
Week 9
Vector Spaces

9.1 Opening Remarks

9.1.1 Solvable or not solvable, that’s the question

* View at edX
Consider the picture

(−2,−1)

(0,2)

(2,3)

p(χ) = γ0 + γ1χ+ γ2χ2

depicting three points in R2 and a quadratic polynomial (polynomial of degree two) that passes through those points. We say
that this polynomial interpolates these points. Let’s denote the polynomial by

p(χ) = γ0 + γ1χ+ γ2χ
2.

How can we find the coefficients γ0, γ1, and γ2 of this polynomial? We know that p(−2) =−1, p(0) = 2, and p(2) = 3. Hence

p(−2) = γ0 + γ1(−2) + γ2(−2)2 = −1

p(0) = γ0 + γ1 (0) + γ2 (0)2 = 2

p(2) = γ0 + γ1 (2) + γ2 (2)2 = 3
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In matrix notation we can write this as 
1 −2 4

1 0 0

1 2 4




γ0

γ1

γ2

=


−1

2

3

 .

By now you have learned a number of techniques to solve this linear system, yielding
γ0

γ1

γ2

=


2

1

−0.25


so that

p(χ) = 2+χ− 1
4

χ
2.

Now, let’s look at this problem a little differently. p(χ) is a linear combination (a word you now understand well) of the
polynomials p0(χ) = 1, p1(χ) = χ, and p2(χ) = χ2. These basic polynomials are called “parent functions”.

1

χ2

χ

γ0 + γ1χ+ γ2χ2

Now, notice that 
p(−2)

p(0)

p(2)

 =


γ0 + γ1(−2) + γ2(−2)2

γ0 + γ1(0) + γ2(0)2

γ0 + γ1(2) + γ2(2)2



= γ0


p0(−2)

p0(0)

p0(2)

+ γ1


p1(−2)

p1(0)

p1(2)

+ γ2


p2(−2)

p2(0)

p2(2)



= γ0


1

1

1

+ γ1


−2

0

2

+ γ2


(−2)2

02

22



= γ0


1

1

1

+ γ1


−2

0

2

+ γ2


4

0

4

 .
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You need to think of the three vectors


1

1

1

,


−2

0

2

, and


4

0

4

 as vectors that capture the polynomials p0, p1, and p2

at the values −2, 0, and 2. Similarly, the vector


−1

2

3

 captures the polynomial p that interpolates the given points.


1

1

1




4

0

4



−2

0

2



−1

2

3



What we notice is that this last vector must equal a linear combination of the first three vectors:

γ0


1

1

1

+ γ1


−2

0

2

+ γ2


4

0

4

=


−1

2

3


Again, this gives rise to the matrix equation


1 −2 4

1 0 0

1 2 4




γ0

γ1

γ2

=


−1

2

3


with the solution 

γ0

γ1

γ2

=


2

1

−0.25

 .

The point is that one can think of finding the coefficients of a polynomial that interpolates points as either solving a system of
linear equations that come from the constraint imposed by the fact that the polynomial must go through a given set of points, or
as finding the linear combination of the vectors that represent the parent functions at given values so that this linear combination
equals the vector that represents the polynomial that is to be found.
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Figure 9.1: Interpolating with at second degree polynomial at χ =−2,0,2,4.

To be or not to be (solvable), that’s the question

Next, consider the picture in Figure 9.1 (left), which accompanies the matrix equation
1 −2 4

1 0 0

1 2 4

1 4 16




γ0

γ1

γ2

=


−1

2

3

2

 .

Now, this equation is also solved by 
γ0

γ1

γ2

=


2

1

−0.25

 .

The picture in Figure 9.1 (right) explains why: The new brown point that was added happens to lie on the overall quadratic
polynomial p(χ).
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Figure 9.2: Interpolating with at second degree polynomial at χ =−2,0,2,4: when the fourth point doesn’t fit.

Finally, consider the picture in Figure 9.2 (left) which accompanies the matrix equation
1 −2 4

1 0 0

1 2 4

1 4 16




γ0

γ1

γ2

=


−1

2

3

9

 .

It turns out that this matrix equation (system of linear equations) does not have a solution. The picture in Figure 9.2 (right)
explains why: The new brown point that was added does not lie on the quadratic polynomial p2(χ).

This week, you will learn that the system Ax = b for an m×n matrix A sometimes has a unique solution, sometimes has no
solution at all, and sometimes has an infinite number of solutions. Clearly, it does not suffice to only look at the matrix A. It is
how the columns of A are related to the right-hand side vector that is key to understanding with which situation we are dealing.
And the key to understanding how the columns of A are related to those right-hand sides for which Ax = b has a solution is to
understand a concept called vector spaces.
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9.1.3 What you will learn

Upon completion of this unit, you should be able to

• Determine when systems do not have a unique solution and recognize the general solution for a system.

• Use and understand set notation.

• Determine if a given subset of Rn is a subspace.

• For simple examples, determine the null space and column space for a given matrix.

• Identify, apply, and prove simple properties of sets, vector spaces, subspaces, null spaces and column spaces.

• Recognize for simple examples when the span of two sets of vectors is the same.

• Determine when a set of vectors is linearly independent by exploiting special structures. For example, relate the rows of
a matrix with the columns of its transpose to determine if the matrix has linearly independent rows.

• For simple examples, find a basis for a subspace and recognize that while the basis is not unique, the number of vectors
in the basis is.
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9.2 When Systems Don’t Have a Unique Solution

9.2.1 When Solutions Are Not Unique

* View at edX

Up until this week, we looked at linear systems that had exactly one solution. The reason was that some variant of Gaussian
elimination (with row exchanges, if necessary and/or Gauss-Jordan elimination) completed, which meant that there was exactly
one solution.

What we will look at this week are linear systems that have either no solution or many solutions (indeed an infinite number).

Example 9.1 Consider 
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

3


Does Ax = b0 have a solution? The answer is yes:

2 2 −2

−2 −3 4

4 3 −2




2

−1

1

=


0

3

3

 . X

But this is not the only solution:
2 2 −2

−2 −3 4

4 3 −2




3
2

0
3
2

=


0

3

3

 X
and 

2 2 −2

−2 −3 4

4 3 −2




3

−3

0

=


0

3

3

 . X

Indeed, later we will see there are an infinite number of solutions!

Example 9.2 Consider 
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

4

 .

We will show that this equation does not have a solution in the next unit.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/1


9.2. When Systems Don’t Have a Unique Solution 321

Homework 9.2.1.1 Evaluate

1.


