
Week 7
More Gaussian Elimination and Matrix
Inversion

7.1 Opening Remarks

7.1.1 Introduction

* View at edX

237

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/82d43d475b6b440495ced8941e4e6cbf/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/82d43d475b6b440495ced8941e4e6cbf/1

Week 7. More Gaussian Elimination and Matrix Inversion 238

7.1.2 Outline

7.1. Opening Remarks . 237
7.1.1. Introduction . 237
7.1.2. Outline . 238
7.1.3. What You Will Learn . 239

7.2. When Gaussian Elimination Breaks Down . 240
7.2.1. When Gaussian Elimination Works . 240
7.2.2. The Problem . 244
7.2.3. Permutations . 245
7.2.4. Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting) 249
7.2.5. When Gaussian Elimination Fails Altogether . 254

7.3. The Inverse Matrix . 255
7.3.1. Inverse Functions in 1D . 255
7.3.2. Back to Linear Transformations . 255
7.3.3. Simple Examples . 257
7.3.4. More Advanced (but Still Simple) Examples . 261
7.3.5. Properties . 264

7.4. Enrichment . 265
7.4.1. Library Routines for LU with Partial Pivoting . 265

7.5. Wrap Up . 266
7.5.1. Homework . 266
7.5.2. Summary . 266

.13

7.1. Opening Remarks 239

7.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine, recognize, and apply permutation matrices.

• Apply permutation matrices to vectors and matrices.

• Identify and interpret permutation matrices and fluently compute the multiplication of a matrix on the left and right by a
permutation matrix.

• Reason, make conjectures, and develop arguments about properties of permutation matrices.

• Recognize when Gaussian elimination breaks down and apply row exchanges to solve the problem when appropriate.

• Recognize when LU factorization fails and apply row pivoting to solve the problem when appropriate.

• Recognize that when executing Gaussian elimination (LU factorization) with Ax = b where A is a square matrix, one of
three things can happen:

1. The process completes with no zeroes on the diagonal of the resulting matrix U . Then A = LU and Ax = b has a
unique solution, which can be found by solving Lz = b followed by Ux = z.

2. The process requires row exchanges, completing with no zeroes on the diagonal of the resulting matrix U . Then
PA = LU and Ax = b has a unique solution, which can be found by solving Lz = Pb followed by Ux = z.

3. The process requires row exchanges, but at some point no row can be found that puts a nonzero on the diagonal, at
which point the process fails (unless the zero appears as the last element on the diagonal, in which case it completes,
but leaves a zero on the diagonal of the upper triangular matrix). In Week 8 we will see that this means Ax = b does
not have a unique solution.

• Reason, make conjectures, and develop arguments about properties of inverses.

• Find the inverse of a simple matrix by understanding how the corresponding linear transformation is related to the matrix-
vector multiplication with the matrix.

• Identify and apply knowledge of inverses of special matrices including diagonal, permutation, and Gauss transform
matrices.

• Determine whether a given matrix is an inverse of another given matrix.

• Recognize that a 2× 2 matrix A =

 α0,0 α0,1

α1,0 α1,1

 has an inverse if and only if its determinant is not zero: det(A) =

α0,0α1,1−α0,1α1,0 6= 0.

• Compute the inverse of a 2×2 matrix A if that inverse exists.

Week 7. More Gaussian Elimination and Matrix Inversion 240

•

Algorithm: [b] := LTRSV UNB VAR1(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

b2 := b2−β1l21

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.1: Algorithm for solving Lz = b when L is a unit lower triangular matrix. The right-hand side vector b is overwritten
with the solution vector z.

7.2 When Gaussian Elimination Breaks Down

7.2.1 When Gaussian Elimination Works

* View at edX
We know that if Gaussian elimination completes (the LU factorization of a given matrix can be computed) and the upper

triangular factor U has no zeroes on the diagonal, then Ax = b can be solved for all right-hand side vectors b.

Why?

• If Gaussian elimination completes (the LU factorization can be computed), then A = LU for some unit lower triangular
matrix L and upper triangular matrix U . We know this because of the equivalence of Gaussian elimination and LU
factorization.

If you look at the algorithm for forward substitition (solving Lz = b) in Figure 7.1 you notice that the only computations
that are encountered are multiplies and adds. Thus, the algorithm will complete.

Similarly, the backward substitution algorithm (for solving Ux = z) in Figure 7.2 can only break down if the division
causes an error. And that can only happen if U has a zero on its diagonal.

So, under the mentioned circumstances, we can compute a solution to Ax = b via Gaussian elimination, forward substitution,
and back substitution. Last week we saw how to compute this solution.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/1

7.2. When Gaussian Elimination Breaks Down 241

•

Algorithm: [b] := UTRSV UNB VAR1(U,b)

Partition U →

 UT L UT R

UBL UBR

 , b→

 bT

bB


where UBR is 0×0, bB has 0 rows

while m(UBR)< m(U) do

Repartition UT L UT R

0 UBR

→


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

→


b0

β1

b2


β1 := β1−uT

12b2

β1 := β1/υ11

Continue with UT L UT R

0 UBR

←


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.2: Algorithm for solving Ux = b when U is an upper triangular matrix. The right-hand side vector b is overwritten
with the solution vector x.

Is this the only solution?

We first give an intuitive explanation, and then we move on and walk you through a rigorous proof.
The reason is as follows: Assume that Ax = b has two solutions: u and v. Then

• Au = b and Av = b.

• This then means that vector w = u− v satisfies

Aw = A(u− v) = Au−Av = b−b = 0.

• Since Gaussian elimination completed we know that

(LU)w = 0,

or, equivalently,
Lz = 0 and Uw = z.

