Notes on the FLAME APIs

Robert A. van de Geijn
The University of Texas at Austin
Austin, TX 78712

September 24, 2014

NOTE: I have not thoroughly proof-read these notes!!!

1 Motivation

In the course so far, we have frequently used the “FLAME Notation” to express linear algebra algorithms.
In this note we show how to translate such algorithms into code, using various QR factorization algorithms
as examples.

2 Install FLAME@lab

The API we will use we refer to as the “FLAME@Qlab” API, which is an API that targets the M-script
language used by Matlab and Octave (an Open Source Matlab implementation). This API is very intuitive,
and hence we will spend (almost) no time explaining it.

Download all files from http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/ and place them
in the same directory as you will the remaining files that you will create as part of the exercises in this
document. (Unless you know how to set up paths in Matlab/Octave, in which case you can put it whereever
you please, and set the path.)

3 An Example: Gram-Schmidt Orthogonalization

Let us start by considering the various Gram-Schmidt based QR factorization algorithms from “Notes on
Gram-Schmidt QR Factorization”, typeset using the FLAME Notation in Figure

3.1 The Spark Webpage

We wish to typeset the code so that it closely resembles the algorithms in Figure [2l The FLAME notation
itself uses “white space” to better convey the algorithms. We want to do the same for the codes that
implement the algorithms. However, typesetting that code is somewhat bothersome because of the careful
spacing that is required. For this reason, we created a webpage that creates a “code skeleton.”. We call this
page the “Spark” page:

http://www.cs.utexas.edu/users/flame/Spark/.
When you open the link, you will get a page that looks something like the picture in Figure

3.2 Implementing CGS with FLAMEQ@Ilab


http://www.mathworks.com
http://www.octave.org
http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/
http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/
http://www.cs.utexas.edu/users/flame/Spark/
http://www.cs.utexas.edu/users/flame/Spark/

[y*. 7] = Proj-orthog_to_Qces (@, ) [y*, 7] = Projorthog_to_Qucs(Q. y)
(used by classical Gram-Schmidt) (used by modified Gram-Schmidt)
yt =y yt =y
fori=0,...,k—1 fori=0,...,k—1

pi=afly pi=aqlly*

yt =yt - i yt=yt - i
endfor endfor

Figure 1: Two different ways of computing y+ = (I —QQ™ )y, the component of y orthogonal to C(Q), where
Q@ has k orthonormal columns.

(overwrites A with Q)

Rrp )

Algorithm: [A, R] := Gram-Schmidt(A)

Rrr

Partition A—>< A | Ar ) R —

Rpr
where Aj has 0 columns and Ry, is 0 X 0

while n(Ap) # n(A) do
Repartition

Rey | Rrn Roo | 701 | Ro2
(el an ) (o |20 (SR = (Do T
) 0 0 Roo

where a1 and ¢ are columns, p11 is a scalar

CGS MGS MGS (alternative)

ro1 = Aé{al

la1,701] = Proj-orthog_to_Qp;as (Ao, a1)
P11 = llai|l2
q1 = a1/p11

a1 := a1 — Aoro1
p11 = [la1|l2
ay :=ai/p11

p11 = [lai|2
a1 :==ai/p11
7”%; = a{IAg
Ag := Ag — alr?2

Continue with

Rer | Rrn Roo | mo1 | Ro2
() e (aofon lae ) (S ) o [ o [ |
0 0 Roo

endwhile

Figure 2: Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algorithm. Right:
Modified Gram-Schmidt algorithm where every time a new column of @, ¢; is computed the component of
all future columns in the direction of this new vector are subtracted out.

We will focus on the Classical Gram-Schmidt algorithm on the left, which we show by itself in Fig-
ure [4| (left). To its right, we show how the menu on the left side of the Spark webpage needs to be filled

out.
Some comments:

Name: Choose a name that describes the algorithm/operation being implemented.

Type of function: Later you will learn about “blocked” algorithms. For now, we implement “unblocked”

algorithms.

Variant number: Notice that there are a number of algorithmic variants for implementing the Gram-



O 2]+ O www.cs.utexas.edu

Bla

Generate Code and/or Update Form

learn about this section

Name of the function to be generated:

Function Name

Type of fanction:
Variant number:

learn about this section

Number of operands:

Pick properties of the operands
Operand Tag Type Direction

4

I edX TVGuide 383CY Analytics - YouTube canon home plans Tikz Tikz animations iPython Dashboard TV Guide Calendar Facebook > [T

Reset Form

Spark

introduction to Spark
FLAME code-skeleton generator

The menu to your left will help you generate code for algorithms that
resulted from the FLAME approach to deriving linear algebra
algorithms.

