

An episodic MDP M is represented as 〈S,A, P,R, T 〉
where S is the set of states an agent can be in, A is the set
of actions that the agent can take at a state, P is the transi-
tion function that gives the transition probability of reaching
a particular next state s′ from state s after taking action a
(P : S×A×S → R;

∑
s′ P (s, a, s′) = 1), R is the reward

received given a transition (R : S×A×S → R), and T is the
set of terminal states which end the episode. To perform op-
timally in a task that an MDP represents, an agent must find
a policy π : S → A such that from any given state s, execut-
ing action π(s) and then continuing to act optimally (that is,
following the optimal policy π∗) would yield in the highest
expected sum of rewards over the length of the episode. This
is traditionally referred to as “solving” an MDP.

DJ-MC formulates the playlist generation problem as
an MDP as follows. Given a finite set of songs M =
{a1, a2, . . . , an}, and the assumption that playlists are of
length k, the state representation captures a list of all the
songs that have been heard by a listener. Thus, the set of
MDP states can be constructed as follows:

S = {(a1, a2, . . . , ai) | 1 ≤ i ≤ k, ∀j≤i[aj ∈ M]}.

At any state, the agent’s action directly corresponds to the
next song played by the system, and consequently the ac-
tion set is the entire set of songs, i.e. A = M. Given these
S and A, the MDP transition function P is trivial and deter-
ministic, i.e. each state-action pair maps to exactly one state.
Given a state s = (a1, a2, . . . , ai) and action a, the next state
s′ = (a1, a2, . . . , ai, a). Furthermore, since playlists are of
length k, any state s that contains k songs is terminal.

On the other hand, the definition of an appropriate MDP
reward function R is far from trivial, and represents a key
challenge in tackling the playlist recommendation problem.
Intuitively, R models a listener’s enjoyment while listening
to the generated playlist. The goal of the music recommen-
dation system is to select songs in order to maximize the
cumulative reward across an entire episode. More exactly,
a reward function Ru(s, a) needs to capture the enjoyment
of listener u hearing song a after listening to song sequence
s = (a1, a2, . . . , ai). In other words, the reward function
needs to model not only the utility of playing a particular
song to the listener, but also reflect the significance of the
sequential decision making aspect of the playlist generation
problem.

The DJ-MC Architecture

In this section, we summarize DJ-MC, a reinforcement
learning approach to a playlist-oriented, personalized music
recommendation system (Liebman, Saar-Tsechansky, and
Stone 2015).

The DJ-MC architecture expresses the reward function
as a linear combination of both song and transition utility.
To simplify learning, DJ-MC decouples the reward derived
from the choice of songs from transitions as follows:

R(Seqt, a, Seq
′) = φs(u) · θs(a) + φt(u) · θt(Seq, a) (1)

Here, the state is the song sequence Seq, and a is the song
played at state Seq = {a1, . . . , an} leading the system to a
future state Seq′ = {a1, . . . , an, a}.
θs(a) and θt(Seq, a) are finite length feature vectors rep-

resenting song a and the transition from an → a, respec-
tively. φs(u) and φt(u) are vectors which represent a partic-
ular listener’s preferences for song a and the transition from
ak → a, respectively.

This song and transition representation is constructed as
follows. Each song is analyzed for its acoustic properties,
and properties such as amplitude, pitch, timbre, and tempo
are used to construct a real-valued song descriptor of length
34. A binned representation of size 10 per feature is then
constructed from each real-value feature by indicating the
relative position of a song across the entire song set M.
Across all 34 features, this binary representation leads to the
340-dimensional representation θs. As described by Lieb-
man et al., the transition representation θt can be modeled
in a similar way as a 3400-dimensional binary vector. Cor-
respondingly, a listener’s preferences over songs and tran-
sitions are modeled as a 340-dimensional weight vector φs

and a 3400-dimensional weight vector φt, respectively. The
high-level DJ-MC architecture pseudocode is presented in
Algorithm 1.

