
Notes on Cholesky Factorization

Robert A. van de Geijn

Department of Computer Science

The University of Texas

Austin, TX 78712

rvdg@cs.utexas.edu

October 24, 2014

1 Definition and Existence

This operation is only defined for Hermitian positive definite matrices:

Definition 1. A matrix A ∈ Cm×m is Hermitian positive definite (HPD) if and only if it is Hermitian
(AH = A) and for all nonzero vectors x ∈ Cm it is the case that xHAx > 0. If in addition A ∈ Rm×m then A is
said to be symmetric positive definite (SPD).

(If you feel uncomfortable with complex arithmetic, just replace the word “Hermitian” with “Symmetric” in
this document and the Hermitian transpose operation, H , with the transpose operation, T .

Example 2. Consider the case where m = 1 so that A is a real scalar, α. Notice that then A is SPD if and
only if α > 0. This is because then for all nonzero χ ∈ R it is the case that αχ2 > 0.

First some exercises:

Exercise 3. Let B ∈ Cm×n have linearly independent columns. Prove that A = BHB is HPD.

Exercise 4. Let A ∈ Cm×m be HPD. Show that its diagonal elements are real and positive.

We will prove the following theorem in Section 4:

Theorem 5. (Cholesky Factorization Theorem) Given a HPD matrix A there exists a lower triangular
matrix L such that A = LLH .

Obviously, there similarly exists an upper triangular matrix U such that A = UHU since we can choose
UH = L.

The lower triangular matrix L is known as the Cholesky factor and LLH is known as the Cholesky
factorization of A. It is unique if the diagonal elements of L are restricted to be positive.

The operation that overwrites the lower triangular part of matrix A with its Cholesky factor will be
denoted by A := Chol(A), which should be read as “A becomes its Cholesky factor.” Typically, only the
lower (or upper) triangular part of A is stored, and it is that part that is then overwritten with the result.
In this discussion, we will assume that the lower triangular part of A is stored and overwritten.

1

2 Application

The Cholesky factorization is used to solve the linear system Ax = y when A is HPD: Substituting the
factors into the equation yields LLHx = y. Letting z = LHx,

Ax = L (LHx)︸ ︷︷ ︸
z

= Lz = y.

Thus, z can be computed by solving the triangular system of equations Lz = y and subsequently the desired
solution x can be computed by solving the triangular linear system LHx = z.

3 An Algorithm

The most common algorithm for computing A := Chol(A) can be derived as follows: Consider A = LLH .
Partition

A =

(
α11 ?

a21 A22

)
and L =

(
λ11 0

l21 L22

)
. (1)

Remark 6. We adopt the commonly used notation where Greek lower case letters refer to scalars, lower case
letters refer to (column) vectors, and upper case letters refer to matrices. The ? refers to a part of A that is
neither stored nor updated.

By substituting these partitioned matrices into A = LLH we find that(
α11 ?

a21 A22

)
=

(
λ11 0

l21 L22

)(
λ11 0

l21 L22

)H

=

(
λ11 0

l21 L22

)(
λ̄11 lH21
0 LH

22

)

=

(
|λ11|2 ?

λ̄11l21 l21l
H
21 + L22L

H
22

)
,

from which we conclude that

|λ11| =
√
α11 ?

l21 = a21/λ̄11 L22 = Chol(A22 − l21lH21)
.

These equalities motivate the algorithm

1. Partition A→

(
α11 ?

a21 A22

)
.

2. Overwrite α11 := λ11 =
√
α11. (Picking λ11 =

√
α11 makes it positive and real, and ensures unique-

ness.)

3. Overwrite a21 := l21 = a21/λ11.

4. Overwrite A22 := A22− l21lH21 (updating only the lower triangular part of A22). This operation is called
a symmetric rank-1 update.

5. Continue with A = A22. (Back to Step 1.)

Remark 7. Similar to the tril function in Matlab, we use tril(B) to denote the lower triangular part of
matrix B.

2

4 Proof of the Cholesky Factorization Theorem

In this section, we partition A as in (1):

A→

(
α11 aH21
a21 A22

)
.

The following lemmas are key to the proof:

Lemma 8. Let A ∈ Cnxn be HPD. Then α11 is real and positive.

Proof: This is special case of Exercise 1.

