Week 1

Vectors in Linear Algebra

1.1 Opening Remarks

1.1.1 Take Off

“Co-Pilot Roger Murdock (to Captain Clarence Oveur): We have clearance, Clarence.

Captain Oveur: Roger, Roger. What’s our vector, Victor?”

You can find a video clip by searching “What’s our vector Victor?”

Vectors have direction and length. Vectors are commonly used in aviation where they are routinely provided by air traffic control to set the course of the plane, providing efficient paths that avoid weather and other aviation traffic as well as assist disoriented pilots.

Let’s begin with vectors to set our course.
1.1.2 Outline Week 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.</td>
<td>Take Off</td>
<td>11</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Outline Week 1</td>
<td>12</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>What You Will Learn</td>
<td>13</td>
</tr>
<tr>
<td>1.2.</td>
<td>What is a Vector?</td>
<td>14</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Notation</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Unit Basis Vectors</td>
<td>16</td>
</tr>
<tr>
<td>1.3.</td>
<td>Simple Vector Operations</td>
<td>17</td>
</tr>
<tr>
<td>1.3.1.</td>
<td>Equality ((=)), Assignment ((:=)), and Copy</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2.</td>
<td>Vector Addition (ADD)</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3.</td>
<td>Scaling (SCAL)</td>
<td>20</td>
</tr>
<tr>
<td>1.3.4.</td>
<td>Vector Subtraction</td>
<td>21</td>
</tr>
<tr>
<td>1.4.</td>
<td>Advanced Vector Operations</td>
<td>23</td>
</tr>
<tr>
<td>1.4.1.</td>
<td>Scaled Vector Addition (AXPY)</td>
<td>23</td>
</tr>
<tr>
<td>1.4.2.</td>
<td>Linear Combinations of Vectors</td>
<td>24</td>
</tr>
<tr>
<td>1.4.3.</td>
<td>Dot or Inner Product (DOT)</td>
<td>26</td>
</tr>
<tr>
<td>1.4.4.</td>
<td>Vector Length (NORM2)</td>
<td>28</td>
</tr>
<tr>
<td>1.4.5.</td>
<td>Vector Functions</td>
<td>30</td>
</tr>
<tr>
<td>1.4.6.</td>
<td>Vector Functions that Map a Vector to a Vector</td>
<td>32</td>
</tr>
<tr>
<td>1.5.</td>
<td>LAFF Package Development: Vectors</td>
<td>35</td>
</tr>
<tr>
<td>1.5.1.</td>
<td>Starting the Package</td>
<td>35</td>
</tr>
<tr>
<td>1.5.2.</td>
<td>A Copy Routine (copy)</td>
<td>36</td>
</tr>
<tr>
<td>1.5.3.</td>
<td>A Routine that Scales a Vector (scal)</td>
<td>36</td>
</tr>
<tr>
<td>1.5.4.</td>
<td>A Scaled Vector Addition Routine (axpy)</td>
<td>37</td>
</tr>
<tr>
<td>1.5.5.</td>
<td>An Inner Product Routine (dot)</td>
<td>37</td>
</tr>
<tr>
<td>1.5.6.</td>
<td>A Vector Length Routine (norm2)</td>
<td>37</td>
</tr>
<tr>
<td>1.6.</td>
<td>Slicing and Dicing</td>
<td>38</td>
</tr>
<tr>
<td>1.6.1.</td>
<td>Slicing and Dicing: Dot Product</td>
<td>38</td>
</tr>
<tr>
<td>1.6.2.</td>
<td>Algorithms with Slicing and Redicing: Dot Product</td>
<td>38</td>
</tr>
<tr>
<td>1.6.3.</td>
<td>Coding with Slicing and Redicing: Dot Product</td>
<td>39</td>
</tr>
<tr>
<td>1.6.4.</td>
<td>Slicing and Dicing: axpy</td>
<td>40</td>
</tr>
<tr>
<td>1.6.5.</td>
<td>Algorithms with Slicing and Redicing: axpy</td>
<td>41</td>
</tr>
<tr>
<td>1.6.6.</td>
<td>Coding with Slicing and Redicing: axpy</td>
<td>41</td>
</tr>
<tr>
<td>1.7.</td>
<td>Enrichment</td>
<td>42</td>
</tr>
<tr>
<td>1.7.1.</td>
<td>Learn the Greek Alphabet</td>
<td>42</td>
</tr>
<tr>
<td>1.7.2.</td>
<td>Other Norms</td>
<td>42</td>
</tr>
<tr>
<td>1.7.3.</td>
<td>Overflow and Underflow</td>
<td>46</td>
</tr>
<tr>
<td>1.7.4.</td>
<td>A Bit of History</td>
<td>46</td>
</tr>
<tr>
<td>1.8.</td>
<td>Wrap Up</td>
<td>47</td>
</tr>
<tr>
<td>1.8.1.</td>
<td>Homework</td>
<td>47</td>
</tr>
<tr>
<td>1.8.2.</td>
<td>Summary of Vector Operations</td>
<td>51</td>
</tr>
<tr>
<td>1.8.3.</td>
<td>Summary of the Properties of Vector Operations</td>
<td>51</td>
</tr>
<tr>
<td>1.8.4.</td>
<td>Summary of the Routines for Vector Operations</td>
<td>52</td>
</tr>
</tbody>
</table>
1.1.3 What You Will Learn

Upon completion of this week, you should be able to

- Represent quantities that have a magnitude and a direction as vectors.
- Read, write, and interpret vector notations.
- Visualize vectors in \mathbb{R}^2.
- Perform the vector operations of scaling, addition, dot (inner) product.
- Reason and develop arguments about properties of vectors and operations defined on them.
- Compute the (Euclidean) length of a vector.
- Express the length of a vector in terms of the dot product of that vector with itself.
- Evaluate a vector function.
- Solve simple problems that can be represented with vectors.
- Create code for various vector operations and determine their cost functions in terms of the size of the vectors.
- Gain an awareness of how linear algebra software evolved over time and how our programming assignments fit into this (enrichment).
- Become aware of overflow and underflow in computer arithmetic (enrichment).
1.2 What is a Vector?

1.2.1 Notation

Definition

Definition 1.1 We will call a one-dimensional array of n numbers a vector of size n:

\[x = \begin{pmatrix}
\chi_0 \\
\chi_1 \\
\vdots \\
\chi_{n-1}
\end{pmatrix}. \]

- This is an ordered array. The position in the array is important.
- We will call the \(i \)th number the \(i \)th component or element.
- We denote the \(i \)th component of \(x \) by \(\chi_i \). Here \(\chi \) is the lower case Greek letter pronounced as “ki”. (Learn more about our notational conventions in Section 1.7.1.)
- We start indexing at 0, as computer scientists do. MATLAB, the tool we will be using to implement our libraries, naturally starts indexing at 1, as do most mathematicians and physical scientists. You’ll have to get use to this...
- Each number is, at least for now, a real number, which in math notation is written as \(\chi_i \in \mathbb{R} \) (read: “ki sub i (is) in r” or “ki sub i is an element of the set of all real numbers”).
- The size of the vector is \(n \), the number of components. (Sometimes, people use the words “length” and “size” interchangeably. We will see that length also has another meaning and will try to be consistent.)
- We will write \(x \in \mathbb{R}^n \) (read: “x” in “r” “n”) to denote that \(x \) is a vector of size \(n \) with components in the real numbers, denoted by the symbol: \(\mathbb{R} \). Thus, \(\mathbb{R}^n \) denotes the set of all vectors of size \(n \) with components in \(\mathbb{R} \). (Later we will talk about vectors with components that are complex valued.)
- A vector has a direction and a length:
 - Its direction is often visualized by drawing an arrow from the origin to the point \((\chi_0, \chi_1, \ldots, \chi_{n-1})\), but the arrow does not necessarily need to start at the origin.
 - Its length is given by the Euclidean length of this arrow,

\[
\sqrt{\chi_0^2 + \chi_1^2 + \cdots + \chi_{n-1}^2},
\]

It is denoted by \(\|x\|_2 \) called the two-norm. Some people also call this the magnitude of the vector.
- A vector does not have a location. Sometimes we will show it starting at the origin, but that is only for convenience. It will often be more convenient to locate it elsewhere or to move it.
1.2. What is a Vector?

Examples

Example 1.2

Consider \(x = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \). Then

- Components 4 and -3 are the first and second component, respectively.
- \(x_0 = 4, x_1 = -3 \) so that 4 is the component indexed with 0 and -3 the component indexed with 1.
- The vector is of size 2, so \(x \in \mathbb{R}^2 \).

