PARALLEL NON-NEGATIVE CP DECOMPOSITION OF DENSE TENSORS

KOBY HAYASHI ${ }^{1,2}$, GREY BALLARD², RAMKI KANNAN ${ }^{3}$, SRINIVAS ESWAR ${ }^{1}$ ${ }^{1}$ GEORGIA TECH CSE
${ }^{2}$ WAKE FORESTUNIVERSITY
${ }^{3}$ OAK RIDGE NATIONALLABS

4-way

5-way

REVIEW OF THE SVD

- Singular Value Decomposition (SVD):
- $A=U \Sigma V^{T}=\sum_{r=1}^{R} \sigma_{r}\left(u_{r}\right)\left(v_{r}\right)^{T}$
n

THE CP DECOMPOSITION

Canonical Polyadic Decomposition (CP)

$$
X \approx \sum_{r=0}^{R-1} a_{i r} \circ b_{j r} \circ c_{k r}=\llbracket A, B, C \rrbracket
$$

CP VIA ALTERNATING LEAST SQUARES

```
Algorithm 5 CP_ALS
Require: \(\mathcal{X}\) is an \(N\)-way tensor with dimensions \(I_{0} \times I_{1} \times \cdots \times I_{N-1}, n \in[N], \mathbf{U}_{(n)}\) is the \(n^{t h}\)
    factor matrix, and a rank \(R\)
    1: function \(\boldsymbol{y}=\) CP_ALS \((\boldsymbol{X}, R)\)
        while stopping conditions not met do
            for \(n \in[N]\) do
            \(\mathbf{H}=\mathbf{U}_{(0)}^{\top} \mathbf{U}_{(0)} * \cdots * \mathbf{U}_{(n-1)}^{\top} \mathbf{U}_{(n-1)} * \mathbf{U}_{(n+1)}^{\top} \mathbf{U}_{(n+1)} * \cdots * \mathbf{U}_{(N-1)}^{\top} \mathbf{U}_{(N-1)}\)
            \(\mathbf{M}=\mathbf{X}_{(n)}\left(\mathbf{U}_{(N-1)} \odot \cdots \odot \mathbf{U}_{(n+1)} \odot \mathbf{U}_{n-1} \odot \cdots \odot \mathbf{U}_{(0)}\right)^{\top}\)
                solve \(\mathbf{U}_{(n)}=\mathbf{M H}^{\dagger} \quad \triangleright\) for nonnegativity enforce \(\mathbf{U}_{(n)}>0\)
        end for
        end while
    9: end function
Ensure: \(\boldsymbol{y}\) is a rank \(R\) CP Model
```

```
Algorithm 5 CP_ALS
Require: \(\mathcal{X}\) is an \(N\)-way tensor with dimensions \(I_{0} \times I_{1} \times \cdots \times I_{N-1}, n \in[N], \mathbf{U}_{(n)}\) is the \(n^{t h}\)
    factor matrix, and a rank \(R\)
    1: function \(\boldsymbol{y}=\) CP_ALS \((\boldsymbol{X}, R)\)
        while stopping conditions not met do
            for \(n \in[N]\) do
                \(\mathbf{H}=\mathbf{U}_{(0)}^{\top} \mathbf{U}_{(0)} * \cdots * \mathbf{U}_{(n-1)}^{\top} \mathbf{U}_{(n-1)} * \mathbf{U}_{(n+1)}^{\top} \mathbf{U}_{(n+1)} * \cdots * \mathbf{U}_{(N-1)}^{\top} \mathbf{U}_{(N-1)}\)
                \(\mathbf{M}=\mathbf{X}_{(n)}\left(\mathbf{U}_{(N-1)} \odot \cdots \odot \mathbf{U}_{(n+1)} \odot \mathbf{U}_{n-1} \odot \cdots \odot \mathbf{U}_{(0)}\right)^{\top}\)
                solve \(\mathbf{U}_{(n)}=\mathbf{M H}^{\dagger} \quad \triangleright\) for nonnegativity enforce \(\mathbf{U}_{(n)}>0\)
        end for
        end while
    9: end function
Ensure: \(\boldsymbol{y}\) is a rank \(R\) CP Model
```


