“igh-Performance 'nachine learning Primitives

High Performance Computing Kernels in N-body Problems

Chenhan D. Yu

ﬂ-[ggfﬁ ‘em
orns

Copyright @ 2017, The University of Texas at Austin




- This year ...

I am on the job market.

Both academia and industry
positions are very welcome!
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- The Spirit of HMLP

O(2mnk) FLOPS, O(mn+mk+kn) MOPS,
~ 95% PEAK, if k is large enough (k > 1*KC )
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N-body Operators . c., o

Describing the “interactions X" between data points

N-by-N interactions N query points N reference points
in a k-dimensional
feature space
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bottleneck O(mn) O(mk) O(kn)
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- Learning = Less Outputs

Instead, we need some kind of reduction of C.
e.g. select r columns (nearest neighbors) [SC’15]

not :
stored :
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- Spatial Reduction

Instead, we need some kind of reduction of C.
e.g. pool each 3-by-3 block (convolution + pooling layer)

not :
stored :

X_

O(mk) O(kn)
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Generalization

These memory reduction schemes require a
more flexible interface than GEMM

C ZA\BLJA
0(C)s: = a(.A )it @) B(B)

GEMM-lIke generallzatlon [GraphBLAS]
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- N-body Computation Primitives

<typename TC> <typename TA> <typename TB>

t t t
0(C)i. = @ KD a(A)ir Q) B(B)x;)
i

l o |

packing routines to kxt?acté(reorder) A,EB, C into matrices

v v

semi-ring operators <TA, TB> -> <TV>
.Y .
: kernel function <TV> -> <TC>
v
reduction operator <TC, TC> -> <TC>
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BLIS (Framework + Kernel)

<typename TC> <typename TA>w<typename TB>

H(C @K(@ a<A>zk®/3<B>k]>

microkernel semi-ring operators <TA, TB> -> <TV>

kernel function <TV> -> <TC>

reduction operator <TC, TC> -> <TC>

Preserve the BLIS structure (the Goto algorithm)
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Worry About Optimization?

<typename TC> <typename TA>w<typename TB>

e«: Qlc @awh@@(%)

Reduce storage and slow memory complexity by O(mk+kn)

BLIS microkernel semi-ring operators <TA, TB> -> <TV>

kernel function <TV> -> <TC>

Reuse registers C

reduction operator <TC, TC> -> <TC>

Reduce storage and slow memory complexity by O(mn)

Reduce loads/stores from O(mc*nc) to O(mc)
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- Gesture Recognition
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Classification
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- Kernel Density Estimation

Training

Evaluation
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Portable Performance*

. 36
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Still O(kN2) does not
scale when N is large!

4 20 36 68 132 260

Dimension (k in GEMM)
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ApprOXi mation [SC’15,’17, KDD’15, IPDPS’15-’17, SISC]
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- The Largest Problem?

For example, | systematically discover low-rank and

sparse matrix structures such that | can tuvert a
32M-by-32ZM kernel matrix in 10 seconds but not 3 years.

*Note: Direct MATVEC on a 32ZMx32M matrix takes
120 minutes using 3,072 Haswell cores. Cholesky
factorization takes 2.8 years fo complete,
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More Primitives

k-Nearest Neighbors (Sandy-Bridge)

------------------------------------------------------------------------------------------------------------------------------------

I MKL+STL :
N GSKNN '
- GN;U -03

4 20 36 68 132 260 516 1028
Dimension (k)
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CONV2D (Qualcomm S820)

------------------------------------------------------------------------------------

:l Vanilla QSML(SGEMM)
l HMLP conv2d i
:- Tens:;or w(Elgen)

................................................................

.......................................

'
_______
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CONV1 CONV2 CONV3 CONV4 CONV5
AlexNet Layer
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Thank You!
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