Exercises

Homework 1.2.1.1 Consider the following picture:

Using the grid for units,

(a) \(x = \begin{pmatrix} -2 \\ -3 \end{pmatrix} \)
(b) \(x = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \)
(c) \(x = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \)
(d) \(x = \begin{pmatrix} -3 \\ -2 \end{pmatrix} \)
(e) None of these
Homework 1.2.1.2

Consider the following picture:

Using the grid for units,

(a) \(a = \begin{pmatrix} \quad \ Quad
where the “1” appears as the component indexed by \(j \). Thus, we get the set \(\{e_0, e_1, \ldots, e_{n-1}\} \subset \mathbb{R}^n \) given by

\[
e_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \ldots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.
\]

In our presentations, any time you encounter the symbol \(e_j \), it always refers to the unit basis vector with the “1” in the component indexed by \(j \).

These vectors are also referred to as the standard basis vectors. Other terms used for these vectors are natural basis and canonical basis. Indeed, “unit basis vector” appears to be less commonly used. But we will use it anyway!

Homework 1.2.2.1 Which of the following is not a unit basis vector?

(a) \[
\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
\]

(b) \[
\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}
\]

(c) \[
\begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix}
\]

(d) \[
\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}
\]

(e) None of these are unit basis vectors.

1.3 Simple Vector Operations

1.3.1 Equality (=), Assignment (:=), and Copy

Definition

Definition 1.4 Two vectors \(x, y \in \mathbb{R}^n \) are equal if all their components are element-wise equal:

\[
x = y \text{ if and only if } \chi_i = \psi_i, \text{ for all } 0 \leq i < n.
\]

This means that two vectors are equal if they point in the same direction and are of the same length. They don’t, however, need to have the same location.

The assignment or copy operation assigns the content of one vector to another vector. In our mathematical notation, we will denote this by the symbol := (pronounce: becomes). After the assignment, the two vectors are equal to each other.

Algorithm

The following algorithm copies vector \(x \in \mathbb{R}^n \) into vector \(y \in \mathbb{R}^n \), performing the operation \(y := x \):

\[
\begin{pmatrix}
\psi_0 \\
\psi_1 \\
\vdots \\
\psi_{n-1}
\end{pmatrix}
:=
\begin{pmatrix}
\chi_0 \\
\chi_1 \\
\vdots \\
\chi_{n-1}
\end{pmatrix}
\]
for $i = 0, \ldots, n - 1$
\[\Psi_i := \chi_i\]
endfor

Cost
(Notice: we will cost of various operations in more detail in the future.)
Copying one vector to another vector requires $2n$ memory operations (memops).

- The vector x of length n must be read, requiring n memops and
- the vector y must be written, which accounts for the other n memops.

Homework 1.3.1.1 Decide if the two vectors are equal.

- The vector represented geometrically in \mathbb{R}^2 by an arrow from point $(-1, 2)$ to point $(0, 0)$ and the vector represented geometrically in \mathbb{R}^2 by an arrow from point $(1, -2)$ to point $(2, -1)$ are equal.
 True/False

- The vector represented geometrically in \mathbb{R}^3 by an arrow from point $(1, -1, 2)$ to point $(0, 0, 0)$ and the vector represented geometrically in \mathbb{R}^3 by an arrow from point $(1, 1, -2)$ to point $(0, 2, -4)$ are equal.
 True/False

1.3.2 Vector Addition (ADD)

Definition

Definition 1.5 Vector addition $x + y$ (sum of vectors) is defined by

\[
\begin{pmatrix}
\chi_0 \\
\chi_1 \\
\vdots \\
\chi_{n-1}
\end{pmatrix}
+
\begin{pmatrix}
\psi_0 \\
\psi_1 \\
\vdots \\
\psi_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
\chi_0 + \psi_0 \\
\chi_1 + \psi_1 \\
\vdots \\
\chi_{n-1} + \psi_{n-1}
\end{pmatrix}
\]

In other words, the vectors are added element-wise, yielding a new vector of the same size.

Exercises

Homework 1.3.2.1 \[
\begin{pmatrix}
-1 \\
2
\end{pmatrix}
+
\begin{pmatrix}
-3 \\
-2
\end{pmatrix}
=
\]

Homework 1.3.2.2 \[
\begin{pmatrix}
-3 \\
-2
\end{pmatrix}
+
\begin{pmatrix}
-1 \\
2
\end{pmatrix}
=
\]
1.3. Simple Vector Operations

Homework 1.3.2.3 For \(x, y \in \mathbb{R}^n \),
\[x + y = y + x. \]

Homework 1.3.2.4
\[
\begin{pmatrix}
-1 \\
2
\end{pmatrix} + \begin{pmatrix}
-3 \\
-2
\end{pmatrix} + \begin{pmatrix}
1 \\
2
\end{pmatrix}
= \begin{pmatrix}
\end{pmatrix}
\]

Homework 1.3.2.5
\[
\begin{pmatrix}
-1 \\
2
\end{pmatrix} + \begin{pmatrix}
-3 \\
-2
\end{pmatrix} + \begin{pmatrix}
1 \\
2
\end{pmatrix} = \begin{pmatrix}
\end{pmatrix}
\]

Homework 1.3.2.6 For \(x, y, z \in \mathbb{R}^n \), \((x + y) + z = x + (y + z)\).

Homework 1.3.2.7
\[
\begin{pmatrix}
-1 \\
2
\end{pmatrix} + \begin{pmatrix}
0 \\
0
\end{pmatrix} = \begin{pmatrix}
\end{pmatrix}
\]

Homework 1.3.2.8 For \(x \in \mathbb{R}^n \), \(x + 0 = x \), where 0 is the zero vector of appropriate size.

Algorithm

The following algorithm assigns the sum of vectors \(x \) and \(y \) (of size \(n \) and stored in arrays \(x \) and \(y \)) to vector \(z \) (of size \(n \) and stored in array \(z \)), computing \(z := x + y \):

\[
\begin{pmatrix}
\zeta_0 \\
\zeta_1 \\
\vdots \\
\zeta_{n-1}
\end{pmatrix} := \begin{pmatrix}
\chi_0 + \psi_0 \\
\chi_1 + \psi_1 \\
\vdots \\
\chi_{n-1} + \psi_{n-1}
\end{pmatrix}
\]

\[
\text{for } i = 0, \ldots, n-1
\]
\[
\zeta_i := \chi_i + \psi_i
\]
\[
\text{endfor}
\]

Cost

On a computer, real numbers are stored as floating point numbers, and real arithmetic is approximated with floating point arithmetic. Thus, we count floating point operations (flops): a multiplication or addition each cost one flop.

Vector addition requires \(3n \) memops (\(x \) is read, \(y \) is read, and the resulting vector is written) and \(n \) flops (floating point additions).

For those who understand “Big-O” notation, the cost of the SCAL operation, which is seen in the next section, is \(O(n) \). However, we tend to want to be more exact than just saying \(O(n) \). To us, the coefficient in front of \(n \) is important.

Vector addition in sports

View the following video and find out how the “parallelogram method” for vector addition is useful in sports:

Discussion: Can you find other examples of how vector addition is used in sports?
1.3.3 Scaling (SCAL)

Definition

Definition 1.6 Multiplying vector \(x \) by scalar \(\alpha \) yields a new vector, \(\alpha x \), in the same direction as \(x \), but scaled by a factor \(\alpha \).

Scaling a vector by \(\alpha \) means each of its components, \(\chi_i \), is multiplied by \(\alpha \):

\[
\alpha \chi = \alpha \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix} = \begin{pmatrix} \alpha \chi_0 \\ \alpha \chi_1 \\ \vdots \\ \alpha \chi_{n-1} \end{pmatrix}.
\]

Exercises

Homework 1.3.3.1 \[
\left(\begin{pmatrix} -1 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right) + \begin{pmatrix} -1 \\ 2 \end{pmatrix} =
\]

Homework 1.3.3.2 \[
3 \begin{pmatrix} -1 \\ 2 \end{pmatrix} =
\]

Homework 1.3.3.3 Consider the following picture:

Which vector equals \(2a \); \((1/2)a \); and \(-(1/2)a \)?
1.3. Simple Vector Operations

Algorithm

The following algorithm scales a vector \(x \in \mathbb{R}^n \) by \(\alpha \), overwriting \(x \) with the result \(\alpha x \):

\[
\begin{pmatrix}
\chi_0 \\
\chi_1 \\
\vdots \\
\chi_{n-1}
\end{pmatrix} :=
\begin{pmatrix}
\alpha \chi_0 \\
\alpha \chi_1 \\
\vdots \\
\alpha \chi_{n-1}
\end{pmatrix}.
\]

\textbf{for} \(i = 0, \ldots, n - 1 \)
\begin{align*}
\chi_i & := \alpha \chi_i \\
\text{endfor}
\end{align*}

Cost

Scaling a vector requires \(n \) flops and \(2n + 1 \) memops. Here, \(\alpha \) is only brought in from memory once and kept in a register for reuse. To fully understand this, you need to know a little bit about computer architecture.

“Among friends” we will simply say that the cost is \(2n \) memops since the one extra memory operation (to bring \(\alpha \) in from memory) is negligible.