MATRICIZED TENSOR TIMES KHATRI RAO PRODUCT

```
Algorithm 5 CP_ALS
Require: \(\mathcal{X}\) is an \(N\)-way tensor with dimensions \(I_{0} \times I_{1} \times \cdots \times I_{N-1}, n \in[N], \mathbf{U}_{(n)}\) is the \(n^{t h}\)
    factor matrix, and a rank \(R\)
    1: function \(\boldsymbol{y}=\) CP_ALS \((\boldsymbol{X}, R)\)
        while stopping conditions not met do
            for \(n \in[N]\) do
            \(\mathbf{H}=\mathbf{U}_{(0)}^{\top} \mathbf{U}_{(0)} * \cdots * \mathbf{U}_{(n-1)}^{\top} \mathbf{U}_{(n-1)} * \mathbf{U}_{(n+1)}^{\top} \mathbf{U}_{(n+1)} * \cdots * \mathbf{U}_{(N-1)}^{\top} \mathbf{U}_{(N-1)}\)
                \(\mathbf{M}=\mathbf{X}_{(n)}\left(\mathbf{U}_{(N-1)} \odot \cdots \odot \mathbf{U}_{(n+1)} \odot \mathbf{U}_{n-1} \odot \cdots \odot \mathbf{U}_{(0)}\right)^{\top}\)
                solve \(\mathbf{U}_{(n)}=\mathbf{M H}^{\dagger} \quad \triangleright\) for nonnegativity enforce \(\mathbf{U}_{(n)}>0\)
        end for
        end while
    9: end function
Ensure: \(\boldsymbol{y}\) is a rank \(R\) CP Model
```


MTTKRP

Dimension Tree Optimization for N MTTKRPS

- Node = set of matrix and tensor
- Edge = computation
- Leaf Node = completed MTTKRP

Translations

- PM = Partial MTTKRP = GEMM
- mTTV = multiple Tensor Times Vector = multiple GEMV

$X_{(1: 2)}^{T}$
$K_{1: 2}$
$=\quad T_{(1: 3)}$

$$
\boldsymbol{T}_{(1)}[\boldsymbol{r}] \quad . \quad K_{4: 5}(:, r)=M^{(3)}(:, r)
$$

DISTRIBUTED MODEL

Georgia

DISTRIBUTED MODEL

STRONG SCALING

- Tensor $=1023 \times 1344 \times 33$
- Proc grid $=\mathrm{p} \times p \times 1$
- $p=\{1,2,4,8,16,32\}$

WEAK SCALING

```
| Error | NLS | Factor Comm ■ KRP ■ MTTKRP
```

- 4-way tensor
- Low Rank $=32$
- $p \times p \times p \times p: p=\{1,2,3,4\}$
- Tensor is $128 p \times 128 p \times 128 p \times 128 p$

LINEAR SYSTEM SOLVE

Algorithm 5 CP_ALS
Require: \mathcal{X} is an N-way tensor with dimensions $I_{0} \times I_{1} \times \cdots \times I_{N-1}, n \in[N], \mathbf{U}_{(n)}$ is the $n^{t h}$ factor matrix, and a rank R
function $\boldsymbol{y}=$ CP_ALS (\boldsymbol{X}, R)
while stopping conditions not met do
for $n \in[N]$ do
$\mathbf{H}=\mathbf{U}_{(0)}^{\top} \mathbf{U}_{(0)} * \cdots * \mathbf{U}_{(n-1)}^{\top} \mathbf{U}_{(n-1)} * \mathbf{U}_{(n+1)}^{\top} \mathbf{U}_{(n+1)} * \cdots * \mathbf{U}_{(N-1)}^{\top} \mathbf{U}_{(N-1)}$
$\mathbf{M}=\mathbf{X}_{(n)}\left(\mathbf{U}_{(N-1)} \odot \cdots \odot \mathbf{U}_{(n+1)} \odot \mathbf{U}_{n-1} \odot \cdots \odot \mathbf{U}_{(0)}\right)^{\top}$
solve $\mathbf{U}_{(n)}=\mathbf{M H}^{\dagger} \quad$
∇ for nonnegativity enforce $\mathbf{U}_{(n)}>0$
end for
end while
9: end function
Ensure: \boldsymbol{y} is a rank R CP Model

LINEAR SOLVE TESTS

- Manipulating BLAS for tensor operations is clunky
- What is the right way to think about/present tensor operations?
- MTTKRP, tensor contraction with low rank tensor? Matrix Multiply?

Parallel Nonnegative CP Decomposition of Dense Tensors.

 25th IEEE In- ternational Conference on High Performance Computing, Data, and Analytics, HiPC 2018, with Grey Ballard and Ramakrishnan Kannan.