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1 Motivation

In the course so far, we have frequently used the “FLAME Notation” to express linear algebra algorithms.
In this note we show how to translate such algorithms into code, using various QR factorization algorithms
as examples.

2 Install FLAME@lab

The API we will use we refer to as the “FLAME@Qlab” API, which is an API that targets the M-script
language used by Matlab and Octave (an Open Source Matlab implementation). This API is very intuitive,
and hence we will spend (almost) no time explaining it.

Download all files from http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/ and place them
in the same directory as you will the remaining files that you will create as part of the exercises in this
document. (Unless you know how to set up paths in Matlab/Octave, in which case you can put it whereever
you please, and set the path.)

3 An Example: Gram-Schmidt Orthogonalization

Let us start by considering the various Gram-Schmidt based QR factorization algorithms from “Notes on
Gram-Schmidt QR Factorization”, typeset using the FLAME Notation in Figure

3.1 The Spark Webpage

We wish to typeset the code so that it closely resembles the algorithms in Figure [2l The FLAME notation
itself uses “white space” to better convey the algorithms. We want to do the same for the codes that
implement the algorithms. However, typesetting that code is somewhat bothersome because of the careful
spacing that is required. For this reason, we created a webpage that creates a “code skeleton.”. We call this
page the “Spark” page:

http://www.cs.utexas.edu/users/flame/Spark/.
When you open the link, you will get a page that looks something like the picture in Figure

3.2 Implementing CGS with FLAMEQ@Ilab
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Figure 1: Two different ways of computing y+ = (I —QQ™ )y, the component of y orthogonal to C(Q), where
Q@ has k orthonormal columns.
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Figure 2: Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algorithm. Right:
Modified Gram-Schmidt algorithm where every time a new column of @, ¢; is computed the component of
all future columns in the direction of this new vector are subtracted out.

We will focus on the Classical Gram-Schmidt algorithm on the left, which we show by itself in Fig-
ure [4| (left). To its right, we show how the menu on the left side of the Spark webpage needs to be filled

out.
Some comments:

Name: Choose a name that describes the algorithm/operation being implemented.

Type of function: Later you will learn about “blocked” algorithms. For now, we implement “unblocked”

algorithms.

Variant number: Notice that there are a number of algorithmic variants for implementing the Gram-
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Figure 3: The Spark webpage.
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Figure 4: Left: Classical Gram-Schmidt algorithm. Right: Generated code-skeleton for CGS.

Schmidt algorithm. We choose to call the first one “Variant 1”.

Number of operands: This routine requires two operands: one each for matrices A and R. (A will be
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Figure 5: The Spark webpage filled out for CGS Variant 1.

overwritten by the matrix @.)

Operand 1: We indicate that A is a matrix through which we “march” from left to right (L->R) and it is
both input and output.

Operand 2: We indicate that R is a matrix through which we “march” from to-left to bottom-right
(TL->BR) and it is both input and output. Our API requires you to pass in the array in which to put
an output, so an appropriately sized R must be passed in.

Pick and output language: A number of different representations are supported, including APIs for
M-script (FLAME@lab), C (FLAMEC), BTEX(FLaTeX), and Python (FlamePy). Pick FLAMEQlab.

To the left of the menu, you now find what we call a code skeleton for the implementation, as shown in
Figure[5} In Figure [6] we show the algorithm and generated code skeleton side-by-side.

3.3 Editing the code skeleton

At this point, one should copy the code skeleton into one’s favorite text editor. (We highly recommend
emacs for the serious programmer.) Once this is done, there are two things left to do:

Fix the code skeleton: The Spark webpage “guesses” the code skeleton. One detail that it sometimes
gets wrong is the “stopping criteria”. In this case, the algorithm should stay in the loop as long as
n(Ar) # n(A) (the width of Ay, is not yet the width of A). In our example, the Spark webpage guessed
that the column size of matrix A is to be used for the stopping criteria:

while ( size( AL, 2 ) < size( A, 2 ) )
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Figure 6: Left: Classical Gram-Schmidt algorithm. Right: Generated code-skeleton for CGS.

which happens to be correct. (When you implement the Householder QR factorization, you may not
be so lucky...)

The “update” statements: The Spark webpage can’t guess what the actual updates to the various parts
of matrices A and R should be. It fills in

% update line 1 %
b : h
% update line n A

Thus, one has to manually translate

. AH
To1 = AO aq r0l1 = A0’ * al;

a1 = a1 — Aproz . . . al = al - A0 * r01;
into appropriate M-script code:
p11 = |la1l]2 rholl = norm( al );

a1 = a1 /p11 al = al / rholi;

(Notice: if one forgets the “;”, when executed the results of the assignment will be printed by Mat-
lab/Octave.)

At this point, one saves the resulting code in the file CGS_unb_varl.m. The “.m” ending is important
since the name of the file is used to find the routine when using Matlab/Octave.



3.4 Testing

To now test the routine, one starts octave and, for example, executes the commands

rand( 5, 4 )
= zeros( 4, 4)
[ Q, R] = CGS_unb_var1( A, R )
A -Q * triu( R )

vV V V V
o =

The result should be (approximately) a 5 x 4 zero matrix.
(The first time you execute the above, you may get a bunch of warnings from Octave. Just ignore those.)

4 Implementing the Other Algorithms

Next, we leave it to the reader to implement

e Modified Gram Schmidt algorithm, (MGS_unb_varl, corresponding to the right-most algorithm in
Figure , respectively.

e The Householder QR factorization algorithm and algorithm to form @ from “Notes on Householder
QR Factorization”.

The routine for computing a Householder transformation (similar to Figure|[l) can be found at
http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/Housev.m

That routine implements the algorithm on the left in Figure [1)). Try and see what happens if you
replace it with the algorithm to its right.

Note: For the Householder QR factorization and “form @” algorithm how to start the algorithm when the
matrix is not square is a bit tricky. Thus, you may assume that the matrix is square.


http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/Housev.m
http://www.cs.utexas.edu/users/flame/Notes/FLAMEatlab/Housev.m
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