Lemma 9. Let A ∈ Cm×m be HPD and l21 = a21/
√
α11. Then A22 − l21lH21 is HPD.

Proof: Since A is Hermitian so are A22 and A22 − l21lH21.

Let x2 ∈ C(n−1)×(n−1) be an arbitrary nonzero vector. Define x =

(
χ1

x2

)
where χ1 = −aH21x2/α11.

Then, since x 6= 0,

0 < xHAx =

(
χ1

x2

)H (
α11 aH21
a21 A22

)(
χ1

x2

)

=

(
χ1

x2

)H (
α11χ1 + aH21x2

a21χ1 +A22x2

)
= α11|χ1|2 + χ̄1a

H
21x2 + xH2 a21χ1 + xH2 A22x2

= α11
aH21x2
α11

xH2 a21
α11

−x
H
2 a21
α11

aH21x2−xH2 a21
aH21x2
α11

+ xH2 A22x2

= xH2 (A22 −
a21a

H
21

α11
)x2 (since xH2 a21a

H
21x2 is real and hence equals aH21x2x

H
2 a21)

= xH2 (A22 − l21lH21)x2.

We conclude that A22 − l21lH21 is HPD.

Proof: of the Cholesky Factorization Theorem
Proof by induction.

Base case: n = 1. Clearly the result is true for a 1 × 1 matrix A = α11: In this case, the fact that A
is HPD means that α11 is real and positive and a Cholesky factor is then given by λ11 =

√
α11, with

uniqueness if we insist that λ11 is positive.

Inductive step: Assume the result is true for HPD matrix A ∈ C(n−1)×(n−1). We will show that it holds
for A ∈ Cn×n. Let A ∈ Cn×n be HPD. Partition A and L as in (1) and let λ11 =

√
α11 (which is

well-defined by Lemma 4), l21 = a21/λ11, and L22 = Chol(A22− l21lH21) (which exists as a consequence
of the Inductive Hypothesis and Lemma 4). Then L is the desired Cholesky factor of A.

By the principle of mathematical induction, the theorem holds.

5 Blocked Algorithm

In order to attain high performance, the computation is cast in terms of matrix-matrix multiplication by so-
called blocked algorithms. For the Cholesky factorization a blocked version of the algorithm can be derived

3

by partitioning

A→

(
A11 ?

A21 A22

)
and L→

(
L11 0

L21 L22

)
,

where A11 and L11 are b× b. By substituting these partitioned matrices into A = LLH we find that(
A11 ?

A21 A22

)
=

(
L11 0

L21 L22

)(
L11 0

L21 L22

)H

=

(
L11L

H
11 ?

L21L
H
11 L21L

H
21 + L22L

H
22

)
.

From this we conclude that

L11 = Chol(A11) ?

L21 = A21L
−H
11 L22 = Chol(A22 − L21L

H
21)

.

An algorithm is then described by the steps

1. Partition A→

(
A11 ?

A21 A22

)
, where A11 is b× b.

2. Overwrite A11 := L11 = Chol(A11).

3. Overwrite A21 := L21 = A21L
−H
11 .

4. Overwrite A22 := A22 − L21L
H
21 (updating only the lower triangular part).

5. Continue with A = A22. (Back to Step 1.)

Remark 10. The Cholesky factorization A11 := L11 = Chol(A11) can be computed with the unblocked algo-
rithm or by calling the blocked Cholesky factorization algorithm recursively.

Remark 11. Operations like L21 = A21L
−H
11 are computed by solving the equivalent linear system with multiple

right-hand sides L11L
H
21 = AH

21.

6 Alternative Representation

When explaining the above algorithm in a classroom setting, invariably it is accompanied by a picture
sequence like the one in Figure 1(left) and the (verbal) explanation:

Beginning of iteration: At some stage of the algorithm (Top of the loop), the computation has moved
through the matrix to the point indicated by the thick lines. Notice that we have finished with the
parts of the matrix that are in the top-left, top-right (which is not to be touched), and bottom-left
quadrants. The bottom-right quadrant has been updated to the point where we only need to perform
a Cholesky factorization of it.

Repartition: We now repartition the bottom-right submatrix to expose α11, a21, and A22.

Update: α11, a21, and A22 are updated as discussed before.

