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1 Motivation

Correctness in the presence of error (e.g., when floating point computations are performed) takes on a
different meaning. For many problems for which computers are used, there is one correct answer, and we
expect that answer to be computed by our program. The problem is that, as we will see later, most real
numbers cannot be stored exactly in a computer memory. They are stored as approximations, floating point
numbers, instead. Hence storing them and/or computing with them inherently incurs error.

Naively, we would like to be able to define a program that computes with floating point numbers as being
“correct” if it computes an answer that is close to the exact answer. Unfortunately, some problems that are
computed this way have the property that a small change in the input yields a large change in the output.
Surely we can’t blame the program for not computing an answer close to the exact answer in this case.
The mere act of storing the input data as a floating point number may cause a completely different output,
even if all computation is exact. We will later define stability to be a property of a program. It is what
takes the place of correctness. In this note, we instead will focus on when a problem is a “good” problem,
meaning that in exact arithmetic a ”small” change in the input will always cause at most a “small” change
in the output, or a “bad” problem if a “small” change may yield a “large” A good problems will be called
well-conditioned. A bad problem will be called ill-conditioned.

Notice that “small” and “large” are vague. To some degree, norms help us measure size. To some degree,
“small” and “large” will be in the eyes of the beholder (in other words, situation dependent).

2 Notation

Throughout this note, we will talk about small changes (perturbations) to scalars, vectors, and matrices. To
denote these, we attach a “delta” to the symbol for a scalar, vector, or matrix.

• A small change to scalar α ∈ C will be denoted by δα ∈ C;

• A small change to vector x ∈ Cn will be denoted by δx ∈ Cn; and

• A small change to matrix A ∈ Cm×n will be denoted by ∆A ∈ Cm×n.

Notice that the “delta” touches the α, x, and A, so that, for example, δx is not mistaken for δ · x.
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3 The Prototypical Example: Solving a Linear System

Assume that A ∈ Rn×n is nonsingular and x, y ∈ Rn with Ax = y. The problem here is the function that
computes x from y and A. Let us assume that no error is introduced in the matrix A when it is stored,
but that in the process of storing y a small error is introduced: δy ∈ Rn so that now y + δy is stored. The
question becomes by how much the solution x changes as a function of δy. In particular, we would like to
quantify how a relative change in the right-hand side y (‖δy‖/‖y‖ in some norm) translates to a relative
change in the solution x (‖δx‖/‖x‖). It turns out that we will need to compute norms of matrices, using the
norm induced by the vector norm that we use.

Since Ax = y, if we use a consistent (induced) matrix norm,

‖y‖ = ‖Ax‖ ≤ ‖A‖‖x‖ or, equivalently,
1
‖x‖
≤ ‖A‖ 1

‖y‖
. (1)

Also,
A(x+ δx) = y + δy

Ax = y

}
implies that Aδx = δy so that δx = A−1δy.

Hence
‖δx‖ = ‖A−1δy‖ ≤ ‖A−1‖‖δy‖. (2)

Combining (1) and (2) we conclude that

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δy‖
‖y‖

.

What does this mean? It means that the relative error in the solution is at worst the relative error in
the right-hand side, amplified by ‖A‖‖A−1‖. So, if that quantity is “small” and the relative error in the
right-hand size is “small” and exact arithmetic is used, then one is guaranteed a solution with a relatively
“small” error.

The quantity κ‖·‖(A) = ‖A‖‖A−1‖ is called the condition number of nonsingular matrix A (associated
with norm ‖ · ‖).

Are we overestimating by how much the relative error can be amplified? The answer to this
is no. For every nonsingular matrix A, there exists a right-hand side y and perturbation δy such that, if
A(x+ δx) = y + δy,

‖δx‖
‖x‖

= ‖A‖‖A−1‖‖δy‖
‖y‖

.