• It is not hard to see that if Lz = 0 then z = 0:

1 0 0 · · · 0

λ1,0 1 0 · · · 0

λ2,0 λ2,1 1 · · · 0
...

...
. . .

...

λn−1,0 λn−1,1 λn−1,2 · · · 1





ζ0

ζ1

ζ2
...

ζn−1


=



0

0

0
...

0


means ζ0 = 0. But then λ1,0ζ0 +ζ1 = 0 means ζ1 = 0. In turn λ2,0ζ0 +λ2,1ζ1 +ζ2 = 0 means ζ2 = 0. And so forth.

Week 7. More Gaussian Elimination and Matrix Inversion 242

• Thus, z = 0 and hence Uw = 0.

• It is not hard to see that if Uw = 0 then w = 0:

υ0,0 · · · υ0,n−3 υ0,n−2 υ0,n−1
...

. . .
...

...

0 · · · υn−3,n−3 υn−3,n−2 υn−3,n−1

0 · · · 0 υn−2,n−2 υn−2,n−1

0 · · · 0 0 υn−11,n−1





ω0
...

ωn−3

ωn−2

ωn−1


=



0
...

0

0

0


means υn−1,n−1ωn−1 = 0 and hence ωn−1 = 0 (since υn−1,n−1 6= 0). But then υn−2,n−2ωn−2 +υn−2,n−1ωn−1 = 0 means
ωn−2 = 0. And so forth.

We conclude that

If Gaussian elimination completes with an upper triangular system that has no zero diagonal coefficients (LU factorization
computes with L and U where U has no diagonal zero elements), then for all right-hand side vectors, b, the linear system
Ax = b has a unique solution x.

A rigorous proof

Let A ∈ Rn×n. If Gaussian elimination completes and the resulting upper triangular system has no zero coefficients on the
diagonal (U has no zeroes on its diagonal), then there is a unique solution x to Ax = b for all b ∈ R.

Always/Sometimes/Never

We don’t yet state this as a homework problem, because to get to that point we are going to make a number of observations
that lead you to the answer.

Homework 7.2.1.1 Let L∈R1×1 be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.2 Give the solution of

 1 0

2 1

 χ0

χ1

=

 1

2

.

Homework 7.2.1.3 Give the solution of


1 0 0

2 1 0

−1 2 1




χ0

χ1

χ2

=


1

2

3

.

(Hint: look carefully at the last problem, and you will be able to save yourself some work.)

Homework 7.2.1.4 Let L∈R2×2 be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.5 Let L∈R3×3 be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.6 Let L∈Rn×n be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

7.2. When Gaussian Elimination Breaks Down 243

Algorithm: [b] := LTRSV UNB VAR2(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.3: Blank algorithm for solving Lx = b, overwriting b with the result vector x for use in Homework 7.2.1.7. Here L is a
lower triangular matrix.

Homework 7.2.1.7 The proof for the last exercise suggests an alternative algorithm (Variant 2) for solving Lx = b
when L is unit lower triangular. Use Figure 7.3 to state this alternative algorithm and then implement it, yielding

• [b out] = Ltrsv unb var2(L, b)

You can check that they compute the right answers with the script in

• test Ltrsv unb var2.m
33

Homework 7.2.1.8 Let L ∈ Rn×n be a unit lower triangular matrix. Lx = 0, where 0 is the zero vector of size n,
has the unique solution x = 0.

Always/Sometimes/Never

Homework 7.2.1.9 Let U ∈ R1×1 be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.10 Give the solution of

 −1 1

0 2

 χ0

χ1

=

 1

2

.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week7/test_Ltrsv_unb_var2.m

Week 7. More Gaussian Elimination and Matrix Inversion 244

Homework 7.2.1.11 Give the solution of


−2 1 −2

0 −1 1

0 0 2




χ0

χ1

χ2

=


0

1

2

.

Homework 7.2.1.12 Let U ∈ R2×2 be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.13 Let U ∈ R3×3 be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.14 Let U ∈ Rn×n be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

The proof for the last exercise closely mirrors how we derived Variant 1 for solving Ux = b last week.

Homework 7.2.1.15 Let U ∈Rn×n be an upper triangular matrix with no zeroes on its diagonal. Ux = 0, where 0
is the zero vector of size n, has the unique solution x = 0.

Always/Sometimes/Never

Homework 7.2.1.16 Let A ∈ Rn×n. If Gaussian elimination completes and the resulting upper triangular system
has no zero coefficients on the diagonal (U has no zeroes on its diagonal), then there is a unique solution x to
Ax = b for all b ∈ R.

Always/Sometimes/Never

7.2.2 The Problem

* View at edX
The question becomes “Does Gaussian elimination always solve a linear system of n equations and n unknowns?” Or,

equivalently, can an LU factorization always be computed for an n×n matrix? In this unit we show that there are linear systems
where Ax = b has a unique solution but Gaussian elimination (LU factorization) breaks down. In this and the next sections
we will discuss what modifications must be made to Gaussian elimination and LU factorization so that if Ax = b has a unique
solution, then these modified algorithms complete and can be used to solve Ax = b.

A simple example where Gaussian elimination and LU factorization break down involves the matrix A =

 0 1

1 0

. In

the first step, the multiplier equals 1/0, which will cause a “division by zero” error.
Now, Ax = b is given by the set of linear equations 0 1

1 0

 χ0

χ1

=

 β1

β0


so that Ax = b is equivalent to  χ1

χ0

=

 β0

β1



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2

7.2. When Gaussian Elimination Breaks Down 245

and the solution to Ax = b is given by the vector x =

 β1

β0

.

