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1 Motivation

For a motivation of the linear least-squares problem, read Week 10 (Sections 10.3-10.5) of Linear Algebra:
Foundations to Frontiers - Notes to LAFF With.

2 The Linear Least-Squares Problem

Let A ∈ Cm×n and y ∈ Cm. Then the linear least-square problem (LLS) is given by

Find x s.t. ‖Ax− y‖2 = min
z∈Cn

‖Az − y‖2.

In other words, x is the vector that minimizes the expression ‖Ax− y‖2. Equivalently, we can solve

Find x s.t. ‖Ax− y‖22 = min
z∈Cn

‖Az − y‖22.

If x solves the linear least-squares problem, then Ax is the vector in C(A) (the column space of A) closest
to the vector y.

3 Method of Normal Equations

Let A ∈ Rm×n have linearly independent columns (which implies m ≥ n). Let f : Rn → Rm be defined by

f(x) = ‖Ax− y‖22 = (Ax− y)T (Ax− y) = xTATAx− xTAT y − yTAx+ yT y

= xTATAx− 2xTAT y + yT y.

This function is minimized when the gradient is zero, 5f(x) = 0. Now,

5f(x) = 2ATAx− 2AT y.

If A has linearly independent columns then ATA is nonsingular. Hence, the x that minimizes ‖Ax − y‖2
solves ATAx = AT y. This is known as the method of normal equations. Notice that then

x = (ATA)−1AT︸ ︷︷ ︸
A†

y,

where A† is known as the pseudo inverse or Moore-Penrose pseudo inverse.
In practice, one performs the following steps:
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• Form B = ATA, a symmetric positive-definite (SPD) matrix.
Cost: approximately mn2 floating point operations (flops), if one takes advantage of symmetry.

• Compute the Cholesky factor L, a lower triangular matrix, so that B = LLT .
This factorization, discussed in Week 8 (Section 8.4.2) of Linear Algebra: Foundations to Frontiers -
Notes to LAFF With and to be revisited later in this course, exists since B is SPD.
Cost: approximately 1

3n
3 flops.

• Compute ŷ = AT y.
Cost: 2mn flops.

• Solve Lz = ŷ and LTx = z.
Cost: n2 flops each.

Thus, the total cost of solving the LLS problem via normal equations is approximately mn2 + 1
3n

3 flops.

Remark 1. We will later discuss that if A is not well-conditioned (its columns are nearly linearly dependent),
the Method of Normal Equations is numerically unstable because ATA is ill-conditioned.

The above discussion can be generalized to the case where A ∈ Cm×n. In that case, x must solve AHAx =
AHy.

A geometric explanation of the method of normal equations (for the case where A is real valued) can be
found in Week 10 (Sections 10.3-10.5) of Linear Algebra: Foundations to Frontiers - Notes to LAFF With.

4 Solving the LLS Problem Via the QR Factorization

Assume A ∈ Cm×n has linearly independent columns and let A = QLRTL be its QR factorization. We wish
to compute the solution to the LLS problem: Find x ∈ Cn such that

‖Ax− y‖22 = min
z∈Cn

‖Az − y‖22.

4.1 Simple derivation of the solution

Notice that we know that, if A has linearly independent columns, the solution is given by x = (AHA)−1AHy
(the solution to the normal equations). Now,

x = [AHA]−1AHy Solution to the Normal Equations

=
[
(QLRTL)H(QLRTL)

]−1
(QLRTL)Hy A = QLRTL

=
[
RH

TLQ
H
LQLRTL

]−1
RH

TLQ
H
L y (BC)H = (CHBH)

=
[
RH

TLRTL

]−1
RH

TLQ
H
L y QH

LQL = I

= R−1TLR
−H
TL R

H
TLQ

H
L y (BC)−1 = C−1B−1

= R−1TLQ
H
L y R−HTL R

H
TL = I

Thus, the x that solves RTLx = QH
L y solves the LLS problem.
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4.2 Alternative derivation of the solution

We know that then there exists a matrix QR such that Q =
(
QL QR

)
is unitary. Now,

minz∈Cn ‖Az − y‖22
= minz∈Cn ‖QLRTLz − y‖22 (substitute A = QLRTL)

= minz∈Cn ‖QH(QLRTLz − y)‖22 (two-norm is preserved since QH is unitary)

= minz∈Cn

∥∥∥∥∥
(
QH

L

QH
R

)
QLRTLz −

(
QH

L

QH
R

)
y

∥∥∥∥∥
2

2

(partitioning, distributing)

