I/O Lower Bounds and Algorithms for Matrix-Matrix Multiplication

Tyler M. Smith

July 5, 2017
Dense matrix-matrix multiplication (MMM)

Goal: Reduce I/O cost for machines with hierarchical memory

Novel contributions:

- I/O lower bounds with a tight constant $\frac{2mnk}{\sqrt{S}}$
- A family of algorithms for machines with any number of levels of memory hierarchy
- Outperform the state-of-the-art Goto’s Algorithm by 38% when there is low bandwidth to main memory
Problem definition

- Classical MMM
 - $C += AB$
 - C is $m \times n$, A is $m \times k$, and B is $k \times n$
- Reduce I/O cost for MMM algorithms
Blocked algorithms

- MMM is an operation with a lot of opportunities for reuse
 - Each element of A is used n times
 - Each element of B is used m times
 - Each element of C is used k times
- With $O(n^2)$ elements, one can perform $O(n^3)$ flops
 - If all matrices fit into fast memory, amortize $O(n^2)$ memops with $O(n^3)$ flops
- Work with blocks of matrices at a time, where the blocks can fit into fast memory
Building blocks of dense linear algebra

- MMM is the bottom of the food chain
- Level-3 BLAS
- LAPACK/FLAME
- ScaLAPACK/Elemental
Outline

- Introduction
- State-of-the-art MMM
 - Goto’s Algorithm
- Lower bounds
- Algorithms
- Experiments
Goto’s Algorithm
Goto's Algorithm

\[C_j \text{ for } \{T_n \} \cap \{C\} \]

\[A \text{ for } \{T_n \} \cap \{A\} \]

\[B_j \text{ for } \{T_n \} \cap \{B\} \]

L2 cache

L1 cache

L3 cache

main memory

registers
Goto’s Algorithm

5th loop around micro-kernel

\[C_j + A + B_j \]

4th loop around micro-kernel

\[C_j + A_p + B_p \]

Pack \(B_p \rightarrow \tilde{B}_p \)

- \(n_c \) registers
- \(L3 \) cache
- Main memory
- \(L1 \) cache
- \(L2 \) cache

Legend:
- Red: registers
- Purple: \(L3 \) cache
- Green: \(L2 \) cache
- Blue: \(L1 \) cache
- Gray: main memory
Goto’s Algorithm
Goto’s Algorithm
Goto’s Algorithm
Goto’s Algorithm

5th loop around micro-kernel

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around micro-kernel

main memory

L3 cache

L2 cache

L1 cache

registers

micro-kernel

n_c

C_j

+=

A

B_j

n_c

m_R

C_i

+=

A_j

m_c

B_p

Pack B_p → B̃_p

n_R

m_R

C_j

+=

A_j

m_c

Pack A_j → Ã_j

m_R

m_R

m_R

+=

1

1

1

1 Rash
I/O cost of Goto’s Algorithm

- Reuse dictates the I/O cost for Goto’s Algorithm
- Each time an element is read from main memory:
 - An element of A is reused n_c times
 - An element of B is reused m times
 - An element of C is reused k_c times
- Overall I/O costs of:
 - A: $\frac{mnk}{n_c}$
 - B: $\frac{mnk}{m}$
 - C: $\frac{mnk}{k_c}$
Roofline model

4 core Intel i7-7700k

Goto's Algorithm

Roofline model

GFLOPS

flops per byte

Roofline
Roofline model

Bandwidth to main memory: 51.2 GB/s

Bandwidth to main memory: 6.4 GB/s

Goto’s Algorithm

Goto’s Algorithm

Roofline
Outline

- Introduction
- State-of-the-art MMM
- Lower bounds
- Algorithms
- Experiments
I/O lower bounds

- Theoretical minimum I/O cost for an operation
- We want to find the greatest I/O lower bound
- Model of computation
 - 2 layers of memory: slow and fast
 - Slow memory has unlimited capacity
 - Fast memory has capacity S
 - Data must be in fast memory before computing with it
Related work

- Hong and Kung (1981)
 - I/O lower bound: $\Omega \left(\frac{mnk}{\sqrt{S}} \right)$

- Irony, Toledo, and Tiskin (2004)
 - I/O lower bound: $\frac{mnk}{2\sqrt{2}\sqrt{S}}$
 - With a little calculus this can be improved to $\frac{mnk}{\sqrt{S}}$