Homework 7.2.2.1 Solve the following linear system, via the steps in Gaussian elimination that you have learned
so far.

2χ0+ 4χ1+(−2)χ2 =−10

4χ0+ 8χ1+ 6χ2 = 20

6χ0+(−4)χ1+ 2χ2 = 18

Mark all that are correct:

(a) The process breaks down.

(b) There is no solution.

(c)


χ0

χ1

χ2

=


1

−1

4



* View at edX

Now you try an example:

Homework 7.2.2.2 Perform Gaussian elimination with

0χ0+ 4χ1+(−2)χ2 =−10

4χ0+ 8χ1+ 6χ2 = 20

6χ0+(−4)χ1+ 2χ2 = 18

We now understand how to modify Gaussian elimination so that it completes when a zero is encountered on the diagonal
and a nonzero appears somewhere below it.

The above examples suggest that the LU factorization algorithm needs to be modified to allow for row exchanges. But to
do so, we need to develop some machinery.

7.2.3 Permutations

* View at edX

Homework 7.2.3.1 Compute 
0 1 0

0 0 1

1 0 0


︸ ︷︷ ︸

P


−2 1 2

3 2 1

−1 0 −3


︸ ︷︷ ︸

A

=

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3

Week 7. More Gaussian Elimination and Matrix Inversion 246

* View at edX

Examining the matrix P in the above exercise, we see that each row of P equals a unit basis vector. This leads us to the
following definitions that we will use to help express permutations:

Definition 7.1 A vector with integer components

p =


k0

k1
...

kn−1



is said to be a permutation vector if

• k j ∈ {0, . . . ,n−1} , for 0≤ j < n; and

• ki = k j implies i = j.

In other words, p is a rearrangement of the numbers 0, . . . ,n−1 (without repetition).

We will often write (k0,k1, . . . ,kn−1)
T to indicate the column vector, for space considerations.

Definition 7.2 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Then

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1



is said to be a permutation matrix.

In other words, P is the identity matrix with its rows rearranged as indicated by the permutation vector (k0,k1, . . . ,kn−1). We
will frequently indicate this permutation matrix as P(p) to indicate that the permutation matrix corresponds to the permutation
vector p.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3

7.2. When Gaussian Elimination Breaks Down 247

Homework 7.2.3.2 For each of the following, give the permutation matrix P(p):

• If p =


0

1

2

3

 then P(p) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

• If p =


3

2

1

0

 then P(p) =

• If p =


1

0

2

3

 then P(p) =

• If p =


1

2

3

0

 then P(p) =

Homework 7.2.3.3 Let p = (2,0,1)T . Compute

• P(p)


−2

3

−1

=

• P(p)


−2 1 2

3 2 1

−1 0 −3

=

Homework 7.2.3.4 Let p = (2,0,1)T and P = P(p). Compute
−2 1 2

3 2 1

−1 0 −3

PT =

Week 7. More Gaussian Elimination and Matrix Inversion 248

Homework 7.2.3.5 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Consider

x =


χ0

χ1
...

χn−1

 .

Applying permuation matrix P = P(p) to x yields

Px =


χk0

χk1

...

χkn−1

 .

Always/Sometimes/Never

Homework 7.2.3.6 Let p = (k0, . . . ,kn−1)
T be a permutation. Consider

A =


ãT

0

ãT
1
...

ãT
n−1

 .

Applying P = P(p) to A yields

PA =


ãT

k0

ãT
k1
...

ãT
kn−1

 .

Always/Sometimes/Never

In other words, Px and PA rearrange the elements of x and the rows of A in the order indicated by permutation vector p.

* View at edX

Homework 7.2.3.7 Let p = (k0, . . . ,kn−1)
T be a permutation, P = P(p), and A =

(
a0 a1 · · · an−1

)
.

APT =
(

ak0 ak1 · · · akn−1

)
.

Aways/Sometimes/Never

Homework 7.2.3.8 If P is a permutation matrix, then so is PT .
True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3

7.2. When Gaussian Elimination Breaks Down 249

Definition 7.3 Let us call the special permutation matrix of the form

P̃(π) =



eT
π

eT
1
...

eT
π−1

eT
0

eT
π+1
...

eT
n−1



=



0 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1


a pivot matrix.

P̃(π) = (P̃(π))T .

Homework 7.2.3.9 Compute

P̃(1)


−2

3

−1

= and P̃(1)


−2 1 2

3 2 1

−1 0 −3

= .

Homework 7.2.3.10 Compute 
−2 1 2

3 2 1

−1 0 −3

 P̃(1) = .

Homework 7.2.3.11 When P̃(π) (of appropriate size) multiplies a matrix from the left, it swaps row 0 and row π,
leaving all other rows unchanged.

Always/Sometimes/Never

Homework 7.2.3.12 When P̃(π) (of appropriate size) multiplies a matrix from the right, it swaps column 0 and
column π, leaving all other columns unchanged.

Always/Sometimes/Never

7.2.4 Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

Week 7. More Gaussian Elimination and Matrix Inversion 250

Gaussian elimination with row pivoting

* View at edX
We start our discussion with the example in Figure 7.4.

Homework 7.2.4.1 Compute

•


1 0 0

0 0 1

0 1 0




1 0 0

0 1 0

0 0 1




2 4 −2

4 8 6

6 −4 2

=

•


1 0 0

3 1 0

2 0 1




2 4 −2

0 −16 8

0 0 10

=

• What do you notice?

* View at edX
What the last homework is trying to demonstrate is that, for given matrix A,

• Let L =


1 0 0

3 1 0

2 0 1

 be the matrix in which the multipliers have been collected (the unit lower triangular matrix that

has overwritten the strictly lower triangular part of the matrix).