The values of φs and φt for a particular user are initially
unknown, and are updated as DJ-MC learns the user’s pref-
erence from experience. Should φs and φt be fully known,
and consequently the reward function R be known, every
element of the playlist MDP in which DJ-MC operates be-
comes well-defined, and the MDP can be solved as a pure
planning problem. Given a well-defined MDP reward func-
tion, DJ-MC needs to plan in order to select the next song
in the playlist. Since the problem space is too large to be
able to plan optimally, DJ-MC instead uses a heuristic ap-
proach, running multiple Monte Carlo simulations from the
current state, where actions within each rollout are selected
randomly. Subsequently, the first action from the trajectory
obtaining the highest cumulative reward is selected. This is
a relatively unsophisticated approach, as planning was not
the main focus in the original DJ-MC formulation. A main
contribution of this paper is a significant improvement in the
DJ-MC planner, which we motivate next.

Upper Confidence Bound in Trees (UCT)

In this section, we discuss how DJ-MC planning can be im-
proved using the more sophisticated UCT algorithm. There
are several approaches to solving an MDP optimally, as-
suming the transition function P and reward function R

4716



Algorithm 1 DJ-MC Architecture

1: Input: M - song corpus, K - planned playlist duration,
ks - number of steps for song preference initialization,
kt - the number of steps for transition preference initial-
ization
Initialization:

2: Initialize individual song weights to obtain φs

3: Initialize song transition weights to obtain φt

Planning and Model Update:
4: for K steps do
5: Run Monte-Carlo search to select the next song
6: Update φs, φt

7: end for

are known. For example, Value Iteration (Bellman 1957)
solves discrete MDPs directly with dynamic programming.
However, in many domains, including the playlist genera-
tion problem described in the previous sections, the state-
action space is sufficiently large such that optimally solving
the MDP is infeasible. In these situations, it is necessary
to use approximate solvers that restrict search to more rel-
evant regions of the state action space. One family of such
approaches is Monte Carlo Tree Search (MCTS). In this pa-
per, we focus on one variant of this approach called Upper
Confidence Bound in Trees (UCT) (Kocsis and Szepesvári
2006).

In UCT, planning is performed by simulating a num-
ber of state-action trajectories from the current MDP state,
i.e. Monte Carlo rollouts. In the playlist generation domain,
the current MDP state reflects the songs that have already
been played by the system. For each state-action pair en-
countered within this trajectory, UCT stores the number of
visits for that pair as well as the long term expected reward
of choosing that action at that state in a tree structure. Each
node represents a state, with edges representing actions lead-
ing from one state to another.

Given information collected in prior simulations, UCT
uses the UCB1 algorithm (Auer, Cesa-Bianchi, and Fis-
cher 2002) for action selection, allowing the algorithm to
spend more time in areas of the state-action space that seem
more promising. The UCB1 decision criterion is defined as
a = argmaxa

(
Q(s, a) + cp

√
ln(ns)/na

)
, where ns is the

number of visits to the state, na is the number of times action
a was selected in previous simulations at this state, Q(s, a)
is the current expected long term reward for taking action
a at this state, and cp is tuned empirically to better balance
exploration versus exploitation.

This paper applies a parametrized UCT variant called
MaxMCTS(λ). MaxMCTS(λ) employs a more complex Q-
value backpropagation strategy than that used in the orig-
inal UCT algorithm. This variant was previously used
for multi-robot coordination problems (Khandelwal, Barrett,
and Stone 2015), and is studied extensively along with other
variants by (Khandelwal et al. 2016). In MaxMCTS(λ), Q-
values are estimated using an eligibility trace mechanism
used in Peng’s Q(λ) reinforcement learning algorithm. This
estimation process is summarized in Algorithm 2.

Algorithm 2 Eligibility trace backpropagation

1: Input: trajectory - Stack of 〈state, action, reward〉, pop-
ulated during planning simulation.

