
Mixing	domains	and	precisions	
in	BLIS:	Ini5al	thoughts	

Field	G.	Van	Zee	
Science	of	High	Performance	Compu:ng	

The	University	of	Texas	at	Aus:n	
	



The	Problem	

•  gemm	
– 𝐶 :=𝛽𝐶+𝛼𝐴𝐵	

•  Let’s	simplify	by	omiFng	scalars	
– 𝐶 :=𝐶+𝐴𝐵	

•  Recall:	BLAS	requires	A,	B,	and	C	to	be	stored	as	the	
same	datatype	(precision	and	domain)	
–  single	real,	double	real,	single	complex,	double	complex	

•  What	if	we	could	liP	this	constraint?	



The	Precedent	
•  gemm	

–  𝐶 :=𝛽𝐶+𝛼𝐴𝐵	
•  BLAS	requires	

–  A,	B,	and	C	to	be	column-stored	
•  CBLAS	requires	

–  A,	B,	and	C	to	be	column-stored,	OR…	
–  A,	B,	and	C	to	be	row-stored	

•  BLIS	allows	
–  Each	of	{A,	B,	C}	to	be	column-stored,	row-stored,	or	stored	
with	general	stride	(like	tensors)	

•  BoZom	line:	we’ve	already	solved	a	similar	combinatoric	
problem	



A	closer	look	

•  gemm	
– 𝐶 :=𝐶+𝐴𝐵	

•  What	do	we	want?	
–  To	allow	A,	B,	or	C	to	be	stored	as	any	supported	
datatype	(storage	datatype)	

•  Actually	we	want	more	than	that	
–  To	allow	the	A*B	to	be	performed	in	a	precision	
different	(poten:ally)	than	the	storage	precision	of	
either	A	or	B	(computa:on	precision)	

–  Poten:ally	same	for	domain	(computa:on	domain)	



Combinatoric	Analysis	

•  Each	of	the	three	operands	may	be	stored	as	
one	of	t	storage	datatypes	

•  Assuming	two	domains,	the	opera:on	may	be	
computed	in	one	of	t/2	precisions.	

•  Total	number	of	possible	cases	to	implement	
–  In	general:	𝑁=(𝑡/2 )𝑡↑3 = 𝑡↑4 /2 	
– For	BLIS	(currently):	𝑁=(4/2 )4↑3 =128	
– No:ce	that	BLAS	implements	only	4/128



Combinatoric	Analysis	

•  ssss,	sssd,	ssds,	ssdd,	sscs,	sscd,	…	zzzs,	zzzd.	
•  But	wait!	We	don’t	need	to	implement	them	
all…	do	we?	
– Okay,	which	ones	do	we	omit?	

•  We	must	implement	all	cases	because	we	can	
only	iden:fy	cases	that	are	currently	useful	to	
one	or	more	par:es,	not	cases	that	will	never	
be	useful	to	any	party.	



Combinatoric	Analysis	

•  What	about	the	other	gemm	parameters?	
– Each	of	three	operands	can	be	stored	according	to	
one	of	three	storage	formats:	3↑3 	

– A	and	B	can	take	one	of	four	conjuga:on/
transposi:on	arguments:	 2↑4 	

•  Total:		
– 𝑁=(4/2 )4↑3 ∙ 3↑3 ∙ 2↑4 =55,296	



Combinatoric	Analysis	

•  What	if	we	hypothe:cally	add	a	precision?	
– Ex:	half-precision	real;	half-precision	complex	

•  Total	number	of	datatype	cases	to	implement	
– 𝑁=(6/2 )6↑3 =648		

•  When	combined	with	storage,	conjuga:on/
transposi:on	parameters	
– 𝑁=(6/2 )6↑3 ∙ 3↑3 ∙ 2↑4 =279,936		



Combinatoric	Analysis	

•  Don’t	try	that	with	auto	code	genera:on!	



The	Path	Forward	

•  So…	
– 128	datatype	cases	(for	gemm)	
– 55,296	total	uses	cases	

•  How	will	we	tackle	this	with	BLIS?	



