
Week 8
More on Matrix Inversion

8.1 Opening Remarks

8.1.1 When LU Factorization with Row Pivoting Fails

* View at edX

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

Homework 8.1.1.1 Assume that A,B,C ∈ Rn×n, let BA =C, and B be nonsingular.

A is nonsingular if and only if C is nonsingular.
True/False

The reason the above result is important is that we have seen that LU factorization computes a sequence of pivot matrices
and Gauss transforms in an effort to transform the matrix into an upper triangular matrix. We know that the permutation
matrices and Gauss transforms are all nonsingular since we saw last week that inverses could be constructed. If we now look at
under what circumstance LU factorization with row pivoting breaks down, we will see that with the help of the above result we
can conclude that the matrix is singular (does not have an inverse).

Let us assume that a number of pivot matrices and Gauss transforms have been successfully computed by LU factorization

273

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/df588793d0cc4386a64c885af9a09924/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/df588793d0cc4386a64c885af9a09924/1

Week 8. More on Matrix Inversion 274

with partial pivoting:

L̃k−1Pk−1 · · · L̃0P0Â =


U00 u01 U02

0 α11 aT
12

0 a21 A22


where Â equals the original matrix with which the LU factorization with row pivoting started and the values on the right of
= indicate what is currently in matrix A, which has been overwritten. The following picture captures when LU factorization
breaks down, for k = 2:

L̃1︷ ︸︸ ︷

1 0 0 0 0

0 1 0 0 0

0 −× 1 0 0

0 −× 0 1 0

0 −× 0 0 1


P1

L̃0P0A︷ ︸︸ ︷

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


=


U00 u01 U02

0 α11 aT
12

0 a21 A22


︷ ︸︸ ︷

× × × × ×
0 × × × ×

0 0 0 × ×

0 0 0 × ×
0 0 0 × ×


.

Here the ×s are “representative” elements in the matrix. In other words, if in the current step α11 = 0 and a21 = 0 (the zero
vector), then no row can be found with which to pivot so that α11 6= 0, and the algorithm fails.

Now, repeated application of the insight in the homework tells us that matrix A is nonsingular if and only if the matrix to
the right is nonsingular. We recall our list of equivalent conditions:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

It is the condition “Ax = 0 implies that x = 0” that we will use. We show that if LU factorization with partial pivoting breaks
down, then there is a vector x 6= 0 such that Ax = 0 for the current (updated) matrix A:


U00 u01 U02

0 0 aT
12

0 0 A22


x︷ ︸︸ ︷

−U−1
00 u01

1

0

 =


−U00U−1

00 u01 +u01

0

0

=


0

0

0


We conclude that if LU factorization with partial pivoting breaks down, then the original matrix A is not nonsingular. (In other
words, it is singular.)

8.1. Opening Remarks 275

This allows us to add another condition to the list of equivalent conditions:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

Week 8. More on Matrix Inversion 276

8.1.2 Outline

8.1. Opening Remarks . 273
8.1.1. When LU Factorization with Row Pivoting Fails . 273
8.1.2. Outline . 276
8.1.3. What You Will Learn . 277

8.2. Gauss-Jordan Elimination . 278
8.2.1. Solving Ax = b via Gauss-Jordan Elimination . 278
8.2.2. Solving Ax = b via Gauss-Jordan Elimination: Gauss Transforms . 280
8.2.3. Solving Ax = b via Gauss-Jordan Elimination: Multiple Right-Hand Sides 286
8.2.4. Computing A−1 via Gauss-Jordan Elimination . 291
8.2.5. Computing A−1 via Gauss-Jordan Elimination, Alternative . 297
8.2.6. Pivoting . 300
8.2.7. Cost of Matrix Inversion . 300

8.3. (Almost) Never, Ever Invert a Matrix . 302
8.3.1. Solving Ax = b . 302
8.3.2. But... 303

8.4. (Very Important) Enrichment . 304
8.4.1. Symmetric Positive Definite Matrices . 304
8.4.2. Solving Ax = b when A is Symmetric Positive Definite . 305
8.4.3. Other Factorizations . 308
8.4.4. Welcome to the Frontier . 309

8.5. Wrap Up . 310
8.5.1. Homework . 310
8.5.2. Summary . 310

8.1. Opening Remarks 277

8.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine with Gaussian elimination (LU factorization) when a system of linear equations with n equations in n un-
knowns does not have a unique solution.

• Understand and apply Gauss Jordan elimination to solve linear systems with one or more right-hand sides and to find the
inverse of a matrix.

• Identify properties that indicate a linear transformation has an inverse.

• Identify properties that indicate a matrix has an inverse.

• Create an algorithm to implement Gauss-Jordan elimination and determine the cost function.

• Recognize and understand that inverting a matrix is not the method of choice for solving a linear system.

• Identify specialized factorizations of matrices with special structure and/or properties and create algorithms that take
advantage of this (enrichment).

Week 8. More on Matrix Inversion 278

8.2 Gauss-Jordan Elimination

8.2.1 Solving Ax = b via Gauss-Jordan Elimination

* View at edX
In this unit, we discuss a variant of Gaussian elimination that is often referred to as Gauss-Jordan elimination.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/1

8.2. Gauss-Jordan Elimination 279

Homework 8.2.1.1 Perform the following steps

• To transform the system on the left to the one on the right:

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

−→
−2χ0 + 2χ1 − 5χ2 = −7

−χ1 + 2χ2 = 4

−χ1 + 3χ2 = 5

one must subtract λ1,0 =� times the first row from the second row and subtract λ2,0 =� times the first
row from the third row.

• To transform the system on the left to the one on the right:

−2χ0 + 2χ1 − 5χ2 = −7

−χ1 + 2χ2 = 4

−χ1 + 3χ2 = 5

−→
−2χ0 − χ2 = 1

−χ1 + 2χ2 = 4

χ2 = 1

one must subtract υ0,1 =� times the second row from the first row and subtract λ2,1 =� times the
second row from the third row.

• To transform the system on the left to the one on the right:

−2χ0 − χ2 = 1

−χ1 + 2χ2 = 4

χ2 = 1

−→
−2χ0 = 2

−χ1 = 2

χ2 = 1

one must subtract υ0,2 =� times the third row from the first row and subtract υ1,2 =� times the third
row from the first row.