2: q ← 0 # Backpropagated value
3: for 〈s, a, r〉 = trajectory.pop() do
4: q ← q + r, ns ← ns + 1, na ← na + 1
5: Q(s, a) ← Q(s, a) + (q −Q(s, a))/na

6: q ← (1− λ)maxa′|na′ �=0[Q(s, a′)] + λq
7: end for

In Algorithm 2, q is a value backpropagated up the tree,
and used to update Q-value estimates in Line 5. The key
update rule for this backpropagation strategy is the update
rule on line 6, which uses parameter λ to interpolate be-
tween the current backpropagated value and the maximum
Q-value estimate at that state. Intuitively, when λ values are
close to 0, even when exploratory actions are taken further
down in the tree, the value of the action with the highest ex-
pected reward is propagated higher up in the tree. This tech-
nique minimizes the risk of exploratory actions taken further
down the tree, but increases the likelihood of finding subop-
timal policies. The value of λ must be selected empirically,
and intermediate values between 0 and 1 can often provide
significantly better performance in some domains.

UCT for Playlist Generation

As pointed out above, while the original DJ-MC architec-
ture puts a great deal of emphasis on effectively learning
user preferences from limited information, when it comes
to leveraging the learned model to select the next song, a
relatively naive planning heuristic was employed. How-
ever, especially given the complex nature of generating
playlists using a large song database, it stands to reason
that a stronger heuristic, better suited for balancing the
exploration-exploitation tradeoff with limited information,
is a more appropriate choice. On the other hand, more so-
phisticated methods hold the risk of requiring more expe-
rience to be effective, which may be a problem if only a
limited number of simulations is possible.

Two main adaptations need to be made to make UCT-
based approaches applicable in the playlist recommendation
setting. First, as mentioned above, the more sophisticated
parameterized backup strategy of MaxMCTS(λ) has to be
used, since given the difficulty of the search problem pure
Monte Carlo backups aren’t likely to find good enough tra-
jectories. Second, to make DJ-MC with MaxMCTS(λ) ap-
plicable to huge song corpora, we introduce hierarchy into
the song selection step. One of the key determining factors
in the efficiency of MCTS methods is the branching factor
induced by the domain at each node. The branching factor is
determined by the number of available actions at each node
of the UCT tree. Since by default the set of actions available
at each state of the music playlist MDP is the entire set of
songs M , the default branching factor for this domain is pro-
hibitively high for even moderately sized music databases.
To mitigate this issue, we use the structure of the song space
to cluster songs into subsets. Each subset represents an ab-

4717



stract song type. Then, we alternate between choosing song
types and choosing specific songs at each step of the trajec-
tory, dramatically reducing the branching factor (the lowest
branching factor in expectation is achieved when the number
of clusters is

√
M ).

Algorithm 3 MaxMCTS(λ) for music applications
starting at playlist s

1: input: current playlist s, song corpus M
2: Cluster M to obtain song types C and mapping to con-

crete songs SM(C)
3: rootNode ← initNode(s) # Root node represents the

current playlist state
4: for sim ∈ {1, . . . , numSimulations} do
5: node ← rootNode
6: trajectory ← new Stack
7: while notTerminal(node) do
8: if node.parent ∈ M then a ∈ Song Types # If last

song in the trajectory is instantiated, plan over abstract
songs.

9: else a ∈ SM(node.parent)
10: if node.ns = 0 then a ← default song selection
11: else a ← selectNextActionWithUCB1(node)
12: 〈ns, reward〉 ← simulate(node, a)
13: nextNode ← getOrInitNode(node, a, ns # Next

node represents the playlist after selecting a new song.
14: trajectory.push(node, a, reward)
15: node ← nextNode
16: end while
17: BACKPROPAGATE(trajectory) using Algorithm 2
18: end for

The pseudocode for MaxMCTS(λ) adapted to the playlist
generation domain is presented in Algorithm 3. Line 2 pre-
processes the song set by clustering the song corpus to ob-
tain abstract song types and a mapping from each song type
to a set of concrete songs that comprise that type. Clus-
tering is done via the canonical K-Means algorithm (Mac-
Queen and others 1967). Then line 3 initializes the root of
the search tree to be the current playlist state. The main loop
in lines 4-18 generates one MCTS simulation. Lines 7-12
descend down the tree using either the UCB1 criterion for
action selection or a default song exploration policy if not
all actions have been tried at least once. Lines 9-10 decide
whether we’re currently selecting a song type or a concrete
song of the song type specified. Line 13 runs a simulation
from the new song selected to obtain an estimated user re-
ward this song choice will accrue. Once the rollout is com-
plete line 17 backpropagates the overall reward up the search
tree, using Algorithm 2.