The	Path	Forward	Behind	Us	

•  So…	
– 128	datatype	cases	(for	gemm)	
– 55,296	total	uses	cases	

•  How	will	did	we	tackle	this	with	BLIS?	
•  Surprise!	It’s	already	done	
– How	much?	All	of	it	(for	gemm)	



Mixed	domain+precision	

•  You	must	have	been	working	at	this	non-stop	for	
months!	
–  14	calendar	days	for	mixed	domain	(June	1	–	June	14)	
–  14	calendar	days	for	mixed	precision,	and	mixed	
domain+precision	(June	15	–	June	28)	

–  That	includes	retrofiFng	testsuite	to	test	all	cases	
– And	no,	I’m	not	a	laser-focused	robot	

•  I	sleep	and	take	weekends	off	
•  I	go	to	PhD	disserta:on	defenses	
•  I	help	others	in	our	group	at	UT	
•  I	help	others	on	GitHub	



Mixed	domain+precision	

•  Surely	this	must	have	exploded	BLIS	source!	
– No.	
Source	code	(framework)	 Total	lines	 Total	size	(KB)	

BLIS	pre-mixed	dt	 148,646	 4,699	

BLIS	post-mixed	dt	 153,071	(+4,425)	 4,840	(+141)	

Source	code	(testsuite)	 Total	lines	 Total	size	(KB)	

BLIS	pre-mixed	dt	 22,816	 678	

BLIS	post-mixed	dt	 23,928	(+1,112)	 710	(+32)	



Mixed	domain+precision	

•  Okay,	what	about	the	object	code	footprint?	
– Not	really:	
BLIS	library	size	(KB)	 Sta5c	library	 Shared	library	 Sta5cally-linked	

testsuite	

BLIS	pre-mixed	dt	 3,138	 2,285	 1,631	

BLIS	post-mixed	dt	(disabled)	 3,142	(+4)	 2,285	(+0)	 1,661	(+30)	

BLIS	post-mixed	dt	(enabled)	 3,255	(+117)	 2,389	(+104)	 1,757	(+126)	



Mixed	domain:	How	did	we	do	it?	
Mixed	
domain	case:	
C	+=	A	B	

Notes	

R += R R Already	implemented.	

R += R C Pair	1C:	project	B	to	real	domain.	

R += C R Pair	1C:	project	A	to	real	domain.	

R += C C Pack	to	1r	format	and	compute/accumulate	in	real	domain.	

C += R R Project	C	to	real	domain	and	compute/accumulate	in	real	
domain.	(Requires	support	for	general	stride	storage.)	

C += R C Pair	2C:	Treat	B	as	k	×	2n	real	matrix	and	pack	accordingly;	
accumulate	to	C	(by	rows)	via	virtual	μkernel.	

C += C R Pair	2C:	Treat	A	as	2m	×	k	real	matrix	and	pack	
accordingly;	accumulate	to	C	(by	columns)	via	virtual	
μkernel.	

C += C C Already	implemented.	



Mixed	precision:	How	did	we	do	it?	
Mixed	
precision	
case:	
C	+=	A	B	|	cp	

Implementa5on	notes	

s += s s | s Already	implemented.	

s += s d | s Cast	(demote)	B	to	single-precision	during	packing.	

s += d s | s Cast	(demote)	A	to	single-precision	during	packing.	

s += d d | s Cast	(demote)	A,	B	to	single-precision	during	packing.	

d += s s | s Use	special	update	in	macrokernel	(or	virtual	μkernel)	to	
accumulate	result	to	C.	

d += s d | s Cast	(demote)	B	to	single	during	packing.	Use	special	update	in	
macrokernel	(or	virtual	μkernel)	to	cast/accumulate	result	to	C.	

d += d s | s Cast	(demote)	A	to	single	during	packing.	Use	special	update	in	
macrokernel	(or	virtual	μkernel)	to	cast/accumulate	result	to	C.	

d += d d | s Cast	(demote)	A,	B	to	single	during	packing.	Use	special	update	in	
macrokernel	(or	virtual	μkernel)	to	cast/accumulate	result	to	C.	



Mixed	precision:	How	did	we	do	it?	
Mixed	
precision	
case:	
C	+=	A	B	|	cp	

Implementa5on	notes	

s += s s | d Cast	(promote)	A,	B	to	double-precision	during	packing.	Use	special	
update	in	macrokernel	(or	virtual	μkernel)	to	cast/accumulate	result	to	C.	

s += s d | d Cast	(promote)	A	to	double-precision	during	packing.	Use	special	update	
in	macrokernel	(or	virtual	μkernel)	to	cast/accumulate	result	to	C.	

s += d s | d Cast	(promote)	B	to	double-precision	during	packing.	Use	special	update	
in	macrokernel	(or	virtual	μkernel)	to	cast/accumulate	result	to	C.	

s += d d | d Use	special	update	in	macrokernel	(or	virtual	μkernel)	to	cast/accumulate	
result	to	C.	

d += s s | d Cast	(promote)	A	and	B	to	double-precision	during	packing.		

d += s d | d Cast	(promote)	A	to	double-precision	during	packing.		

d += d s | d Cast	(promote)	B	to	double-precision	during	packing.		

d += d d | d Already	implemented.	