2 −4 −2

−2 4 1

2 −4 0




1

0

−1

=

2.


2 −4 −2

−2 4 1

2 −4 0




3

1

−1

=

3.


2 −4 −2

−2 4 1

2 −4 0



−1

−1

−1

=

Does the system


2 −4 −2

−2 4 1

2 −4 0




χ0

χ1

χ2

=


4

−3

2

 have multiple solutions? Yes/No

9.2.2 When Linear Systems Have No Solutions

* View at edX
Consider 

2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

4

 .

• Set this up as an appended system 
2 2 −2 0

−2 −3 4 3

4 3 −2 4

 .

Now, start applying Gaussian elimination (with row exchanges).

• Use the first row to eliminate the coefficients in the first column below the diagonal:
2 2 −2 0

0 −1 2 3

0 −1 2 4

 .

• Use the second row to eliminate the coefficients in the second column below the diagonal:
2 2 −2 0

0 −1 2 3

0 0 0 1

 .
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• At this point, we have encountered a zero on the diagonal of the matrix that cannot be fixed by exchanging with rows
below the row that has the zero on the diagonal.

Now we have a problem: The last line of the appended system represents

0×χ0 +0×χ1 +0×χ2 = 1,

or,
0 = 1

which is a contradiction. Thus, the original linear system represented three equations with three unknowns in which a contra-
diction was hidden. As a result this system does not have a solution.

Anytime you execute Gaussian elimination (with row exchanges) or Gauss-Jordan (with row exchanges) and at some point
encounter a row in the appended system that has zeroes to the left of the vertical bar and a nonzero to its right, the process
fails and the system has no solution.

Homework 9.2.2.1 The system


2 −4 −2

−2 4 1

2 −4 0




χ0

χ1

χ2

=


4

−3

3

 has no solution.

True/False

9.2.3 When Linear Systems Have Many Solutions

* View at edX
Now, let’s learn how to find one solution to a system Ax = b that has an infinite number of solutions. Not surprisingly, the

process is remarkably like Gaussian elimination:
Consider again

A =


2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

3

 .

Set this up as an appended systems 
2 2 −2 0

−2 −3 4 3

4 3 −2 3

 (9.1)

Now, apply Gauss-Jordan elimination. (Well, something that closely resembles what we did before, anyway.)

• Use the first row to eliminate the coefficients in the first column below the diagonal:
2 2 −2 0

0 −1 2 3

0 −1 2 3

 .

• Use the second row to eliminate the coefficients in the second column below the diagonal and use the second row to
eliminate the coefficients in the second column above the diagonal:

2 0 2 6

0 −1 2 3

0 0 0 0

 .
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• Divide the first and second row by the diagonal element:
1 0 1 3

0 1 −2 −3

0 0 0 0

 .

Now, what does this mean? Up until this point, we have not encountered a situation in which the system, upon completion
of either Gaussian elimination or Gauss-Jordan elimination, an entire zero row. Notice that the difference between this situation
and the situation of no solution in the previous section is that the entire row of the final appended system is zero, including the
part to the right of the vertical bar.

So, let’s translate the above back into a system of linear equations:

χ0 + χ2 = 3

χ1 − 2χ2 = −3

0 = 0

Notice that we really have two equations and three unknowns, plus an equation that says that “0 = 0”, which is true, but doesn’t
help much!

Two equations with three unknowns does not give us enough information to find a unique solution. What we are going to
do is to make χ2 a “free variable”, meaning that it can take on any value in R and we will see how the “bound variables” χ0 and
χ1 now depend on the free variable. To so so, we introduce β to capture this “any value” that χ2 can take on. We introduce this
as the third equation

χ0 + χ2 = 3

χ1 − 2χ2 = −3

χ2 = β

and then substitute β in for χ2 in the other equations:

χ0 + β = 3

χ1 − 2β = −3

χ2 = β

Next, we bring the terms that involve β to the right

χ0 = 3 − β

χ1 = −3 + 2β

χ2 = β

Finally, we write this as vectors: 
χ0

χ1

χ2

=


3

−3

0

+β


−1

2

1


We now claim that this captures all solutions of the system of linear equations. We will call this the general solution.

Let’s check a few things:

• Let’s multiply the original matrix times the first vector in the general solution:
2 2 −2

−2 −3 4

4 3 −2




3

−3

0

=


0

3

3

 .X
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Thus the first vector in the general solution is a solution to the linear system, corresponding to the choice β = 0. We will
call this vector a specific solution and denote it by xs. Notice that there are many (indeed an infinite number of) specific
solutions for this problem.

• Next, let’s multiply the original matrix times the second vector in the general solution, the one multiplied by β:
2 2 −2

−2 −3 4

4 3 −2



−1

2

1

=


0

0

0

 .X

And what about the other solutions that we saw two units ago? Well,
2 2 −2

−2 −3 4

4 3 −2




2

−1

1

=


0

3

3

 . X

and 
2 2 −2

−2 −3 4

4 3 −2




3/2

0

3/2

=


0

3

3

 X
But notice that these are among the infinite number of solutions that we identified:

2

−1

1

=


3

−3

0

+(1)


−1

2

1

 and


3/2

0

3/2

=


3

−3

0

+(3/2)


−1

2

1

 .

9.2.4 What is Going On?

* View at edX
Consider Ax = b and assume that we have

• One solution to the system Ax = b, the specific solution we denote by xs so that Axs = b.

• One solution to the system Ax = 0 that we denote by xn so that Axn = 0.

Then
A(xs + xn)

= < Distribute A >

Axs +Axn

= < Axs = b and Axn = 0 >

b+0

= < algebra >

b

So, xs + xn is also a solution.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/4
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Now,
A(xs +βxn)

= < Distribute A >

Axs +A(βxn)

= < Constant can be brought out >

Axs +βAxn

= < Axs = b and Axn = 0 >

b+0

= < algebra >

b

So A(xs +βxn) is a solution for every β ∈ R.

Given a linear system Ax = b, the strategy is to first find a specific solution, xs such that Axs = b. If this is clearly a unique
solution (Gauss-Jordan completed successfully with no zero rows), then you are done. Otherwise, find vector(s) xn such
that Axn = 0 and use it (these) to specify the general solution.

We will make this procedure more precise later this week.

Homework 9.2.4.1 Let Axs = b, Axn0 = 0 and Axn1 = 0. Also, let β0,β1 ∈ R. Then A(xs +β0xn0 +β1xn1) = b.
Always/Sometimes/Never

9.2.5 Toward a Systematic Approach to Finding All Solutions

* View at edX
Let’s focus on finding nontrivial solutions to Ax = 0, for the same example as in Unit 9.2.3. (The trivial solution to Ax = 0 is
x = 0.)