= minz∈Cn

∥∥∥∥∥
(
RTLz

0

)
−

(
QH

L y

QH
R y

)∥∥∥∥∥
2

2

(partitioned matrix-matrix multiplication)

= minz∈Cn

∥∥∥∥∥
(
RTLz −QH

L y

−QH
R y

)∥∥∥∥∥
2

2

(partitioned matrix addition)

= minz∈Cn

(∥∥RTLz −QH
L y
∥∥2
2

+ ‖QH
R y‖22

)
(property of the 2-norm:∥∥∥∥∥
(
x

y

)∥∥∥∥∥
2

2

= ‖x‖22 + ‖y‖22)

=
(

minz∈Cn

∥∥RTLz −QH
L y
∥∥2
2

)
+ ‖QH

R y‖22 (QH
R y is independent of z)

= ‖QH
R y‖22 (minimized by x that satisfies RTLx = QH

L y)

Thus, the desired x that minimizes the linear least-squares problem solves RTLx = QH
L y. The solution is

unique because RTL is nonsingular (because A has linearly independent columns).
In practice, one performs the following steps:

• Compute the QR factorization A = QLRTL.
If Gram-Schmidt or Modified Gram-Schmidt are used, this costs 2mn2 flops.

• Form ŷ = QH
L y.

Cost: 2mn flops.

• Solve RTLx = ŷ (triangular solve).
Cost: n2 flops.

Thus, the total cost of solving the LLS problem via (Modified) Gram-Schmidt QR factorization is approxi-
mately 2mn2 flops.

Notice that the solution computed by the Method of Normal Equations (generalized to the complex case)
is given by

(AHA)−1AHy = ((QLRTL)H(QLRTL))−1(QLRTL)Hy = (RH
TLQ

H
LQLRTL)−1RH

TLQ
H
L y

= (RH
TLRTL)−1RH

TLQ
H
L y = R−1TLR

−H
TL R

H
TLQ

H
L y = R−1TLQ

H
L y = R−1TLŷ = x

where RTLx = ŷ. This shows that the two approaches compute the same solution, generalizes the Method of
Normal Equations to complex valued problems, and shows that the Method of Normal Equations computes
the desired result without requiring multivariate calculus.
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5 Via Householder QR Factorization

Given A ∈ Cm×n with linearly independent columns, the Householder QR factorization yields n Householder
transformations, H0, . . . ,Hn−1, so that

Hn−1 · · ·H0︸ ︷︷ ︸
Q =

(
QL QR

)HA =

(
RTL

0

)
.

We wish to solve RTLx = QH
L y︸ ︷︷ ︸
ŷ

. But

ŷ = QH
L y =

[(
I 0

)( QH
L

QH
R

)]
y =

(
I 0

)(
QL QR

)H
y =

(
I 0

)
QHy

=
(
I 0

)
(Hn−1 · · ·H0)y. =

(
I 0

)
( Hn−1 · · ·H0y︸ ︷︷ ︸
w =

(
wT

wB

) ) = wT .

This suggests the following approach:

• Compute H0, . . . ,Hn−1 so that Hn−1 · · ·H0A =

(
RTL

0

)
, storing the Householder vectors that define

H0, . . . ,Hn−1 over the elements in A that they zero out (see “Notes on Householder QR Factorization”).
Cost: 2mn2 − 2

3n
3 flops.

• Form w = (Hn−1(· · · (H0y) · · ·)) (see “Notes on Householder QR Factorization”). Partition w =(
wT

wB

)
where wT ∈ Cn. Then ŷ = wT .

Cost: 4m2 − 2n2 flops. (See “Notes on Householder QR Factorization” regarding this.)

• Solve RTLx = ŷ.
Cost: n2 flops.

Thus, the total cost of solving the LLS problem via Householder QR factorization is approximately 2mn2 −
2
3n

3 flops. This is cheaper than using (Modified) Gram-Schmidt QR factorization, and hence preferred
(because it is also numerically more stable, as we will discuss later in the course).

6 Via the Singular Value Decomposition

Given A ∈ Cm×n with linearly independent columns, let A = UΣV H be its SVD decomposition. Partition

U =
(
UL UR

)
and Σ =

(
ΣTL

0

)
,

where UL ∈ Cm×n and ΣTL ∈ Rn×n so that

A =
(
UL UR

)( ΣTL

0

)
V H = ULΣTLV

H .
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We wish to compute the solution to the LLS problem: Find x ∈ Cn such that

‖Ax− y‖22 = min
z∈Cn

‖Az − y‖22.

