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- N-body Problems
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https://youtu.be/bLLWkx_MRfk

- N-body Problems

® N-body problems aim to describe the interaction
(relation) of N points { X } in a d dimensional space.

® K(xi, xj) = Kij describes the interaction between x; and x;.

® 3 operations: Kernel Summation u=Kw, Kernel Inversion
w=(K+\l)-'u and Nearest-Neighbors.

® 2D and 3D applications can be found in computational
physics, geophysical exploration and medical imaging.

® High dimension applications in computational statistic
include clustering, classification and regression.

Copyright @ 2015, The University of Texas at Austin



W MKL+STL ™ GSKNN

516 1028

Dimension 10 cores Ivy-Bridge, 8192 points
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- QOutline

® Kernel Summation (u=Kw) and Nearest-Neighbors.
® How GEMM is applied in the conventional approach?
e \Why GEMM can be memory bound in these operations?

® What insight is required to design an algorithm that
avoids redundant memory operations but still preserves
the efficiency?

® How G6KS and GSKINN are inspired by the BLIS
framework in their design?
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Linear Kernel: K(x, xj) = xiTx;

Kernel Summation Kw

Nearest-Neighbors

Copyright @ 2015, The University of Texas at Austin



Other Kernels

K(xi, xj) = f(xi"x;), e.g. Gaussian kernel
K(xi,25) = exp(—||z; — x5/ (2h%))

The expansion exposes GEMM operations:

|2 — 5l13 = llill3 + [lz;]l3 — 227 =;

X1TX1| 2 2 01
XzTX2 0 0O 0 O
X3TX3 1 . 0| 1 !
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The Big Picture

® Kw takes O(N?) if K is precomputed, otherwise O(dN?).
The cost is too expensive when N is large.

® Exhaustive search requires O(N?log(k)) if K is
precomputed, otherwise O(dN?+N?log(k)).

® Divide-and-conquer approximation: Barnes-Hut or FIMIM
for kernel summation, and randomized KD-tree or
locality sensitive hashing for kNN.

® Still the subproblem of all these algorithms is to solve
several smaller dense kernel summation or kNN.

® Solving the subproblem fast benefits all these methods.
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Subproblem . .....................

® Take two subsets Q and R from X.

® Compute K(Q,R) with GEMM using: 4 132 516

|2 — 5l13 = llill3 + [lz;]l3 — 227 =;

e Compute Kw with GEMV or select k entries in each row.

® Rely on BLAS, VML (Vectorized Math Library) and STL.

® \What can possibly go wrong?
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- Visualization

QT R

mxk
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~Insights

® Q, Rand K can’t be stored.

® Collet Q and R from X during packing.
® K(xi, xj) = Kij must be computed in registers.

® Kw or k-select must be completed in reqisters.

® Only store the output. .e.

® \We need a special packing routine.

® Fuse GEMM with distance calculations, special function
evaluations, Kw or k-select.
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- Code Fusion in BLIS sfice and Dice!

Code fusion is done in micro-kernel,
and the BLIS framework is maintained.

neighbor lists
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~ GSKNN and BLIS (K=Q'R)
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- Micro-Kernel

LOAD 0

LOAD R

FMA Q, R, C03 0 :@
SHUFFLE -
FMA Q, R, €03 1 E
PERMUTEZ2F128 ——
FMA Q, R, C03 2 E%i
SHUFFLE —
FMA Q, R, CO03 3 g
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- Micro-Kernel

LOAD 0

LOAD R

FMA Q, R, C03 0 Egﬂ

SHUFFLE e e

FMA Q, R, C03 1 Zzﬂ 104l 111
PERMUTE2F128 —_
FMA Q, R, CO3 2 E%ﬂ E%]Z%ﬂ
SHUFFLE — —_
FMA Q, R, CO3 3 Q _3_‘2_! E
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- Micro-Kernel

LOAD Q
LOAD R
FMA Q
SHUFFLE

FMA Q, R, C03 1
PERMUTE2F128

FMA Q, R, CO3 2
SHUFFLE

FMA Q, R, CO3 3

, R, C03 0
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~ Micro-Kernel

LOAD 0
LOAD R
F'MA o)
SHUFFLE

EF'MA 0,
PERMUTEZ2F128
EF'MA o}
SHUFFLE

FMA 0,

4

C03 0
co3 1
C03_2

C03_3
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- Micro-Kernel with p-norm

l-norm

SUB

AND (flip signed bit
LOAD Q ADD o )
LOAD R
FMA Q, R, C03 0 inf-norm
SHUFFLE SUB
FMA Q, R, C03 1 AND (flip signed bit)
PERMUTE2F128 MAX
FMA Q, R, C03 2
SHUFFLE p—norm
FMA Q, R, C03 3 SUB

pow (SVML)

ADD
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Vectorized Math Functions

® With a high precision (20 digits in decimal), Remez
exchange algorithm can generate an 11 order near
minimax polynomial with 1E-18 relative error.

= 1ADD + 11FMA

p (x) —exp (x)
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- Vectorized Max Heap

LOAD C
SHUFFLE D, C, 0xb5
MAX D, C
. PERMUTE2F128 C, D, 0xl
;% MAX D, C

Find the max child
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- GoKs Efficiency Analysis

T =Tgsks+Tr+ T+ Tk
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GSKNN Efficiy Graphs

Variant#1, m=n=81¢2, k=16 45 1, Nthd=10, m=n=8192, k=16
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- Conclusion

® The GEMM approach in N-body problems is a good

example to show the current BLAS library is lacking
flexibility for lower level integration.

® The algorithmic innovation of 6K and GSKNN is to

break through the interface, seeking for the lowest
memory complexity.

® We exploit these observations with the help of the BLIS
framework.

® Ongoing work includes other operations. e.g. kernel
inversion, k-meaning clustering. Port to GPU and other
accelerators.
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Question?

GSKS GSKNIN

githubf@om/ChenhanYu/ks github.com/ChenhanYu/rnn
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