Recall the example 
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

3


which had the general solution 

χ0

χ1

χ2

=


3

−3

0

+β


−1

2

1

 .

We will again show the steps of Gaussian elimination, except that this time we also solve
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

0

0


• Set both of these up as an appended systems

2 2 −2 0

−2 −3 4 3

4 3 −2 3




2 2 −2 0

−2 −3 4 0

4 3 −2 0



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/5
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• Use the first row to eliminate the coefficients in the first column below the diagonal:
2 2 −2 0

0 −1 2 3

0 −1 2 3




2 2 −2 0

0 −1 2 0

0 −1 2 0

 .

• Use the second row to eliminate the coefficients in the second column below the diagonal
2 2 −2 0

0 −1 2 3

0 0 0 0




2 2 −2 0

0 −1 2 0

0 0 0 0

 .

Some terminology

The form of the transformed equations that we have now reached on the left is known as the row-echelon form. Let’s examine
it: 

2 2 −2 0

0 −1 2 3

0 0 0 0


The boxed values are known as the pivots. In each row to the left of the vertical bar, the left-most nonzero element is the pivot
for that row. Notice that the pivots in later rows appear to the right of the pivots in earlier rows.

Continuing on

• Use the second row to eliminate the coefficients in the second column above the diagonal:
2 0 2 6

0 −1 2 3

0 0 0 0




2 0 2 0

0 −1 2 0

0 0 0 0

 .

In this way, all elements above pivots are eliminated. (Notice we could have done this as part of the previous step, as part
of the Gauss-Jordan algorithm from Week 8. However, we broke this up into two parts to be able to introduce the term
row echelon form, which is a term that some other instructors may expect you to know.)

• Divide the first and second row by the diagonal element to normalize the pivots:
1 0 1 3

0 1 −2 −3

0 0 0 0




1 0 1 0

0 1 −2 0

0 0 0 0

 .

Some more terminology

The form of the transformed equations that we have now reached on the left is known as the reduced row-echelon form. Let’s
examine it: 

1 0 1 3

0 1 −2 −3

0 0 0 0




1 0 1 0

0 1 −2 0

0 0 0 0

 .

In each row, the pivot is now equal to one. All elements above pivots have been zeroed.
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Continuing on again

• Observe that there was no need to perform all the transformations with the appended system on the right. One could have
simply applied them only to the appended system on the left. Then, to obtain the results on the right we simply set the
right-hand side (the appended vector) equal to the zero vector.

So, let’s translate the left appended system back into a system of linear systems:

χ0 + χ2 = 3

χ1 − 2χ2 = −3

0 = 0

As before, we have two equations and three unknowns, plus an equation that says that “0 = 0”, which is true, but doesn’t help
much! We are going to find one solution (a specific solution), by choosing the free variable χ2 = 0. We can set it to equal
anything, but zero is an easy value with which to compute. Substituting χ2 = 0 into the first two equations yields

χ0 + 0 = 3

χ1 − 2(0) = −3

0 = 0

We conclude that a specific solution is given by

xs =


χ0

χ1

χ2

=


3

−3

0

 .

Next, let’s look for one non-trivial solution to Ax = 0 by translating the right appended system back into a system of linear
equations:

χ0 + χ2 = 0

χ1 − 2χ2 = 0

Now, if we choose the free variable χ2 = 0, then it is easy to see that χ0 = χ1 = 0, and we end up with the trivial solution, x = 0.
So, instead choose χ2 = 1. (We, again, can choose any value, but it is easy to compute with 1.) Substituting this into the first
two equations yields

χ0 + 1 = 0

χ1 − 2(1) = 0

Solving for χ0 and χ1 gives us the following non-trivial solution to Ax = 0:

xn =


−1

2

1

 .

But if Axn = 0, then A(βxn) = 0. This means that all vectors

xs +βxn =


3

−3

0

+β


−1

2

1


solve the linear system. This is the general solution that we saw before.

In this particular example, it was not necessary to exchange (pivot) rows.
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Homework 9.2.5.1 Find the general solution (an expression for all solutions) for
2 −2 −4

−2 1 4

2 0 −4




χ0

χ1

χ2

=


4

−3

2

 .

Homework 9.2.5.2 Find the general solution (an expression for all solutions) for
2 −4 −2

−2 4 1

2 −4 0




χ0

χ1

χ2

=


4

−3

2

 .

9.3 Review of Sets

9.3.1 Definition and Notation

* View at edX
We very quickly discuss what a set is and some properties of sets. As part of discussing vector spaces, we will see lots of

examples of sets and hence we keep examples down to a minimum.

Definition 9.3 In mathematics, a set is defined as a collection of distinct objects.

The objects that are members of a set are said to be its elements. If S is used to denote a given set and x is a member of that
set, then we will use the notation x ∈ S which is pronounced x is an element of S.

If x, y, and z are distinct objects that together are the collection that form a set, then we will often use the notation {x,y,z}
to describe that set. It is extremely important to realize that order does not matter: {x,y,z} is the same set as {y,z,x}, and this
is true for all ways in which you can order the objects.

A set itself is an object and hence once can have a set of sets, which has elements that are sets.

Definition 9.4 The size of a set equals the number of distinct objects in the set.

This size can be finite or infinite. If S denotes a set, then its size is denoted by |S|.

Definition 9.5 Let S and T be sets. Then S is a subset of T if all elements of S are also elements of T . We use the notation
S⊂ T or T ⊃ S to indicate that S is a subset of T .

Mathematically, we can state this as
(S⊂ T )⇔ (x ∈ S⇒ x ∈ T ).

(S is a subset of T if and only if every element in S is also an element in T .)

Definition 9.6 Let S and T be sets. Then S is a proper subset of T if all S is a subset of T and there is an element in T that is
not in S. We use the notation S ( T or T ) S to indicate that S is a proper subset of T .

Some texts will use the symbol ⊂ to mean “proper subset” and ⊆ to mean “subset”. Get used to it! You’ll have to figure
out from context what they mean.

9.3.2 Examples

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/1
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Examples

Example 9.7 The integers 1,2,3 are a collection of three objects (the given integers). The set formed by these three
objects is given by {1,2,3} (again, emphasizing that order doesn’t matter). The size of this set is |{1,2,3,}|= 3.

Example 9.8 The collection of all integers is a set. It is typically denoted by Z and sometimes written as
{. . . ,−2,−1,0,1,2, . . .}. Its size is infinite: |Z|= ∞.