In order for this equality to hold, we need to find y and δy such that

‖y‖ = ‖Ax‖ = ‖A‖‖x‖ or, equivalently, ‖A‖ =
‖Ax‖
‖x‖

and

‖δx‖ = ‖A−1δy‖ = ‖A−1‖‖δy‖. or, equivalently, ‖A−1‖ =
‖A−1δy‖
‖δy‖

.

In other words, x can be chosen as a vector that maximizes ‖Ax‖/‖x‖ and δy should maximize ‖A−1δy‖/‖δy‖.
The vector y is then chosen as y = Ax.
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What if we use the 2-norm? For this norm, κ2(A) = ‖A‖2‖A−1‖2 = σ0/σn−1. So, the ratio between
the largest and smallest singular value determines whether a matrix is well-conditioned or ill-conditioned.

To show for what vectors the maximal magnification is attained, consider the SVD

A = UΣV T =
(
u0 u1 · · · un−1

)


σ0

σ1

. . .

σn−1


(
v0 v1 · · · vn−1

)H
.

Recall that

• ‖A‖2 = σ0, v0 is the vector that maximizes max‖z‖2=1 ‖Az‖2, and Av0 = σ0u0;

• ‖A−1‖2 = 1/σn−1, un−1 is the vector that maximizes max‖z‖2=1 ‖A−1z‖2, and Avn−1 = σn−1un−1.

Now, take y = σ0u0. Then Ax = y is solved by x = v0. Take δy = βσ1u1. Then Aδx = δy is solved by
x = βv1. Now,

‖δy‖2
‖y‖2

=
|β|σ1

σ0
and

‖δx‖2
‖x‖2

= |β|.

Hence
‖δx‖2
‖x‖2

=
σ0

σn−1

‖δy‖2
‖y‖2

This is depicted in Figure 1 for n = 2.
The SVD can be used to show that A maps the unit ball to an ellipsoid. The singular values are the

lengths of the various axes of the ellipsoid. The condition number thus captures the eccentricity of the
ellipsoid: the ratio between the lengths of the largest and smallest axes. This is also illustrated in Figure 1.

Number of accurate digits Notice that for scalars δψ and ψ, log10( δψψ ) = log10(δψ) − log10(ψ) roughly
equals the number leading decimal digits of ψ + δψ that are accurate, relative to ψ. For example, if ψ =
32.512 and δψ = 0.02, then ψ + δψ = 32.532 which has three accurate digits (highlighted in read). Now,
log10(32.512)− log10(0.02) ≈ 1.5− (−1.7) = 3.2.

Now, if
‖δx‖
‖x‖

= κ(A)
‖δy‖
‖y‖

.

then
log10(‖δx‖)− log10(‖x‖) = log10(κ(A)) + log10(‖δy‖)− log10(‖y‖)

so that
log10(‖x‖)− log10(‖δx‖) = [log10(‖y‖)− log10(‖δy‖)]− log10(κ(A)).

In other words, if there were k digits of accuracy in the right-hand side, then it is possible that (due only
to the condition number of A) there are only k − log10(κ(A)) digits of accuracy in the solution. If we start
with only 8 digits of accuracy and κ(A) = 105, we may only get 3 digits of accuracy. If κ(A) ≥ 108, we may
not get any digits of accuracy...

Exercise 1. Show that, for a consistent matrix norm, κ(A) ≥ 1.

We conclude from this that we can generally only expect as much relative accuracy in the solution as we
had in the right-hand side.
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R2: Domain of A. R2: Codomain of A.

Figure 1: Illustration for choices of vectors y and δy that result in ‖δx‖2
‖x‖2 = σ0

σn−1

‖δy‖2
‖y‖2 . Because of the

eccentricity of the ellipse, the relatively small change δy relative to y is amplified into a relatively large
change δx relative to x. On the right, we see that ‖δy‖2/‖y‖2 = βσ1/σ0 (since ‖u0‖2 = ‖u1‖2 = 1). On the
left, we see that ‖δx‖2/‖x‖ = β (since ‖v0‖2 = ‖v1‖2 = 1).