End of iteration: The thick lines are moved, since we now have completed more of the computation, and
only a factorization of A22 (which becomes the new bottom-right quadrant) remains to be performed.

Continue: The above steps are repeated until the submatrix ABR is empty.

4

done

done

done

partially

updated

Beginning of iteration

ATL

ABL

?

ABR

↓ ↓

Repartition

A00 ? ?

aT10 α11 ?

A20 a21 A22

↓ ↓

UPD.

UPD. UPD.

Update

√
α11

a21
α11

A22−
a21aT21

↓ ↓

@
@R

done

done

done

partially

updated

End of iteration

ATL

ABL

?

ABR

Figure 1: Left: Progression of pictures that explain Cholesky factorization algorithm. Right: Same pictures,
annotated with labels and updates. (Picture modified from a similar one in [9].

To motivate our notation, we annotate this progression of pictures as in Figure 1 (right). In those pictures,
“T”, “B”, “L”, and “R” stand for “Top”, “Bottom”, “Left”, and “Right”, respectively. This then motivates
the format of the algorithm in Figure 2 (left). It uses what we call the FLAME notation for representing
algorithms [9, 8, 12]. A similar explanation can be given for the blocked algorithm, which is given in Figure 2
(right). In the algorithms, m(A) indicates the number of rows of matrix A.

Remark 12. The indices in our more stylized presentation of the algorithms are subscripts rather than indices
in the conventional sense.

5

Algorithm: A := Chol unb(A)

Partition A→

(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Repartition(
ATL ?

ABL ABR

)
→

A00 ? ?

aT10 α11 ?

A20 a21 A22

where α11 is 1× 1

α11 :=
√
α11

a21 := a21/α11

A22 := A22 − tril(a21a
H
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?

aT10 α11 ?

A20 a21 A22

endwhile

Algorithm: A := Chol blk(A)

Partition A→

(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?

A20 A21 A22

where A11 is b× b

A11 := Chol(A11)

A21 := A21 tril(A11)−H

A22 := A22 − tril(A21A
H
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?

A10 A11 ?

A20 A21 A22

endwhile

Figure 2: Unblocked and blocked algorithms for computing the Cholesky factorization in FLAME notation.

Remark 13. The notation in Figs. 1 and 2 allows the contents of matrix A at the beginning of the iteration to
be formally stated:

A =

(
ATL ?

ABL ABR

)
=

(
LTL ?

LBL ÂBR − tril(LBLL
H
BL)

)
,

where LTL = Chol(ÂTL), LBL = ÂBLL
−H
TL , and ÂTL, ÂBL and ÂBR denote the original contents of the

quadrants ATL, ABL and ABR, respectively.

Exercise 14. Implement the Cholesky factorization with M-script.

7 Cost

The cost of the Cholesky factorization of A ∈ Cm×m can be analyzed as follows: In Figure 2 (left) during
the kth iteration (starting k at zero) A00 is k × k. Thus, the operations in that iteration cost

• α11 :=
√
α11: negligible when k is large.

• a21 := a21/α11: approximately (m− k − 1) flops.

• A22 := A22 − tril(a21a
H
21): approximately (m − k − 1)2 flops. (A rank-1 update of all of A22 would

have cost 2(m− k − 1)2 flops. Approximately half the entries of A22 are updated.)

6

Thus, the total cost in flops is given by

CChol(m) ≈
m−1∑
k=0

(m− k − 1)2︸ ︷︷ ︸
(Due to update of A22)

+

m−1∑
k=0

(m− k − 1)︸ ︷︷ ︸
(Due to update of a21)

=

m−1∑
j=0

j2 +

m−1∑
j=0

j ≈ 1

3
m3 +

1

2
m2 ≈ 1

3
m3

which allows us to state that (obvious) most computation is in the update of A22. It can be shown that the
blocked Cholesky factorization algorithm performs exactly the same number of floating point operations.

Comparing the cost of the Cholesky factorization to that of the LU factorization from “Notes on LU
Factorization” we see that taking advantage of symmetry cuts the cost approximately in half.