Example 9.9 The collection of all real numbers is a set that we have already encountered in our course. It is
denoted by R. Its size is infinite: |R|= ∞. We cannot enumerate it (it is uncountably infinite, which is the subject
of other courses).

Example 9.10 The set of all vectors of size n whose components are real valued is denoted by Rn.

9.3.3 Operations with Sets

* View at edX
There are three operations on sets that will be of interest:

Definition 9.11 The union of two sets S and T is the set of all elements that are in S or in T . This union is denoted by S∪T .

Formally, we can give the union as
S∪T = {x|x ∈ S∨ x ∈ T}

which is read as “The union of S and T equals the set of all elements x such that x is in S or x is in T .” (The “|” (vertical bar)
means “such that” and the ∨ is the logical “or” operator.) It can be depicted by the shaded area (blue, pink, and purple) in the
following Venn diagram:

S T

Example 9.12 Let S = {1,2,3} and T = {2,3,5,8,9}. Then S∪T = {1,2,3,5,8,9}.
What this example shows is that the size of the union is not necessarily the sum of the sizes of the individual sets.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/3
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Definition 9.13 The intersection of two sets S and T is the set of all elements that are in S and in T . This intersection is
denoted by S∩T .

Formally, we can give the intersection as
S∩T = {x|x ∈ S∧ x ∈ T}

which is read as “The intersection of S and T equals the set of all elements x such that x is in S and x is in T .” (The “|” (vertical
bar) means “such that” and the ∧ is the logical “and” operator.) It can be depicted by the shaded area in the following Venn
diagram:

S T

Example 9.14 Let S = {1,2,3} and T = {2,3,5,8,9}. Then S∩T = {2,3}.

Example 9.15 Let S = {1,2,3} and T = {5,8,9}. Then S∩T =∅ (∅ is read as “the empty set”).

Definition 9.16 The complement of set S with respect to set T is the set of all elements that are in T but are not in S. This
complement is denoted by T\S.

Example 9.17 Let S = {1,2,3} and T = {2,3,5,8,9}. Then T\S = {5,8,9} and S\T = {1}.

Formally, we can give the complement as
T\S = {x|x /∈ S∧ x ∈ T}

which is read as “The complement of S with respect to T equals the set of all elements x such that x is not in S and x is in T .”
(The “|” (vertical bar) means “such that”, ∧ is the logical “and” operator, and the /∈ means “is not an element in”.) It can be
depicted by the shaded area in the following Venn diagram:

ST
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Sometimes, the notation S̄ or Sc is used for the complement of set S. Here, the set with respect to which the complement is
taken is “obvious from context”.

For a single set S, the complement, S̄ is shaded in the diagram below.

S̄

S

Homework 9.3.3.1 Let S and T be two sets. Then S⊂ S∪T .
Always/Sometimes/Never

Homework 9.3.3.2 Let S and T be two sets. Then S∩T ⊂ S.
Always/Sometimes/Never

9.4 Vector Spaces

9.4.1 What is a Vector Space?

* View at edX
For our purposes, a vector space is a subset, S, of Rn with the following properties:

• 0 ∈ S (the zero vector of size n is in the set S); and

• If v,w ∈ S then (v+w) ∈ S; and

• If α ∈ R and v ∈ S then αv ∈ S.

A mathematician would describe the last two properties as “S is closed under addition and scalar multiplication.” All the results
that we will encounter for such vector spaces carry over to the case where the components of vectors are complex valued.

Example 9.18 The set Rn is a vector space:

• 0 ∈ Rn.

• If v,w ∈ Rn then v+w ∈ Rn.

• If v ∈ Rn and α ∈ R then αv ∈ Rn.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/1
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9.4.2 Subspaces

* View at edX
So, the question now becomes: “What subsets of Rn are vector spaces?” We will call such sets subspaces of Rn.

Homework 9.4.2.1 Which of the following subsets of R3 are subspaces of R3?

1. The plane of vectors x =


χ0

χ1

χ2

 such that χ0 = 0. In other words, the set of all vectors

x ∈ R3

∣∣∣∣∣∣∣∣x =


0

χ1

χ2


.

2. Similarly, the plane of vectors x with χ0 = 1:

x ∈ R3

∣∣∣∣∣∣∣∣x =


1

χ1

χ2


.

3.

x ∈ R3

∣∣∣∣∣∣∣∣x =


χ0

χ1

χ2

∧χ0χ1 = 0

. (Recall, ∧ is the logical “and” operator.)

4.

x ∈ R3

∣∣∣∣∣∣∣∣x = β0


1

1

0

+β1


0

1

2

 where β0,β1 ∈ R

.

5.

x ∈ R3

∣∣∣∣∣∣∣∣x =


χ0

χ1

χ2

∧χ0−χ1 +3χ2 = 0

.

Homework 9.4.2.2 The empty set, ∅, is a subspace of Rn.
True/False

Homework 9.4.2.3 The set {0} where 0 is a vector of size n is a subspace of Rn.
True/False

Homework 9.4.2.4 The set S⊂ Rn described by

{x | ‖x‖2 < 1} .

is a subspace of Rn. (Recall that ‖x‖2 is the Euclidean length of vector x so this describes all elements with length
less than or equal to one.)

True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/2
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Homework 9.4.2.5 The set S⊂ Rn described by


ν0

0
...

0



∣∣∣∣∣∣∣∣∣∣∣
ν0 ∈ R


is a subspace of Rn.

True/False

Homework 9.4.2.6 The set S⊂ Rn described by{
νe j | ν ∈ R

}
,

where e j is a unit basis vector, is a subspace.
True/False

* View at edX

Homework 9.4.2.7 The set S⊂ Rn described by

{χa | χ ∈ R} ,

where a ∈ Rn, is a subspace.
True/False

Homework 9.4.2.8 The set S⊂ Rn described by

{χ0a0 +χ1a1 | χ0,χ1 ∈ R} ,

where a0,a1 ∈ Rn, is a subspace.
True/False

Homework 9.4.2.9 The set S⊂ Rm described by( a0 a1

) χ0

χ1

 ∣∣∣∣∣∣ χ0,χ1 ∈ R

 ,

where a0,a1 ∈ Rm, is a subspace.
True/False

Homework 9.4.2.10 The set S⊂ Rm described by{
Ax | x ∈ R2} ,

where A ∈ Rm×2, is a subspace.
True/False
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9.4.3 The Column Space

* View at edX

Homework 9.4.3.1 The set S⊂ Rm described by

{Ax | x ∈ Rn} ,

where A ∈ Rm×n, is a subspace.
True/False

This last exercise very precisely answers the question of when a linear system of equation, expressed as the matrix equation
Ax = b, has a solution: it has a solution only if b is an element of the space S in this last exercise.