1.3.4 Vector Subtraction

Recall the geometric interpretation for adding two vectors, \(x, y \in \mathbb{R}^n \):

\[
x - y = x + (-y),
\]

We learned in the last unit that \(-y\) is the same as \((-1)y\) which is the same as pointing \(y \) in the opposite direction, while keeping it’s length the same. This allows us to take the parallelogram that we used to illustrate vector addition.
and change it into the equivalent picture

Since we know how to add two vectors, we can now illustrate \(x + (-y) \):

Which then means that \(x - y \) can be illustrated by
Finally, we note that the parallelogram can be used to simultaneously illustrate vector addition and subtraction:

\[
\begin{align*}
\mathbf{x} - \mathbf{y} &= \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix} - \begin{pmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{n-1} \end{pmatrix} \\
&= \begin{pmatrix} \chi_0 - \psi_0 \\ \chi_1 - \psi_1 \\ \vdots \\ \chi_{n-1} - \psi_{n-1} \end{pmatrix}.
\end{align*}
\]

(Obviously, you need to be careful to point the vectors in the right direction.)

Now computing \(x - y\) when \(x, y \in \mathbb{R}^n\) is a simple matter of subtracting components of \(y\) off the corresponding components of \(x\):

Homework 1.3.4.1
For \(x \in \mathbb{R}^n\), \(x - x = 0\).

Homework 1.3.4.2
For \(x, y \in \mathbb{R}^n\), \(x - y = y - x\).

1.4 Advanced Vector Operations

1.4.1 Scaled Vector Addition (AXPY)

[View at edX]
Definition

Definition 1.7 One of the most commonly encountered operations when implementing more complex linear algebra operations is the **scaled vector addition**, which (given \(x, y \in \mathbb{R}^n \)) computes \(y := \alpha x + y \):

\[
\alpha x + y = \alpha \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix} + \begin{pmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{n-1} \end{pmatrix} = \begin{pmatrix} \alpha \chi_0 + \psi_0 \\ \alpha \chi_1 + \psi_1 \\ \vdots \\ \alpha \chi_{n-1} + \psi_{n-1} \end{pmatrix}.
\]

It is often referred to as the AXPY operation, which stands for **alpha times** \(x \)** plus \(y \). We emphasize that it is typically used in situations where the output vector overwrites the input vector \(y \).

Algorithm

Obviously, one could copy \(x \) into another vector, scale it by \(\alpha \), and then add it to \(y \). Usually, however, vector \(y \) is simply updated one element at a time:

\[
\begin{pmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{n-1} \end{pmatrix} := \begin{pmatrix} \alpha \chi_0 + \psi_0 \\ \alpha \chi_1 + \psi_1 \\ \vdots \\ \alpha \chi_{n-1} + \psi_{n-1} \end{pmatrix}.
\]

\[
\text{for } i = 0, \ldots, n - 1 \\
\psi_i := \alpha \chi_i + \psi_i \\
\text{endfor}
\]

Cost

In Section 1.3 for many of the operations we discuss the cost in terms of memory operations (memops) and floating point operations (flops). This is discussed in the text, but not the videos. The reason for this is that we will talk about the cost of various operations later in a larger context, and include these discussions here more for completely.

Homework 1.4.1.1 What is the cost of an axpy operation?

- How many memops?
- How many flops?

1.4.2 Linear Combinations of Vectors

Discussion

There are few concepts in linear algebra more fundamental than linear combination of vectors.
Definition

Definition 1.8 Let \(u, v \in \mathbb{R}^m \) and \(\alpha, \beta \in \mathbb{R} \). Then \(\alpha u + \beta v \) is said to be a linear combination of vectors \(u \) and \(v \):

\[
\alpha u + \beta v = \begin{pmatrix}
\alpha u_0 \\
\alpha u_1 \\
\vdots \\
\alpha u_{m-1}
\end{pmatrix} + \begin{pmatrix}
\beta v_0 \\
\beta v_1 \\
\vdots \\
\beta v_{m-1}
\end{pmatrix} = \begin{pmatrix}
\alpha v_0 \\
\alpha v_1 \\
\vdots \\
\alpha v_{m-1}
\end{pmatrix} + \begin{pmatrix}
\beta v_0 \\
\beta v_1 \\
\vdots \\
\beta v_{m-1}
\end{pmatrix} = \begin{pmatrix}
\alpha v_0 + \beta v_0 \\
\alpha v_1 + \beta v_1 \\
\vdots \\
\alpha v_{m-1} + \beta v_{m-1}
\end{pmatrix}.
\]

The scalars \(\alpha \) and \(\beta \) are the coefficients used in the linear combination.

More generally, if \(v_0, \ldots, v_{n-1} \in \mathbb{R}^m \) are \(n \) vectors and \(\chi_0, \ldots, \chi_{n-1} \in \mathbb{R} \) are \(n \) scalars, then \(\chi_0 v_0 + \chi_1 v_1 + \cdots + \chi_{n-1} v_{n-1} \) is a linear combination of the vectors, with coefficients \(\chi_0, \ldots, \chi_{n-1} \).

We will often use the summation notation to more concisely write such a linear combination:

\[
\chi_0 v_0 + \chi_1 v_1 + \cdots + \chi_{n-1} v_{n-1} = \sum_{j=0}^{n-1} \chi_j v_j.
\]

Homework 1.4.2.1

\[
3 \begin{pmatrix} 2 \\ 4 \\ -1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} =
\]

Homework 1.4.2.2

\[-3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} =
\]

Homework 1.4.2.3 Find \(\alpha, \beta, \gamma \) such that

\[
\alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}
\]

\[
\alpha = \quad \beta = \quad \gamma =
\]

Algorithm

Given \(v_0, \ldots, v_{n-1} \in \mathbb{R}^m \) and \(\chi_0, \ldots, \chi_{n-1} \in \mathbb{R} \) the linear combination \(w = \chi_0 v_0 + \chi_1 v_1 + \cdots + \chi_{n-1} v_{n-1} \) can be computed by first setting the result vector \(w \) to the zero vector of size \(m \), and then performing \(n \) AXPY operations:

\[
w = 0 \quad \text{(the zero vector of size } m)\
\text{for } j = 0, \ldots, n - 1\
w := \chi_j v_j + w
\]

The axpy operation computed \(y := \alpha x + y \). In our algorithm, \(\chi_j \) takes the place of \(\alpha \), \(v_j \) the place of \(x \), and \(w \) the place of \(y \).
Cost

We noted that computing \(w = \chi_0 v_0 + \chi_1 v_1 + \cdots + \chi_{n-1} v_{n-1} \) can be implemented as \(n \) AXPY operations. This suggests that the cost is \(n \) times the cost of an AXPY operation with vectors of size \(m \): \(n \times (2m) = 2mn \) flops and (approximately) \(n \times (3m) \) memops.

However, one can actually do better. The vector \(w \) is updated repeatedly. If this vector stays in the L1 cache of a computer, then it needs not be repeatedly loaded from memory, and the cost becomes \(m \) memops (to load \(w \) into the cache) and then for each AXPY operation (approximately) \(m \) memops (to read \(v_j \) (ignoring the cost of reading \(\chi_j \)). Then, once \(w \) has been completely updated, it can be written back to memory. So, the total cost related to accessing memory becomes \(m + n \times m + m = (n+2)m \approx mn \) memops.

An important example

Example 1.9 Given any \(x \in \mathbb{R}^n \) with \(x = \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix} \), this vector can always be written as the linear combination of the unit basis vectors given by

\[
x = \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \cdot \chi_0 + \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix} \cdot \chi_1 + \cdots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \cdot \chi_{n-1}.
\]

\[
x = \chi_0 e_0 + \chi_1 e_1 + \cdots + \chi_{n-1} e_{n-1} = \sum_{i=0}^{n-1} \chi_i e_i.
\]

Shortly, this will become really important as we make the connection between linear combinations of vectors, linear transformations, and matrices.

1.4.3 Dot or Inner Product (DOT)

Definition

The other commonly encountered operation is the dot (inner) product. It is defined by

\[
\text{dot}(x, y) = \sum_{i=0}^{n-1} \chi_i \psi_i = \chi_0 \psi_0 + \chi_1 \psi_1 + \cdots + \chi_{n-1} \psi_{n-1}.
\]
Alternative notation

We will often write

\[x^T y = \text{dot}(x, y) = \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix}^T \begin{pmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{n-1} \end{pmatrix} = (\chi_0 \chi_1 \cdots \chi_{n-1}) \begin{pmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{n-1} \end{pmatrix} = \chi_0 \psi_0 + \chi_1 \psi_1 + \cdots + \chi_{n-1} \psi_{n-1} \]

for reasons that will become clear later in the course.

Exercises

Homework 1.4.3.1

\[
\begin{pmatrix} 2 \\ 5 \\ -6 \\ 1 \end{pmatrix}^T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =
\]

Homework 1.4.3.2

\[
\begin{pmatrix} 2 \\ 5 \\ -6 \\ 1 \end{pmatrix}^T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =
\]

Homework 1.4.3.3

\[
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}^T \begin{pmatrix} 2 \\ 5 \\ -6 \end{pmatrix} =
\]

Homework 1.4.3.4

For \(x, y \in \mathbb{R}^n \), \(x^T y = y^T x \).