• Let U =


2 4 −2

0 −16 8

0 0 10

 be the upper triangular matrix that overwrites the matrix.

• Let P be the net result of multiplying all the permutation matrices together, from last to first as one goes from lef t to
right:

P =


1 0 0

0 0 1

0 1 0




1 0 0

0 1 0

0 0 1

=


1 0 0

0 0 1

0 1 0


Then

PA = LU.

In other words, Gaussian elimination with row interchanges computes the LU factorization of a permuted matrix. Of course,
one does not generally know ahead of time (a priori) what that permutation must be, because one doesn’t know when a zero
will appear on the diagonal. The key is to notice that when we pivot, we also interchange the multipliers that have overwritten
the zeroes that were introduced.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

7.2. When Gaussian Elimination Breaks Down 251

Example 7.4
(You may want to print the blank worksheet at the end of this week so you can follow along.)
In this example, we incorporate the insights from the last two units (Gaussian elimination with row interchanges
and permutation matrices) into the explanation of Gaussian elimination that uses Gauss transforms:

i Li P̃ A p

0

1 0 0

0 1 0

0 0 1

2 4 −2

4 8 6

6 −4 2

0

·
·

1 0 0

−2 1 0

−3 0 1

2 4 −2

4 8 6

6 −4 2

0

·
·

1 0 1

1 0

2 4 −2

2 0 10

3 −16 8

0

1

·

1 0 0

0 1 0

0 −0 1

2 4 −2

3 −16 8

2 0 10

0

1

·

2

2 4 −2

3 −16 8

2 0 10

0

1

0

Figure 7.4: Example of a linear system that requires row swapping to be added to Gaussian elimination.

Week 7. More Gaussian Elimination and Matrix Inversion 252

Homework 7.2.4.2
(You may want to print the blank worksheet at the end of this week so you can follow along.)
Perform Gaussian elimination with row swapping (row pivoting):

i Li P̃ A p

0

0 4 −2

4 8 6

6 −4 2

·
·

·
·

1

·

·

2

The example and exercise motivate the modification to the LU factorization algorithm in Figure 7.5. In that algorithm,
PIVOT(x) returns the index of the first nonzero component of x. This means that the algorithm only works if it is always the
case that α11 6= 0 or vector a21 contains a nonzero component.

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

7.2. When Gaussian Elimination Breaks Down 253

Algorithm: [A, p] := LU PIV(A, p)

Partition A→

 AT L AT R

ABL ABR

, p→

 pT

pB


where AT L is 0×0 and pT has 0 com-

ponents
while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

→


p0

π1

p2



π1 = PIVOT

 α11

a21

 aT
10 α11 aT

12

A20 a21 A22

 := P(π1)

 aT
10 α11 aT

12

A20 a21 A22


a21 := a21/α11 (a21 now contains l21) aT

12

A22

=

 aT
12

A22−a21aT
12


Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

←


p0

π1

p2


endwhile

Figure 7.5: LU factorization algorithm that incorporates row (partial) pivoting.

Solving the linear system

* View at edX
Here is the cool part: We have argued that Gaussian elimination with row exchanges (LU factorization with row pivoting)

computes the equivalent of a pivot matrix P and factors L and U (unit lower triangular and upper triangular, respectively) so
that PA = LU . If we want to solve the system Ax = b, then

Ax = b

is equivalent to
PAx = Pb.

Now, PA = LU so that
(LU)︸ ︷︷ ︸
PA

x = Pb.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

Week 7. More Gaussian Elimination and Matrix Inversion 254

•

Algorithm: b := APPLY PIV(p,b)

Partition p→

 pT

pB

, b→

 bT

bB


where pT and bT have 0 components

while m(bT)< m(b) do

Repartition pT

pB

→


p0

π1

p2

,

 bT

bB

→


b0

β1

b2


 β1

b2

 := P(π1)

 β1

b2


Continue with pT

pB

←


p0

π1

p2

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.6: Algorithm for applying the same exchanges rows that happened during the LU factorization with row pivoting to
the components of the right-hand side.

So, solving Ax = b is equivalent to solving
L (Ux)︸︷︷︸

z

= Pb.

This leaves us with the following steps:

Update b := Pb by applying the pivot matrices that were encountered during Gaussian elimination with row exchanges
to vector b, in the same order. A routine that, given the vector with pivot information p, does this is given in Figure 7.6.

• Solve Lz = b with this updated vector b, overwriting b with z. For this we had the routine Ltrsv unit.

• Solve Ux = b, overwriting b with x. For this we had the routine Utrsv nonunit.

Uniqueness of solution

If Gaussian elimination with row exchanges (LU factorization with pivoting) completes with an upper triangular system
that has no zero diagonal coefficients, then for all right-hand side vectors, b, the linear system Ax = b has a unique solution,
x.

7.2.5 When Gaussian Elimination Fails Altogether

Now, we can see that when executing Gaussian elimination (LU factorization) with Ax = b where A is a square matrix, one of
three things can happen:

• The process completes with no zeroes on the diagonal of the resulting matrix U . Then A = LU and Ax = b has a unique
solution, which can be found by solving Lz = b followed by Ux = z.

7.3. The Inverse Matrix 255

• The process requires row exchanges, completing with no zeroes on the diagonal of the resulting matrix U . Then PA = LU
and Ax = b has a unique solution, which can be found by solving Lz = Pb followed by Ux = z.