Definition 9.19 Let A ∈ Rm×n. Then the column space of A equals the set

{Ax | x ∈ Rn} .

It is denoted by C (A).

The name “column space” comes from the observation (which we have made many times by now) that

Ax =
(

a0 a1 · · · an−1

)


χ0

χ1
...

χn−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1.

Thus C (A) equals the set of all linear combinations of the columns of matrix A.

Theorem 9.20 The column space of A ∈ Rm×n is a subspace of Rm.

Proof: The last exercise proved this.

Theorem 9.21 Let A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. Then Ax = b has a solution if and only if b ∈ C (A).

Proof: Recall that to prove an “if and only if” statement P⇔ Q, you may want to instead separately prove P⇒ Q and P⇐ Q.

(⇒) Assume that Ax = b. Then b ∈ {Ax|x ∈ Rn}. Hence b is in the column space of A.

(⇐) Assume that b is in the column space of A. Then b ∈ {Ax|x ∈Rn}. But this means there exists a vector x such that Ax = b.
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Homework 9.4.3.2 Match the matrices on the left to the column space on the right. (You should be able to do this
“by examination.”)

1.

 0 0

0 0



2.

 0 1

0 0



3.

 0 −2

0 0



4.

 0 0

1 −2



5.

 0 1

2 0



6.

 1 0

2 3



7.

 1

2



8.

 1 −2

2 −4



9.

 1 −2 −1

2 −4 −2



a. R2.

b.


 χ0

χ1

∣∣∣∣∣∣χ0 = 0∨χ1 = 0



c.


 α

0

∣∣∣∣∣∣α ∈ R



d.


 0

α

∣∣∣∣∣∣α ∈ R



e.

α

 1

2

∣∣∣∣∣∣α ∈ R



f.


 0

0



(Recall that ∨ is the logical “or” operator.)

Homework 9.4.3.3 Which of the following matrices have a FINITE number of elements in their column space?
(Mark all that apply.)

1. The identity matrix.

2. The zero matrix.

3. All matrices.

4. None of the above.

9.4.4 The Null Space

* View at edX
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Recall:

• We are interested in the solutions of Ax = b.

• We have already seen that if Axs = b and Axn = 0 then xs + xn is also a solution:

A(xs + xn) = b.

Definition 9.22 Let A ∈ Rm×n. Then the set of all vectors x ∈ Rn that have the property that Ax = 0 is called the null space of
A and is denoted by

N (A) = {x|Ax = 0}.

Homework 9.4.4.1 Let A ∈ Rm×n. The null space of A, N (A), is a subspace
True/False
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Homework 9.4.4.2 For each of the matrices on the left match the set of vectors on the right that describes its null
space. (You should be able to do this “by examination.”)

1.

 0 0

0 0



2.

 0 1

0 0



3.

 0 −2

0 0



4.

 0 0

1 −2



5.

 0 1

2 0



6.

 1 0

2 3



7.

 1

2



8.

 1 −2

2 −4



a. R2.

b.


 χ0

χ1

∣∣∣∣∣∣χ0 = 0∨χ1 = 0



c.


 α

0

∣∣∣∣∣∣α ∈ R


d. ∅

e.


 0

α

∣∣∣∣∣∣α ∈ R



f.


 0

0


g.
{(

0
)}

h.

α

 1

2

∣∣∣∣∣∣α ∈ R



i.

α

 2

1

∣∣∣∣∣∣α ∈ R


(Recall that ∨ is the logical “or” operator.)

9.5 Span, Linear Independence, and Bases

9.5.1 Span

* View at edX
What is important about vector (sub)spaces is that if you have one or more vectors in that space, then it is possible to

generate other vectors in the subspace by taking linear combinations of the original known vectors.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/1


Week 9. Vector Spaces 338

Example 9.23 α0

 1

0

+α1

 0

1

∣∣∣∣∣∣α0,α1 ∈ R


is the set of all linear combinations of the unit basis vectors e0,e1 ∈ R2. Notice that all of R2 (an uncountable
infinite set) can be described with just these two vectors.

We have already seen that, given a set of vectors, the set of all linear combinations of those vectors is a subspace. We now
give a name to such a set of linear combinations.

Definition 9.24 Let {v0,v1, · · · ,vn−1} ⊂ Rm. Then the span of these vectors, Span{v0,v1, · · · ,vn−1}, is said to be the set of all
vectors that are a linear combination of the given set of vectors.

Example 9.25

Span

 1

0

 ,

 0

1

= R2.

Example 9.26 Consider the equation χ0 +2χ1−χ2 = 0. It defines a subspace. In particular, that subspace is the
null space of the matrix

(
1 2 −1

)
. We know how to find two vectors in that nullspace:(

1 2 −1 0
)

The box identifies the pivot. Hence, the free variables are χ1 and χ2. We first set χ1 = 1 and χ2 = 0 and solve for
χ0. Then we set χ1 = 0 and χ2 = 1 and again solve for χ0. This gives us the vectors

1

0

1

 and


−2

1

0

 .

We know that any linear combination of these vectors also satisfies the equation (is also in the null space). Hence,
we know that any vector in

Span




1

0

1

 ,


−2

1

0




is also in the null space of the matrix. Thus, any vector in that set satisfies the equation given at the start of this
example.

We will later see that the vectors in this last example “span” the entire null space for the given matrix. But we are not quite
ready to claim that.

We have learned three things in this course that relate to this discussion:

• Given a set of vectors {v0,v1, . . . ,vn−1} ⊂ Rn, we can create a matrix that has those vectors as its columns:

V =
(

v0 v1 · · · vn−1

)
.

• Given a matrix V ∈ Rm×n and vector x ∈ Rn,

V x = χ0v0 +χ1v1 + · · ·+χn−1vn−1.
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In other words, V x takes a linear combination of the columns of V .

• The column space of V , C (V ), is the set (subspace) of all linear combinations of the columns of V :

C (V ) = {V x|x ∈ Rn}= {χ0v0 +χ1v1 + · · ·+χn−1vn−1|χ0,χ1, . . . ,χn−1 ∈ R} .

We conclude that

If V =
(

v0 v1 · · · vn−1

)
, then Span(v0,v1, . . . ,vn−1) = C (V ).