Alternative exposition Note: the below links conditioning of matrices to the relative condition number
of a more general function. For a more thorough treatment, you may want to read Lecture 12 of “Trefethen
and Bau”. That book discusses the subject in much more generality than is needed for our discussion of
linear algebra. Thus, if this alternative exposition baffles you, just skip it!

Let f : Rn → Rm be a continuous function such that f(y) = x. Let ‖ · ‖ be a vector norm. Consider for
y 6= 0

κf (y) = lim
δ→0

sup
‖δy‖ ≤ δ

(
‖f(y + δy)− f(y)‖

‖f(y)‖

)
/

(
‖δy‖
‖y‖

)
.

Letting f(y + δy) = x+ δx, we find that

κf (y) = lim
δ→0

sup
‖δy‖ ≤ δ

(
‖x+ δx‖
‖x‖

)
/

(
‖δy‖
‖y‖

)
.

(Obviously, if δy = 0 or y = 0 or f(y) = 0 , things get a bit hairy, so let’s not allow that.)
Roughly speaking, κf (y) equals the maximum that a(n infitessimally) small relative error in y is magnified

into a relative error in f(y). This can be considered the relative condition number of function f . A large
relative condition number means a small relative error in the input (y) can be magnified into a large relative
error in the output (x = f(y)). This is bad, since small errors will invariable occur.

Now, if f(y) = x is the function that returns x where Ax = y for a nonsingular matrix A ∈ Cn×n, then
via an argument similar to what we did earlier in this section we find that κf (y) ≤ κ(A) = ‖A‖‖A−1‖, the
condition number of matrix A:

lim
δ→0

sup
‖δy‖ ≤ δ

(
‖f(y + δy)− f(y)‖

‖f(y)‖

)
/

(
‖δy‖
‖y‖

)
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= lim
δ→0

sup
‖δy‖ ≤ δ

(
‖A−1(y + δy)−A−1(y)‖

‖A−1y‖

)
/

(
‖δy‖
‖y‖

)

= lim
δ→0

max
‖z‖ = 1
δy = δ · z

(
‖A−1(y + δy)−A−1(y)‖

‖A−1y‖

)
/

(
‖δy‖
‖y‖

)

= lim
δ→0

max
‖z‖ = 1
δy = δ · z

(
‖A−1δy‖
‖δy‖

)
/

(
‖A−1y‖
‖y‖

)

= lim
δ→0

max
‖z‖ = 1
δy = δ · z

(
‖A−1δy‖
‖δy‖

)(
‖y‖
‖A−1y‖

)

=

 lim
δ→0

max
‖z‖ = 1
δy = δ · z

(
‖A−1δy‖
‖δy‖

)

[(

‖y‖
‖A−1y‖

)]

= lim
δ→0

max
‖z‖ = 1
δy = δ · z

(
‖A−1(δ · z)‖
‖δ · z‖

)(
‖y‖
‖A−1y‖

)

= max
‖z‖ = 1

(
‖A−1z‖
‖z‖

)(
‖y‖
‖A−1y‖

)

= max
‖z‖ = 1

(
‖A−1z‖
‖z‖

)(
‖Ax‖
‖x‖

)

≤

 max
‖z‖ = 1

(
‖A−1z‖
‖z‖

) max
x 6= 0

(
‖Ax‖
‖x‖

)
= ‖A‖‖A−1‖,

where ‖ · ‖ is the matrix norm induced by vector norm ‖ · ‖.

4 Condition Number of a Rectangular Matrix

Given A ∈ Cm×n with linearly independent columns and y ∈ Cm, consider the linear least-squares (LLS)
problem

‖Ax− y‖2 = min
w
‖Aw − y‖2 (3)

and the perturbed problem

‖A(x+ δx)− y‖2 = min
w+δw

‖A(w + δw)− (y + δy)‖2. (4)

We will again bound by how much the relative error in y is amplified.
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Figure 2: Linear least-squares problem ‖Ax − y‖2 = minv ‖Av − y‖2. Vector z is the projection of y onto
C(A).