Homework 1.4.3.5

\[
\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}^T \left(\begin{pmatrix} 2 \\ 5 \\ -6 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \right) =
\]
Week 1. Vectors in Linear Algebra

Homework 1.4.3.6

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
\end{pmatrix}^T +
\begin{pmatrix}
1 \\
2 \\
1 \\
1 \\
\end{pmatrix}^T =
\begin{pmatrix}
1 \\
5 \\
1 \\
1 \\
\end{pmatrix}
\]

Homework 1.4.3.7

\[
\begin{pmatrix}
2 \\
5 \\
-6 \\
1 \\
\end{pmatrix}^T +
\begin{pmatrix}
1 \\
2 \\
3 \\
4 \\
\end{pmatrix}^T =
\begin{pmatrix}
1 \\
0 \\
0 \\
2 \\
\end{pmatrix}
\]

Homework 1.4.3.8 For \(x, y, z \in \mathbb{R}^n\), \(x^T(y+z) = x^Ty + x^Tz\).

Homework 1.4.3.9 For \(x, y, z \in \mathbb{R}^n\), \((x+y)^Tz = x^Tz + y^Tz\).

Homework 1.4.3.10 For \(x, y \in \mathbb{R}^n\), \((x+y)^T(x+y) = x^Tx + 2x^Ty + y^Ty\).

Homework 1.4.3.11 Let \(x, y \in \mathbb{R}^n\). When \(x^Ty = 0\), \(x\) or \(y\) is a zero vector.

Homework 1.4.3.12 For \(x \in \mathbb{R}^n\), \(e_i^T x = x^T e_i = \chi_i\), where \(\chi_i\) equals the \(i\)th component of \(x\).

Algorithm

An algorithm for the DOT operation is given by

\[
\begin{align*}
\alpha & := 0 \\
& \text{for } i = 0, \ldots, n - 1 \\
& \quad \alpha := \chi_i \psi_i + \alpha \\
& \text{endfor}
\end{align*}
\]

Cost

Homework 1.4.3.13 What is the cost of a dot product with vectors of size \(n\)?

1.4.4 Vector Length (NORM2)
Definition

Let \(x \in \mathbb{R}^n \). Then the (Euclidean) length of a vector \(x \) (the two-norm) is given by

\[
\| x \|_2 = \sqrt{x_0^2 + x_1^2 + \cdots + x_{n-1}^2} = \sqrt{\sum_{i=0}^{n-1} x_i^2}.
\]

Here \(\| x \|_2 \) notation stands for “the two norm of \(x \)”, which is another way of saying “the length of \(x \)”. A vector of length one is said to be a unit vector.

Exercises

Homework 1.4.4.1 Compute the lengths of the following vectors:

(a) \[
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]
(b) \[
\begin{pmatrix}
1/2 \\
1/2 \\
1/2 \\
1/2
\end{pmatrix}
\]
(c) \[
\begin{pmatrix}
1 \\
-2 \\
2 \\
0
\end{pmatrix}
\]
(d) \[
\begin{pmatrix}
0 \\
0 \\
1 \\
0 \\
0
\end{pmatrix}
\]

Homework 1.4.4.2 Let \(x \in \mathbb{R}^n \). The length of \(x \) is less than zero: \(x \|_2 < 0 \). Always/Sometimes/Never

Homework 1.4.4.3 If \(x \) is a unit vector then \(x \) is a unit basis vector. TRUE/FALSE

Homework 1.4.4.4 If \(x \) is a unit basis vector then \(x \) is a unit vector. TRUE/FALSE

Homework 1.4.4.5 If \(x \) and \(y \) are perpendicular (orthogonal) then \(x^T y = 0 \). TRUE/FALSE

Hint: Consider the picture
Homework 1.4.6 Let $x, y \in \mathbb{R}^n$ be nonzero vectors and let the angle between them equal θ. Then

$$\cos \theta = \frac{x^Ty}{\|x\|_2\|y\|_2}.$$

Hint: Consider the picture and the “Law of Cosines” that you learned in high school. (Or look up this law!)

Homework 1.4.7 Let $x, y \in \mathbb{R}^n$ be nonzero vectors. Then $x^Ty = 0$ if and only if x and y are orthogonal (perpendicular).

Algorithm

Clearly, $\|x\|_2 = \sqrt{x^Tx}$, so that the DOT operation can be used to compute this length.

Cost

If computed with a dot product, it requires approximately n memops and $2n$ flops.

1.4.5 Vector Functions

Last week, we saw a number of examples where a function, f, takes in one or more scalars and/or vectors, and outputs a vector (where a scalar can be thought of as a special case of a vector, with unit size). These are all examples of vector-valued functions (or vector functions for short).

Definition

A vector(-valued) function is a mathematical functions of one or more scalars and/or vectors whose output is a vector.

Examples

Example 1.10

$$f(\alpha, \beta) = \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix} \quad \text{so that} \quad f(-2, 1) = \begin{pmatrix} -2 + 1 \\ -2 - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}.$$

Example 1.11

$$f(\alpha, \begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \begin{pmatrix} \chi_0 + \alpha \\ \chi_1 + \alpha \\ \chi_2 + \alpha \end{pmatrix} \quad \text{so that} \quad f(-2, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}) = \begin{pmatrix} 1 + (-2) \\ 2 + (-2) \\ 3 + (-2) \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$
Example 1.12 \textit{The AXPY and DOT vector functions are other functions that we have already encountered.}

Example 1.13

\[
\begin{align*}
f\left(\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}\right) &= \begin{bmatrix} x_0 + x_1 \\ x_1 + x_2 \end{bmatrix} \quad \text{so that} \quad f\left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\right) &= \begin{bmatrix} 1 + 2 \\ 2 + 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.
\end{align*}
\]

Exercises

\textbf{Homework 1.4.5.1} If \(f(\alpha, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_0 + \alpha \\ x_1 + \alpha \\ x_2 + \alpha \end{bmatrix}\), find

- \(f(1, \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}) = \)

- \(f(\alpha, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}) = \)

- \(f(0, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) = \)

- \(f(\beta, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) = \)

- \(\alpha f(\beta, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) = \)

- \(f(\beta, \alpha, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) = \)

- \(f(\alpha, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) + f(\alpha, \begin{bmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{bmatrix}) = \)

- \(f(\alpha, \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}) + f(\alpha, \begin{bmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{bmatrix}) = \)
1.4.6 Vector Functions that Map a Vector to a Vector

Now, we can talk about such functions in general as being a function from one vector to another vector. After all, we can take all inputs, make one vector with the separate inputs as the elements or subvectors of that vector, and make that the input for a new function that has the same net effect.

Example 1.14 Instead of

\[f(\alpha, \beta) = \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix} \text{ so that } f(-2, 1) = \begin{pmatrix} -2 + 1 \\ -2 - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \]

we can define

\[g\left(\begin{pmatrix} \alpha \\ \beta \end{pmatrix}\right) = \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix} \text{ so that } g\left(\begin{pmatrix} -2 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} -2 + 1 \\ -2 - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} \]

Example 1.15 Instead of

\[f(\alpha, \begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \begin{pmatrix} \chi_0 + \alpha \\ \chi_1 + \alpha \\ \chi_2 + \alpha \end{pmatrix} \text{ so that } f(-2, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}) = \begin{pmatrix} 1 + (-2) \\ 2 + (-2) \\ 3 + (-2) \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \]

we can define

\[g\left(\begin{pmatrix} \alpha \\ \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}\right) = g\left(\begin{pmatrix} \alpha \\ \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}\right) = \begin{pmatrix} \chi_0 + \alpha \\ \chi_1 + \alpha \\ \chi_2 + \alpha \end{pmatrix} \text{ so that } g\left(\begin{pmatrix} -2 \\ 1 \\ 2 \\ 3 \end{pmatrix}\right) = \begin{pmatrix} 1 + (-2) \\ 2 + (-2) \\ 3 + (-2) \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}. \]

The bottom line is that we can focus on vector functions that map a vector of size \(n \) into a vector of size \(m \), which is written as

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^m. \]
Homework 1.4.6.1 If \(f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \begin{pmatrix} \chi_0 + 1 \\ \chi_1 + 2 \\ \chi_2 + 3 \end{pmatrix} \), evaluate