Definition 9.27 A spanning set of a subspace S is a set of vectors {v0,v1, . . . ,vn−1}
such that Span({v0,v1, . . . ,vn−1}) = S.

9.5.2 Linear Independence

* View at edX

Example 9.28 We show that Span





1

0

0

 ,


0

1

0



= Span





1

0

0

 ,


0

1

0

 ,


1

1

0



. One can either simply recog-

nize that both sets equal all of R2, or one can reason it by realizing that in order to show that sets S and T are equal one can just show that both
S⊂ T and T ⊂ S:

• S ⊂ T : Let x ∈ Span




1

0

0

 ,


0

1

0


 Then there exist α0 and α1 such that x = α0


1

0

0

+α1


0

1

0

. This in turn means

that x = α0


1

0

0

+α1


0

1

0

+(0)


1

1

0

. Hence

x ∈ Span





1

0

0

 ,


0

1

0

 ,


1

1

0



.

• T ⊂ S: Let x ∈ Span





1

0

0

 ,


0

1

0

 ,


1

1

0



. Then there exist α0, α1, and α2 such that x = α0


1

0

0

+α1


0

1

0

+

α2


1

1

0

. But


1

1

0

=


1

0

0

+


0

1

0

. Hence

x = α0


1

0

0

+α1


0

1

0

+α2




1

0

0

+


0

1

0


= (α0 +α2)


1

0

0

+(α1 +α2)


0

1

0

.

Therefore x ∈ Span





1

0

0

 ,


0

1

0



.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/2


Week 9. Vector Spaces 340

Homework 9.5.2.1

Span





1

0

1

 ,


0

0

1



= Span





1

0

1

 ,


0

0

1

 ,


1

0

3





True/False

You might be thinking that needing fewer vectors to describe a subspace is better than having more, and we’d agree with
you!

In both examples and in the homework, the set on the right of the equality sign identifies three vectors to identify the
subspace rather than the two required for the equivalent set to its left. The issue is that at least one (indeed all) of the vectors
can be written as linear combinations of the other two. Focusing on the exercise, notice that

1

1

0

=


1

0

0

+


0

1

0

 .

Thus, any linear combination

α0


1

0

1

+α1


0

0

1

+α2


1

0

3


can also be generated with only the first two vectors:

α0


1

0

1

+α1


0

0

1

+α2


1

0

3

= (α0 +α2)


1

0

1

+(α0 +2α2)


0

0

1


We now introduce the concept of linear (in)dependence to cleanly express when it is the case that a set of vectors has elements
that are redundant in this sense.

Definition 9.29 Let {v0, . . . ,vn−1} ⊂ Rm. Then this set of vectors is said to be linearly independent if χ0v0 + χ1v1 + · · ·+
χn−1vn−1 = 0 implies that χ0 = · · ·= χn−1 = 0. A set of vectors that is not linearly independent is said to be linearly dependent.

Homework 9.5.2.2 Let the set of vectors {a0,a1, . . . ,an−1}⊂Rm be linearly dependent. Then at least one of these
vectors can be written as a linear combination of the others.

True/False

This last exercise motivates the term linearly independent in the definition: none of the vectors can be written as a linear
combination of the other vectors.

Example 9.30 The set of vectors 


1

0

0

 ,


0

1

0

 ,


1

1

0




is linearly dependent: 
1

0

0

+


0

1

0

−


1

1

0

=


0

0

0

 .
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Theorem 9.31 Let {a0, . . . ,an−1} ⊂ Rm and let A =
(

a0 · · · an−1

)
. Then the vectors {a0, . . . ,an−1} are linearly inde-

pendent if and only if N (A) = {0}.

Proof:

(⇒) Assume {a0, . . . ,an−1} are linearly independent. We need to show that N (A) = {0}. Assume x ∈ N (A). Then Ax = 0
implies that

0 = Ax =
(

a0 · · · an−1

)
χ0
...

χn−1


= χ0a0 +χ1a1 + · · ·+χn−1an−1

and hence χ0 = · · ·= χn−1 = 0. Hence x = 0.

(⇐) Notice that we are trying to prove P⇐ Q, where P represents “the vectors {a0, . . . ,an−1} are linearly independent” and
Q represents “N (A) = {0}”. It suffices to prove the contrapositive: ¬P⇒ ¬Q. (Note that ¬ means “not”) Assume
that {a0, . . . ,an−1} are not linearly independent. Then there exist {χ0, · · · ,χn−1} with at least one χ j 6= 0 such that
χ0a0+χ1a1+ · · ·+χn−1an−1 = 0. Let x = (χ0, . . . ,χn−1)

T . Then Ax = 0 which means x∈N (A) and hence N (A) 6= {0}.

Example 9.32 In the last example, we could have taken the three vectors to be the columns of a 3× 3 matrix A
and checked if Ax = 0 has a solution: 

1 0 1

0 1 1

0 0 0




1

1

−1

=


0

0

0


Because there is a non-trivial solution to Ax = 0, the nullspace of A has more than just the zero vector in it, and the
columns of A are linearly dependent.

Example 9.33 The columns of an identity matrix I ∈ Rn×n form a linearly independent set of vectors.

Proof: Since I has an inverse (I itself) we know that N (I) = {0}. Thus, by Theorem 9.31, the columns of I are linearly
independent.
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Example 9.34 The columns of L =


1 0 0

2 −1 0

1 2 3

 are linearly independent. If we consider


1 0 0

2 −1 0

1 2 3




χ0

χ1

χ2

=


0

0

0


and simply solve this, we find that χ0 = 0/1 = 0, χ1 = (0− 2χ0)/(−1) = 0, and χ2 = (0− χ0− 2χ1)/(3) = 0.
Hence, N (L) = {0} (the zero vector) and we conclude, by Theorem 9.31, that the columns of L are linearly
independent.

The last example motivates the following theorem:

Theorem 9.35 Let L ∈ Rn×n be a lower triangular matrix with nonzeroes on its diagonal. Then its columns are linearly
independent.

Proof: Let L be as indicated and consider Lx = 0. If one solves this via whatever method one pleases, the solution x = 0 will
emerge as the only solution. Thus N (L) = {0} and by Theorem 9.31, the columns of L are linearly independent.

Homework 9.5.2.3 Let U ∈Rn×n be an upper triangular matrix with nonzeroes on its diagonal. Then its columns
are linearly independent. Always/Sometimes/Never

Homework 9.5.2.4 Let L ∈ Rn×n be a lower triangular matrix with nonzeroes on its diagonal. Then its rows are
linearly independent. (Hint: How do the rows of L relate to the columns of LT ?)