• The process requires row exchanges, but at some point no row can be found that puts a nonzero on the diagonal, at which
point the process fails (unless the zero appears as the last element on the diagonal, in which case it completes, but leaves
a zero on the diagonal).

This last case will be studied in great detail in future weeks. For now, we simply state that in this case Ax = b either has no
solutions, or it has an infinite number of solutions.

7.3 The Inverse Matrix

7.3.1 Inverse Functions in 1D

* View at edX
In high school, you should have been exposed to the idea of an inverse of a function of one variable. If

• f : R→ R maps a real to a real; and

• it is a bijection (both one-to-one and onto)

then

• f (x) = y has a unique solution for all y ∈ R.

• The function that maps y to x so that g(y) = x is called the inverse of f .

• It is denoted by f−1 : R→ R.

• Importantly, f (f−1(x)) = x and f−1(f (x)) = x.

In the next units we will examine how this extends to vector functions and linear transformations.

7.3.2 Back to Linear Transformations

* View at edX

Theorem 7.5 Let f : Rn→ Rm be a vector function. Then f is one-to-one and onto (a bijection) implies that m = n.

The proof of this hinges on the dimensionality of Rm and Rn. We won’t give it here.

Corollary 7.6 Let f : Rn→ Rn be a vector function that is a bijection. Then there exists a function f−1 : Rn→ Rn, which we
will call its inverse, such that f (f−1(x)) = f−1(f (x)) = x.

This is an immediate consequence of the fact that for every y there is a unique x such that f (x) = y and f−1(y) can then be
defined to equal that x.

Homework 7.3.2.1 Let L : Rn→ Rn be a linear transformation that is a bijection and let L−1 denote its inverse.

L−1 is a linear transformation.
Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2

Week 7. More Gaussian Elimination and Matrix Inversion 256

* View at edX

What we conclude is that if A ∈ Rn×n is the matrix that represents a linear transformation that is a bijection L, then there
is a matrix, which we will denote by A−1, that represents L−1, the inverse of L. Since for all x ∈ Rn it is the case that
L(L−1(x)) = L−1(L(x)) = x, we know that AA−1 = A−1A = I, the identity matrix.

Theorem 7.7 Let L : Rn→ Rn be a linear transformation, and let A be the matrix that represents L. If there exists a matrix B
such that AB = BA = I, then L has an inverse, L−1, and B equals the matrix that represents that linear transformation.

Actually, it suffices to require there to be a matrix B such that AB = I or BA = I. But we don’t quite have the knowledge at
this point to be able to prove it from that weaker assumption.

Proof: We need to show that L is a bijection. Clearly, for every x ∈ Rn there is a y ∈ Rn such that y = L(x). The question is
whether, given any y ∈ Rn, there is a vector x ∈ Rn such that L(x) = y. But

L(By) = A(By) = (AB)y = Iy = y.

So, x = By has the property that L(x) = y.
But is this vector x unique? If Ax0 = y and Ax1 = y then A(x0− x1) = 0. Since BA = I we find that BA(x0− x1) = x0− x1

and hence x0− x1 = 0, meaning that x0 = x1.

Let L : Rn→ Rn and let A be the matrix that represents L. Then L has an inverse if and only if there exists a matrix B such
that AB = BA = I. We will call matrix B the inverse of A, denote it by A−1 and note that if AA−1 = I then A−1A = I.

Definition 7.8 A matrix A is said to be invertible if the inverse, A−1, exists. An equivalent term for invertible is nonsingular.

We are going to collect a string of conditions that are equivalent to the statement “A is invertible”. Here is the start of that
collection.

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

We will add to this collection as the course proceeds.

Homework 7.3.2.2 Let A, B, and C all be n×n matrices. If AB = I and CA = I then B =C.
True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2

7.3. The Inverse Matrix 257

7.3.3 Simple Examples

* View at edX

General principles

Given a matrix A for which you want to find the inverse, the first thing you have to check is that A is square. Next, you want to
ask yourself the question: “What is the matrix that undoes Ax?” Once you guess what that matrix is, say matrix B, you prove it
to yourself by checking that BA = I or AB = I.

If that doesn’t lead to an answer or if that matrix is too complicated to guess at an inverse, you should use a more systematic
approach which we will teach you in the next unit. We will then teach you a fool-proof method next week.

Inverse of the Identity matrix

Homework 7.3.3.1 If I is the identity matrix, then I−1 = I. True/False

* View at edX

Inverse of a diagonal matrix

Homework 7.3.3.2 Find 
−1 0 0

0 2 0

0 0 1
3


−1

=

Homework 7.3.3.3 Assume δ j 6= 0 for 0≤ j < n.


δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δn−1



−1

=


1
δ0

0 · · · 0

0 1
δ1
· · · 0

...
...

. . .
...

0 0 · · · 1
δn−1

 .

Always/Sometimes/Never

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3

Week 7. More Gaussian Elimination and Matrix Inversion 258

Inverse of a Gauss transform

Homework 7.3.3.4 Find 
1 0 0

1 1 0

−2 0 1


−1

=

Important: read the answer!

Homework 7.3.3.5 
I 0 0

0 1 0

0 l21 I


−1

=


I 0 0

0 1 0

0 −l21 I

 .

True/False
The observation about how to compute the inverse of a Gauss transform explains the link between Gaussian elimination with
Gauss transforms and LU factorization.

Let’s review the example from Section 6.2.4:

•

Before After
1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2




2 4 −2

−10 10

−16 8

 .

•

Before After
1 0 0

0 1 0

0 −1.6 1




2 4 −2

−10 10

−16 8




2 4 −2

−10 10

−8

 .

Now, we can summarize the above by
1 0 0

0 1 0

0 −1.6 1




1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2

=


2 4 −2

0 −10 10

0 0 −8

 .