- \(f(\begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}) = \)
- \(f(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}) = \)
- \(f(2\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \)
- \(2f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \)
- \(f(\alpha\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \)
- \(\alpha f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \)
- \(f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix} + \begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}) = \)
- \(f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) + f(\begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}) = \)
Homework 1.4.6.2 If \(f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) = \begin{pmatrix} \chi_0 \\ \chi_0 + \chi_1 \\ \chi_0 + \chi_1 + \chi_2 \end{pmatrix} \), evaluate

\[
\begin{align*}
\bullet f(\begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}) &= \\
\bullet f(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}) &= \\
\bullet f(2 \begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) &= \\
\bullet 2f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) &= \\
\bullet f(\alpha \begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) &= \\
\bullet \alpha f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) &= \\
\bullet f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) + f(\begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}) &= \\
\bullet f(\begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix}) + f(\begin{pmatrix} \psi_0 \\ \psi_1 \\ \psi_2 \end{pmatrix}) &=
\end{align*}
\]

Homework 1.4.6.3 If \(f : \mathbb{R}^n \to \mathbb{R}^m \), then

\[f(0) = 0. \]

Always/Sometimes/Never

Homework 1.4.6.4 If \(f : \mathbb{R}^n \to \mathbb{R}^m \), \(\lambda \in \mathbb{R} \), and \(x \in \mathbb{R}^n \), then

\[f(\lambda x) = \lambda f(x). \]

Always/Sometimes/Never
Homework 1.4.6.5 If \(f: \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(x, y \in \mathbb{R}^n \), then
\[
f(x+y) = f(x) + f(y).
\]

1.5 LAFF Package Development: Vectors

1.5.1 Starting the Package

In this course, we will explore and use a rudimentary dense linear algebra software library. The hope is that by linking the abstractions in linear algebra to abstractions (functions) in software, a deeper understanding of the material will be the result.

We will be using the MATLAB interactive environment by MathWorks® for our exercises. MATLAB is a high-level language and interactive environment that started as a simple interactive “laboratory” for experimenting with linear algebra. It has since grown into a powerful tool for technical computing that is widely used in academia and industry.

For our Spring 2017 offering of LAFF on the edX platform, MathWorks® has again graciously made temporary licenses available for the participants. Instructions on how to install and use MATLAB can be found in Section 0.3.

The way we code can be easily translated into other languages. For example, as part of our FLAME research project we developed a library called libflame. Even though we coded it in the C programming language, it still closely resembles the MATLAB code that you will write and the library that you will use.

A library of vector-vector routines

The functionality of the functions that you will write is also part of the "laff" library of routines. What this means will become obvious in subsequent units.

Below is a table of vector functions, and the routines that implement them, that you will be able to use in future weeks.

<table>
<thead>
<tr>
<th>Operation Abbrev.</th>
<th>Definition</th>
<th>Function</th>
<th>MATLAB Approx.</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector-vector operations</td>
<td></td>
<td></td>
<td>intrinsic</td>
<td>flops</td>
</tr>
<tr>
<td>Copy (COPY)</td>
<td>(y := x)</td>
<td>(y = \text{laff_copy}(x, y))</td>
<td>(y = x)</td>
<td>0</td>
</tr>
<tr>
<td>Vector scaling (SCAL)</td>
<td>(x := \alpha x)</td>
<td>(x = \text{laff_scal}(\alpha, x))</td>
<td>(x = \alpha \times x)</td>
<td>n</td>
</tr>
<tr>
<td>Scaled addition (AXPY)</td>
<td>(y := \alpha x + y)</td>
<td>(y = \text{laff_axpy}(\alpha, x, y))</td>
<td>(y = \alpha \times x + y)</td>
<td>2n</td>
</tr>
<tr>
<td>Dot product (DOT)</td>
<td>(\alpha := x^T y)</td>
<td>(\alpha = \text{laff_dot}(x, y))</td>
<td>(\alpha = x^T \times y)</td>
<td>2n</td>
</tr>
<tr>
<td>Length (NORM2)</td>
<td>(\alpha := | x |_2)</td>
<td>(\alpha = \text{laff_norm2}(x))</td>
<td>(\alpha = | x |_2)</td>
<td>2n</td>
</tr>
</tbody>
</table>

A couple of comments:

• The operations we will implement are available already in MATLAB. So why do we write them as routines? Because
 1. It helps us connect the abstractions in the mathematics to the abstractions in code; and
 2. Implementations in other languages (e.g. C and Fortran) more closely follow how we will implement the operations as functions/routines.

• In, for example, laff_copy, why not make the function

\[
y = \text{laff_copy}(x)\
\]

1. Often we will want to copy a column vector to a row vector or a row vector to a column vector. By also passing \(y \) into the routine, we indicate whether the output should be a row or a column vector.

2. Implementations in other languages (e.g. C and Fortran) more closely follow how we will implement the operations as functions/routines.

The way we will program translates almost directly into equivalent routines for the C or Python programming languages. Now, let’s dive right in! We’ll walk you through it in the next units.
1.5.2 A Copy Routine (copy)

Homework 1.5.2.1 Implement the function `laff_copy` that copies a vector into another vector. The function is defined as

```matlab
function [ y_out ] = laff_copy( x, y )
```

where

- `x` and `y` must each be either an `n x 1` array (column vector) or a `1 x n` array (row vector);
- `y_out` must be the same kind of vector as `y` (in other words, if `y` is a column vector, so is `y_out` and if `y` is a row vector, so is `y_out`).
- The function should “transpose” the vector if `x` and `y` do not have the same “shape” (if one is a column vector and the other one is a row vector).
- If `x` and/or `y` are not vectors or if the size of (row or column) vector `x` does not match the size of (row or column) vector `y`, the output should be 'FAILED'.

Additional instructions. If link does not work, open LAFF-2.0xM/1521Instructions.pdf.

1.5.3 A Routine that Scales a Vector (scal)

Homework 1.5.3.1 Implement the function `laff_scal` that scales a vector `x` by a scalar `α`. The function is defined as

```matlab
function [ x_out ] = laff_scal( alpha, x )
```

where

- `x` must be either an `n x 1` array (column vector) or a `1 x n` array (row vector);
- `x_out` must be the same kind of vector as `x`; and
- If `x` or `alpha` are not a (row or column) vector and scalar, respectively, the output should be 'FAILED'.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test_scal.m.
1.5.4 A Scaled Vector Addition Routine (axpy)

Homework 1.5.4.1 Implement the function `laff_axpy` that computes $\alpha x + y$ given scalar α and vectors x and y. The function is defined as

```
function [ y_out ] = laff_axpy( alpha, x, y )
```

where
- x and y must each be either an $n \times 1$ array (column vector) or a $1 \times n$ array (row vector);
- y_{out} must be the same kind of vector as y; and
- If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or column) vector y, the output should be 'FAILED'.
- If α is not a scalar, the output should be 'FAILED'.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test_axpy.m.

1.5.5 An Inner Product Routine (dot)

Homework 1.5.5.1 Implement the function `laff_dot` that computes the dot product of vectors x and y. The function is defined as

```
function [ alpha ] = laff_dot( x, y )
```

where
- x and y must each be either an $n \times 1$ array (column vector) or a $1 \times n$ array (row vector);
- If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or column) vector y, the output should be 'FAILED'.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test_dot.m.

1.5.6 A Vector Length Routine (norm2)
Homework 1.5.6.1 Implement the function `laff_norm2` that computes the length of vector \(x \). The function is defined as

```matlab
function [ alpha ] = laff_norm2( x )
```

where

- \(x \) is an \(n \times 1 \) array (column vector) or a \(1 \times n \) array (row vector);
- If \(x \) is not a vector the output should be 'FAILED'.

Check your implementation with the script in `LAF-2.0xM/Programming/Week01/test_norm2.m`.

1.6 Slicing and Dicing

1.6.1 Slicing and Dicing: Dot Product

In the video, we justify the following theorem:

Theorem 1.16 Let \(x,y \in \mathbb{R}^n \) and partition (Slice and Dice) these vectors as

\[
x = \begin{pmatrix}
x_0 \\
x_1 \\
\vdots \\
x_{N-1}
\end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{N-1}
\end{pmatrix},
\]

where \(x_i, y_i \in \mathbb{R}^{n_i} \) with \(\sum_{i=0}^{N-1} n_i = n \). Then

\[
x^T y = x_0^T y_0 + x_1^T y_1 + \cdots + x_{N-1}^T y_{N-1} = \sum_{i=0}^{N-1} x_i^T y_i.
\]

1.6.2 Algorithms with Slicing and Redicing: Dot Product
Algorithm: $[\alpha] := \text{DOT}(x, y)$

Partition $x \rightarrow \begin{pmatrix} x_T \\ x_B \end{pmatrix}$, $y \rightarrow \begin{pmatrix} y_T \\ y_B \end{pmatrix}$

where x_T and y_T have 0 elements

$\alpha := 0$

while $m(x_T) < m(x)$ do

Repartition

$\begin{pmatrix} x_T \\ x_B \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ \chi_1 \\ x_2 \end{pmatrix}$, $\begin{pmatrix} y_T \\ y_B \end{pmatrix} \rightarrow \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix}$

where χ_1 has 1 row, ψ_1 has 1 row

$\alpha := \chi_1 \times \psi_1 + \alpha$

Continue with

$\begin{pmatrix} x_T \\ x_B \end{pmatrix} \leftarrow \begin{pmatrix} x_0 \\ \chi_1 \\ x_2 \end{pmatrix}$, $\begin{pmatrix} y_T \\ y_B \end{pmatrix} \leftarrow \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix}$

endwhile

1.6.3 Coding with Slicing and Redicing: Dot Product
There are a number of steps you need to take with MATLAB Online before moving on with this unit. If you do this right, it will save you a lot of grief for the rest of the course:

When you uploaded LAFF-2.0xM.zip and unzipped it, that directory and all its subdirectories were automatically placed on the "path". In theory, in Unit 1.5.2, you removed LAFF-2.0xM from the path. If not: right-click on that folder, choose “Remove from path” and choose “Selected folder and subfolders”. LAFF-2.0xM should now turn from black to gray. Next, there is a specific set of functions that we do want on the path. To accomplish this

- Expand folder LAFF-2.0xM.
- Expand subfolder Programming.
- Right-click on subfolder laff, choose “Add to path” and choose “Selected folder and subfolders”. laff should now turn from gray to black. This should be the last time you need to set the path for this course.

