
The MPI+MPI programming model and
why we need shared-memory MPI libraries

Jeff Hammond

Extreme Scalability Group & Parallel Computing Lab
Intel Corporation (Portland, OR)

26 September 2014

Jeff Hammond MPI+MPI

Jeff Hammond MPI+MPI

Extreme Scalability Group Disclaimer

I work in Intel Labs and therefore don’t know anything about
Intel products.

I work for Intel, but I am not an official spokesman for Intel.
Hence anything I say are my words, not Intel’s. Furthermore, I
do not speak for my collaborators, whether they be inside or
outside Intel.

You may or may not be able to reproduce any performance
numbers I report.

Performance numbers for non-Intel platforms were obtained
by non-Intel people.

Hanlon’s Razor.

Jeff Hammond MPI+MPI

Abstract (for posterity)

The MPI-3 standard provides a portable interface to
interprocess shared-memory through the RMA
functionality. This allow applications to leverage
shared-memory programming within a strictly MPI
paradigm, which mitigates some of the challenges of
MPI+X programming using threads associated with
shared-by-default behavior and race conditions,
NUMA and Amdahl’s law. I will describe the MPI
shared-memory capability and how it might be
targeted by existing multithreaded libraries.

Jeff Hammond MPI+MPI

MPI-3

Jeff Hammond MPI+MPI

Quiz

What is MPI?
(A) A bulky, bulk-synchronous model.
(B) The programing model of Send-Recv.
(C) An explicit, CSP-like, private-address-space
programming model.
(D) An industry-standard runtime API
encapsulating 1-, 2- and N-sided blocking and
nonblocking communication and a whole bunch of
utility functions for library development.
(E) The assembling language of parallel computing!!

Jeff Hammond MPI+MPI

The MPI You Know

MPI Init(..);

MPI Comm size(..); MPI Comm rank(..);

MPI Barrier(..); MPI Bcast(..);

MPI Reduce(..); MPI Allreduce(..);

MPI Gather(..); MPI Allgather(..);

MPI Scatter(..); MPI Alltoall(..);

MPI Reduce scatter(..); MPI Reduce scatter block(..);

MPI Send(..); MPI Recv(..); /* [b,nb] x [r,s,b] */

...

MPI Finalize();

Jeff Hammond MPI+MPI

The MPI You Have Heard of But Don’t Use

MPI Ibarrier(..); MPI Ibcast(..);

MPI Ireduce(..); MPI Iallreduce(..);

MPI Igather(..); MPI Iallgather(..);

MPI Iscatter(..); MPI Ialltoall(..);

MPI Ireduce scatter(..);

MPI Ireduce scatter block(..);

Go forth a write bulk-asynchronous code!

Jeff Hammond MPI+MPI

The MPI You Don’t Know But Should

MPI Comm create group(..);

MPI Icomm dup(..);

...

MPI Dist graph create adjacent(..);

MPI Neighborhood allgather(..);

MPI Neighborhood allgatherv(..);

MPI Neighborhood alltoall(..);

Virtual topologies corresponding to algorithmic topology;
additional semantic information enables MPI to optimize.

Jeff Hammond MPI+MPI

The MPI You Don’t Know and Might Not Want To

Win create(..); Win allocate(..);

Win allocate shared(..); Win shared query(..);

Win create dynamic(..); Win attach(..);

Win detach(..);

Put(..); Get(..); Accumulate(..);

Fetch and op(..); Compare and swap(..);

Win lock(..); Win lock all(..);

Win flush(local)(all)(..); Win sync(..);

...

MPI-3 is a superset of ARMCI and OpenSHMEM. . .

http://wiki.mpich.org/armci-mpi/
https://github.com/jeffhammond/oshmpi/

Jeff Hammond MPI+MPI

http://wiki.mpich.org/armci-mpi/
https://github.com/jeffhammond/oshmpi/

Shared Memory implementations

What is MPI Win allocate shared(..)?

Historically, SysV shared memory used, but painfully.

POSIX shared memory good, but Windows, BSD/Mach. . .

In HPC, we have XPMEM (Cray and SGI). And BGQ. . .

MPI processes can be threads, in which case, all is shared.

The purpose of MPI is to standardize best practice!

Shared-memory is a “best practice.”

Jeff Hammond MPI+MPI

MPI-3 Shared Memory

Limitations:

Only defined for cache-coherent systems
(WIN MODEL=UNIFIED).

Allocated collectively.

Memory allocated contiguously by default.

Features:

It’s SHARED MEMORY: what don’t you love?

Works together with RMA ops (e.g. atomics).

Noncontiguous allocation upon request (hint).

Jeff Hammond MPI+MPI

MPI+X

Jeff Hammond MPI+MPI

The future is MPI+X (supposedly)

MPI+OpenMP is too often fork-join.