• To transform the system on the left to the one on the right:

−2χ0 = 2

−χ1 = 2

χ2 = 1

−→
χ0 = −1

χ1 = −2

χ2 = 1

one must multiply the first row by δ0,0 =�, the second row by δ1,1 =�, and the third row by δ2,2 =�.

• Use the above exercises to compute the vector x that solves

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

Be sure to compare and contrast the above order of eliminating elements in the matrix to what you do with Gaussian
elimination.

Homework 8.2.1.2 Perform the process illustrated in the last exercise to solve the systems of linear equations

•


3 2 10

−3 −3 −14

3 1 3




χ0

χ1

χ2

=


−7

9

−5



•


2 −3 4

2 −2 3

6 −7 9




χ0

χ1

χ2

=


−8

−5

−17



Week 8. More on Matrix Inversion 280

8.2.2 Solving Ax = b via Gauss-Jordan Elimination: Gauss Transforms

* View at edX
We again discuss Gauss-Jordan elimination, but now with an appended system.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/2

8.2. Gauss-Jordan Elimination 281

Homework 8.2.2.1 Evaluate

•


1 0 0

1 1 0

−2 0 1



−2 2 −5 −7

2 −3 7 11

−4 3 −7 −9

=

•


1 2 0

0 1 0

0 −1 1



−2 2 −5 −7

0 −1 2 4

0 −1 3 5

=

•


1 0 1

0 1 −2

0 0 1



−2 0 −1 1

0 −1 2 4

0 0 1 1

=

•


− 1

2 0 0

0 −1 0

0 0 1



−2 0 0 2

0 −1 0 2

0 0 1 1

=

• Use the above exercises to compute x =


χ0

χ1

χ2

 that solves

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

Week 8. More on Matrix Inversion 282

Homework 8.2.2.2 This exercise shows you how to use MATLAB to do the heavy lifting for Homework 8.2.2.1.
Again solve

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

via Gauss-Jordan elimination. This time we set this up as an appended matrix:
−2 2 −5 −7

2 −3 7 11

−4 3 −7 −9

 .

We can enter this into MATLAB as

A = [
-2 2 -5 ??
2 -3 7 ??

-4 3 -7 ??
]

(You enter ??.) Create the Gauss transform, G0, that zeroes the entries in the first column below the diagonal:

G0 = [
1 0 0

?? 1 0
?? 0 1
]

(You fill in the ??). Now apply the Gauss transform to the appended system:

A0 = G0 * A

Similarly create G1,

G1 = [
1 ?? 0
0 1 0
0 ?? 1

]

A1, G2, and A2, where A2 equals the appended system that has been transformed into a diagonal system. Finally,
let D equal to a diagonal matrix so that A3 = D∗A2 has the identity for the first three columns.
You can then find the solution to the linear system in the last column.

Homework 8.2.2.3 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 b0

0 α11 aT
12 β1

0 a21 A22 b2

=


D00 a01−α11u01 A02−u01aT

12 b0−β1u01

0 α11 aT
12 β1

0 a21−α11l21 A22− l21aT
12 b2−β1l21


Always/Sometimes/Never

8.2. Gauss-Jordan Elimination 283

Homework 8.2.2.4 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11; and

• l21 := a21/α11.

Consider the following expression:
I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 b0

0 α11 aT
12 β1

0 a21 A22 b2

=


D00 0 A02−u01aT

12 b0−β1u01

0 α11 aT
12 β1

0 0 A22− l21aT
12 b2−β1l21


Always/Sometimes/Never

The above exercises showcase a variant on Gauss transforms that not only take multiples of a current row and add or subtract
these from the rows below the current row, but also take multiples of the current row and add or subtract these from the rows
above the current row:

I −u01 0

0 1 0

0 −l21 I




A0

aT
1

A2

=


A0−u01aT

1

aT
1

A2− l21aT
1


←− Subtract multiples of aT

1 from the rows above aT
1

← Leave aT
1 alone

←− Subtract multiples of aT
1 from the rows below aT

1

The discussion in this unit motivates the algorithm GAUSSJORDAN PART1 in Figure 8.1, which transforms A to a diagonal
matrix and updates the right-hand side accordingly, and GAUSSJORDAN PART2 in Figure 8.2, which transforms the diagonal
matrix A to an identity matrix and updates the right-hand side accordingly. The two algorithms together leave A overwritten
with the identity and the vector to the right of the double lines with the solution to Ax = b.

The reason why we split the process into two parts is that it is easy to create problems for which only integers are encountered
during the first part (while matrix A is being transformed into a diagonal). This will make things easier for us when we extend
this process so that it computes the inverse of matrix A: fractions only come into play during the second, much simpler, part.

Week 8. More on Matrix Inversion 284

Algorithm: [A,b] := GAUSSJORDAN PART1(A,b)

Partition A→

 AT L AT R

ABL ABR

 , b→

 bT

bB


where AT L is 0×0, bT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

→


b0

β1

b2


a01 := a01/α11 (= u01)

a21 := a21/α11 (= l21)

A02 := A02−a01aT
12 (= A02−u01aT

12)

A22 := A22−a21aT
12 (= A22− l21aT

12)

b0 := b0−β1a01 (= b2−β1u01)

b2 := b2−β1a21 (= b2−β1l21)

a01 := 0 (zero vector)

a21 := 0 (zero vector)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 8.1: Algorithm that transforms matrix A to a diagonal matrix and updates the right-hand side accordingly.

8.2. Gauss-Jordan Elimination 285

Algorithm: [A,b] := GAUSSJORDAN PART2(A,b)

Partition A→

 AT L AT R

ABL ABR

 , b→

 bT

bB


where AT L is 0×0, bT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

→


b0

β1

b2


β1 := β1/α11

α11 := 1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 8.2: Algorithm that transforms diagonal matrix A to an identity matrix and updates the right-hand side accordingly.

