
The MPI+MPI programming model and
why we need shared-memory MPI libraries

Jeff Hammond

Extreme Scalability Group & Parallel Computing Lab
Intel Corporation (Portland, OR)

26 September 2014

Jeff Hammond MPI+MPI



Jeff Hammond MPI+MPI



Extreme Scalability Group Disclaimer

I work in Intel Labs and therefore don’t know anything about
Intel products.

I work for Intel, but I am not an official spokesman for Intel.
Hence anything I say are my words, not Intel’s. Furthermore, I
do not speak for my collaborators, whether they be inside or
outside Intel.

You may or may not be able to reproduce any performance
numbers I report.

Performance numbers for non-Intel platforms were obtained
by non-Intel people.

Hanlon’s Razor.
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Abstract (for posterity)

The MPI-3 standard provides a portable interface to
interprocess shared-memory through the RMA
functionality. This allow applications to leverage
shared-memory programming within a strictly MPI
paradigm, which mitigates some of the challenges of
MPI+X programming using threads associated with
shared-by-default behavior and race conditions,
NUMA and Amdahl’s law. I will describe the MPI
shared-memory capability and how it might be
targeted by existing multithreaded libraries.
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MPI-3
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Quiz

What is MPI?
(A) A bulky, bulk-synchronous model.
(B) The programing model of Send-Recv.
(C) An explicit, CSP-like, private-address-space
programming model.
(D) An industry-standard runtime API
encapsulating 1-, 2- and N-sided blocking and
nonblocking communication and a whole bunch of
utility functions for library development.
(E) The assembling language of parallel computing!!
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The MPI You Know

MPI Init(..);

MPI Comm size(..); MPI Comm rank(..);

MPI Barrier(..); MPI Bcast(..);

MPI Reduce(..); MPI Allreduce(..);

MPI Gather(..); MPI Allgather(..);

MPI Scatter(..); MPI Alltoall(..);

MPI Reduce scatter(..); MPI Reduce scatter block(..);

MPI Send(..); MPI Recv(..); /* [b,nb] x [r,s,b] */

...

MPI Finalize();
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The MPI You Have Heard of But Don’t Use

MPI Ibarrier(..); MPI Ibcast(..);

MPI Ireduce(..); MPI Iallreduce(..);

MPI Igather(..); MPI Iallgather(..);

MPI Iscatter(..); MPI Ialltoall(..);

MPI Ireduce scatter(..);

MPI Ireduce scatter block(..);

Go forth a write bulk-asynchronous code!
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The MPI You Don’t Know But Should

MPI Comm create group(..);

MPI Icomm dup(..);

...

MPI Dist graph create adjacent(..);

MPI Neighborhood allgather(..);

MPI Neighborhood allgatherv(..);

MPI Neighborhood alltoall(..);

Virtual topologies corresponding to algorithmic topology;
additional semantic information enables MPI to optimize.
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The MPI You Don’t Know and Might Not Want To

Win create(..); Win allocate(..);

Win allocate shared(..); Win shared query(..);

Win create dynamic(..); Win attach(..);

Win detach(..);

Put(..); Get(..); Accumulate(..);

Fetch and op(..); Compare and swap(..);

Win lock(..); Win lock all(..);

Win flush( local)( all)(..); Win sync(..);

...

MPI-3 is a superset of ARMCI and OpenSHMEM. . .

http://wiki.mpich.org/armci-mpi/
https://github.com/jeffhammond/oshmpi/
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Shared Memory implementations

What is MPI Win allocate shared(..)?

Historically, SysV shared memory used, but painfully.

POSIX shared memory good, but Windows, BSD/Mach. . .

In HPC, we have XPMEM (Cray and SGI). And BGQ. . .

MPI processes can be threads, in which case, all is shared.

The purpose of MPI is to standardize best practice!

Shared-memory is a “best practice.”
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MPI-3 Shared Memory

Limitations:

Only defined for cache-coherent systems
(WIN MODEL=UNIFIED).

Allocated collectively.

Memory allocated contiguously by default.

Features:

It’s SHARED MEMORY: what don’t you love?