Planning for Personalization

In this section we empirically evaluate the benefit of adapt-
ing MaxMCTS(λ) to the DJ-MC framework, which aims
to maximize playlist personalization. We compare the per-
formance of the proposed algorithm, DJ-MC + MaxMCTS,
with that of “vanilla” DJ-MC, measuring user reward over
30-song sequences. We also compare it to the benchmarks

DJ-MC was originally compared against: a greedy heuristic
which selects the favorite song not played yet irrespective of
sequence, thus mimicking a more traditional music recom-
mendation algorithm, and a random baseline. the results are
presented in Figure 1.

Results indicated that using MaxMCTS(λ) with λ = 0.5
statistically significantly outperforms the standard DJ-MC,
and that with all chosen λ values MaxMCTS(λ) did as well
as or better than the standard planning technique used in DJ-
MC.

Planning for Diversity

DJ-MC is an interesting and robust framework for learning
playlist preferences and generating playlists efficiently on
the fly. However, it is not the only playlist recommendation
framework where planning is useful. Indeed, any playlist
recommendation framework which takes transitions into ac-
count should benefit from the usage of advanced planning
techniques such as MaxMCTS(λ). To illustrate this point,
we study the application of MaxMCTS(λ) with various λ
values in a different playlist recommendation setting, with
different transition mechanics and a different reward func-
tion - diversity (or novelty) based playlist generation.

The idea of algorithmic novelty search in playlist genera-
tion has been proposed before (Wang et al. 2013; Lehtiniemi
2008; Logan and Salomon 2001; Taramigkou et al. 2013)
and it seems intuitive - even once we gain some knowledge
user preferences, they wouldn’t want to listen to very similar
songs one after another in sequence, leading to a potentially
tedious experience.

To this end, we propose a novel diversity generation
framework. Given a song database M and some similar-
ity metric D between songs, we are tasked with finding
a sequence of songs the listener enjoys, but penalize for
the amount of similarity between each song chosen and the

Figure 1: Average reward for 30-song sequences, comparing
standard DJ-MC to DJ-MC with MaxMCTS(λ) planning us-
ing varying values of λ, a greedy system which attempts to
maximize song enjoyment regardless of sequence, and a ran-
dom sequence generator. Results are obtained over 30 repe-
titions with a corpus size of 5000 and 70 song types (leading
to an average branching factor of 70). Songs are randomly
taken from the Million Song Dataset (Bertin-Mahieux et al.
2011). Best performing algorithm marked red. Monte-Carlo
approaches ran 5000 simulations.

4718



songs which preceded it. Similar to the temporal discount-
ing approach adopted by (Liebman, Saar-Tsechansky, and
Stone 2015), we can assume the penalty for similarity across
songs in the sequence decays as songs progress. Formally,
in the novelty detection setting, we assume the same general
playlist problem MDP as in DJ-MC, but propose an alterna-
tive approach for modeling R. Instead of the decomposition
proposed in Eq. 1, we propose an alternative formulation,
as presented in Eq. 2. Assuming a utility function for in-
dividual songs Rs and a similarity measure between songs
D, the reward function representing a listener u for a song
sequence Seq = {s0, . . . , st} is modeled as:

Ru
novelty(Seq) =

t∑
i=0

(Rs(si) +
i∑

j=0

1

i− j
D(si, sj) (2)

Given this setting, and assuming the user’s individual
song preferences are known, the planning problem - gen-
erating a good sequence of songs - is purely a combinatorial
search problem. However, it is intractable for even moder-
ately sized song sets. Indeed, it can be shown to be NP -
hard via a reduction from the weighted max-clique problem
(Pardalos and Xue 1994). However, using MaxMCTS(λ)
with the same two-stage song type abstraction suggested in
Section lends itself directly to this setting as well.