Week 8. More on Matrix Inversion 286

8.2.3 Solving Ax = b via Gauss-Jordan Elimination: Multiple Right-Hand Sides

* View at edX

Homework 8.2.3.1 Evaluate

•


1 0 0

1 1 0

−2 0 1



−2 2 −5 −7 8

2 −3 7 11 −13

−4 3 −7 −9 9

=


−2 2 −5 −7 �

0 −1 2 4 �
0 −1 3 5 �



•


1 2 0

0 1 0

0 −1 1



−2 2 −5 −7 8

0 −1 2 4 −5

0 −1 3 5 −7

=


−2 0 −1 1 �

0 −1 2 4 �
0 0 1 1 �



•


1 0 1

0 1 −2

0 0 1



−2 0 −1 1 −2

0 −1 2 4 −5

0 0 1 1 −2

=


−2 0 0 2 �

0 −1 0 2 �
0 0 1 1 �



•


− 1

2 0 0

0 −1 0

0 0 1



−2 0 0 2 −4

0 −1 0 2 −1

0 0 1 1 −2

=


1 0 0 −1 �
0 1 0 −2 �
0 0 1 1 �



• Use the above exercises to compute x0 =


χ00

χ10

χ20

 and x1 =


χ01

χ11

χ21

 that solve

−2χ00 + 2χ10 − 5χ20 = −7

2χ00 − 3χ10 + 7χ20 = 11

−4χ00 + 3χ10 − 7χ20 = −9

and

−2χ01 + 2χ11 − 5χ21 = 8

2χ01 − 3χ11 + 7χ21 = −13

−4χ01 + 3χ11 − 7χ21 = 9

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/3

8.2. Gauss-Jordan Elimination 287

Homework 8.2.3.2 This exercise shows you how to use MATLAB to do the heavy lifting for Homework 8.2.3.1.
Start with the appended system: 

−2 2 −5 −7 8

2 −3 7 11 −13

−4 3 −7 −9 9


Enter this into MATLAB as

A = [
-2 2 -5 ?? ??
2 -3 7 ?? ??

-4 3 -7 ?? ??
]

(You enter ??.) Create the Gauss transform, G0, that zeroes the entries in the first column below the diagonal:

G0 = [
1 0 0

?? 1 0
?? 0 1
]

(You fill in the ??). Now apply the Gauss transform to the appended system:

A0 = G0 * A

Similarly create G1,

G1 = [
1 ?? 0
0 1 0
0 ?? 1

]

A1, G2, and A2, where A2 equals the appended system that has been transformed into a diagonal system. Finally,
let D equal to a diagonal matrix so that A3 = D∗A2 has the identity for the first three columns.
You can then find the solutions to the linear systems in the last column.

Week 8. More on Matrix Inversion 288

Homework 8.2.3.3 Evaluate

•


1 0 0

� 1 0

� 0 1




3 2 10 −7 16

−3 −3 −14 9 −25

3 1 4 −5 3

=


3 2 10 � �
0 −1 −4 � �
0 −1 −6 � �



•


1 � 0

0 1 0

0 � 1




3 2 10 −7 16

0 −1 −4 2 −9

0 −1 −6 2 −13

=


3 0 2 � �
0 −1 −4 � �
0 0 −2 � �



•


1 0 �
0 1 �
0 0 1




3 0 2 −3 −2

0 −1 −4 2 −9

0 0 −2 0 −4

=


3 0 0 � �
0 −1 0 � �
0 0 −2 � �



•


� 0 0

0 � 0

0 0 �




3 0 0 −3 −6

0 −1 0 2 −1

0 0 −2 0 −4

=


1 0 0 � �
0 1 0 � �
0 0 1 � �



Use the above exercises to compute x0 =


χ0,0

χ1,0

χ2,0

 and x1 =


χ0,1

χ1,1

χ2,1

 that solve

3χ0,0 + 2χ1,0 + 10χ2,0 = −7

−3χ0,0 − 3χ1,0 − 14χ2,0 = 9

3χ0,0 + 1χ1,0 + 4χ2,0 = −5

and

3χ0,0 + 2χ1,0 + 10χ2,0 = 16

−3χ0,0 − 3χ1,0 − 14χ2,0 = −25

3χ0,0 + 1χ1,0 + 4χ2,0 = 3

(You could use MATLAB to do the heavy lifting, like in the last homework...)

Homework 8.2.3.4 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 B0

0 α11 aT
12 bT

1

0 a21 A22 B2

=


D00 a01−α11u01 A02−u01aT

12 B0−u01bT
1

0 α11 aT
12 bT

1

0 a21−α11l21 A22− l21aT
12 B2− l21bT

1


Always/Sometimes/Never

8.2. Gauss-Jordan Elimination 289

Algorithm: [A,B] := GAUSSJORDAN MRHS PART1(A,B)

Partition A→

 AT L AT R

ABL ABR

 , B→

 BT

BB


where AT L is 0×0, BT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

→


B0

bT
1

B2


a01 := a01/α11 (= u01)

a21 := a21/α11 (= l21)

A02 := A02−a01aT
12 (= A02−u01aT

12)

A22 := A22−a21aT
12 (= A22− l21aT

12)

B0 := B0−a01bT
1 (= B0−u01bT

1)

B2 := B2−a21bT
1 (= B2− l21bT

1)

a01 := 0 (zero vector)

a21 := 0 (zero vector)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

←


B0

bT
1

B2


endwhile

Figure 8.3: Algorithm that transforms diagonal matrix A to an identity matrix and updates a matrix B with multiple right-hand
sides accordingly.

Homework 8.2.3.5 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11; and

• l21 := a21/α11.

The following expression holds:
I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 b0

0 α11 aT
12 β1

0 a21 A22 b2

=


D00 0 A02−u01aT

12 B0−u01bT
1

0 α11 aT
12 bT

1

0 0 A22− l21aT
12 B2− l21bT

1


Always/Sometimes/Never

The above observations justify the two algorithms in Figures 8.3 and 8.4 for “Gauss-Jordan elimination” that work with
“multiple right-hand sides” (viewed as the columns of matrix B).

Week 8. More on Matrix Inversion 290

Algorithm: [A,B] := GAUSSJORDAN MRHS PART2(A,B)

Partition A→

 AT L AT R

ABL ABR

 , B→

 BT

BB


where AT L is 0×0, BT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

→


B0

bT
1

B2


bT

1 := (1/α11)bT
1

α11 := 1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

←


B0

bT
1

B2


endwhile

Figure 8.4: Algorithm that transforms diagonal matrix A to an identity matrix and updates a matrix B with multiple right-hand
sides accordingly.