8 Solving the Linear Least-Squares Problem via the Cholesky Fac-
torization

Recall that if B ∈ Cm×n has linearly independent columns, then A = BHB is HPD. Also, recall from “Notes
on Linear Least-Squares” that the solution, x ∈ Cn to the linear least-squares (LLS) problem

‖Bx− y‖2 = min
z∈Cn

‖Bz − y‖2

equals the solution to the normal equations

BHB︸ ︷︷ ︸
A

x = BHy︸ ︷︷ ︸
ŷ

.

This makes it obvious how the Cholesky factorization can (and often is) used to solve the LLS problem.

Exercise 15. Consider B ∈ Cm×n with linearly independent columns. Recall that B has a QR factorizaiton,
B = QR where Q has orthonormal columns and R is an upper triangular matrix with positive diagonal elements.
How are the Cholesky factorization of BHB and the QR factorization of B related?

Proof:
BHB = (QR)HQR = RH QHQ︸ ︷︷ ︸

I

R = RH︸︷︷︸
L

R︸︷︷︸
LH

.

9 Other Cholesky Factorization Algorithms

There are actually three different unblocked and three different blocked algorithms for computing the
Cholesky factorization. The algorithms we discussed in this note are sometimes called the right-looking
algorithm. Systematic derivation of all these algorithms, as well as their blocked counterparts, are given in
Chapter 6 of [12].

10 Implementing the Cholesky Factorization with the (Traditional)
BLAS

The Basic Linear Algebra Subprograms (BLAS) are an interface to commonly used fundamental linear
algebra operations. In this section, we illustrate how the unblocked and blocked Cholesky factorization

7

Algorithm Code

S
im

p
le

for j = 1 : n
αj,j :=

√
αj,j

for i = j + 1 : n
αi,j := αi,j/αj,j

endfor

for k = j + 1 : n
for i = k : n

αi,k := αi,k − αi,jαk,j
endfor

endfor
endfor

do j=1, n

A(j,j) = sqrt(A(j,j))

do i=j+1,n

A(i,j) = A(i,j) / A(j,j)

enddo

do k=j+1,n

do i=k,n

A(i,k) = A(i,k) - A(i,j) * A(k,j)

enddo

enddo

enddo

V
ec

to
r-

ve
ct

o
r

for j = 1 : n
αj,j :=

√
αj,j

αj+1:n,j := αj+1:n,j/αj,j

for k = j + 1 : n
αk:n,k := −αk,jαk:n,j + αk:n,k

endfor
endfor

do j=1, n

A(j,j) = sqrt(A(j,j))

call dscal(n-j, 1.0d00 / A(j,j), A(j+1, j), 1)

do k=j+1,n

call daxpy(n-k+1, -A(k,j), A(k,j), 1, A(k, k), 1)

enddo

enddo

M
a
tr

ix
-v

ec
to

r

for j = 1 : n
αj,j :=

√
αj,j

αj+1:n,j := αj+1:n,j/αj,j

αj+1:n,j+1:n :=
−tril(αj+1:n,j α

T
j+1:n,j) + αj+1:n,j+1:n

endfor

do j=1, n

A(j,j) = sqrt(A(j,j))

call dscal(n-j, 1.0d00 / A(j,j), A(j+1, j), 1)

call dsyr(’lower triangular’,

n-j, -1.0, A(j+1,j), 1, A(j+1, j+1), lda)

enddo

F
L

A
M

E
N

ot
at

io
n

Partition A→
(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size blank
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

aT10 α11 ?

A20 a21 A22

where α11 is 1× 1

α11 :=
√
α11

a21 := a21/α11

A22 := A22 − tril(a21aH21)

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?

aT10 α11 ?

A20 a21 A22

endwhile

int Chol_unb_var3(FLA_Obj A)

{

FLA_Obj ATL, ATR, A00, a01, A02,

ABL, ABR, a10t, alpha11, a12t,

A20, a21, A22;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &a01, &A02,

/* ************* */ /* ************************** */

&a10t, /**/ &alpha11, &a12t,

ABL, /**/ ABR, &A20, /**/ &a21, &A22,

1, 1, FLA_BR);

/*---*/

FLA_Sqrt(alpha11);

FLA_Invscal(alpha11, a21);

FLA_Syr(FLA_LOWER_TRIANGULAR, FLA_MINUS_ONE, A21, A22);

/*---*/

FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, a01, /**/ A02,

a10t, alpha11, /**/ a12t,

/* ************** */ /* ************************ */

&ABL, /**/ &ABR, A20, a21, /**/ A22,

FLA_TL);

}

return FLA_SUCCESS;

}

Figure 3: Various representations of the right-looking algorithm.