Finally, you will want to make LAFF-2.0xM -> Programming -> Week01 your current directory for the Command Window. You do this by double clicking on LAFF-2.0xM -> Programming -> Week01. To make sure the Command Window views this directory as the current directory, type “pwd” in the Command Window.

The video illustrates how to do the exercise using a desktop version of MATLAB. Hopefully it will be intuitively obvious how to do the exercise with MATLAB Online instead. If not, ask questions in the discussion for the unit.

Homework 1.6.3.1 Follow along with the video to implement the routine

\[\text{Dot unb}(x, y) \]

The “Spark webpage” can be found at

or by opening the file

LAFF-2.0xM → Spark → index.html

that should have been in the LAFF-2.0xM.zip file you downloaded and unzipped as described in Week0 (Unit 0.2.7).

1.6.4 Slicing and Dicing: axpy

In the video, we justify the following theorem:

Theorem 1.17 Let \(\alpha \in \mathbb{R} \), \(x, y \in \mathbb{R}^n \), and partition (Slice and Dice) these vectors as

\[
\begin{pmatrix}
\begin{array}{c}
\alpha x_0 \\
\alpha x_1 \\
\vdots \\
\alpha x_{N-1}
\end{array}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
\begin{array}{c}
\alpha y_0 \\
\alpha y_1 \\
\vdots \\
\alpha y_{N-1}
\end{array}
\end{pmatrix}
\]

View at edX
where \(x_i, y_i \in \mathbb{R}^{n_i} \) with \(\sum_{i=0}^{N-1} n_i = n \). Then

\[
\alpha x + y = \alpha \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{pmatrix} + \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{pmatrix} = \begin{pmatrix} \alpha x_0 + y_0 \\ \alpha x_1 + y_1 \\ \vdots \\ \alpha x_{N-1} + y_{N-1} \end{pmatrix}.
\]

1.6.5 Algorithms with Slicing and Redicing: axpy

Algorithm: \([y] := \text{AXPY}(\alpha, x, y)\)

Partition

\[x \rightarrow \begin{pmatrix} x_T \\ x_B \end{pmatrix}, \quad y \rightarrow \begin{pmatrix} y_T \\ y_B \end{pmatrix} \]

where \(x_T \) and \(y_T \) have 0 elements

while \(m(x_T) < m(x) \) do

 Repartition

 \[
 \begin{pmatrix} x_T \\ x_B \end{pmatrix} \rightarrow \begin{pmatrix} x_0 \\ \chi_1 \\ \vdots \\ x_{N-1} \end{pmatrix}, \quad \begin{pmatrix} y_T \\ y_B \end{pmatrix} \rightarrow \begin{pmatrix} y_0 \\ \psi_1 \\ \vdots \\ y_{N-1} \end{pmatrix}
 \]

 where \(\chi_1 \) has 1 row, \(\psi_1 \) has 1 row

 \[
 \psi_1 := \alpha \times \chi_1 + \psi_1
 \]

 Continue with

 \[
 \begin{pmatrix} x_T \\ x_B \end{pmatrix} \leftarrow \begin{pmatrix} x_0 \\ \chi_1 \\ \vdots \\ x_{N-1} \end{pmatrix}, \quad \begin{pmatrix} y_T \\ y_B \end{pmatrix} \leftarrow \begin{pmatrix} y_0 \\ \psi_1 \\ \vdots \\ y_{N-1} \end{pmatrix}
 \]

endwhile

1.6.6 Coding with Slicing and Redicing: axpy

[View at edX](#)
Homework 1.6.6.1 Implement the routine

\texttt{Axpy_unb(alpha, x, y).}

The “Spark webpage” can be found at

or by opening the file

LAFF-2.0xM \rightarrow Spark \rightarrow index.html

that should have been in the LAFF-2.0xM.zip file you downloaded and unzipped as described in Week0 (Unit 0.2.7).

1.7 Enrichment

1.7.1 Learn the Greek Alphabet

In this course, we try to use the letters and symbols we use in a very consistent way, to help communication. As a general rule

- Lowercase Greek letters (\(\alpha, \beta\), etc.) are used for scalars.
- Lowercase (Roman) letters (\(a, b\), etc) are used for vectors.
- Uppercase (Roman) letters (\(A, B\), etc) are used for matrices.

Exceptions include the letters \(i, j, k, l, m,\) and \(n\), which are typically used for integers.

Typically, if we use a given uppercase letter for a matrix, then we use the corresponding lower case letter for its columns (which can be thought of as vectors) and the corresponding lower case Greek letter for the elements in the matrix. Similarly, as we have already seen in previous sections, if we start with a given letter to denote a vector, then we use the corresponding lower case Greek letter for its elements.

Table 1.1 lists how we will use the various letters.

1.7.2 Other Norms

A norm is a function, in our case of a vector in \(\mathbb{R}^n\), that maps every vector to a nonnegative real number. The simplest example is the absolute value of a real number: Given \(\alpha \in \mathbb{R}\), the absolute value of \(\alpha\), often written as \(|\alpha|\), equals the magnitude of \(\alpha\):

\[
|\alpha| = \begin{cases}
\alpha & \text{if } \alpha \geq 0 \\
-\alpha & \text{otherwise.}
\end{cases}
\]

Notice that only \(\alpha = 0\) has the property that \(|\alpha| = 0\) and that \(|\alpha + \beta| \leq |\alpha| + |\beta|\), which is known as the triangle inequality.

Similarly, one can find functions, called norms, that measure the magnitude of vectors. One example is the (Euclidean) length of a vector, which we call the 2-norm: for \(x \in \mathbb{R}^n\),

\[
\|x\|_2 = \sqrt{\sum_{i=0}^{n-1} x_i^2}.
\]

Clearly, \(\|x\|_2 = 0\) if and only if \(x = 0\) (the vector of all zeroes). Also, for \(x, y \in \mathbb{R}^n\), one can show that \(\|x + y\|_2 \leq \|x\|_2 + \|y\|_2\).

A function \(|\cdot| : \mathbb{R}^n \to \mathbb{R}\) is a norm if and only if the following properties hold for all \(x, y \in \mathbb{R}^n\):

- \(|x| \geq 0;\) and
<table>
<thead>
<tr>
<th>Matrix</th>
<th>Vector</th>
<th>Scalar</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>α (\alpha)</td>
<td>alpha</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>β (\beta)</td>
<td>beta</td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>γ (\gamma)</td>
<td>gamma</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>δ (\delta)</td>
<td>delta</td>
</tr>
<tr>
<td>E</td>
<td>e</td>
<td>ε (\epsilon) (\text{epsilon})</td>
<td>(e_j) \text{fth unit basis vector.})</td>
</tr>
<tr>
<td>F</td>
<td>f</td>
<td>ϕ (\phi)</td>
<td>phi</td>
</tr>
<tr>
<td>G</td>
<td>g</td>
<td>ξ (\xi)</td>
<td>xi</td>
</tr>
<tr>
<td>H</td>
<td>h</td>
<td>η (\eta)</td>
<td>eta</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td>Used for identity matrix.</td>
</tr>
<tr>
<td>K</td>
<td>k</td>
<td>κ (\kappa)</td>
<td>kappa</td>
</tr>
<tr>
<td>L</td>
<td>l</td>
<td>λ (\lambda)</td>
<td>lambda</td>
</tr>
<tr>
<td>M</td>
<td>m</td>
<td>μ (\mu)</td>
<td>mu</td>
</tr>
<tr>
<td>N</td>
<td>n</td>
<td>ν (\nu)</td>
<td>nu</td>
</tr>
<tr>
<td>P</td>
<td>p</td>
<td>π (\pi)</td>
<td>pi</td>
</tr>
<tr>
<td>Q</td>
<td>q</td>
<td>θ (\theta)</td>
<td>theta</td>
</tr>
<tr>
<td>R</td>
<td>r</td>
<td>ρ (\rho)</td>
<td>rho</td>
</tr>
<tr>
<td>S</td>
<td>s</td>
<td>σ (\sigma)</td>
<td>sigma</td>
</tr>
<tr>
<td>T</td>
<td>t</td>
<td>τ (\tau)</td>
<td>tau</td>
</tr>
<tr>
<td>U</td>
<td>u</td>
<td>υ (\upsilon)</td>
<td>upsilon</td>
</tr>
<tr>
<td>V</td>
<td>v</td>
<td>ν (\nu)</td>
<td>nu</td>
</tr>
<tr>
<td>W</td>
<td>w</td>
<td>ω (\omega)</td>
<td>omega</td>
</tr>
<tr>
<td>X</td>
<td>x</td>
<td>χ (\chi)</td>
<td>chi</td>
</tr>
<tr>
<td>Y</td>
<td>y</td>
<td>ψ (\psi)</td>
<td>psi</td>
</tr>
<tr>
<td>Z</td>
<td>z</td>
<td>ζ (\zeta)</td>
<td>zeta</td>
</tr>
</tbody>
</table>