8.2. Gauss-Jordan Elimination 291

8.2.4 Computing A−1 via Gauss-Jordan Elimination

* View at edX
Recall the following observation about the inverse of matrix A. If we let X equal the inverse of A, then

AX = I

or
A
(

x0 x1 · · · xn−1

)
=
(

e0 e1 · · · en−1

)
,

so that Ax j = e j. In other words, the jth column of X = A−1 can be computed by solving Ax = e j. Clearly, we can use the

routine that performs Gauss-Jordan with the appended system
(

A B
)

to compute A−1 by feeding it B = I!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/4

Week 8. More on Matrix Inversion 292

Homework 8.2.4.1 Evaluate

•


1 0 0

1 1 0

−2 0 1



−2 2 −5 1 0 0

2 −3 7 0 1 0

−4 3 −7 0 0 1

=


−2 2 −5 � � �

0 −1 2 � � �
0 −1 3 � � �



•


1 2 0

0 1 0

0 −1 1



−2 2 −5 1 0 0

0 −1 2 1 1 0

0 −1 3 −2 0 1

=


−2 0 −1 � � �

0 −1 2 � � �
0 0 1 � � �



•


1 0 1

0 1 −2

0 0 1



−2 0 −1 3 2 0

0 −1 2 1 1 0

0 0 1 −3 −1 1

=


−2 0 0 � � �

0 −1 0 � � �
0 0 1 � � �



•


− 1

2 0 0

0 −1 0

0 0 1



−2 0 0 0 1 1

0 −1 0 7 3 −2

0 0 1 −3 −1 1

=


1 0 0 � � �
0 1 0 � � �
0 0 1 � � �



•


−2 2 −5

2 −3 7

−4 3 −7




0 − 1
2 − 1

2

−7 −3 2

−3 −1 1

=

8.2. Gauss-Jordan Elimination 293

Homework 8.2.4.2 In this exercise, you will use MATLAB to compute the inverse of a matrix using the techniques
discussed in this unit.

Initialize
A = [-2 2 -5

2 -3 7
-4 3 -7]

Create an appended matrix by appending
the identity

A_appended = [A eye(size(A))]

Create the first Gauss transform to intro-
duce zeros in the first column (fill in the
?s).

G0 = [1 0 0
? 1 0
? 0 1]

Apply the Gauss transform to the ap-
pended system

A0 = G0 * A_appended

Create the second Gauss transform to in-
troduce zeros in the second column

G1 = [1 ? 0
0 1 0
0 ? 1]

Apply the Gauss transform to the ap-
pended system

A1 = G1 * A0

Create the third Gauss transform to intro-
duce zeros in the third column

G2 = [1 0 ?
0 1 ?
0 0 1]

Apply the Gauss transform to the ap-
pended system

A2 = G2 * A1

Create a diagonal matrix to set the diag-
onal elements to one

D3 = [-1/2 0 0
0 -1 0
0 0 1]

Apply the diagonal matrix to the ap-
pended system

A3 = D3 * A2

Extract the (updated) appended columns Ainv = A3(:, 4:6)

Check that the inverse was computed A * Ainv

The result should be a 3×3 identity matrix.

Homework 8.2.4.3 Compute

•


3 2 9

−3 −3 −14

3 1 3


−1

=

•


2 −3 4

2 −2 3

6 −7 9


−1

=

Week 8. More on Matrix Inversion 294

Homework 8.2.4.4 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


D00 a01−α11u01 A02−u01aT

12 B00−u01bT
10 −u01 0

0 α11 aT
12 bT

10 1 0

0 a21−α11l21 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

Homework 8.2.4.5 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11; and

• l21 := a21/α11.

Consider the following expression:
I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


D00 0 A02−u01aT

12 B00−u01bT
10 −u01 0

0 α11 aT
12 bT

10 1 0

0 0 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

The above observations justify the two algorithms in Figures 8.5 and 8.6 for “Gauss-Jordan elimination” for inverting a
matrix.

8.2. Gauss-Jordan Elimination 295

Algorithm: [A,B] := GJ INVERSE PART1(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

B00 := B00−a01bT
10 b01 :=−a01

B20 := B20−a21bT
10 b21 :=−a21

(Note: a01 and a21 on the left need to be updated first.)

a01 := 0 (zero vector)

a21 := 0 (zero vector)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

Figure 8.5: Algorithm that transforms diagonal matrix A to an identity matrix and updates an identity matrix stored in B
accordingly.

Week 8. More on Matrix Inversion 296

Algorithm: [A,B] := GJ INVERSE PART2(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

bT
10 := bT

10/α11

β11 := β11/α11

bT
12 := bT

12/α11

α11 := 1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

Figure 8.6: Algorithm that transforms diagonal matrix A to an identity matrix and updates an identity matrix stored in B
accordingly.

8.2. Gauss-Jordan Elimination 297

8.2.5 Computing A−1 via Gauss-Jordan Elimination, Alternative

* View at edX

We now motivate a slight alternative to the Gauss Jordan method, which is easiest to program.

Homework 8.2.5.1

• Determine δ0,0, λ1,0, λ2,0 so that
δ0,0 0 0

λ1,0 1 0

λ2,0 0 1



−1 −4 −2 1 0 0

2 6 2 0 1 0

−1 0 3 0 0 1

=


1 4 2 −1 0 0

0 −2 −2 2 1 0

0 4 5 −1 0 1


• Determine υ0,1, δ1,1, and λ2,1 so that

1 υ0,1 0

0 δ1,1 0

0 λ2,1 1




1 4 2 −1 0 0

0 −2 −2 2 1 0

0 4 5 −1 0 1

=


1 0 −2 3 2 0

0 1 1 −1 − 1
2 0

0 0 1 3 2 1


• Determine υ0,2, υ0,2, and δ2,2 so that

1 0 υ0,2

0 1 υ1,2

0 0 δ2,2




1 0 −2 3 2 0

0 1 1 −1 − 1
2 0

0 0 1 3 2 1

=


1 0 0 9 6 2

0 1 0 −4 − 5
2 −1

0 0 1 3 2 1


• Evaluate 

−1 −4 −2

2 6 2

−1 0 3




9 6 2

−4 − 5
2 −1

3 2 1

=

Homework 8.2.5.2 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 δ11 0

0 −l21 I




I a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


I a01−α11u01 A02−u01aT

12 B00−u01bT
10 −u01 0

0 δ11α11 δ11aT
12 δ11bT

10 δ11 0

0 a21−α11l21 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/5

Week 8. More on Matrix Inversion 298

Homework 8.2.5.3 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11;

• l21 := a21/α11; and

• δ11 := 1/α11.