8

algorithms can be implemented in terms of the BLAS. The explanation draws from the entry we wrote for
the BLAS in the Encyclopedia of Parallel Computing [11].

10.1 What are the BLAS?

The BLAS interface [10, 6, 5] was proposed to support portable high-performance implementation of ap-
plications that are matrix and/or vector computation intensive. The idea is that one casts computation in
terms of the BLAS interface, leaving the architecture-specific optimization of that interface to an expert.

10.2 A simple implementation in Fortran

We start with a simple implementation in Fortran. A simple algorithm that does not use BLAS and the
corresponding code in given in the row labeled “Simple” in Figure 3. This sets the stage for our explaination
of how the algorithm and code can be represented with vector-vector, matrix-vector, and matrix-matrix
operations, and the corresponding calls to BLAS routines.

10.3 Implemention with calls to level-1 BLAS

The first BLAS interface [10] was proposed in the 1970s when vector supercomputers like the early Cray
architectures reigned. On such computers, it sufficed to cast computation in terms of vector operations. As
long as memory was accessed mostly contiguously, near-peak performance could be achieved. This interface
is now referred to as the Level-1 BLAS. It was used for the implementation of the first widely used dense
linear algebra package, LINPACK [4].

Let x and y be vectors of appropriate length and α be scalar. In this and other notes we have vector-vector
operations such as scaling of a vector (x := αx), inner (dot) product (α := xT y), and scaled vector addition
(y := αx+ y). This last operation is known as an axpy, which stands for alpha times x plus y.

Our Cholesky factorization algorithm expressed in terms of such vector-vector operations and the corre-
sponding code are given in Figure 3 in the row labeled “Vector-vector”. If the operations supported by dscal

and daxpy achieve high performance on a target archecture (as it was in the days of vector supercomputers)
then so will the implementation of the Cholesky factorization, since it casts most computation in terms of
those operations. Unfortunately, vector-vector operations perform O(n) computation on O(n) data, meaning
that these days the bandwidth to memory typically limits performance, since retrieving a data item from
memory is often more than an order of magnitude more costly than a floating point operation with that
data item.

We summarize information about level-1 BLAS in Figure 4.

10.4 Matrix-vector operations (level-2 BLAS)

The next level of BLAS supports operations with matrices and vectors. The simplest example of such an
operation is the matrix-vector product: y := Ax where x and y are vectors and A is a matrix. Another
example is the computation A22 = −a21aT21 +A22 (symmetric rank-1 update) in the Cholesky factorization.
Here only the lower (or upper) triangular part of the matrix is updated, taking advantage of symmetry.

The use of symmetric rank-1 update is illustrated in Figure 3, in the row labeled “Matrix-vector”. There
dsyr is the routine that implements a double precision symmetric rank-1 update. Readability of the code
is improved by casting computation in terms of routines that implement the operations that appear in the
algorithm: dscal for a21 = a21/α11 and dsyr for A22 = −a21aT21 +A22.

If the operation supported by dsyr achieves high performance on a target archecture (as it was in the days
of vector supercomputers) then so will this implementation of the Cholesky factorization, since it casts most
computation in terms of that operation. Unfortunately, matrix-vector operations perform O(n2) computation
on O(n2) data, meaning that these days the bandwidth to memory typically limits performance.

We summarize information about level-2 BLAS in Figure 5.

9

A proto-typical calling sequence for a level-1 BLAS routine is
�axpy(n, alpha, x, incx, y, incy),

which implements the scaled vector addition operation y = αx+ y. Here

• The “�” indicates the data type. The choices for this first letter are

s single precision

d double precision

c single precision complex

z double precision complex

• The operation is identified as axpy: alpha times x plus y.

• n indicates the number of elements in the vectors x and y.

• alpha is the scalar α.

• x and y indicate the memory locations where the first elements of x and y are stored, respectively.