6.1 Simple derivation of the solution

Notice that we know that, if A has linearly independent columns, the solution is given by x = (AHA)−1AHy
(the solution to the normal equations). Now,

x = [AHA]−1AHy Solution to the Normal Equations

=
[
(ULΣTLV

H)H(ULΣTLV
H)
]−1

(ULΣTLV
H)Hy A = ULΣTLV

H

=
[
(V ΣTLU

H
L )(ULΣTLV

H)
]−1

(V ΣTLU
H
L )y (BCD)H = (DHCHBH) and ΣH

TL = ΣTL

=
[
V ΣTLΣTLV

H
]−1

V ΣTLU
H
L y UH

L UL = I

= V Σ−1TLΣ−1TLV
HV ΣTLU

H
L y V −1 = V H and (BCD)−1 = D−1C−1B−1

= V Σ−1TLU
H
L y V HV = I and Σ−1TLΣTL = I

6.2 Alternative derivation of the solution

We now discuss a derivation of the result that does not depend on the Normal Equations, in preparation for
the more general case discussed in the next section.

minz∈Cn ‖Az − y‖22
= minz∈Cn ‖UΣV Hz − y‖22 (substitute A = UΣV H)

= minz∈Cn ‖U(ΣV Hz − UHy)‖22 (substitute UUH = I and factor out U)

= minz∈Cn ‖ΣV Hz − UHy‖22 (multiplication by a unitary matrix

preserves two-norm)

= minz∈Cn

∥∥∥∥∥
(

ΣTL

0

)
V Hz −

(
UH
L y

UH
R y

)∥∥∥∥∥
2

2

(partition, partitioned matrix-matrix multiplication)

= minz∈Cn

∥∥∥∥∥
(

ΣTLV
Hz − UH

L y

−UH
R y

)∥∥∥∥∥
2

2

(partitioned matrix-matrix multiplication and addition)

= minz∈Cn

∥∥ΣTLV
Hz − UH

L y
∥∥2
2

+
∥∥UH

R y
∥∥2
2

∥∥∥∥∥
(

vT

vB

)∥∥∥∥∥
2

2

= ‖vT ‖22 + ‖vB‖22


The x that solves ΣTLV

Hx = UH
L y minimizes the expression. That x is given by x = V Σ−1TLU

H
L y.

This suggests the following approach:

• Compute the reduced SVD: A = ULΣTLV
H .

Cost: Greater than computing the QR factorization! We will discuss this in a future note.

• Form ŷ = Σ−1TLU
H
L y.

Cost: approx. 2mn flops.

• Compute z = V ŷ.
Cost: approx. 2mn flops.
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7 What If A Does Not Have Linearly Independent Columns?

In the above discussions we assume that A has linearly independent columns. Things get a bit trickier if A
does not have linearly independent columns. There is a variant of the QR factorization known as the QR
factorization with column pivoting that can be used to find the solution. We instead focus on using the
SVD.

Given A ∈ Cm×n with rank(A) = r < n, let A = UΣV H be its SVD decomposition. Partition

U =
(
UL UR

)
, V =

(
VL VR

)
and Σ =

(
ΣTL 0

0 0

)
,

where UL ∈ Cm×r, VL ∈ Cn×r and ΣTL ∈ Rr×r so that

A =
(
UL UR

)( ΣTL 0

0 0

)(
VL VR

)H
= ULΣTLV

H
L .

Now,

minz∈Cn ‖Az − y‖22
= minz∈Cn ‖UΣV Hz − y‖22 (substitute A = UΣV H)

= minz∈Cn ‖UΣV Hz − UUHy‖22 (UUH = I)

= min{
w ∈ Cn

z = V w

} ‖UΣV HV w − UUHy‖22 (choosing the max over w ∈ Cn with z = V w

is the same as choosing the max over z ∈ Cn.)