I −u01 0

0 δ11 0

0 −l21 I




I a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


I 0 A02−u01aT

12 B00−u01bT
10 −u01 0

0 1 aT
12/α11 bT

10/α11 1/α11 0

0 0 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

The last homework motivates the algorithm in Figure 8.7

Homework 8.2.5.4 Implement the algorithm in Figure 8.7 yielding the function

• [A out] = GJ Inverse alt unb(A, B). Assume that it is called as

Ainv = GJ Inverse alt unb(A, B)

Matrices A and B must be square and of the same size.

Check that it computes correctly with the script

• test GJ Inverse alt unb.m.

Homework 8.2.5.5 If you are very careful, you can overwrite matrix A with its inverse without requiring the
matrix B.
Modify the algorithm in Figure 8.7 so that it overwrites A with its inverse without the use of matrix B yielding the
function

• [A out] = GJ Inverse inplace unb(A).

Check that it computes correctly with the script

• test GJ Inverse inplace unb.m.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week8/test_GJ_Inverse_alt_unb.m
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week8/test_GJ_Inverse_inplace_unb.m

8.2. Gauss-Jordan Elimination 299

Algorithm: [B] := GJ INVERSE ALT(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

(Note: above a01 and a21 must be updated

before the operations to their right.)

a01 := 0

α11 := 1 aT
12 := aT

12/α11

a21 := 0

(Note: above α11 must be updated last.)

B00 := B00−a01bT
10 b01 :=−a01

B20 := B20−a21bT
10 b21 :=−a21

bT
10 := bT

10/α11 β11 = 1/α11

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

Figure 8.7: Algorithm that simultaneously transforms matrix A to an identity and matrix B from the identity to A−1.

Week 8. More on Matrix Inversion 300

8.2.6 Pivoting

* View at edX
Adding pivoting to any of the discussed Gauss-Jordan methods is straight forward. It is a matter of recognizing that if a

zero is found on the diagonal during the process at a point where a divide by zero will happen, one will need to swap the current
row with another row below it to overcome this. If such a row cannot be found, then the matrix does not have an inverse.

We do not further discuss this in this course.

8.2.7 Cost of Matrix Inversion

* View at edX
Let us now discuss the cost of matrix inversion via various methods. In our discussion, we will ignore pivoting. In other

words, we will assume that no zero pivot is encountered. We wil start with an n×n matrix A.

A very naive approach

Here is a very naive approach. Let X be the matrix in which we will compute the inverse. We have argued several times that
AX = I means that

A
(

x0 x1 · · · xn−1

)
=
(

e0 e1 · · · en−1

)
so that Ax j = e j. So, for each column x j, we can perform the operations

• Compute the LU factorization of A so that A = LU . We argued in Week 6 that the cost of this is approximately 2
3 n3 flops.

• Solve Lz = e j. This is a lower (unit) triangular solve with cost of approximately n2 flops.

• Solve Ux j = z. This is an upper triangular solve with cost of approximately n2 flops.

So, for each column of X the cost is approximately 2
3 n3 +n2 +n2 = 2

3 n3 +2n2. There are n columns of X to be computed for a
total cost of approximately

n(
2
3

n3 +2n2) =
2
3

n4 +2n3 flops.

To put this in perspective: A relatively small problem to be solved on a current supercomputer involves a 100,000×100,000
matrix. The fastest current computer can perform approximately 55,000 Teraflops, meaning 55×1015 floating point operations
per second. On this machine, inverting such a matrix would require approximately a third of an hour of compute time.

(Note: such a supercomputer would not attain the stated peak performance. But let’s ignore that in our discussions.)

A less naive approach

The problem with the above approach is that A is redundantly factored into L and U for every column of X . Clearly, we only
need to do that once. Thus, a less naive approach is given by

• Compute the LU factorization of A so that A = LU at a cost of approximately 2
3 n3 flops.

• For each column x j

– Solve Lz = e j. This is a lower (unit) triangular solve with cost of approximately n2 flops.

– Solve Ux j = z. This is an upper triangular solve with cost of approximately n2 flops.

There are n columns of X to be computed for a total cost of approximately

n(n2 +n2) = 2n3 flops.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/7

8.2. Gauss-Jordan Elimination 301

Thus, the total cost is now approximately

2
3

n3 +2n3 =
8
3

n3 flops.

Returning to our relatively small problem of inverting a 100,000×100,000 matrix on the fastest current computer that can
perform approximately 55,000 Teraflops, inverting such a matrix with this alternative approach would require approximately
0.05 seconds. Clearly an improvement.

The cost of the discussed Gauss-Jordan matrix inversion

Now let’s consider the Gauss-Jordan matrix inversion algorithm that we developed in the last unit:

Algorithm: [B] := GJ INVERSE ALT(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

(Note: above a01 and a21 must be updated

before the operations to their right.)

a01 := 0

α11 := 1 aT
12 := aT

12/α11

a21 := 0

(Note: above α11 must be updated last.)

B00 := B00−a01bT
10 b01 :=−a01

B20 := B20−a21bT
10 b21 :=−a21

bT
10 := bT

10/α11 β11 = 1/α11

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

During the kth iteration, AT L and BT L are k× k (starting with k = 0). After repartitioning, the sizes of the different subma-

Week 8. More on Matrix Inversion 302

trices are
k︷︸︸︷ 1︷︸︸︷ n− k−1︷︸︸︷

k{
1{

n− k−1{

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A02

The following operations are performed (we ignore the other operations since they are clearly “cheap” relative to the ones we
do count here):

• A02 := A02−a01aT
12. This is a rank-1 update. The cost is 2k× (n− k−1) flops.

• A22 := A22−a21aT
12. This is a rank-1 update. The cost is 2(n− k−1)× (n− k−1) flops.

• B00 := B00−a01bT
10. This is a rank-1 update. The cost is 2k× k flops.

• B02 := B02−a21bT
12. This is a rank-1 update. The cost is 2(n− k−1)× k flops.

For a total of, approximately,

2k(n− k−1)+2(n− k−1)(n− k−1)︸ ︷︷ ︸
2(n−1)(n− k−1)

+ 2k2 +2(n− k−1)k︸ ︷︷ ︸
2(n−1)k

= 2(n−1)(n− k−1)+2(n−1)k

= 2(n−1)2 flops.

Now, we do this for n iterations, so the total cost of the Gauss-Jordan inversion algorithms is, approximately,

n(2(n−1)2)≈ 2n3 flops.