• incx and incy equal the increment by which one has to stride through memory for the elements
of vectors x and y, respectively

The following are the most frequently used level-1 BLAS:

routine/ operation

function

�swap x↔ y

�scal x← αx

�copy y ← x

�axpy y ← αx+ y

�dot xT y

�nrm2 ‖x‖2
�asum ‖re(x)‖1 + ‖im(x)‖1
i�max min(k) : |re(xk)|+ |im(xk)| = max(|re(xi)|+ |im(xi)|)

Figure 4: Summary of the most commonly used level-1 BLAS.

10.5 Matrix-matrix operations (level-3 BLAS)

Finally, we turn to the implementation of the blocked Cholesky factorization algorithm from Section 5. The
algorithm is expressed with FLAME notation and Matlab-like notation in Figure 6.

The routines dtrsm and dsyrk are level-3 BLAS routines:

• The call to dtrsm implements A21 := L21 where L21L
T
11 = A21.

• The call to dsyrk implements A22 := −L21L
T
21 +A22.

The bulk of the computation is now cast in terms of matrix-matrix operations which can achieve high
performance.

We summarize information about level-3 BLAS in Figure 7.

10

The naming convention for level-2 BLAS routines is given by
�XXYY,

where

• “�” can take on the values s, d, c, z.

• XX indicates the shape of the matrix:

XX matrix shape

ge general (rectangular)

sy symmetric

he Hermitian

tr triangular

In addition, operations with banded matrices are supported, which we do not discuss here.

• YY indicates the operation to be performed:

YY matrix shape

mv matrix vector multiplication

sv solve vector

r rank-1 update

r2 rank-2 update

A representative call to a level-2 BLAS operation is given by
dsyr(uplo, n, alpha, x, incx, A, lda)

which implements the operation A = αxxT + A, updating the lower or upper triangular part of A by
choosing uplo as ‘Lower triangular’ or ‘Upper triangular’, respectively. The parameter lda (the
leading dimension of matrix A) indicates the increment by which memory has to be traversed in order
to address successive elements in a row of matrix A.
The following table gives the most commonly used level-2 BLAS operations:

routine/ operation

function

�gemv general matrix-vector multiplication

�symv symmetric matrix-vector multiplication

�trmv triangular matrix-vector multiplication

�trsv triangular solve vector

�ger general rank-1 update

�syr symmetric rank-1 update

�syr2 symmetric rank-2 update

Figure 5: Summary of the most commonly used level-2 BLAS.

11

Algorithm Code

M
at

ri
x
-m

at
ri

x

for j = 1 : n in steps of nb

b := min(n− j + 1, nb)

Aj:j+b−1,j:j+b−1 := Chol(Aj:j+b−1,j:j+b−1)

Aj+b:n,j:j+b−1 :=

Aj+b:n,j:j+b−1A
−H
j:j+b−1,j:j+b−1

Aj+b:n,j+b:n := Aj+b:n,j+b:n
− tril(Aj+b:n,j:j+b−1A

H
j+b:n,j:j+b−1)

endfor

do j=1, n, nb

jb = min(nb, n-j+1)

call chol(jb, A(j, j), lda)

call dtrsm(‘Right’, ‘Lower triangular’,

‘Transpose’, ‘Nonunit diag’,

J-JB+1, JB, 1.0d00, A(j, j), lda,

A(j+jb, j), lda)

call dsyrk(‘Lower triangular’, ‘No transpose’,

J-JB+1, JB, -1.0d00, A(j+jb, j), lda,

1.0d00, A(j+jb, j+jb), lda)

enddo

F
L

A
M

E
N

o
ta

ti
on

Partition A→
(
ATL ?

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?

A20 A21 A22

where A11 is b× b

A11 := Chol(A11)

A21 := A21 tril(A11)−H

A22 := A22 − tril(A21AH21)

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?

A10 A11 ?

A20 A21 A22

endwhile

int Chol_unb_var3(FLA_Obj A)

{

FLA_Obj ATL, ATR, A00, a01, A02,

ABL, ABR, a10t, alpha11, a12t,

A20, a21, A22;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &a01, &A02,

/* ************* */ /* ************************** */

&a10t, /**/ &alpha11, &a12t,

ABL, /**/ ABR, &A20, /**/ &a21, &A22,

1, 1, FLA_BR);

/*---*/

FLA_Sqrt(alpha11);

FLA_Invscal(alpha11, a21);

FLA_Syr(FLA_LOWER_TRIANGULAR, FLA_MINUS_ONE, A21, A22);

/*---*/

FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, a01, /**/ A02,

a10t, alpha11, /**/ a12t,

/* ************** */ /* ************************ */

&ABL, /**/ &ABR, A20, a21, /**/ A22,

FLA_TL);

}

return FLA_SUCCESS;

}

Figure 6: Blocked algorithm and implementation with level-3 BLAS.