= min{
w ∈ Cn

z = V w

} ‖U(Σw − UHy)‖22 (factor out U and V HV = I)

= min{
w ∈ Cn

z = V w

} ‖Σw − UHy‖22 (‖Uv‖2 = ‖v‖2)

= min{
w ∈ Cn

z = V w

} ‖
(

ΣTL 0

0 0

)(
wT

wB

)
−

(
UH
L

UH
R

)
y‖22 (partition Σ, w, and U)

= min{
w ∈ Cn

z = V w

}
∥∥∥∥∥
(

ΣTLwT − UH
L y

−UH
R y

)∥∥∥∥∥
2

2

(partitioned matrix-matrix multiplication)

= min{
w ∈ Cn

z = V w

} ∥∥ΣTLwT − UH
L y
∥∥2
2

+
∥∥UH

R y
∥∥2
2

∥∥∥∥∥
(

vT

vB

)∥∥∥∥∥
2

2

= ‖vT ‖22 + ‖vB‖22


Since ΣTL is a diagonal with no zeroes on its diagonal, we know that Σ−1TL exists. Choosing wT = Σ−1TLU

H
L y

means that
min{

w ∈ Cn

z = V w

}∥∥ΣTLwT − UH
L y
∥∥2
2

= 0,

which obviously minimizes the entire expression. We conclude that

x = V w =
(
VL VR

)( Σ−1TLU
H
L y

wB

)
= VLΣ−1TLU

H
L y + VRwB

characterizes all solutions to the linear least-squares problem, where wB can be chosen to be any vector of
size n − r. By choosing wB = 0 and hence x = VLΣ−1TLU

H
L y we choose the vector x that itself has minimal

2-norm.
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The sequence of pictures on the following pages reasons through the insights that we gained so far
(in “Notes on the Singular Value Decomposition” and this note). These pictures can be downloaded as a
PowerPoint presentation from

http://www.cs.utexas.edu/users/flame/Notes/Spaces.pptx
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Row	
  space	
  

Null	
  space	
  

Column	
  	
  
space	
  

Le1	
  null	
  	
  
space	
  

A
C(VL )

C(VR )

C(UL )

C(UR )

Ax = ŷ

x = xr + xn

ŷ

0	
   0	
  

dim = r

dim = n− r

dim = r

dim =m− r

If A ∈ Cm×n and

A =
(
UL UR

)( ΣTL 0

0 0

)(
VL VR

)H
= ULΣTLV

H
L

equals the SVD, where UL ∈ Cm×r, VL ∈ Cn×r, and ΣTL ∈ Cr×r, then

• The row space of A equals C(VL), the column space of VL;

• The null space of A equals C(VR), the column space of VR;

• The column space of A equals C(UL); and

• The left null space of A equals C(UR).

Also, given a vector x ∈ Cn, the matrix A maps x to ŷ = Ax, which must be in C(A) = C(UL).
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Row	
  space	
  

Null	
  space	
  

Column	
  	
  
space	
  

Le1	
  null	
  	
  
space	
  

A
C(VL )

C(VR )

C(UL )

C(UR )

Ax = y??
y

x0	
   0	
  

dim = r

dim = n− r

dim = r

dim =m− r

Given an arbitrary y ∈ Cm not in C(A) = C(UL), there cannot exist a vector x ∈ Cn such that
Ax = y.
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Row	
  space	
  

Null	
  space	
  

Column	
  	
  
space	
  

Le1	
  null	
  	
  
space	
  

A
C(VL )

C(VR )

C(UL )

C(UR )

y

ŷ =ULUL
H y

Ax = ŷ

x = xr + xn= xr + xn0	
   0	
  

xr =VL
Σ

TL

−1U
L

H y
Axr =ULΣTLVL

H xr = ŷ

xn =VRwB

Axn = 0

dim = r

dim = n− r

dim = r

dim =m− r

The solution to the Linear Least-Squares problem, x, equals any vector that is mapped by A to the
projection of y onto the column space of A: ŷ = A(AHA)−1AHy = QQHy. This solution can be
written as the sum of a (unique) vector in the row space of A and any vector in the null space of A.
The vector in the row space of A is given by

xr = VLΣ−1TLU
H
L y == VLΣ−1TLU

H
L ŷ.

The sequence of pictures, and their explanations, suggest a much simply path towards the formula for
solving the LLS problem.

• We know that we are looking for the solution x to the equation

Ax = ULU
H
L y.

• We know that there must be a solution xr in the row space of A. It suffices to find wT such that
xr = VLwT .

• Hence we search for wT that satisfies

AVLwT = ULU
H
L y.

• Since there is a one-to-one mapping by A from the row space of A to the column space of A, we know
that wT is unique. Thus, if we find a solution to the above, we have found the solution.
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• Multiplying both sides of the equation by UH
L yields

UH
L AVLwT = UH

L y.