Figure 1.1: Correspondence between letters used for matrices (uppercase Roman), vectors (lowercase Roman), and the symbols used to denote their scalar entries (lowercase Greek letters).
• \(\|x\| = 0 \) if and only if \(x = 0 \); and

• \(\|x + y\| \leq \|x\| + \|y\| \) (the triangle inequality).

The 2-norm (Euclidean length) is a norm.

Are there other norms? The answer is yes:

• The taxi-cab norm, also known as the 1-norm:

\[
\|x\|_1 = \sum_{i=0}^{n-1} |x_i|.
\]

It is sometimes called the taxi-cab norm because it is the distance, in blocks, that a taxi would need to drive in a city like New York, where the streets are laid out like a grid.

• For \(1 \leq p \leq \infty \), the \(p \)-norm:

\[
\|x\|_p = \left(\sum_{i=0}^{n-1} |x_i|^p \right)^{1/p}.
\]

Notice that the 1-norm and the 2-norm are special cases.

• The \(\infty \)-norm:

\[
\|x\|_\infty = \lim_{p \to \infty} \left(\sum_{i=0}^{n-1} |x_i|^p \right)^{1/p} = \max_{i=0}^{n-1} |x_i|.
\]

The bottom line is that there are many ways of measuring the length of a vector. In this course, we will only be concerned with the 2-norm.

We will not prove that these are norms, since that, in part, requires one to prove the triangle inequality and then, in turn, requires a theorem known as the Cauchy-Schwarz inequality. Those interested in seeing proofs related to the results in this unit are encouraged to investigate norms further.

Example 1.18 The vectors with norm equal to one are often of special interest. Below we plot the points to which vectors \(x \) with \(\|x\|_2 = 1 \) point (when those vectors start at the origin, \((0,0))\). (E.g., the vector \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) points to the point \((1,0)\) and that vector has 2-norm equal to one, hence the point is one of the points to be plotted.)
Example 1.19 Similarly, below we plot all points to which vectors x with $\|x\|_1 = 1$ point (starting at the origin).

![Diamond shape](image1)

Example 1.20 Similarly, below we plot all points to which vectors x with $\|x\|_\infty = 1$ point.

![Square shape](image2)

Example 1.21 Now consider all points to which vectors x with $\|x\|_p = 1$ point, when $2 < p < \infty$. These form a curve somewhere between the ones corresponding to $\|x\|_2 = 1$ and $\|x\|_\infty = 1$:

![Circle shape](image3)
1.7.3 Overflow and Underflow

A detailed discussion of how real numbers are actually stored in a computer (approximations called floating point numbers) goes beyond the scope of this course. We will periodically expose some relevant properties of floating point numbers throughout the course.

What is important right now is that there is a largest (in magnitude) number that can be stored and a smallest (in magnitude) number not equal to zero, that can be stored. Try to store a number larger in magnitude than this largest number, and you cause what is called an overflow. This is often stored as a “Not-A-Number” (NAN). Try to store a number not equal to zero and smaller in magnitude than this smallest number, and you cause what is called an underflow. An underflow is often set to zero.

Let us focus on overflow. The problem with computing the length (2-norm) of a vector is that it equals the square root of the sum of the squares of the components. While the answer may not cause an overflow, intermediate results when squaring components could. Specifically, any component greater in magnitude than the square root of the largest number that can be stored will overflow when squared.

The solution is to exploit the following observation: Let $\alpha > 0$. Then

$$
\|x\|_2 = \sqrt{\sum_{i=0}^{n-1} x_i^2} = \sqrt{\sum_{i=0}^{n-1} \alpha^2 \left(\frac{x_i}{\alpha}\right)^2} = \sqrt{\alpha^2 \sum_{i=0}^{n-1} \left(\frac{x_i}{\alpha}\right)^2} = \alpha \sqrt{\left(\frac{1}{\alpha}\right)^T x \left(\frac{1}{\alpha}\right)}
$$

Now, we can use the following algorithm to compute the length of vector x:

- Choose $\alpha = \max_{i=0}^{n-1} |x_i|$.
- Scale $x := x/\alpha$.
- Compute $\|x\|_2 = \alpha \sqrt{\frac{x}{x}}$.

Notice that no overflow for intermediate results (when squaring) will happen because all elements are of magnitude less than or equal to one. Similarly, only values that are very small relative to the final results will underflow because at least one of the components of x/α equals one.

1.7.4 A Bit of History

The functions that you developed as part of your LAFF library are very similar in functionality to Fortran routines known as the (level-1) Basic Linear Algebra Subprograms (BLAS) that are commonly used in scientific computing libraries. These were first proposed in the 1970s and were used in the development of one of the first linear algebra libraries, LINPACK. Classic references for that work are

The style of coding that we use is at the core of our FLAME project and was first published in

1.8 Wrap Up

1.8.1 Homework

Homework 1.8.1.1 Let

\[x = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad y = \begin{pmatrix} \alpha \\ \beta - \alpha \end{pmatrix}, \quad \text{and} \quad x = y. \]

Indicate which of the following must be true (there may be multiple correct answers):

(a) \(\alpha = 2 \)
(b) \(\beta = (\beta - \alpha) + \alpha = (-1) + 2 = 1 \)
(c) \(\beta - \alpha = -1 \)
(d) \(\beta - 2 = -1 \)
(e) \(x = 2e_0 - e_1 \)
Homework 1.8.1.2 A displacement vector represents the length and direction of an imaginary, shortest, straight path between two locations. To illustrate this as well as to emphasize the difference between ordered pairs that represent positions and vectors, we ask you to map a trip we made.

In 2012, we went on a journey to share our research in linear algebra. Below are some displacement vectors to describe parts of this journey using longitude and latitude. For example, we began our trip in Austin, TX and landed in San Jose, CA. Austin has coordinates $30^\circ 15'\ N(orth), 97^\circ 45'\ W(est)$ and San Jose’s are $37^\circ 20'\ N, 121^\circ 54'\ W$. (Notice that convention is to report first longitude and then latitude.) If we think of using longitude and latitude as coordinates in a plane where the first coordinate is position E (positive) or W (negative) and the second coordinate is position N (positive) or S (negative), then Austin’s location is $(-97^\circ 45', 30^\circ 15')$ and San Jose’s are $(-121^\circ 54', 37^\circ 20')$. (Here, notice the switch in the order in which the coordinates are given because we now want to think of E/W as the x coordinate and N/S as the y coordinate.)

For our displacement vector for this, our first component will correspond to the change in the x coordinate, and the second component will be the change in the second coordinate. For convenience, we extend the notion of vectors so that the components include units as well as real numbers. Notice that for convenience, we extend the notion of vectors so that the components include units as well as real numbers (60 minutes ($'$)= 1 degree($^\circ$)). Hence our displacement vector for Austin to San Jose is

\[
\begin{pmatrix}
-24^\circ 09' \\
7^\circ 05'
\end{pmatrix}
\]

After visiting San Jose, we returned to Austin before embarking on a multi-legged excursion. That is, from Austin we flew to the first city and then from that city to the next, and so forth. In the end, we returned to Austin.