Pthreads scare people; can’t be used from Fortran (easily).

Intelr has Cilkr and TBB.

OpenCL is not a good model for application programmers
and has no magic for portable performance (since such
magic does not exist).

CUDAr is an X for only one type of hardware (ignoring
Ocelot).

Never confuse portability with portable performance!

Jeff Hammond MPI+MPI

Using MPI+OpenMP effectively

Private data should behave like MPI but with load-store
for comm.

Shared data leads to cache reuse but also false sharing.

NUMA is going to eat you alive. BG is a rare exception.

OpenMP offers little to no solution for NUMA.

If you do everything else right, Amdahl is going to get you.

Intranode Amdahl and NUMA are giving OpenMP a bad name;
fully rewritten hybrid codes that exploit affinity behave very
different from MPI codes evolved into MPI+OpenMP codes.

Jeff Hammond MPI+MPI

Fork-Join vs. Parallel-Serialize

Jeff Hammond MPI+MPI

Fork-Join vs. Parallel-Serialize

#pragma omp parallel

{
/* thread-safe */

#pragma omp single

/* thread-unsafe */

#pragma omp parallel for

/* threaded loops */

#pragma omp sections

/* threaded work */

}

/* thread-unsafe */

#pragma omp parallel for

{
/* threaded loops */

}
/* thread-unsafe */

#pragma omp parallel for

{
/* threaded loops */

}
/* thread-unsafe work */

Jeff Hammond MPI+MPI

NUMA

This is a toy DAXPY-like test I wrote for an ALCF tutorial. . .

> for n in 1e6 1e7 1e8 1e9 ; do ./numa.x $n ; done

n = 1000000 a: 0.009927 b: 0.009947

n = 10000000 a: 0.018938 b: 0.011763

n = 100000000 a: 0.123872 b: 0.072453

n = 1000000000 a: 0.915020 b: 0.811122

The first-order effect requires a multi-socket system.

For more complicated data access patterns, you may see this even
with parallel initialization.

Jeff Hammond MPI+MPI

MPI⊗X

Jeff Hammond MPI+MPI

MPI⊗X

Threads are independent, long-lived tasks in a shared
address space.

Threads all access MPI like they own it.

MPI THREAD MULTIPLE is non-trivial overhead.

Be sure you have a communicator per thread with
collectives. . .

If your low-level network stack is not thread-safe. . .

God help you if you want to mix more than one threading
model!1

1 See https://www.ieeetcsc.org/activities/blog/challenges_

for_interoperability_of_runtime_systems_in_scientific_

applications

Jeff Hammond MPI+MPI

https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications
https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications
https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications

MPI+MPI

Jeff Hammond MPI+MPI

Best of all worlds?

MPI-1 between nodes; MPI-Shm within the node. . .

Private by default; shared by request. Safe.

Memory affinity to each core; NUMA issues should be rare.

No fork-join - end-to-end parallel execution, just a question of
replicated or distributed (GA-like).

No need to reimplement any collectives.

Easily supports both task- and data-parallelism.

Hierarchy via MPI communicators.

One runtime to rule them all. No interop BS.

MPI THREAD SINGLE sufficient.

Jeff Hammond MPI+MPI

Why not MPI+MPI?

MPI shm allocation collective.

MPI shm allocator not malloc.

No cure for data races.

Data races not cured.

cured. races not Data

All the intranode libraries use threads!!!

Jeff Hammond MPI+MPI

MPI-Shm libraries 1

BLIS should be the first MPI-Shm library:

BLIS thread communicator maps perfectly to MPI
communicator.

Need to put BLIS communicator outside of API calls, but
that’s the only major change I can see.

Tyler’s implementation with OpenMP is trivially mapped
to MPI calls.

API refactoring for this is incredibly useful in threading
models for task-parallelism and batching.

Jeff Hammond MPI+MPI

MPI-Shm libraries 2

Elemental should be the second MPI-Shm library:

Does OpenMP really meet the needs of Elemental within
a node?

Lots of people don’t want to think about hybrid, just
MPI-only.

Elemental with MPI-Shm within node could compete with
threaded libraries and might beat them because of
well-known fork-join issues in LAPACK.

DistMatrix object hides all of the allocation issues
internally, as it’s already collective.

We have an MPI-3 RMA AXPY implementation as a
related proof-of-concept.

Jeff Hammond MPI+MPI

MPI is dead. Long live MPI!

Jeff Hammond MPI+MPI

Acknowledgements

Tyler Smith and Jed Brown, for explaining and
discussing thread communicators at length.

Jack Poulson, for Elemental discussions over the
years.

NUMA and Amdahl’s Law, for holding OpenMP
back and keeping MPI-only competitive in spite of
the ridiculous cost of Send-Recv within a
shared-memory domain.

Jeff Hammond MPI+MPI