Always/Sometimes/Never

Example 9.36 The columns of L =


1 0 0

2 −1 0

1 2 3

−1 0 −2

 are linearly independent. If we consider


1 0 0

2 −1 0

1 2 3

−1 0 −2




χ0

χ1

χ2

=


0

0

0

0


and simply solve this, we find that χ0 = 0/1 = 0, χ1 = (0−2χ0)/(−1) = 0, χ2 = (0−χ0−2χ1)/(3) = 0. Hence,
N (L) = {0} (the zero vector) and we conclude, by Theorem 9.31, that the columns of L are linearly independent.

Next, we observe that if one has a set of more than m vectors in Rm, then they must be linearly dependent:

Theorem 9.37 Let {a0,a1, . . . ,an−1} ∈ Rm and n > m. Then these vectors are linearly dependent.
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Proof: Consider the matrix A =
(

a0 · · · an−1

)
. If one applies the Gauss-Jordan method to this matrix in order to get

it to upper triangular form, at most m columns with pivots will be encountered. The other n−m columns correspond to free
variables, which allow us to construct nonzero vectors x so that Ax = 0.

The observations in this unit allows us to add to our conditions related to the invertibility of matrix A:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

• C (A) = Rn.

• A has linearly independent columns.

• N (A) = {0}.

9.5.3 Bases for Subspaces

* View at edX
In the last unit, we started with an example and then an exercise that showed that if we had three vectors and one of the

three vectors could be written as a linear combination of the other two, then the span of the three vectors was equal to the span
of the other two vectors.

It turns out that this can be generalized:

Definition 9.38 Let S be a subspace of Rm. Then the set {v0,v1, · · · ,vn−1}⊂Rm is said to be a basis for S if (1) {v0,v1, · · · ,vn−1}
are linearly independent and (2) Span{v0,v1, · · · ,vn−1}= S.

Homework 9.5.3.1 The vectors {e0,e1, . . . ,en−1} ⊂ Rn are a basis for Rn.
True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/3
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Example 9.39 Let {a0, . . . ,an−1} ⊂Rn and let A =
(

a0 a1 · · · an−1

)
be invertible. Then {a0, . . . ,an−1} ⊂

Rn form a basis for Rn.
Note: The fact that A is invertible means there exists A−1 such that A−1A = I. Since Ax = 0 means x = A−1Ax =
A−10 = 0, the columns of A are linearly independent. Also, given any vector y ∈ Rn, there exists a vector x ∈ Rn

such that Ax = y (namely x = A−1y). Letting x =


χ0
...

χn−1

 we find that y = χ0a0 + · · ·+χn−1an−1 and hence

every vector in Rn is a linear combination of the set {a0, . . . ,an−1} ⊂ Rn.

Lemma 9.40 Let S⊂ Rm. Then S contains at most m linearly independent vectors.

Proof: Proof by contradiction. We will assume that S contains more than m linearly independent vectors and show that this
leads to a contradiction.

Since S contains more than m linearly independent vectors, it contains at least m+ 1 linearly independent vectors. Let us
label m+1 such vectors v0,v1, . . . ,vm−1,vm. Let V =

(
v0 v1 · · · vm

)
. This matrix is m× (m+1) and hence there exists

a nontrivial xn such that V xn = 0. (This is an equation with m equations and m+1 unknowns.) Thus, the vectors {v0,v1, · · · ,vm}
are linearly dependent, which is a contradiction.

Theorem 9.41 Let S be a nontrivial subspace of Rm. (In other words, S 6= {0}.) Then there exists a basis {v0,v1, . . . ,vn−1} ⊂
Rm such that Span(v0,v1, . . . ,vn−1) = S.

Proof: Notice that we have already established that m < n. We will construct the vectors. Let S be a nontrivial subspace. Then
S contains at least one nonzero vector. Let v0 equal such a vector. Now, either Span(v0) = S in which case we are done or
S\Span(v0) is not empty, in which case we can pick some vector in S\Span(v0) as v1. Next, either Span(v0,v1) = S in which
case we are done or S\Span(v0,v1) is not empty, in which case we pick some vector in S\Span(v0,v1) as v2. This process
continues until we have a basis for S. It can be easily shown that the vectors are all linearly independent.

9.5.4 The Dimension of a Subspace

* View at edX
We have established that every nontrivial subspace of Rm has a basis with n vectors. This basis is not unique. After all, we

can simply multiply all the vectors in the basis by a nonzero constant and contruct a new basis. What we’ll establish now is
that the number of vectors in a basis for a given subspace is always the same. This number then becomes the dimension of the
subspace.

Theorem 9.42 Let S be a subspace of Rm and let {v0,v1, · · · ,vn−1} ⊂ Rm and {w0,w1, · · · ,wk−1} ⊂ Rm both be bases for S.
Then k = n. In other words, the number of vectors in a basis is unique.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/4
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Proof: Proof by contradiction. Without loss of generality, let us assume that k > n. (Otherwise, we can switch the roles of the
two sets.) Let V =

(
v0 · · · vn−1

)
and W =

(
w0 · · · wk−1

)
. Let x j have the property that w j =V x j. (We know such

a vector x j exists because V spans V and w j ∈ V.) Then W =V X , where X =
(

x0 · · · xk−1

)
. Now, X ∈ Rn×k and recall

that k > n. This means that N (X) contains nonzero vectors (why?). Let y ∈ N (X). Then Wy = V Xy = V (Xy) = V (0) = 0,
which contradicts the fact that {w0,w1, · · · ,wk−1} are linearly independent, and hence this set cannot be a basis for V.

Definition 9.43 The dimension of a subspace S equals the number of vectors in a basis for that subspace.

A basis for a subspace S can be derived from a spanning set of a subspace S by, one-to-one, removing vectors from the set
that are dependent on other remaining vectors until the remaining set of vectors is linearly independent , as a consequence of
the following observation:

Definition 9.44 Let A ∈ Rm×n. The rank of A equals the number of vectors in a basis for the column space of A. We will let
rank(A) denote that rank.

Theorem 9.45 Let {v0,v1, · · · ,vn−1} ⊂Rm be a spanning set for subspace S and assume that vi equals a linear combination of
the other vectors. Then {v0,v1, · · · ,vi−1,vi+1, · · · ,vn−1} is a spanning set of S.

Similarly, a set of linearly independent vectors that are in a subspace S can be “built up” to be a basis by successively adding
vectors that are in S to the set while maintaining that the vectors in the set remain linearly independent until the resulting is a
basis for S.