12

10.6 Impact on performance

Figure 8 illustrates the performance benefits that come from using the different levels of BLAS on a typical
architecture.

11 Alternatives to the BLAS

11.1 The FLAME/C API

In a number of places in these notes we presented algorithms in FLAME notation. Clearly, there is a
disconnect between this notation and how the algorithms are then encoded with the BLAS interface. In
Figures 3 and 6 we also show how the FLAME API for the C programming language [2] allows the algorithms
to be more naturally translated into code. While the traditional BLAS interface underlies the implementation
of Cholesky factorization and other algorithms in the widely used LAPACK library [1], the FLAME/C API
is used in our libflame library [9, 13, 14].

11.2 BLIS

The implementations that call BLAS in this paper are coded in Fortran. More recently, the languages of
choice for scientific computing have become C and C++. While there is a C interface to the traditional
BLAS called the CBLAS [3], we believe a more elegant such interface is the BLAS-like Library Instantiation
Software (BLIS) interface [7]. BLIS is not only a framework for rapid implementation of the traditional
BLAS, but also presents an alternative interface for C and C++ users.

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[2] Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Representing linear alge-
bra algorithms in code: The FLAME application programming interfaces. ACM Trans. Math. Soft.,
31(1):27–59, March 2005.

[3] Basic linear algebra subprograms technical forum standard. International Journal of High Performance
Applications and Supercomputing, 16(1), Spring 2002.

[4] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide. SIAM,
Philadelphia, 1979.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[6] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[7] Robert A. van de Geijn Field G. Van Zee. Blis: A framework for rapid instantiation of blas functionality.
ACM Transactions on Mathematical Software.

[8] John A. Gunnels. A Systematic Approach to the Design and Analysis of Parallel Dense Linear Algebra
Algorithms. PhD thesis, Department of Computer Sciences, The University of Texas, December 2001.

[9] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formal
linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

13

The naming convention for level-3 BLAS routines are similar to those for the level-2 BLAS. A repre-
sentative call to a level-3 BLAS operation is given by

dsyrk(uplo, trans, n, k, alpha, A, lda, beta, C, ldc)

which implements the operation C := αAAT +βC or C := αATA+βC depending on whether trans is
chosen as ‘No transpose’ or ‘Transpose’, respectively. It updates the lower or upper triangular part
of C depending on whether uplo equal ‘Lower triangular’ or ‘Upper triangular’, respectively.
The parameters lda and ldc are the leading dimensions of arrays A and C, respectively.
The following table gives the most commonly used Level-3 BLAS operationsx

routine/ operation

function

�gemm general matrix-matrix multiplication

�symm symmetric matrix-matrix multiplication

�trmm triangular matrix-matrix multiplication

�trsm triangular solve with multiple right-hand sides

�syrk symmetric rank-k update

�syr2k symmetric rank-2k update

Figure 7: Summary of the most commonly used level-3 BLAS.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

n

G
Fl

op
s

One thread

Hand optimized
BLAS3
BLAS2
BLAS1
triple loops

Figure 8: Performance of the different implementations of Cholesky factorization that use different levels
of BLAS. The target processor has a peak of 11.2 Gflops (billions of floating point operations per second).
BLAS1, BLAS2, and BLAS3 indicate that the bulk of computation was cast in terms of level-1, -2, or -3
BLAS, respectively.

14

[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[11] Robert van de Geijn and Kazushige Goto. Encyclopedia of Parallel Computing, chapter BLAS (Basic
Linear Algebra Subprograms), pages Part 2, 157–164. Springer, 2011.

[12] Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Programming Matrix Computa-
tions. www.lulu.com/contents/contents/1911788/, 2008.

[13] Field G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2012.

[14] Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio Quintana-
Ort́ı. The libflame library for dense matrix computations. IEEE Computation in Science & Engineering,
11(6):56–62, 2009.

15