Now 
1 0 0

−2 1 0

−3 0 1


−1

1 0 0

0 1 0

0 −1.6 1


−1

1 0 0

0 1 0

0 −1.6 1




1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2



=


1 0 0

−2 1 0

−3 0 1


−1

1 0 0

0 1 0

0 −1.6 1


−1

2 4 −2

0 −10 10

0 0 −8

 .

7.3. The Inverse Matrix 259

so that 
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

−2 1 0

−3 0 1


−1

1 0 0

0 1 0

0 −1.6 1


−1

2 4 −2

0 −10 10

0 0 −8

 .

But, given our observations about the inversion of Gauss transforms, this translates to
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

2 1 0

3 0 1




1 0 0

0 1 0

0 1.6 1




2 4 −2

0 −10 10

0 0 −8

 .

But, miraculously, 
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

2 1 0

3 0 1




1 0 0

0 1 0

0 1.6 1


︸ ︷︷ ︸

1 0 0

2 1 0

3 1.6 1




2 4 −2

0 −10 10

0 0 −8

 .

But this gives us the LU factorization of the original matrix:
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

2 1 0

3 1.6 1




2 4 −2

0 −10 10

0 0 −8

 .

Now, the LU factorization (overwriting the strictly lower triangular part of the matrix with the multipliers) yielded
2 4 −2

2 −10 10

3 1.6 −8

 .

NOT a coincidence!
The following exercise explains further:

Homework 7.3.3.6 Assume the matrices below are partitioned conformally so that the multiplications and com-
parison are legal. 

L00 0 0

lT
10 1 0

L20 0 I




I 0 0

0 1 0

0 l21 I

=


L00 0 0

lT
10 1 0

L20 l21 I


Always/Sometimes/Never

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3

Week 7. More Gaussian Elimination and Matrix Inversion 260

Inverse of a permutation

Homework 7.3.3.7 Find 
0 1 0

1 0 0

0 0 1


−1

=

Homework 7.3.3.8 Find 
0 0 1

1 0 0

0 1 0


−1

=

Homework 7.3.3.9 Let P be a permutation matrix. Then P−1 = P.
Always/Sometimes/Never

Homework 7.3.3.10 Let P be a permutation matrix. Then P−1 = PT .
Always/Sometimes/Never

* View at edX

Inverting a 2D rotation

Homework 7.3.3.11 Recall from Week 2 how Rθ(x) rotates a vector x through angle θ:

x
θ

Rθ(x)

Rθ is represented by the matrix

R =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 .

What transformation will “undo” this rotation through angle θ? (Mark all correct answers)

(a) R−θ(x)

(b) Ax, where A =

 cos(−θ) −sin(−θ)

sin(−θ) cos(−θ)



(c) Ax, where A =

 cos(θ) sin(θ)

−sin(θ) cos(θ)



* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3

7.3. The Inverse Matrix 261

Inverting a 2D reflection

Homework 7.3.3.12 Consider a reflection with respect to the 45 degree line:

x

M(x)

If A represents the linear transformation M, then

(a) A−1 =−A

(b) A−1 = A

(c) A−1 = I

(d) All of the above.

* View at edX

7.3.4 More Advanced (but Still Simple) Examples

* View at edX

More general principles

Notice that AA−1 = I. Let’s label A−1 with the letter B instead. Then AB = I. Now, partition both B and I by columns. Then

A
(

b0 b1 · · · bn−1

)
=
(

e0 e1 · · · en−1

)
and hence Ab j = e j. So.... the jth column of the inverse equals the solution to Ax = e j where A and e j are input, and x is output.

We can now add to our string of equivalent conditions:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4

Week 7. More Gaussian Elimination and Matrix Inversion 262

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

Inverse of a triangular matrix

Homework 7.3.4.1 Compute

 −2 0

4 2

−1

=

* View at edX

Homework 7.3.4.2 Find  1 −2

0 2

−1

=

Homework 7.3.4.3 Let α0,0 6= 0 and α1,1 6= 0. Then α0,0 0

α1,0 α1,1

−1

=

 1
α0,0

0

− α1,0
α0,0α1,1

1
α1,1


True/False

Homework 7.3.4.4 Partition lower triangular matrix L as

L =

 L00 0

lT
10 λ11


Assume that L has no zeroes on its diagonal. Then

L−1 =

 L−1
00 0

− 1
λ11

lT
10L−1

00
1

λ11


True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4

7.3. The Inverse Matrix 263

* View at edX

Homework 7.3.4.5 The inverse of a lower triangular matrix with no zeroes on its diagonal is a lower triangular
matrix.

True/False

Challenge 7.3.4.6 The answer to the last exercise suggests an algorithm for inverting a lower triangular matrix.
See if you can implement it!

Inverting a 2×2 matrix

Homework 7.3.4.7 Find  1 2

1 1

−1

=

Homework 7.3.4.8 If α0,0α1,1−α1,0α0,1 6= 0 then α0,0 α0,1

α1,0 α1,1

−1

=
1

α0,0α1,1−α1,0α0,1

 α1,1 −α0,1

−α1,0 α0,0


(Just check by multiplying... Deriving the formula is time consuming.)

True/False

Homework 7.3.4.9 The 2×2 matrix A =

 α0,0 α0,1

α1,0 α1,1

 has an inverse if and only if α0,0α1,1−α1,0α0,1 6= 0.

True/False

* View at edX

The expression α0,0α1,1−α1,0α0,1 6= 0 is known as the determinant of α0,0 α0,1

α1,0 α1,1

 .