- Tyler Smith, Robert van de Geijn, Bradley Lowery, and Julien Langou (2017)
 - I/O lower bound $\frac{2mnk}{\sqrt{S}}$
 - Under submission at ACM TOMS
Lower bound strategy

- Consider any algorithm for MMM
- Break the algorithm into phases
 - Each phase has an I/O cost of exactly S \(^1\)
- If there must be at least h phases, and each phase has an I/O cost of S, the overall I/O cost must be at least Sh.
- Determine minimum number of phases
 - Let F be an upper bound on the multiplications during a phase
 - There are mnk total multiplications during MMM
 - There must be at least $\frac{mnk}{F}$ phases
 - Determine F based on the number of elements available
 - Each phase: $2S$ elements available as inputs and $2S$ elements available as outputs

\(^1\)except the last
Upper bound on elementary multiplications in a phase
Irony, Toledo, and Tiskin (2004)

- Inequality from Loomis and Whitney (1949)
 - Using N_A, N_B, and N_C elements of A, B, and C
 - Can perform at most $\sqrt{N_A N_B N_C}$ multiplications
- At most $2S$ elements available as inputs, and $2S$ elements available as outputs
 - $N_A \leq 2S$, $N_B \leq 2S$, and $N_C \leq 2S$
- At most $\sqrt{8S^3} = (2\sqrt{2}) (S \sqrt{S})$ multiplications in a phase
- Gives an overall lower bound of $\frac{1}{2\sqrt{2}} \frac{mnk}{\sqrt{S}}$
Improving the lower bound

- Assume we perform FMAs instead of elementary multiplications
 - In an FMA, elements of A, B, and C are all inputs
 - We can reason about the input cost of C
- What if we generalize the I/O cost of each phase?
 - Each phase can have $S + M$ inputs and $S + M$ outputs
 - This adds a degree of freedom to our lower bound
Upper bound on FMAs during a phase

- There are at most $S + M$ inputs
 - $N_A + N_B + N_C \leq S + M$
- We again use the Loomis-Whitney inequality
- Maximize $\sqrt{N_A N_B N_C}$ when $N_A + N_B + N_C = S + M$
- Maximized when $N_A = N_B = N_C$
- Then our lower bound is $\frac{3\sqrt{3}Mmnk}{(S+M)\sqrt{S+M}}$
- Finding the greatest lower bound
 - Maximizing over M, this occurs when $M = 2S$
 - The greatest lower bound is $\frac{2mnk}{\sqrt{S}}$
Roofline model

Bandwidth to main memory: 51.2 GB/s

Bandwidth to main memory: 6.4 GB/s
Outline

- Introduction
- State-of-the-art MMM
- Lower bounds
- **Algorithms**
 - Single level of cache
 - Multiple levels of cache
- Experiments
Resident C

\[C + A = B \]
Resident C
Partition m dimension

\[m_c \]
Resident C
Partition n dimension
Resident C

Move $m_c \times n_c$ block of C into fast memory
Resident C

Stream panels of A and B from slow memory
Resident C

Partition k dimension

\[m_c \}
\[n_c \]

\[+ = \]

1

\[\hat{\sim} \]

\[\text{Diagram showing partitioning of } m_c \text{ and } n_c \text{ in the context of Resident C.} \]
Resident C
Move vectors into fast memory
I/O cost for Resident C

- I/O cost per block dot product:
 - $C_{i,j}$: $m_c n_c$ reads and $m_c n_c$ writes.
 - A_{i}: $m_c k$ reads.
 - B_{j}: $k n_c$ reads.

- Total I/O cost:
 - C: $m n$ reads and $m n$ writes.
 - A: $\frac{mnk}{n_c}$ reads.
 - B: $\frac{mnk}{m_c}$ reads.
Choosing blocksizes for Resident C

- If $m_c \approx n_c \approx \sqrt{S}$
- Total I/O cost:
 - $C: mn$ reads and mn writes.
 - $A: \frac{mnk}{\sqrt{S}}$ reads.
 - $B: \frac{mnk}{\sqrt{S}}$ reads.
- If m, n, k are large and we can ignore lower ordered terms
 - I/O cost is $\frac{2mnk}{\sqrt{S}}$
 - Same as lower bound
Three algorithms

Resident C

Resident B

Resident A

Data in cache.
Data in main memory.
Resident A, B, and C algorithms in Goto’s Algorithm
Algorithms for multiple levels of cache

- Suppose we have 2 levels of cache: L_2 and L_1
- We have 3 algorithms
 - Resident A, Resident B, and Resident C
 - Each is associated with a shape of MMM
- Suppose we have one of those shapes at the L_2 level
- Then how do we also encounter one at the L_1 level?
 - We can do it with two loops
Resident C at the L_2 cache