As in the DJ-MC extension case, we wish to empirically
test MaxMCTS(λ) in the novelty maximization setting de-
scribed above. We choose an experimental setting similar to
that employed in the previous section, but in order to isolate
the planning aspect, we assume the individual song prefer-
ences are roughly known - the listener provides a list of 100
liked songs and preferences are inferred from these songs
based on the similarity function D which is also assumed to
be known. For the purpose of this section, D is assumed
to be the Euclidean distance between the 34-dimensional
song representation vectors used by DJ-MC (this is similar
in spirit to (Logan and Salomon 2001)), i.e. for two songs

s1, s2, D(s1, s2) =
√∑34

i=1 (s1i − s2i)2.
The results in the diversity-based playlist recommenda-

tion domain are provided in Figure 2.
As evident from the results, in this setting, MaxMCTS(λ)

with λ = 0 significantly outperforms the other approaches.
We note that the relative improvement here is higher than
that observed for the DJ-MC setting, but unlike that case,
this result is sensitive to an apt choice of λ. It can nonethe-
less be seen as a positive result, especially given that (Khan-
delwal et al. 2016) suggest a straightforward approach for
roughly tuning λ. This outcome yet again illustrates how
RL applied to playlist recommendation can improve perfor-
mance compared to our baselines. Looking comparatively
at the two different playlist generation settings, the novelty
detection setting induces a considerably sparser search prob-
lem. This provides a relative advantage to planning methods
which tend to retain relatively good observed trajectories,
which is effectively what MaxMCTS(λ = 0) does.

Related Work
Generally speaking, there has been substantial research on
modeling song similarity towards music playlists (?). Some

previous work attempted to model playlists directly. (Mail-
let et al. 2009) treated the playlist prediction problem as
a supervised binary classification task, with pairs of songs
in sequence as positive examples. (McFee and Lanckriet
2011) trained a bigram model for transitions. (Chen et al.
2012) took a similar Markov approach, treating playlists as
Markov chains in some latent space, and utilized this to learn
a metric representation for each song. (Zheleva et al. 2010)
adapted a Latent Dirichlet Allocation model to capture mu-
sic taste from listening activities across users and songs. Re-
cent work by (Wang et al. 2013) also borrows from the rein-
forcement learning literature, and considers the problem of
song recommendations as a bandit problem, balancing ex-
ploration and exploitation to identify novel. Novelty and
diversity in themselves have also been a studied objective of
playlists. (Logan 2002) considered novelty in song trajec-
tories via spectral song similarity. (Lehtiniemi 2008) used
context-aware cues to better tailor a mobile music stream-
ing service to user needs. More recently, (Taramigkou et
al. 2013) used a combination of Latent Dirichlet Allocation
with graph search to produce more diversified playlists. All
these papers, however, focused primarily on learning models
for listener preferences. They did not address the complexity
of generating good playlists, which can be decoupled from
the learning aspect. In this paper, building on the approach
suggested by (Liebman, Saar-Tsechansky, and Stone 2015),
we treat the music playlist generation task as an AI planning
problem, and show that using better planning leads to better
playlists.

Summary & Conclusion

In this paper we study the application of reinforcement
learning and Monte Carlo Tree Search (MCTS) to playlist
recommendation. Even provided with useful learning algo-

Figure 2: Average reward for 20-song long sequences,
comparing a naive Monte-Carlo search approach to
MaxMCTS(λ)planning using varying values of λ, a greedy
system which attempts to maximize song enjoyment regard-
less of sequence, and a random sequence generator. Results
are obtained over 30 repetitions with a corpus size of 1000
and 30 song types (leading to an average branching factor
of 30). Songs are randomly taken from the Million Song
Dataset. Best performing algorithm marked red. Monte-
Carlo approaches ran 5000 simulations.