Works together with RMA ops (e.g. atomics).

Noncontiguous allocation upon request (hint).
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MPI+X
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The future is MPI+X (supposedly)

MPI+OpenMP is too often fork-join.

Pthreads scare people; can’t be used from Fortran (easily).

Intelr has Cilkr and TBB.

OpenCL is not a good model for application programmers
and has no magic for portable performance (since such
magic does not exist).

CUDAr is an X for only one type of hardware (ignoring
Ocelot).

Never confuse portability with portable performance!
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Using MPI+OpenMP effectively

Private data should behave like MPI but with load-store
for comm.

Shared data leads to cache reuse but also false sharing.

NUMA is going to eat you alive. BG is a rare exception.

OpenMP offers little to no solution for NUMA.

If you do everything else right, Amdahl is going to get you.

Intranode Amdahl and NUMA are giving OpenMP a bad name;
fully rewritten hybrid codes that exploit affinity behave very
different from MPI codes evolved into MPI+OpenMP codes.
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Fork-Join vs. Parallel-Serialize
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Fork-Join vs. Parallel-Serialize

#pragma omp parallel

{
/* thread-safe */

#pragma omp single

/* thread-unsafe */

#pragma omp parallel for

/* threaded loops */

#pragma omp sections

/* threaded work */

}

/* thread-unsafe */

#pragma omp parallel for

{
/* threaded loops */

}
/* thread-unsafe */

#pragma omp parallel for

{
/* threaded loops */

}
/* thread-unsafe work */
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NUMA

This is a toy DAXPY-like test I wrote for an ALCF tutorial. . .

> for n in 1e6 1e7 1e8 1e9 ; do ./numa.x $n ; done

n = 1000000 a: 0.009927 b: 0.009947

n = 10000000 a: 0.018938 b: 0.011763

n = 100000000 a: 0.123872 b: 0.072453

n = 1000000000 a: 0.915020 b: 0.811122

The first-order effect requires a multi-socket system.

For more complicated data access patterns, you may see this even
with parallel initialization.
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MPI⊗X
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MPI⊗X

Threads are independent, long-lived tasks in a shared
address space.

Threads all access MPI like they own it.

MPI THREAD MULTIPLE is non-trivial overhead.

Be sure you have a communicator per thread with
collectives. . .

If your low-level network stack is not thread-safe. . .

God help you if you want to mix more than one threading
model!1

1 See https://www.ieeetcsc.org/activities/blog/challenges_

for_interoperability_of_runtime_systems_in_scientific_

applications
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MPI+MPI
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Best of all worlds?

MPI-1 between nodes; MPI-Shm within the node. . .

Private by default; shared by request. Safe.

Memory affinity to each core; NUMA issues should be rare.

No fork-join - end-to-end parallel execution, just a question of
replicated or distributed (GA-like).

No need to reimplement any collectives.

Easily supports both task- and data-parallelism.

Hierarchy via MPI communicators.

One runtime to rule them all. No interop BS.

MPI THREAD SINGLE sufficient.
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Why not MPI+MPI?

MPI shm allocation collective.

MPI shm allocator not malloc.

No cure for data races.

Data races not cured.

cured. races not Data

All the intranode libraries use threads!!!
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MPI-Shm libraries 1

BLIS should be the first MPI-Shm library:

BLIS thread communicator maps perfectly to MPI
communicator.

Need to put BLIS communicator outside of API calls, but
that’s the only major change I can see.

Tyler’s implementation with OpenMP is trivially mapped
to MPI calls.

API refactoring for this is incredibly useful in threading
models for task-parallelism and batching.
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MPI-Shm libraries 2

Elemental should be the second MPI-Shm library:

Does OpenMP really meet the needs of Elemental within
a node?

Lots of people don’t want to think about hybrid, just
MPI-only.

Elemental with MPI-Shm within node could compete with
threaded libraries and might beat them because of
well-known fork-join issues in LAPACK.

DistMatrix object hides all of the allocation issues
internally, as it’s already collective.

We have an MPI-3 RMA AXPY implementation as a
related proof-of-concept.
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MPI is dead. Long live MPI!
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