The first section allows you to

1. Indicate the name of the function to be generated.
Ofcourse it is useful to pick a name that is related to the
operation. For example, consider the operation
B:=L'B
which is often referred to as a Triangular Solve with Multiple
Right-hand sides (Trsm). Here B is an m x n matrix and L is

introduction to Spark

Input/Output

1 (A %) (marix #) (TL>8R ¢

) (input/output_ %) lower triangular. We would suggest a name like

learn about this section

Pick an output language: [ FLAME@lab

learn about this section
Additional Information

Name of Anthor_ Name of author

Trsm_1llnn
where the 11nn indicates that the matrix L is
introduction to Spark
on the left of matrix B,
lower triangular,

not transposed, and has a
nonunit diagonal.

°
$ o
°
introduction to Spark °
The above makes more sense to those who are familiar with the
level-3 Basic Linear Algebra Subprograms (BLAS).

A SHhathon tha olassithe o subloakad hloalad amsmasimaing

Figure 3: The Spark webpage.

Algorithm: [A, R] := Gram-Schmidt(A)

(overwrites A with Q)

Partition A—>( Ap | Ar ) ,

Name of the function to be generated: ccs

unblocked %

Type of function:

Variant number:

i learn about this section introduction to Spark

R R
R TL TR
0 Rpr
where A has 0 columns and Ry, is
0x0
while n(Ar) #n(A) do
Repartition
(ALIAR)_><AOI(11‘A2)7
Roo | ro1 | Roz
Rrp | Rrr =
0 | & g N Rt e
bR 0 | 0o | Ra

 Number of operands:

N
v

where a1 and ¢ are columns, p11 is a scala‘

ro1 1= Aglal
a1 := a1 — Agro1
p11 = [la1|l2
a1 :=a1/p11

Continue with
Ap | Ar ) (Ao far | 42 ),

i Pick properties of the operands

1

! Operand Tag Type Direction Input/Output
115 (A %) (matrix 3] (>R %] (linput/output %]
74 [ R 3] [ matrix 3] [ TL->BR 3] [ input/output ¢]

learn about this section introduction to Spark

Roo | 7o1 | Roz \ | Pick an output language: [ FLAME@Iab :
Rep | Ron o tput language: [ FLAME@Ia )
I D loutln |
BR 0 0 Roo
endwhile

Figure 4: Left: Classical Gram-Schmidt algorithm. Right: Generated code-skeleton for CGS.

Schmidt algorithm. We choose to call the first one “Variant 1”.

Number of operands: This routine requires two operands: one each for matrices A and R. (A will be



function [ A out, R out ] = CGS_unb_varl( A, R ) i
Generate Code and/or Update Form Reset Form - - - - [
[ AL, AR ] = FLA Part_1x2( A, ...
learn about this section introduction to Spark 0, 'FLA_LEFT' );
. X . [ RTL, RTR, ...
Name of the function to be generated: RBL, RER | = FLA Part 2x2( R, ...
CGs 0, 0, 'FLA TL' );
; Type of function: [_unblocked ¢ while ( size( AL, 2 ) < size( A, 2 ) )
.' s . - [ AO, al, A2 )= FLA Repart_1x2_to_1x3( AL, AR, ...
; Variant number: (1 ¢] 1, 'FLA RIGHT' );
1
i
ROO rol RO2
learn about this section introduction to Spark ( rlOt':, rhoil , rth':, .
| R20, r21, R22 ] = FLA Repart_2x2_to_3x3( RTL, RTR, ...
, Number of operands: (2_3) RBL, RBR, ...
1 1, 1, 'FLA_BR' );
1 Pick properties of the operands s s
| Operand Tag Type Direction  Input/Output
113 [A #] [ matrix ¢] [ L->R ¢] [ input/output 3] : update line 1 :
o8 [ R #] [ matrix ¢] [ TL->BR ¢] [ input/output :] % update line n %
'
| % 3
{ learn about this section introduction to Spark
i [ AL, AR ] = FLA Cont with 1x3_to_lx2( A0, al, A2, ... |
: Pick an output language: (FLAME@Iab : FLA_LEFT" ); !
| [ RTL, RTR, ...
) . ) . RBL, RBR ] = FLA Cont with 3x3 to 2x2( R00, r0l1, R02, ...
! - _9XJ_to_
learn about this section introduction to Spark ri0t, rholl, rl2t, ...
. R20, r21, R22, ...
iAddltlonal Information 'FLA_TL' );
|
Name of Author [Name of author end 1

Figure 5: The Spark webpage filled out for CGS Variant 1.

overwritten by the matrix @.)

Operand 1: We indicate that A is a matrix through which we “march” from left to right (L->R) and it is
both input and output.

Operand 2: We indicate that R is a matrix through which we “march” from to-left to bottom-right
(TL->BR) and it is both input and output. Our API requires you to pass in the array in which to put
an output, so an appropriately sized R must be passed in.

Pick and output language: A number of different representations are supported, including APIs for
M-script (FLAME@lab), C (FLAMEC), BTEX(FLaTeX), and Python (FlamePy). Pick FLAMEQlab.

To the left of the menu, you now find what we call a code skeleton for the implementation, as shown in
Figure[5} In Figure [6] we show the algorithm and generated code skeleton side-by-side.