Barring any special properties of matrix A, or high-trapeze heroics, this turns out to be the cost of matrix inversion. Notice that
this cost is less than the cost of the (less) naive algorithm given before.

A simpler analysis is as follows: The bulk of the computation in each iteration is in the updates

B00 := B00−a01bT
10 A02 := A02−a01aT

12

B20 := B20−a21bT
10 A22 := A22−a21aT

12

Here we try to depict that the elements being updated occupy almost an entire n× n matrix. Since there are rank-1 updates
being performed, this means that essentially every element in this matrix is being updated with one multiply and one add. Thus,
in this iteration, approximately 2n2 flops are being performed. The total for n iterations is then, approximately, 2n3 flops.

Returning one last time to our relatively small problem of inverting a 100,000× 100,000 matrix on the fastest current
computer that can perform approximately 55,000 Teraflops, inverting such a matrix with this alternative approach is further
reduced from approximately 0.05 seconds to approximately 0.036 seconds. Not as dramatic a reduction, but still worthwhile.

Interestingly, the cost of matrix inversion is approximately the same as the cost of matrix-matrix multiplication.

8.3 (Almost) Never, Ever Invert a Matrix

8.3.1 Solving Ax = b

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/920e01472f7d479696c40d7e403632e2/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/920e01472f7d479696c40d7e403632e2/1

8.3. (Almost) Never, Ever Invert a Matrix 303

Solving Ax = b via LU Factorization

Homework 8.3.1.1 Let A∈Rn×n and x,b∈Rn. What is the cost of solving Ax = b via LU factorization (assuming
there is nothing special about A)? You may ignore the need for pivoting.

Solving Ax = b by Computing A−1

Homework 8.3.1.2 Let A ∈Rn×n and x,b ∈Rn. What is the cost of solving Ax = b if you first invert matrix A and
than compute x = A−1b? (Assume there is nothing special about A and ignore the need for pivoting.)

Just Don’t Do It!

The bottom line is: LU factorization followed by two triangular solves is cheaper!
Now, some people would say “What if we have many systems Ax = b where A is the same, but b differs? Then we can just

invert A once and for each of the bs multiply x = A−1b.”

Homework 8.3.1.3 What is wrong with the above argument?

There are other arguments why computing A−1 is a bad idea that have to do with floating point arithmetic and the roundoff
error that comes with it. This is a subject called “numerical stability”, which goes beyond the scope of this course.

So.... You should be very suspicious if someone talks about computing the inverse of a matrix. There are very, very few
applications where one legitimately needs the inverse of a matrix.
However, realize that often people use the term “inverting a matrix” interchangeably with “solving Ax = b”, where they
don’t mean to imply that they explicitly invert the matrix. So, be careful before you start arguing with such a person! They
may simply be using awkward terminology.

Of course, the above remarks are for general matrices. For small matrices and/or matrices with special structure, inversion
may be a reasonable option.

8.3.2 But...

No Video for this Unit

Inverse of a general matrix

Ironically, one of the instructors of this course has written a paper about high-performance inversion of a matrix, which was
then published by a top journal:

Xiaobai Sun, Enrique S. Quintana, Gregorio Quintana, and Robert van de Geijn.
A Note on Parallel Matrix Inversion.
SIAM Journal on Scientific Computing, Vol. 22, No. 5, pp. 1762–1771.
Available from http://www.cs.utexas.edu/users/flame/pubs/SIAMMatrixInversion.pdf.
(This was the first journal paper in which the FLAME notation was introduced.)

The algorithm developed for that paper is a blocked algorithm that incorporates pivoting that is a direct extension of the
algorithm we introduce in Unit 8.2.5. It was developed for use in a specific algorithm that required the explicit inverse of a
general matrix.

Inverse of a symmetric positive definite matrix

Inversion of a special kind of symmetric matrix called a symmetric positive definite (SPD) matrix is sometimes needed in
statistics applications. The inverse of the so-called covariance matrix (which is typically a SPD matrix) is called the precision
matrix, which for some applications is useful to compute. We talk about how to compute a factorization of such matrices in this
week’s enrichment.

If you go to wikipedia and seach for “precision matrix” you will end up on this page:

https://www.youtube.com/watch?v=rQQrJueA9Uo
http://www.cs.utexas.edu/users/flame/pubs/SIAMMatrixInversion.pdf

Week 8. More on Matrix Inversion 304

Precision (statistics)

that will give you more information.
We have a paper on how to compute the inverse of a SPD matrix:

Paolo Bientinesi, Brian Gunter, Robert A. van de Geijn.
Families of algorithms related to the inversion of a Symmetric Positive Definite matrix.
ACM Transactions on Mathematical Software (TOMS), 2008
Available from http://www.cs.utexas.edu/˜flame/web/FLAMEPublications.html.

Welcome to the frontier!

Try reading the papers above (as an enrichment)! You will find the notation very familiar.

8.4 (Very Important) Enrichment

8.4.1 Symmetric Positive Definite Matrices

Symmetric positive definite (SPD) matrices are an important class of matrices that occur naturally as part of applications. We
will see SPD matrices come up later in this course, when we discuss how to solve overdetermined systems of equations:

Bx = y where B ∈ Rm×n and m > n.

In other words, when there are more equations than there are unknowns in our linear system of equations. When B has “linearly
independent columns,” a term with which you will become very familiar later in the course, the best solution to Bx = y satisfies
BT Bx = BT y. If we set A = BT B and b = BT y, then we need to solve Ax = b, and now A is square and nonsingular (which we
will prove later in the course). Now, we could solve Ax = b via any of the methods we have discussed so far. However, these
methods ignore the fact that A is symmetric. So, the question becomes how to take advantage of symmetry.

Definition 8.1 Let A ∈ Rn×n. Matrix A is said to be symmetric positive definite (SPD) if

• A is symmetric; and

• xT Ax > 0 for all nonzero vectors x ∈ Rn.

A nonsymmetric matrix can also be positive definite and there are the notions of a matrix being negative definite or indefinite.
We won’t concern ourselves with these in this course.

Here is a way to relate what a positive definite matrix is to something you may have seen before. Consider the quadratic
polynomial

p(χ) = αχ
2 +βχ+ γ = χαχ+βχ+ γ.