The following is a table of cities and their coordinates:

<table>
<thead>
<tr>
<th>City</th>
<th>Coordinates</th>
<th>City</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>$00^\circ 08'\ W, 51^\circ 30'\ N$</td>
<td>Austin</td>
<td>$-97^\circ 45'\ E, 30^\circ 15'\ N$</td>
</tr>
<tr>
<td>Pisa</td>
<td>$10^\circ 21'\ E, 43^\circ 43'\ N$</td>
<td>Brussels</td>
<td>$04^\circ 21'\ E, 50^\circ 51'\ N$</td>
</tr>
<tr>
<td>Valencia</td>
<td>$00^\circ 23'\ E, 39^\circ 28'\ N$</td>
<td>Darmstadt</td>
<td>$08^\circ 39'\ E, 49^\circ 52'\ N$</td>
</tr>
<tr>
<td>Zürich</td>
<td>$08^\circ 33'\ E, 47^\circ 22'\ N$</td>
<td>Krakow</td>
<td>$19^\circ 56'\ E, 50^\circ 4'\ N$</td>
</tr>
</tbody>
</table>

Determine the order in which cities were visited, starting in Austin, given that the legs of the trip (given in order) had the following displacement vectors:

\[
\begin{pmatrix}
102^\circ 06' \\
20^\circ 36'
\end{pmatrix} \rightarrow \begin{pmatrix}
04^\circ 18' \\
-00^\circ 59'
\end{pmatrix} \rightarrow \begin{pmatrix}
-00^\circ 06' \\
-02^\circ 30'
\end{pmatrix} \rightarrow \begin{pmatrix}
01^\circ 48' \\
-03^\circ 39'
\end{pmatrix} \rightarrow \begin{pmatrix}
09^\circ 35' \\
06^\circ 21'
\end{pmatrix} \rightarrow \begin{pmatrix}
-20^\circ 04' \\
01^\circ 26'
\end{pmatrix} \rightarrow \begin{pmatrix}
00^\circ 31' \\
-12^\circ 02'
\end{pmatrix} \rightarrow \begin{pmatrix}
-98^\circ 08' \\
-09^\circ 13'
\end{pmatrix}
\]
Homework 1.8.1.3 These days, high performance computers are called clusters and consist of many compute nodes, connected via a communication network. Each node of the cluster is basically equipped with a central processing unit (CPU), memory chips, a hard disk, and a network card. The nodes can be monitored for average power consumption (via power sensors) and application activity.

A system administrator monitors the power consumption of a node of such a cluster for an application that executes for two hours. This yields the following data:

<table>
<thead>
<tr>
<th>Component</th>
<th>Average power (W)</th>
<th>Time in use (in hours)</th>
<th>Fraction of time in use</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>90</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Memory</td>
<td>30</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Disk</td>
<td>10</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Network</td>
<td>15</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Sensors</td>
<td>5</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The energy, often measured in KWh, is equal to power times time. Notice that the total energy consumption can be found using the dot product of the vector of components’ average power and the vector of corresponding time in use. What is the total energy consumed by this node in KWh? (The power is in Watts (W), so you will want to convert to Kilowatts (KW).)

Now, let’s set this up as two vectors, \(\mathbf{x} \) and \(\mathbf{y} \). The first records the power consumption for each of the components and the other for the total time that each of the components is in use:

\[
\mathbf{x} = \begin{pmatrix} 90 \\ 30 \\ 10 \\ 15 \\ 5 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 0.7 \\ 0.6 \\ 0.3 \\ 0.1 \\ 1.0 \end{pmatrix}.
\]

Instead, compute \(\mathbf{x}^T \mathbf{y} \). Think: How do the two ways of computing the answer relate?
Homework 1.8.1.4 (Examples from statistics) Linear algebra shows up often when computing with data sets. In this homework, you find out how dot products can be used to define various sums of values that are often encountered in statistics.

Assume you observe a random variable and you let those sampled values be represented by $\chi_i, i = 0, 1, 2, 3, \cdots, n - 1$. We can let x be the vector with components χ_i and $\vec{1}$ be a vector of size n with components all ones:

$$x = \begin{pmatrix} \chi_0 \\ \vdots \\ \chi_{n-1} \end{pmatrix}, \quad \text{and} \quad \vec{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

For any x, the sum of the values of x can be computed using the dot product operation as

- $x^T x$
- $\vec{1}^T x$
- $x^T \vec{1}$

The sample mean of a random variable is the sum of the values the random variable takes on divided by the number of values, n. In other words, if the values the random variable takes on are stored in vector x, then $\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} \chi_i$.

Using a dot product operation, for all x this can be computed as

- $\frac{1}{n} x^T x$
- $\frac{1}{n} \vec{1}^T x$
- $(\vec{1}^T \vec{1})^{-1} (x^T \vec{1})$

For any x, the sum of the squares of observations stored in (the elements of) a vector, x, can be computed using a dot product operation as

- $x^T x$
- $\vec{1}^T x$
- $x^T \vec{1}$
1.8.2 Summary of Vector Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector scaling</td>
<td>(\alpha x = \begin{pmatrix} \alpha x_0 \ \alpha x_1 \ \vdots \ \alpha x_{n-1} \end{pmatrix})</td>
</tr>
<tr>
<td>Vector addition</td>
<td>(x + y = \begin{pmatrix} x_0 + y_0 \ x_1 + y_1 \ \vdots \ x_{n-1} + y_{n-1} \end{pmatrix})</td>
</tr>
<tr>
<td>Vector subtraction</td>
<td>(x - y = \begin{pmatrix} x_0 - y_0 \ x_1 - y_1 \ \vdots \ x_{n-1} - y_{n-1} \end{pmatrix})</td>
</tr>
<tr>
<td>AXPY</td>
<td>(\alpha x + y = \begin{pmatrix} \alpha x_0 + y_0 \ \alpha x_1 + y_1 \ \vdots \ \alpha x_{n-1} + y_{n-1} \end{pmatrix})</td>
</tr>
<tr>
<td>dot (inner) product</td>
<td>(x^T y = \sum_{i=0}^{n-1} x_i y_i)</td>
</tr>
<tr>
<td>vector length</td>
<td>(|x|2 = \sqrt{x^T x} = \sqrt{\sum{i=0}^{n-1} x_i^2})</td>
</tr>
</tbody>
</table>

1.8.3 Summary of the Properties of Vector Operations

Vector Addition

- Is commutative. That is, for all vectors \(x, y \in \mathbb{R}^n \), \(x + y = y + x \).
- Is associative. That is, for all vectors \(x, y, z \in \mathbb{R}^n \), \((x + y) + z = x + (y + z) \).
- Has the zero vector as an identity.
- For all vectors \(x \in \mathbb{R}^n \), \(x + 0 = 0 + x = x \) where \(0 \) is the vector of size \(n \) with 0 for each component.
- Has an inverse, \(-x \). That is \(x + (-x) = 0 \).

The Dot Product of Vectors

- Is commutative. That is, for all vectors \(x, y \in \mathbb{R}^n \), \(x^T y = y^T x \).
- Distributes over vector addition. That is, for all vectors \(x, y, z \in \mathbb{R}^n \), \(x^T (y + z) = x^T y + x^T z \) and \((x + y)^T z = x^T z + y^T z \).

Partitioned vector operations

For (sub)vectors of appropriate size

\[
\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{pmatrix} + \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{pmatrix} = \begin{pmatrix} x_0 + y_0 \\ x_1 + y_1 \\ \vdots \\ x_{N-1} + y_{N-1} \end{pmatrix}.
\]
\[
\begin{pmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_{N-1}
\end{pmatrix}^T
\begin{pmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{N-1}
\end{pmatrix}
= x_0^T y_0 + x_1^T y_1 + \cdots + x_{N-1}^T y_{N-1} = \sum_{i=0}^{N-1} x_i^T y_i.
\]

Other Properties

- For \(x, y \in \mathbb{R}^n \), \((x + y)^T (x + y) = x^T x + 2x^T y + y^T y \).
- For \(x, y \in \mathbb{R}^n \), \(x^T y = 0 \) if and only if \(x \) and \(y \) are orthogonal.
- Let \(x, y \in \mathbb{R}^n \) be nonzero vectors and let the angle between them equal \(\theta \). Then \(\cos(\theta) = \frac{x^T y}{\|x\|_2 \|y\|_2} \).
- For \(x \in \mathbb{R}^n \), \(x^T e_i = e_i^T x = x_i \) where \(x_i \) equals the \(i \)th component of \(x \).

1.8.4 Summary of the Routines for Vector Operations

<table>
<thead>
<tr>
<th>Operation Abbrev.</th>
<th>Definition</th>
<th>Function</th>
<th>Approx. cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>flops</td>
</tr>
<tr>
<td>Vector-vector operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy (COPY)</td>
<td>(y := x)</td>
<td>laff.copy(x, y)</td>
<td>0</td>
</tr>
<tr>
<td>Vector scaling (SCAL)</td>
<td>(x := \alpha x)</td>
<td>laff.scal(alpha, x)</td>
<td>n</td>
</tr>
<tr>
<td>Scaled addition (AXPY)</td>
<td>(y := \alpha x + y)</td>
<td>laff.axpy(alpha, x, y)</td>
<td>2n</td>
</tr>
<tr>
<td>Dot product (DOT)</td>
<td>(\alpha := x^T y)</td>
<td>alpha = laff.dot(x, y)</td>
<td>2n</td>
</tr>
<tr>
<td>Length (NORM2)</td>
<td>(\alpha := |x|_2)</td>
<td>alpha = laff.norm2(x)</td>
<td>2n</td>
</tr>
</tbody>
</table>