Resident block of L_2 cache.
\(L_1\) outer loop

Partition \(k\) dimension

Resident block of \(L_2\) cache.
L_1 outer loop

Partition k dimension

Resident block of L_2 cache.
L_1 inner loop

Partition either m or n direction

Resident block of L_2 cache.
L_1 inner loop
Partition either m or n direction

- Resident block of L_2 cache.
- Resident block of L_1 cache.
L_1 inner loop

Partition either m or n direction

- **Resident block of L_2 cache.**
- **Guest panel of L_2 cache.**
- **Resident block of L_1 cache.**
Resident A at the L_2 cache

Resident block of L_2 cache.

Guest panel of L_2 cache.

Resident block of L_1 cache.
Resident B at the L_2 cache

- Resident block of L_2 cache.
- Guest panel of L_2 cache.
- Resident block of L_1 cache.
Families of algorithms

- We start out with one of the three shapes at the L_h cache
- With 2 loops, we have one of the other two shapes at the L_{h-1} cache
- Repeat the process for subsequent levels of cache
- We name algorithms based on the resident matrix at each level of cache
 - e.g. $B_3A_2C_1$
Tradeoffs

- Blocking for L_{h-1} cache means more data must fit into L_h
- For LRU caches, all elements used during one iteration of the L_{h-1} outer loop must fit into the L_h cache
- For ideal caches, the L_h resident matrix and L_h guest matrix must fit into the L_h cache
- This increases L_h I/O cost
 - Depends on the ratio between S_h and S_{h-1}
What if it’s not worth optimizing for both levels of cache?

- One option is to use smaller block sizes for the L_{h-1} cache.
- Skipping a level of cache
 - Optimize for the L_h and L_{h-2} caches.
 - Under the right circumstances, the L_h guest matrix can be placed in the L_{h-1} cache.
 - We can think of Goto’s Algorithm as “skipping” the L_3 and L_1 caches.
 - We can call Goto’s Algorithm “A_2C_R”
Outline

- Introduction
- State-of-the-art MMM
- Lower bounds
- Algorithms
- Experiments
Experimental setup

- Custom-built PC with an unlocked CPU and enthusiast motherboard
- Vary BCLK, CPU multiplier, and the memory multiplier to change system characteristics
- System Details
 - Intel i7-7700K CPU
 - 4 core
 - Hyperthreading disabled
 - Turbomode disabled, CPU set to 4.2 GHz
- Hypothesis: If we reduce bandwidth to main memory, algorithms that better utilize the last level cache become more efficient than those that do not.
MOMMS

- Multilevel Optimized Matrix-matrix Multiplication Sandbox
- Framework written in Rust
- Use composition to instantiate different algorithms for MMM
Algorithms for an Intel i7-7700K

B₃A₂ Algorithm
- Partition n with blocksize 768
- Partition k with blocksize 768
- Partition m with blocksize 120
- Partition k with blocksize 192

Goto’s Algorithm
- Partition n with blocksize 3000
- Partition k with blocksize 192
- Partition m with blocksize 120

- Inner kernel

Block is reused in L3 cache.
Block is reused in L2 cache.
Roofline model

51.2 GB/s (2 channels of DDR4 3200 RAM)

6.4 GB/s (1 channel of DDR4 800 RAM)
Varying bandwidth for the i7-7700K

6.4 GB/s

9.6 GB/s

12.8 GB/s

51.2 GB/s

m = n = k

m = n = k

m = n = k

m = n = k
Algorithms for an Intel i7-7700K

A_3B_2 Algorithm
- Partition m with blocksize 768
- Partition k with blocksize 768
- Partition n with blocksize 120
- Partition k with blocksize 192
- Inner kernel

C_3A_2 Algorithm
- Partition n dimension with blocksize 624
- Partition m dimension with blocksize 624
- Partition k dimension with blocksize 156
- Inner kernel

Block is reused in L3 cache.
Block is reused in L2 cache.
Different shapes of MMM

Square

\[m = k = 600 \]

\[n = k = 600 \]

\[m = 600 \]

\[n = 600 \]

\[m = n = k \]

\[m = n = 600 \]

\[k = 600 \]

\[m = n \]

- MOMMS Goto (A_2)
- MOMMS A_3B_2
- MOMMS B_3A_2
- MOMMS C_3A_2
Comparing with other implementations for the i7-7700K

- 6.4 GB/s
- 51.2 GB/s

The diagrams illustrate the performance comparison between different implementations, with the x-axis representing \(m = n = k \) and the y-axis showing GFLOPS.
Conclusion

- New lower bounds
 - We can reason about the optimality of algorithms
- A new family of algorithms
 - Better L3 cache utilization
 - We know how to use further levels of the memory hierarchy (L4, out of core, etc)
- Future work
 - Parallelization
 - Algorithms for other operations (rest of the level-3 BLAS, matrix factorizations, etc)
Thank you!
Questions?