This 2×2 matrix has an inverse if and only if its determinant is nonzero. We will see how the determinant is useful again
late in the course, when we discuss how to compute eigenvalues of small matrices. The determinant of a n×n matrix can
be defined and is similarly a condition for checking whether the matrix is invertible. For this reason, we add it to our list
of equivalent conditions:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4

Week 7. More Gaussian Elimination and Matrix Inversion 264

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

7.3.5 Properties

Inverse of product

Homework 7.3.5.1 Let α 6= 0 and B have an inverse. Then

(αB)−1 =
1
α

B−1.

True/False

Homework 7.3.5.2 Which of the following is true regardless of matrices A and B (as long as they have an inverse
and are of the same size)?

(a) (AB)−1 = A−1B−1

(b) (AB)−1 = B−1A−1

(c) (AB)−1 = B−1A

(d) (AB)−1 = B−1

Homework 7.3.5.3 Let square matrices A,B,C ∈ Rn×n have inverses A−1, B−1, and C−1, respectively. Then
(ABC)−1 =C−1B−1A−1.

Always/Sometimes/Never

Inverse of transpose

Homework 7.3.5.4 Let square matrix A have inverse A−1. Then (AT)−1 = (A−1)T .
Always/Sometimes/Never

7.4. Enrichment 265

Inverse of inverse

Homework 7.3.5.5

(A−1)−1 = A

Always/Sometimes/Never

7.4 Enrichment

7.4.1 Library Routines for LU with Partial Pivoting

Various linear algebra software libraries incorporate LU factorization with partial pivoting.

LINPACK

The first such library was LINPACK:

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart.
LINPACK Users’ Guide.
SIAM, 1979.

A link to the implementation of the routine DGEFA can be found at

http://www.netlib.org/linpack/dgefa.f.

You will notice that it is written in Fortran and uses what are now called Level-1 BLAS routines. LINPACK preceded the
introduction of computer architectures with cache memories, and therefore no blocked algorithm is included in that library.

LAPACK

LINPACK was replaced by the currently most widely used library, LAPACK:

E. Anderson, Z. Bai, J. Demmel, J. J. Dongarra, J. Ducroz, A. Greenbaum, S. Hammarling, A. E. McKenney, S.
Ostroucho, and D. Sorensen.
LAPACK Users’ Guide.
SIAM 1992.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Ducroz, A. Greenbaum, S. Ham-
marling, A. E. McKenney, S. Ostroucho, and D. Sorensen.
LAPACK Users’ Guide (3rd Edition).
SIAM 1999.

Implementations in this library include

• DGETF2 (unblocked LU factorization with partial pivoting).

• DGETRF (blocked LU factorization with partial pivoting).

It, too, is written in Fortran. The unblocked implementation makes calls to Level-1 (vector-vector) and Level-2 (matrix-vector)
BLAS routines. The blocked implementation makes calls to Level-3 (matrix-matrix) BLAS routines. See if you can recognize
some of the names of routines.

ScaLAPACK

ScaLAPACK is version of LAPACK that was (re)written for large distributed memory architectures. The design decision was
to make the routines in ScaLAPACK reflect as closely as possible the corresponding routines in LAPACK.

http://www.netlib.org/linpack/dgefa.f
http://www.netlib.org/lapack/explore-html/d2/da1/dgetf2_8f_source.html
http://www.netlib.org/lapack/explore-html/d3/d6a/dgetrf_8f_source.html

Week 7. More Gaussian Elimination and Matrix Inversion 266

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R. C. Whaley.
ScaLAPACK Users’ Guilde.
SIAM, 1997.

Implementations in this library include

• PDGETRF (blocked LU factorization with partial pivoting).

ScaLAPACK is wirtten in a mixture of Fortran and C. The unblocked implementation makes calls to Level-1 (vector-vector) and
Level-2 (matrix-vector) BLAS routines. The blocked implementation makes calls to Level-3 (matrix-matrix) BLAS routines.
See if you can recognize some of the names of routines.

libflame

We have already mentioned libflame. It targets sequential and multithreaded architectures.

F. G. Van Zee, E. Chan, R. A. van de Geijn, E. S. Quintana-Orti, G. Quintana-Orti.
The libflame Library for Dense Matrix Computations.
IEEE Computing in Science and Engineering, Vol. 11, No 6, 2009.

F. G. Van Zee.
libflame: The Complete Reference.
www.lulu.com , 2009
(Available from http://www.cs.utexas.edu/ flame/web/FLAMEPublications.html.)

It uses an API so that the code closely resembles the code that you have been writing.

• Various unblocked and blocked implementations.

Elemental

Elemental is a library that targets distributed memory architectures, like ScaLAPACK does.

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, Nichols A. Romero. Elemental: A New
Framework for Distributed Memory Dense Matrix Computations. ACM Transactions on Mathematical Software
(TOMS), 2013.
(Available from http://www.cs.utexas.edu/ flame/web/FLAMEPublications.html.)

It is coded in C++ in a style that resembles the FLAME APIs.

• Blocked implementation.

7.5 Wrap Up

7.5.1 Homework

(No additional homework this week.)

7.5.2 Summary

Permutations

Definition 7.9 A vector with integer components

p =


k0

k1
...

kn−1


is said to be a permutation vector if

http://www.netlib.org/scalapack/explore-html/df/dfe/pdgetrf_8f_source.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://github.com/flame/libflame/tree/master/src/lapack/dec/lu/piv/vars/flamec
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://github.com/elemental/Elemental/blob/master/src/lapack_like/factor/dense/LU.cpp

7.5. Wrap Up 267

• k j ∈ {0, . . . ,n−1} , for 0≤ j < n; and

• ki = k j implies i = j.

