

Linear algebra in ab initio computational chemistry

Evgeny Epifanovsky

September 18, 2018

Atomistic simulations in chemistry:

- Molecular mechanics methods (structure and properties of large molecules)
- Plane-wave electronic structure methods (periodic infinite systems, e.g. crystals)
- Gaussian-basis electronic structure methods (finite molecular structures)

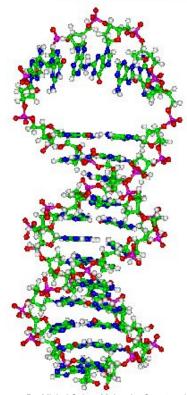


Image: Dr. Michal Sabat, Molecular Structure Laboratory, Department of Chemistry, University of Virginia

What is Q-Chem?

Established in 1993, first release in 1997.

Commerc	cially supported software	Development platform	
Q-Chem	3.0 (2006)	Supported infrastructure for	
	4.0 (2012)	state-of-the-art quantum chemistry	
	4.1 (2013) 4.2 (2014)		
	4.3 (2015) 4.4 (2016)	Open source for developers	
	5.0 (2017)		
	5.1 (2018)	> 200 contributors (Q-Chem 5)	

Computational kernels prevalent in typical quantum chemistry simulations

		Other	MV	MM	Tensor	Examples
DFT	Coulomb	100%				$J_{ij} = V_{ijkl} P_{kl}$
	DF Coulomb	70%	30%			M_{pq} $X_q = V_{ijp}P_{ij}M_{pq}$ $J_{ij} = X_q V_{ijq}$
	Exchange	90%			10%	$K_{ik} = V_{ijkl} P_{jl}$
	DF Exchange	10%		90%		$K_{ik} = B_{ijp} B_{kjp}$
	XC	50%		50%		$P_i = D_{mn} X_{mi} X_{ni}$ $G_{mn} = F_i X_{mi} X_{ni}$
RI-MP2		10%		90%		$T_{ijab} = B_{iap}B_{jbp} - B_{ibp}B_{jap}$
CCSD(T)		40%			60%	$T_{ijkabc} = V_{kdab} Z_{ijcd}$