- Tyler M. Smith
- tms@cs.utexas.edu
- MOMMS can be found at github.com/tlrmchlsmth/momms
Backup
Tradeoffs

I/O cost relative to lower bound for different scenarios

- LRU L_h, optimizing for L_h and L_{h-1}.
- Best case optimizing for L_h and L_{h-1}.
- Blocking for only L_{h-1}.

Relative I/O cost

$S_3 : S_1$

$S_3 : S_2$

$S_3 : (4S_2)$

S_{h-1} / S_h
Let’s look at the I/O cost of C

- Each element of C is involved in k flops
- k_c flops accumulated into an element of C each time it is read and written from main memory
- Each element of C is read and written to and from main memory $\frac{k}{k_c}$ times.

I/O cost of $\frac{2mnk}{k_c}$

Can analyze I/O cost of A and B similarly

- I/O cost of A is $\frac{mnk}{n_c}$
- I/O cost of B can be amortized completely
An algorithm for an Intel i7-5775C

C_4A_2 Algorithm

Partition m dimension with blocksize 3600

Partition n dimension with blocksize 3600

Partition k dimension with blocksize 192

Partition m dimension with blocksize 120

Inner kernel

Block is reused in L4 cache.
Block is reused in L3 cache.
Block is reused in L2 cache.
Varying bandwidth for the i7-5775C

- 6.4 GB/s
- 8.53 GB/s
- 10.66 GB/s
- 38.4 GB/s
Comparing with other implementations for the i7-5775C

![Graph 1: 6.4 GB/s](image1)

- MOMMS Goto (A_2)
- MOMMS C_4A_2
- BLIS
- MKL

![Graph 2: 38.4 GB/s](image2)
Upper bound on FMAs during a phase with I/O cost S

- Again, we will use the Loomis-Whitney Inequality
- In MMM, A, B, and C are inputs
- There are at most $2S$ inputs
 - $N_A + N_B + N_C \leq 2S$
 - $\sqrt{N_A N_B N_C} \leq \sqrt{xyz}$ for some $x, y, z \in \mathbb{R}$
 - $x + y + z = 2S$
- Maximize \sqrt{xyz} under the constraint $x + y + z = 2S$
 - $x = y = z = \frac{2S}{3}$
- $F = \frac{2\sqrt{2}}{3\sqrt{3}} S \sqrt{S}$
- Then our lower bound is $S \left(\frac{3\sqrt{3}}{2\sqrt{2}} \frac{mnk}{S \sqrt{S}} - 1 \right)$
- Or: $\frac{3\sqrt{3}}{2\sqrt{2}} \frac{mnk}{\sqrt{S}} - S = \frac{1.837mnk}{\sqrt{S}} - S$
Analysis of ATLAS
Whaley, Petitet, and Dongarra (2001)

```
for ( j = 0; j < N - 1; j += NB )
{
    for ( i = 0; i < M - 1; i += NB )
    {
        for ( p = 0; p < K - 1; p += NB )
        {
            ON_CHIP_MATMUL( A[i:i+NB][p:p+NB],
                             B[p:p+NB][j:j+NB],
                             C[i:i+NB][j:j+NB] );
        }
    }
}
```
Analysis of ATLAS
Whaley, Petitet, and Dongarra (2001)

Figure 1: One step of matrix-matrix multiply

- Inner-kernel is an \(n_b \times n_b \times n_b \) MMM
 - Fills the L1 cache with a square block of \(A \) or \(B \)
 - Streams the other two matrices
- The next inner-kernel invocation uses the same block of \(C \), different \(A \) and \(B \).
- Each element of \(A \), \(B \), and \(C \) reused in cache \(n_b \) times
- I/O cost for each of \(A \), \(B \), and \(C \) is \(\frac{mnk}{\sqrt{S_1}} \)
- Overall cost is roughly \(\frac{3mnk}{\sqrt{S_1}} \)