In other words, p is a rearrangement of the numbers 0, . . . ,n−1 (without repetition).

Definition 7.10 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Then

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1


is said to be a permutation matrix.

Theorem 7.11 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Consider

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1

 , x =


χ0

χ1
...

χn−1

 , and A =


aT

0

aT
1
...

aT
n−1

 .

Then

Px =


χk0

χk1
...

χkn−1

 , and PA =


aT

k0

aT
k1
...

aT
kn−1

 .

Theorem 7.12 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Consider

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1

 and A =
(

a0 a1 · · · an−1

)
.

Then
APT =

(
ak0 ak1 · · · akn−1

)
.

Theorem 7.13 If P is a permutation matrix, so is PT .

Definition 7.14 Let us call the special permutation matrix of the form

P̃(π) =



eT
π

eT
1
...

eT
π−1

eT
0

eT
π+1
...

eT
n−1



=



0 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1


a pivot matrix.

Week 7. More Gaussian Elimination and Matrix Inversion 268

Theorem 7.15 When P̃(π) (of appropriate size) multiplies a matrix from the left, it swaps row 0 and row π, leaving all other
rows unchanged.

When P̃(π) (of appropriate size) multiplies a matrix from the right, it swaps column 0 and column π, leaving all other
columns unchanged.

LU with row pivoting

Algorithm: [A, p] := LU PIV(A, p)

Partition A→

 AT L AT R

ABL ABR

, p→

 pT

pB


where AT L is 0×0 and pT has 0 components

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

→


p0

π1

p2



π1 = PIVOT

 α11

a21

 aT
10 α11 aT

12

A20 a21 A22

 := P(π1)

 aT
10 α11 aT

12

A20 a21 A22


a21 := a21/α11 (a21 now contains l21) aT

12

A22

=

 aT
12

A22−a21aT
12


Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

←


p0

π1

p2


endwhile

Algorithm: b := APPLY PIV(p,b)

Partition p→

 pT

pB

, b→

 bT

bB


where pT and bT have 0 components

while m(bT)< m(b) do
Repartition

 pT

pB

→


p0

π1

p2

,

 bT

bB

→


b0

β1

b2


 β1

b2

 := P(π1)

 β1

b2


Continue with

 pT

pB

←


p0

π1

p2

,

 bT

bB

←


b0

β1

b2


endwhile

• LU factorization with row pivoting, starting with a square nonsingular matrix A, computes the LU factorization of a
permuted matrix A: PA = LU (via the above algorithm LU PIV).

• Ax = b then can be solved via the following steps:

– Update b := Pb (via the above algorithm APPLY PIV).

– Solve Lz = b, overwriting b with z (via the algorithm from 6.3.2).

– Solve Ux = b, overwriting b with x (via the algorithm from 6.3.3).

Theorem 7.16 Let L : Rn→ Rn be a linear transformation that is a bijection. Then the inverse function L−1 : Rn→ Rn exists
and is a linear transformation.

Theorem 7.17 If A has an inverse, A−1, then A−1 is unique.

7.5. Wrap Up 269

Inverses of special matrices

Type A A−1

Identity matrix I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 0

 I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



Diagonal matrix D =


δ0,0 0 · · · 0

0 δ1,1 · · · 0
...

...
. . .

...

0 0 · · · δn−1,n−1

 D−1 =


δ
−1
0,0 0 · · · 0

0 δ
−1
1,1 · · · 0

...
...

. . .
...

0 0 · · · δ
−1
n−1,n−1



Gauss transform L̃ =


I 0 0

0 1 0

0 l21 I

 L̃−1 =


I 0 0

0 1 0

0 −l21 I

 .

Permutation matrix P PT

2D Rotation R =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 R−1 =

 cos(θ) sin(θ)

−sin(θ) cos(θ)

= RT

2D Reflection A A

Lower triangular matrix L =

 L00 0

lT
10 λ11

 L−1 =

 L−1
00 0

− 1
λ11

lT
10L−1

00
1

λ11


Upper triangular matrix U =

 U00 u01

0 υ11

 U−1 =

 U−1
00 −U−1

00 u01/υ11

0 1
υ11


General 2×2 matrix

 α0,0 α0,1

α1,0 α1,1

 1
α0,0α1,1−α1,0α0,1

 α1,1 −α0,1

−α1,0 α0,0


The following matrices have inverses:

• Triangular matrices that have no zeroes on their diagonal.

• Diagonal matrices that have no zeroes on their diagonal.
(Notice: this is a special class of triangular matrices!).

• Gauss transforms.

(In Week 8 we will generalize the notion of a Gauss transform to matrices of the form


I u01 0

0 1 0

0 l21 0

.)

• Permutation matrices.

• 2D Rotations.

• 2D Reflections.

General principle

If A,B ∈ Rn×n and AB = I, then Ab j = e j, where b j is the jth column of B and e j is the jth unit basis vector.

Week 7. More Gaussian Elimination and Matrix Inversion 270

Properties of the inverse

Assume A, B, and C are square matrices that are nonsingular. Then

• (αB)−1 = 1
α

B−1.

• (AB)−1 = B−1A−1.

• (ABC)−1 =C−1B−1A−1.

• (AT)−1 = (A−1)T .

• (A−1)−1 = A.

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

7.5. Wrap Up 271

Blank worksheet for pivoting exercises

i Li P̃ A p

0 ·
·

1 0 0

1 0

0 1

·
·

1

·

1 0 0

0 1 0

0 1 ·

2

Week 7. More Gaussian Elimination and Matrix Inversion 272