The graph of this function is a parabola that is “concaved up” if α > 0. In that case, it attains a minimum at a unique value χ.
Now consider the vector function f : Rn→ R given by

f (x) = xT Ax+bT x+ γ

where A ∈Rn×n, b ∈Rn, and γ ∈R are all given. If A is a SPD matrix, then this equation is minimized for a unique vector x. If
n = 2, plotting this function when A is SPD yields a paraboloid that is concaved up:

http://en.wikipedia.org/wiki/Precision_matrix
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html

8.4. (Very Important) Enrichment 305

8.4.2 Solving Ax = b when A is Symmetric Positive Definite

We are going to concern ourselves with how to solve Ax = b when A is SPD. What we will notice is that by taking advantage
of symmetry, we can factor A akin to how we computed the LU factorization, but at roughly half the computational cost. This
new factorization is known as the Cholesky factorization.

Cholesky factorization theorem

Theorem 8.2 Let A ∈Rn×n be a symmetric positive definite matrix. Then there exists a lower triangular matrix L ∈Rn×n such
that A = LLT . If the diagonal elements of L are chosen to be positive, this factorization is unique.

We will not prove this theorem.

Unblocked Cholesky factorization

We are going to closely mimic the derivation of the LU factorization algorithm from Unit 6.3.1.
Partition

A→

 α11 ?

a21 A22

 , and L→

 λ11 0

l21 L22

 .

Here we use ? to indicate that we are not concerned with that part of the matrix because A is symmetric and hence we should
be able to just work with the lower triangular part of it.

We want L to satisfy A = LLT . Hence

A︷ ︸︸ ︷ α11 ?

a21 A22

 =

L︷ ︸︸ ︷ λ11 0

l21 L22


LT︷ ︸︸ ︷ λ11 0

l21 L22

T

=

L︷ ︸︸ ︷ λ11 0

l21 L22


LT︷ ︸︸ ︷ λ11 lT

21

0 LT
22



=

LLT︷ ︸︸ ︷ λ2
11 +0×0 ?

l21λ11 +L22×0 l21lT
21 +L22LT

22

 .

=

LLT︷ ︸︸ ︷ λ2
11 ?

l21λ11 l21lT
21 +L22LT

22

 .

where, again, the ? refers to part of the matrix in which we are not concerned because of symmetry.
For two matrices to be equal, their elements must be equal, and therefore, if they are partitioned conformally, their subma-

trices must be equal:
α11 = λ2

11 ?

a21 = l21λ11 A22 = l21lT
21 +L22LT

22

or, rearranging,
λ11 =

√
α11 ?

l21 = a21/λ11 L22LT
22 = A22− l21lT

21

.

This suggests the following steps for overwriting a matrix A with its Cholesky factorization:

Week 8. More on Matrix Inversion 306

Algorithm: [A] := CHOL UNB VAR3(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


α11 :=

√
α11

a21 := a21/α11

A22 := A22−a21aT
21

(updating only the lower triangular part)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 8.8: Algorithm for overwriting the lower triangular part of A with its Cholesky factor.

• Partition

A→

 α11 ?

a21 A22

 .

• α11 =
√

α11 (= λ11).

• Update a21 = a21/α11 (= l21).

• Update A22 = A22−a21aT
12(= A22− l21lT

21)
Here we use a “symmetric rank-1 update” since A22 and l21lT

21 are both symmetric and hence only the lower triangular
part needs to be updated. This is where we save flops.

• Overwrite A22 with L22 by repeating with A = A22.

This overwrites the lower triangular part of A with L.
The above can be summarized in Figure 8.8. The suspicious reader will notice that α11 :=

√
α11 is only legal if α11 > 0 and

a21 := a21/α11 is only legal if α11 6= 0. It turns out that if A is SPD, then

• α11 > 0 in the first iteration and hence α11 :=
√

α11 and a21 := a21/α11 are legal; and

• A22 := A22−a21aT
21 is again a SPD matrix.

The proof of these facts goes beyond the scope of this course. The net result is that the algorithm will compute L if it is executed
starting with a matrix A that is SPD. It is useful to compare and contrast the derivations of the unblocked LU factorization and
the unblocked Cholesky factorization, in Figure 8.9.

8.4. (Very Important) Enrichment 307

LU factorization Cholesky factorization

A→

 α11 aT
12

a21 A22

 ,L→

 1 0

l21 L22

 ,U →

 υ11 uT
12

0 U22

 A→

 α11 ?

a21 A22

 ,L→

 λ11 0

l21 L22

 .

 α11 aT
12

a21 A22

=

 1 0

l21 L22

 υ11 uT
12

0 U22


︸ ︷︷ ︸ υ11 uT

12

l21υ11 l21uT
12 +L22U22



 α11 ?

a21 A22

 =

 λ11 0

l21 L22

 λ11 0

l21 L22

T

︸ ︷︷ ︸ λ2
11 ?

l21λ11 l21lT
12 +L22LT

22

 .

α11 = υ11 aT
12 = uT

12

a21 = l21υ11 A22 = l21uT
12 +L22U22

α11 = λ2
11 ?

a21 = l21λ11 A22 = l21lT
12 +L22L2

22

α11 := α11

aT
12 := aT

12

a21 := a21/α11

A22 := A22−a21aT
12

α11 :=
√

α11

a21 := a21/α11

A22 := A22−a21aT
12

(update only lower triangular part)

Algorithm: [A] := LU UNB VAR5(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22



a21 := a21/α11

A22 := A22−a21aT
12

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Algorithm: [A] := CHOL UNB VAR3(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


α11 :=

√
α11

a21 := a21/α11

A22 := A22−a21aT
21

(updating only the lower triangular part)

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 8.9: Side-by-side derivations of the unblocked LU factorization and Cholesky factorization algorithms.

Week 8. More on Matrix Inversion 308

Once one has computed the Cholesky factorization of A, one can solve Ax = b by substituting

A︷︸︸︷
LLT x = b

and first solving Lz = b after which solving LT x = z computes the desired solution x. Of course, as you learned in Weeks 3 and
4, you need not transpose the matrix!

Blocked (and other) algorithms

If you are interested in blocked algorithms for computing the Cholesky factorization, you may want to look at some notes we
wrote:

Robert van de Geijn.
Notes on Cholesky Factorization
http://www.cs.utexas.edu/users/flame/Notes/NotesOnCholReal.pdf

These have since become part of the notes Robert wrote for his graduate class on Numerical Linear Algebra:

Robert van de Geijn.
Linear Algebra: Foundations to Frontiers - Notes on Numerical Linear Algebra, Chapter 12.