Theorem 9.46 Let {v0,v1, · · · ,vn−1} ⊂ Rm be linearly independent and assume that {v0,v1, · · · ,vn−1} ⊂ S where S is a sub-
space. Then this set of vectors is either a spanning set for S or there exists w ∈ S such that {v0,v1, · · · ,vn−1,w} are linearly
independent.

We can add some more conditions regarding the invertibility of matrix A:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

• C (A) = Rn.

• A has linearly independent columns.

• N (A) = {0}.

• rank(A) = n.
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9.6 Enrichment

9.6.1 Typesetting algorithms with the FLAME notation

* View at edX

9.7 Wrap Up

9.7.1 Homework

No additional homework this week.

9.7.2 Summary

Solution(s) to linear systems

Whether a linear system of equations Ax = b has a unique solution, no solution, or multiple solutions can be determined by
writing the system as an appended system (

A b
)

and transforming this appended system to row echelon form, swapping rows if necessary.
When A is square, conditions for the solution to be unique were discussed in Weeks 6-8.
Examples of when it has a unique solution, no solution, or multiple solutions when m 6= n were given in this week, but this

will become more clear in Week 10. Therefore, we won’t summarize it here.

Sets

Definition 9.47 In mathematics, a set is defined as a collection of distinct objects.

• The objects that are members of a set are said to be its elements.

• The notation x ∈ S is used to indicate that x is an element in set S.

Definition 9.48 The size of a set equals the number of distinct objects in the set. It is denoted by |S|.

Definition 9.49 Let S and T be sets. Then S is a subset of T if all elements of S are also elements of T . We use the notation
S⊂ T to indicate that S is a subset of T :

(S⊂ T )⇔ (x ∈ S⇒ x ∈ T ).

Definition 9.50 The union of two sets S and T is the set of all elements that are in S or in T . This union is denoted by S∪T :

S∪T = {x|x ∈ S∨ x ∈ T.}

Definition 9.51 The intersection of two sets S and T is the set of all elements that are in S and in T . This intersection is
denoted by S∩T :

S∩T = {x|x ∈ S∧ x ∈ T.}

Definition 9.52 The complement of set S with respect to set T is the set of all elements that are in T but are not in S. This
complement is denoted by T\S:

T\S = {x|x /∈ S∧ x ∈ T}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/d90540e6510d4511b440385c84b947eb/1
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Vector spaces

For our purposes, a vector space is a subset, S, of Rn with the following properties:

• 0 ∈ S (the zero vector of size n is in the set S); and

• If v,w ∈ S then (v+w) ∈ S; and

• If α ∈ R and v ∈ S then αv ∈ S.

Definition 9.53 A subset of Rn is said to be a subspace of Rn is it a vector space.

Definition 9.54 Let A ∈ Rm×n. Then the column space of A equals the set

{Ax | x ∈ Rn} .

It is denoted by C (A).

The name “column space” comes from the observation (which we have made many times by now) that

Ax =
(

a0 a1 · · · an−1

)


χ0

χ1
...

χn−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1.

Thus C (A) equals the set of all linear combinations of the columns of matrix A.

Theorem 9.55 The column space of A ∈ Rm×n is a subspace of Rm.

Theorem 9.56 Let A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. Then Ax = b has a solution if and only if b ∈ C (A).

Definition 9.57 Let A ∈ Rm×n. Then the set of all vectors x ∈ Rn that have the property that Ax = 0 is called the null space of
A and is denoted by

N (A) = {x|Ax = 0}.

Span, Linear Dependence, Bases

Definition 9.58 Let {v0,v1, · · · ,vn−1} ⊂ Rm. Then the span of these vectors, Span{v0,v1, · · · ,vn−1}, is said to be the set of all
vectors that are a linear combination of the given set of vectors.

If V =
(

v0 v1 · · · vn−1

)
, then Span(v0,v1, . . . ,vn−1) = C (V ).

Definition 9.59 A spanning set of a subspace S is a set of vectors {v0,v1, . . . ,vn−1}
such that Span({v0,v1, . . . ,vn−1}) = S.

Definition 9.60 Let {v0, . . . ,vn−1} ⊂ Rm. Then this set of vectors is said to be linearly independent if χ0v0 + χ1v1 + · · ·+
χn−1vn−1 = 0 implies that χ0 = · · ·= χn−1 = 0. A set of vectors that is not linearly independent is said to be linearly dependent.

Theorem 9.61 Let the set of vectors {a0,a1, . . . ,an−1} ⊂ Rm be linearly dependent. Then at least one of these vectors can be
written as a linear combination of the others.

This last theorem motivates the term linearly independent in the definition: none of the vectors can be written as a linear
combination of the other vectors.

Theorem 9.62 Let {a0, . . . ,an−1} ⊂ Rm and let A =
(

a0 · · · an−1

)
. Then the vectors {a0, . . . ,an−1} are linearly inde-

pendent if and only if N (A) = {0}.
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Theorem 9.63 Let {a0,a1, . . . ,an−1} ∈ Rm and n > m. Then these vectors are linearly dependent.

Definition 9.64 Let S be a subspace of Rm. Then the set {v0,v1, · · · ,vn−1}⊂Rm is said to be a basis for S if (1) {v0,v1, · · · ,vn−1}
are linearly independent and (2) Span{v0,v1, · · · ,vn−1}= S.

Theorem 9.65 Let S be a subspace of Rm and let {v0,v1, · · · ,vn−1} ⊂ Rm and {w0,w1, · · · ,wk−1} ⊂ Rm both be bases for S.
Then k = n. In other words, the number of vectors in a basis is unique.

Definition 9.66 The dimension of a subspace S equals the number of vectors in a basis for that subspace.

Definition 9.67 Let A ∈ Rm×n. The rank of A equals the number of vectors in a basis for the column space of A. We will let
rank(A) denote that rank.

Theorem 9.68 Let {v0,v1, · · · ,vn−1} ⊂Rm be a spanning set for subspace S and assume that vi equals a linear combination of
the other vectors. Then {v0,v1, · · · ,vi−1,vi+1, · · · ,vn−1} is a spanning set of S.

Theorem 9.69 Let {v0,v1, · · · ,vn−1} ⊂ Rm be linearly independent and assume that {v0,v1, · · · ,vn−1} ⊂ S where S is a sub-
space. Then this set of vectors is either a spanning set for S or there exists w ∈ S such that {v0,v1, · · · ,vn−1,w} are linearly
independent.

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

• C (A) = Rn.

• A has linearly independent columns.

• N (A) = {0}.

• rank(A) = n.