Notice that the solutions to (3) and (4) respectively satisfy

AHAx = AHy

AHA(x+ δx) = AH(y + δy)

so that AHAδx = AHδy (subtracting the first equation from the second) and hence

‖δx‖2 = ‖(AHA)−1AHδy‖2 ≤ ‖(AHA)−1AH‖2‖δy‖2.

Now, let z = A(AHA)−1AHy be the projection of y onto C(A) and let θ be the angle between z and y. Let
us assume that y is not orthogonal to C(A) so that z 6= 0. Then cos θ = ‖z‖2/‖y‖2 so that

cos θ‖y‖2 = ‖z‖2 = ‖Ax‖2 ≤ ‖A‖2‖x‖2

and hence
1
‖x‖2

≤ ‖A‖2
cos θ‖y‖2

We conclude that
‖δx‖2
‖x‖2

≤ ‖A‖2‖(A
HA)−1AH‖2
cos θ

‖δy‖2
‖y‖2

=
1

cos θ
σ0

σn−1

‖δy‖2
‖y‖2

where σ0 and σn−1 are (respectively) the largest and smallest singular values of A, because of the following
result:

Exercise 2. If A has linearly independent columns, show that ‖(AHA)−1AH‖2 = 1/σn−1, where σn−1 equals the
smallest singular value of A. Hint: Use the SVD of A.

The condition number of A ∈ Cm×n with linearly independent columns is κ2(A) = σ0/σn−1.
Notice the effect of the cos θ. When y is almost perpendicular to C(A), then its projection z is small and

cos θ is small. Hence a small relative change in y can be greatly amplified. This makes sense: if y is almost
perpendical to C(A), then x ≈ 0, and any small δy ∈ C(A) can yield a relatively large change δx.
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5 Why Using the Method of Normal Equations Could be Bad

Exercise 3. Let A have linearly independent columns. Show that κ2(AHA) = κ2(A)2.

Exercise 4. Let A ∈ Cn×n have linearly independent columns.

• Show that Ax = y if and only if AHAx = AHy.

• Reason that if the method of normal equations is used to solve Ax = y, then the condition number of
the matrix is unnecessarily squared.

Let A ∈ Cm×n have linearly independent columns. If one uses the Method of Normal Equations to solve
the linear least-squares problem minx ‖Ax−y‖2, one ends up solving the square linear system AHAx = AHy.
Now, κ2(AHA) = κ2(A)2. Hence, using this method squares the condition number of the matrix being used.

6 Why Multiplication with Unitary Matrices is a Good Thing

Next, consider the computation C = AB where A ∈ Cm×m is nonsingular and B,∆B,C,∆C ∈ Cm×n. Then

(C + ∆C) = A(B + ∆B)
C = AB

∆C = A∆B

Thus,
‖∆C‖2 = ‖A∆B‖2 ≤ ‖A‖2‖∆B‖2.

Also, B = A−1C so that
‖B‖2 = ‖A−1C‖2 ≤ ‖A−1‖2‖C‖2

and hence
1
‖C‖2

≤ ‖A−1‖2
1
‖B‖2

.

Thus,
‖∆C‖2
‖C‖2

≤ ‖A‖2‖A−1‖2
‖∆B‖2
‖B‖2

= κ2(A)
‖∆B‖2
‖B‖2

.

This means that the relative error in matrix C = AB is at most κ2(A) greater than the relative error in B.
The following exercise gives us a hint as to why algorithms that cast computation in terms of multipli-

cation by unitary matrices avoid the buildup of error:

Exercise 5. Let U ∈ Cn×n be unitary. Show that κ2(U) = 1.

This means is that the relative error in matrix C = UB is no greater than the relative error in B when U is
unitary.
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