Systematic derivation of Cholesky factorization algorithms

* View at edX
The above video was created when Robert was asked to give an online lecture for a class at Carnegie Mellon University.

It shows how algorithms can be systematically derived (as we discussed already in Week 2) using goal-oriented programming.
It includes a demonstration by Prof. Paolo Bientinesi (RWTH Aachen University) of a tool that performs the derivation au-
tomatically. It is when a process is systematic to the point where it can be automated that a computer scientist is at his/her
happiest!

More materials

You will find materials related to the implementation of this operations, including a video that demonstrates this, at

http://www.cs.utexas.edu/users/flame/Movies.html#Chol

Unfortunately, some of the links don’t work (we had a massive failure of the wiki that hosted the material).

8.4.3 Other Factorizations

We have now encountered the LU factorization,
A = LU,

the LU factorization with row pivoting,
PA = LU,

and the Cholesky factorization,
A = LLT .

Later in this course you will be introduced to the QR factorization,

A = QR,

where Q has the special property that QT Q = I and R is an upper triangular matrix.
When a matrix is indefinite symmetric, there is a factorization called the LDLT (pronounce as L D L transpose) factorization,

A = LDLT ,

where L is unit lower triangular and D is diagonal. You may want to see if you can modify the derivation of the Cholesky
factorization to yield an algorithm for the LDLT factorization.

http://www.cs.utexas.edu/users/flame/Notes/NotesOnCholReal.pdf
http://www.ulaff.net
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/e4b0c93da78c44d3854fa56b364d0189/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/e4b0c93da78c44d3854fa56b364d0189/2
http://www.cs.utexas.edu/users/flame/Movies.html#Chol

8.4. (Very Important) Enrichment 309

8.4.4 Welcome to the Frontier

Building on the material to which you have been exposed so far in this course, you should now be able to fully understand
significant parts of many of our publications. (When we write our papers, we try to target a broad audience.) Many of these
papers can be found at

http://www.cs.utexas.edu/˜flame/web/publications.

If not there, then Google!
Here is a small sampling:

• The paper I consider our most significant contribution to science to date:

Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Orti, Robert A. van de Geijn.
The science of deriving dense linear algebra algorithms.
ACM Transactions on Mathematical Software (TOMS), 2005.

• The book that explains the material in that paper at a more leisurely pace:

Robert A. van de Geijn and Enrique S. Quintana-Orti.
The Science of Programming Matrix Computations.
www.lulu.com, 2008.

• The journal paper that first introduced the FLAME notation:

Xiaobai Sun, Enrique S. Quintana, Gregorio Quintana, and Robert van de Geijn.
A Note on Parallel Matrix Inversion.
SIAM Journal on Scientific Computing, Vol. 22, No. 5, pp. 1762–1771.
http://www.cs.utexas.edu/˜flame/pubs/SIAMMatrixInversion.pdf.

• The paper that discusses many operations related to the inversion of a SPD matrix:

Paolo Bientinesi, Brian Gunter, Robert A. van de Geijn.
Families of algorithms related to the inversion of a Symmetric Positive Definite matrix.
ACM Transactions on Mathematical Software (TOMS), 2008.

• The paper that introduced the FLAME APIs:

Paolo Bientinesi, Enrique S. Quintana-Orti, Robert A. van de Geijn.
Representing linear algebra algorithms in code: the FLAME application program interfaces.
ACM Transactions on Mathematical Software (TOMS), 2005.

• Our papers on high-performance implementation of BLAS libraries:

Kazushige Goto, Robert A. van de Geijn.
Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software (TOMS), 2008.

Kazushige Goto, Robert van de Geijn.
High-performance implementation of the level-3 BLAS.
ACM Transactions on Mathematical Software (TOMS), 2008

Field G. Van Zee, Robert A. van de Geijn.
BLIS: A Framework for Rapid Instantiation of BLAS Functionality.
ACM Transactions on Mathematical Software, to appear.

• A classic paper on how to parallelize matrix-matrix multiplication:

Robert A van de Geijn, Jerrell Watts.
SUMMA: Scalable universal matrix multiplication algorithm.
Concurrency Practice and Experience, 1997.

http://www.cs.utexas.edu/~flame/web/publications
http://www.cs.utexas.edu/~flame/web/publications
http://www.cs.utexas.edu/~flame/pubs/SIAMMatrixInversion.pdf
http://www.cs.utexas.edu/~flame/pubs/SIAMMatrixInversion.pdf

Week 8. More on Matrix Inversion 310

For that paper, and others on parallel computing on large distributed memory computers, it helps to read up on collective
communication on massively parallel architectures:

Ernie Chan, Marcel Heimlich, Avi Purkayastha, Robert van de Geijn.
Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice & Experience , Volume 19 Issue 1, September 2007

• A paper that gives you a peek at how to parallelize for massively parallel architectures:

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, Nichols A. Romero.
Elemental: A New Framework for Distributed Memory Dense Matrix Computations.
ACM Transactions on Mathematical Software (TOMS), 2013.

Obviously, there are many people who work in the area of dense linear algebra operations and algorithms. We cite our
papers here because you will find the notation used in those papers to be consistent with the slicing and dicing notation that you
have been taught in this course. Much of the above cite work builds on important results of others. We stand on the shoulders
of giants.

8.5 Wrap Up

8.5.1 Homework

8.5.2 Summary

Equivalent conditions

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

Algorithm for inverting a matrix

See Figure 8.10.

Cost of inverting a matrix

Via Gauss-Jordan, taking advantage of zeroes in the appended identity matrix, requires approximately

2n3 floating point operations.

8.5. Wrap Up 311

Algorithm: [A] := GJ INVERSE INPLACE(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

(Note: above a01 and a21 must be updated

before the operations to their right.)

a01 := 0

α11 := 1 aT
12 := aT

12/α11

a21 := 0

(Note: above α11 must be updated last.)

A00 := A00−a01aT
10 a01 :=−a01

A20 := A20−a21aT
10 a21 :=−a21

aT
10 := aT

10/α11 α11 = 1/α11

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 8.10: Algorithm for inplace inversion of a matrix (when pivoting is not needed).

(Almost) never, ever invert a matrix

Solving Ax = b should be accomplished by first computing its LU factorization (possibly with partial pivoting) and then solving
with the triangular matrices.

Week 8. More on Matrix Inversion 312