3.3 Editing the code skeleton

At this point, one should copy the code skeleton into one’s favorite text editor. (We highly recommend
emacs for the serious programmer.) Once this is done, there are two things left to do:

Fix the code skeleton: The Spark webpage “guesses” the code skeleton. One detail that it sometimes
gets wrong is the “stopping criteria”. In this case, the algorithm should stay in the loop as long as
n(Ar) # n(A) (the width of Ay, is not yet the width of A). In our example, the Spark webpage guessed
that the column size of matrix A is to be used for the stopping criteria:

while ( size( AL, 2 ) < size( A, 2 ) )



Algorithm: [A, R] := Gram-Schmidt(A) (overy| function [ A out, R out ] = CGS_unb_varl( A, R )
Partition A—>< Ag I Ag ) , [ AL, AR ] = FLA Part_1x2( A, ...
0, 'FLA_LEFT' );
Ry | Rrr
R — [ RTL, RTR, ...
0 Rpr RBL, RBR ] = FLA Part 2x2( R, ...
where A; has 0 columns and Ry, is 0, 0, 'FLA_TL' );
0x0 . . .
while n(AL) #n(A) do while ( size( AL, 2 ) < size( A, 2 ) )
Repartition [ R0, al, A2 ]= FLA Repart_lx2_to_1x3( AL, AR, ...
(ALIAR>4><AOIG1‘A2>: 1, 'FLA_RIGHT' );
R ro1 | Ro2 [ ROO, r0l1, RO2,
Rrr | Rrr el ° o rl0t, rholl, rl2t, ...
— 0 P11 T?Q R20, r2l, R22 ] = FLA Repart_2x2_to_3x3( RTL, RTR, ...
0 Rpr 0 o I r RBL, RBR, ...
| 122 1, 1, 'FLA BR' );
where a; and ¢ are columns, p11 is a scala
% %
ro1 i= Aélal % update line 1 $
— _ % H %
a1 = a‘1‘ ”AOTOI % update line n %
P11 = ||a1][2
% %
a1 :=a1/p11
[ AL, AR ] = FLA Cont_with_1x3_to_1x2( A0, al, A2, ...
Continue with FLA_LEFT" );
(ALIAR><—(A0‘G1|A2)7 [ RTL, RTR, ...
RBL, RBR ] = FLA Cont_with 3x3 to 2x2( R00, rO01, RO2,
R, 7 R, - - =T
00 01 02 rl0t, rholl, rl2t, ...
Rrr | Rrr T
— 0 P11 Tio R20, r21, R22, ...
0 RBr 'FLA_TL' );
0 0 Roo -
endwhile end

Figure 6: Left: Classical Gram-Schmidt algorithm. Right: Generated code-skeleton for CGS.

which happens to be correct. (When you implement the Householder QR factorization, you may not
be so lucky...)

The “update” statements: The Spark webpage can’t guess what the actual updates to the various parts
of matrices A and R should be. It fills in

% update line 1 %
b : h
% update line n A

Thus, one has to manually translate

. AH
To1 = AO aq r0l1 = A0’ * al;

a1 = a1 — Aproz . . . al = al - A0 * r01;
into appropriate M-script code:
p11 = |la1l]2 rholl = norm( al );

a1 = a1 /p11 al = al / rholi;

(Notice: if one forgets the “;”, when executed the results of the assignment will be printed by Mat-
lab/Octave.)

At this point, one saves the resulting code in the file CGS_unb_varl.m. The “.m” ending is important
since the name of the file is used to find the routine when using Matlab/Octave.



3.4 Testing

To now test the routine, one starts octave and, for example, executes the commands

rand( 5, 4 )
= zeros( 4, 4)
[ Q, R] = CGS_unb_var1( A, R )
A -Q * triu( R )

vV V V V
o =

The result should be (approximately) a 5 x 4 zero matrix.
(The first time you execute the above, you may get a bunch of warnings from Octave. Just ignore those.)

4 Implementing the Other Algorithms

Next, we leave it to the reader to implement

e Modified Gram Schmidt algorithm, (MGS_unb_varl, corresponding to the right-most algorithm in
Figure , respectively.

e The Householder QR factorization algorithm and algorithm to form @ from “Notes on Householder
QR Factorization”.

The routine for computing a Householder transformation (similar to Figure|[l) can be found at
http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/Housev.m

That routine implements the algorithm on the left in Figure [1)). Try and see what happens if you
replace it with the algorithm to its right.

Note: For the Householder QR factorization and “form @” algorithm how to start the algorithm when the
matrix is not square is a bit tricky. Thus, you may assume that the matrix is square.


http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/Housev.m
http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/Housev.m

	Motivation
	Install FLAME@lab
	An Example: Gram-Schmidt Orthogonalization
	The Spark Webpage
	Implementing CGS with FLAME@lab
	Editing the code skeleton
	Testing

	Implementing the Other Algorithms