4719



rithms, leveraging learned knowledge effectively is nontriv-
ial in large song spaces or when the application is expected
to work in real time. To this end we introduce MaxMCTS(λ)
to effectively decide on which song to play next on the fly.
We show that in two separate playlist generation settings us-
ing MaxMCTS(λ) holds potential of significantly improving
the quality of generated playlists. We also show how max-
imizing diversity can be directly integrated into the sequen-
tial decision-making process. We believe this work is the
first step in connecting the learning aspect of music playlist
recommendation with better playlist planning techniques,
resulting in better, more expressive music recommendation
and user experience in real-world systems.

Acknowledgments

This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is sup-
ported in part by NSF (CNS-1330072, CNS-1305287, IIS-
1637736, IIS-1651089), ONR (21C184-01), and AFOSR
(FA9550-14-1-0087). Peter Stone serves on the Board of
Directors of, Cogitai, Inc. The terms of this arrangement
have been reviewed and approved by the University of Texas
at Austin in accordance with its policy on objectivity in re-
search.

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Bellman, R. 1957. Dynamic programming.
Bertin-Mahieux, T.; Ellis, D. P.; Whitman, B.; and Lamere,
P. 2011. The million song dataset. In ISMIR 2011: Proceed-
ings of the 12th International Society for Music Information
Retrieval Conference, October 24-28, 2011, Miami, Florida,
591–596. University of Miami.
Chen, S.; Moore, J. L.; Turnbull, D.; and Joachims, T. 2012.
Playlist prediction via metric embedding. In Proceedings of
the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 714–722. ACM.
Gelly, S., and Wang, Y. 2006. Exploration exploitation in
Go: UCT for Monte-Carlo Go. In Conference on Neural
Information Processing Systems (NIPS).
Kahnx, B.; Ratner, R.; and Kahneman, D. 1997. Patterns of
hedonic consumption over time. Marketing Letters 8(1):85–
96.
Khandelwal, P.; Barrett, S.; and Stone, P. 2015. Leading the
way: An efficient multi-robot guidance system. In Proceed-
ings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, 1625–1633. International
Foundation for Autonomous Agents and Multiagent Sys-
tems.
Khandelwal, P.; Liebman, E.; Niekum, S.; and Stone, P.
2016. On the analysis of complex backup strategies in monte
carlo tree search. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, 1319–1328.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In European Conference on Machine Learn-
ing (ECML).
Lehtiniemi, A. 2008. Evaluating supermusic: streaming
context-aware mobile music service. In Proceedings of the
2008 International Conference on Advances in Computer
Entertainment Technology, 314–321. ACM.
Liebman, E.; Saar-Tsechansky, M.; and Stone, P. 2015.
Dj-mc: A reinforcement-learning agent for music playlist
recommendation. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
591–599. International Foundation for Autonomous Agents
and Multiagent Systems.
Logan, B., and Salomon, A. 2001. A music similarity func-
tion based on signal analysis. In null, 190. IEEE.
Logan, B. 2002. Content-based playlist generation: Ex-
ploratory experiments. In ISMIR.
MacQueen, J., et al. 1967. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, 281–297. Oakland, CA, USA.
Maillet, F.; Eck, D.; Desjardins, G.; Lamere, P.; et al.
2009. Steerable playlist generation by learning song simi-
larity from radio station playlists. In ISMIR, 345–350.
McFee, B., and Lanckriet, G. R. 2011. The natural language
of playlists. In ISMIR, 537–542.
Pardalos, P. M., and Xue, J. 1994. The maximum clique
problem. Journal of global Optimization 4(3):301–328.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Taramigkou, M.; Bothos, E.; Christidis, K.; Apostolou, D.;
and Mentzas, G. 2013. Escape the bubble: Guided explo-
ration of music preferences for serendipity and novelty. In
Proceedings of the 7th ACM conference on Recommender
systems, 335–338. ACM.
Wang, X.; Wang, Y.; Hsu, D.; and Wang, Y. 2013. Ex-
ploration in interactive personalized music recommenda-
tion: A reinforcement learning approach. arXiv preprint
arXiv:1311.6355.
Zheleva, E.; Guiver, J.; Mendes Rodrigues, E.; and Milić-
Frayling, N. 2010. Statistical models of music-listening
sessions in social media. In Proceedings of the 19th inter-
national conference on World wide web, 1019–1028. ACM.

4720