• Since A = ULΣ−1TLV
H
L , we can rewrite the above equation as

ΣTLwT = UH
L y

so that wT = Σ−1TLU
H
L y.

• Hence
xr = VLΣ−1TLU

H
L y.

• Adding any vector in the null space of A to xr also yields a solution. Hence all solutions to the LLS
problem can be characterized by

x = VLΣ−1TLU
H
L y + VRwR.

Here is yet another important way of looking at the problem:

• We start by considering the LLS problem: Find x ∈ Cn such that

‖Ax− y‖22 = max
z∈Cn

‖Az − y‖22.

• We changed this into the problem of finding wL that satisfied

ΣTLwL = vT

where x = VLwL and ŷ = ULU
H
L y = ULvT .

• Thus, by expressing x in the right basis (the columns of VL) and the projection of y in
the right basis (the columns of UL), the problem became trivial, since the matrix that
related the solution to the right-hand side became diagonal.

8 Exercise: Using the the LQ factorization to solve underdeter-
mined systems

We next discuss another special case of the LLS problem: Let A ∈ Cm×n where m < n and A has linearly
independent rows. A series of exercises will lead you to a practical algorithm for solving the problem of
describing all solutions to the LLS problem

‖Ax− y‖2 = min
z
‖Az − y‖2.

You may want to review “Notes on the QR Factorization” as you do this exercise.

Exercise 2. Let A ∈ Cm×n with m < n have linearly independent rows. Show that there exist a lower triangular
matrix LL ∈ Cm×m and a matrix QT ∈ Cm×n with orthonormal rows such that A = LLQT , noting that LL

does not have any zeroes on the diagonal. Letting L =
(
LL 0

)
be Cm×n and unitary Q =

(
QT

QB

)
,

reason that A = LQ.

Don’t overthink the problem: use results you have seen before.
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Algorithm: [L,Q] := LQ CGS unb(A,L,Q)

Partition A→

(
AT

AB

)
, L→

(
LTL LTR

LBL LBR

)
, Q→

(
QT

QB

)
where AT has 0 rows, LTL is 0× 0, QT has 0 rows

while m(AT ) < m(A) do

Repartition(
AT

AB

)
→

 A0

aT1
A2

 ,

(
LTL LTR

LBL LBR

)
→

 L00 l01 L02

lT10 λ11 lT12
L20 l21 L22

,

(
QT

QB

)
→

 Q0

qT1
Q2


where a1 has 1 row, λ11 is 1× 1, q1 has 1 row

Continue with(
AT

AB

)
←

 A0

aT1

A2

 ,

(
LTL LTR

LBL LBR

)
←

 L00 l01 L02

lT10 λ11 lT12

L20 l21 L22

,

(
QT

QB

)
←

 Q0

qT1

Q2


endwhile

Figure 1: Algorithm skeleton for CGS-like LQ factorization.

Exercise 3. Let A ∈ Cm×n with m < n have linearly independent rows. Consider

‖Ax− y‖2 = min
z
‖Az − y‖2.

Use the fact that A = LLQT , where LL ∈ Cm×m is lower triangular and QT has orthonormal rows, to argue
that any vector of the form QH

T L
−1
L y + QH

BwB (where wB is any vector in Cn−m) is a solution to the LLS

problem. Here Q =

(
QT

QB

)
.

Exercise 4. Continuing Exercise 2, use Figure 1 to give a Classical Gram-Schmidt inspired algorithm for com-
puting LL and QT . (The best way to check you got the algorithm right is to implement it!)

Exercise 5. (Optional) Continuing Exercise 2, use Figure 2 to give a Householder QR factorization inspired
algorithm for computing L and Q, leaving L in the lower triangular part of A and Q stored as Householder
vectors above the diagonal of A. (The best way to check you got the algorithm right is to implement it!)
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Algorithm: [A, t] := HLQ unb(A, t)

Partition A→

(
ATL ATR

ABL ABR

)
, t→

(
tT

tB

)
where ATL is 0× 0, tT has 0 rows

while m(ATL) < m(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
tT

tB

)
→

 t0

τ1

t2


where α11 is 1× 1, τ1 has 1 row

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22

,

(
tT

tB

)
←

 t0

τ1

t2


endwhile

Figure 2: Algorithm skeleton for Householder QR factorization inspired LQ factorization.
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