Mixed	domain:	How	did	we	do	it?	

•  So	what	do	we	need?	The	ability	to…	
– project	complex	matrices	to	real	domain	(in-place)	
– pack	to	1r	format	
– accumulate	matrix	products	to	C	with	general	
stride	

– “spoof”	complex	blocksizes	for	par::oning	and	
then	use	real	blocksizes	in	macrokernel	

– accumulate	to	C	via	virtual	microkernels	
– nearly	indispensable:	encapsula:on	via	objects	



Mixed	precision:	How	did	we	do	it?	

•  So	what	do	we	need?	The	ability	to…	
– Track	at	least	three	datatypes	per	object	
•  storage,	target,	computa:on	

– Cast	(promote	or	demote)	a	matrix	from	its	storage	
datatype	to	the	target	datatype	during	packing	

– Cast	(promote	or	demote)	an	intermediate	matrix	
product	from	the	computa:on	datatype	to	the	
storage	datatype	of	C	during	accumula:on	



Mixing	domain+precision:	
How	did	we	do	it?	

•  Implemen:ng	full	mixed	datatype	
– Once	you’ve	implemented	mixed	domain	and	
mixed	precision	separately,	this	is	nearly	free!	
•  Domain	and	precision	are	mostly	orthogonal	



Performance	

•  Sorry,	I	didn’t	have	:me.		



Performance	

•  Sorry,	I	didn’t	have	:me.		
– Kidding.	Of	course	I	have	performance	results!	

•  Poster:	sequen:al	performance	
–  hZps://www.cs.utexas.edu/~field/retreat/2018/mdst.pdf	

•  Web-only	bonus:	mul:threaded	performance	
–  hZps://www.cs.utexas.edu/~field/retreat/2018/mdmt.pdf	



Performance	

•  Hardware	
–  Intel	Xeon	E3-1271	v3	(Haswell)	3.6GHz	(4	cores)	

•  SoPware	
– Ubuntu	16.04	
– GNU	gcc	5.4.0	
– OpenBLAS	0.2.20	(latest	stable	release)	
– BLIS	0.4.1-15/c03728f1	+	mixed-dt	extensions	



Performance	

•  Implementa:ons	tested	
–  BLIS:	implemented	within	bli_gemm()	

•  Mixed	domain/precision	logic	is	hidden	
– OpenBLAS:	implemented	within	a	“dumb	wrapper”	
around	[sdcz]gemm_()	
•  Mixed	domain/precision	logic	is	exposed	

•  Labeling	example:	zcdsgemm	
–  Interpreta:on:	cabx	

•  C	is	double	complex	(z)	
•  A	is	single	complex	(c)	
•  B	is	double	real	(d)	
•  computa:on	is	executed	in	single-precision	(s)	



Performance	

•  Results	
– x-axis:	problem	size:	m	=	n	=	k	
•  Sequen:al:	40	to	2000	in	increments	of	40	
•  Mul:threaded:	80	to	4000	in	increments	of	80	

– y-axis:	GFLOPS/core	
•  Top	of	graph	is	machine	(theore:cal)	peak	

– Each	data	point	is	best	of	three	trials	



Performance	

•  General	characteriza:on	
– mixed-datatype	BLIS	performs	typically	75-95%	of	
[sdcz]gemm	

– mixed-datatype	BLIS	almost	universally	
outperforms	the	“dumb	wrapper”	alterna:ve	

– and	BLIS	requires	less	workspace	
– and	BLIS	s:ll	provides	features	and	op:ons	not	
present	in	the	BLAS	
•  row/column	strides;	extra	support	for	complex	domain,	
object	API,	more	mul:threading	op:ons,	comprehensive	
testsuite,	lots	of	documenta:on,	etc.	



What’s	next?	

•  Other	opera:ons?	
– hemm,	symm,	herk,	syrk,	trmm,	etc.	

•  Other	precisions?	
– bfloat16	
– quad-precision	
– double	double	

•  Start	from	scratch?	
– C++	



Thank	you!	


