Notes on Vector and Matrix Operations

Robert A. van de Geijn
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712

rvdg@cs.utexas.edu

September 2, 2014

1 (Hermitian) Transposition

In the following, assume that o € C, x € C", and A € C™*™ with

Xo0 @0,0 0,1 ce Qo,n—1
X1 Q1.0 1.1 s a1 n—1
T =] and A=
Xn—1 Am—1,0 Qm—-1,1 °° OAm_1n-1

1.1 Conjugating a complex scalar

Recall that if & = «, + iae, then its (complex) conjugate is given by
a = oy — 100
and its length (absolute value) by

la] = |a, +ia| = Va2 + a2 = (o, + ia.)(ar —ia.) = aa = aa = |al.

1.2 Conjugate of a vector

The (complex) conjugate of x is given by

1.3 Conjugate of a matrix

The (complex) conjugate of A is given by

Q.0
_ a0
A =
amfl,O
1.4 Transpose of a vector
The transpose of x is given by
X0
X1
2T =
Xn—1

Qo,1 Qon—1
1,1 Q1,p—-1
a777,71,1 amfl,nfl
T
(o] | e)-

Notice that transposing a (column) vector rearranges its elements to make a row vector.

1.5 Hermitian transpose of a vector

The Hermitian transpose of x is given by

T
Xo Xo
X1 X1
o!(=a) = (@) = -
Xn—1 Yn—l
1.6 Transpose of a matrix
The transpose of A is given by
T
&0,0 Q0,1 e Qo,n—1
AT 1.0 aq1 ce a1 n—1 _
Um—1,0 OUm—-11 - Qm-_1n-1

T
:(XO‘Xl‘ "‘Xn,—1)
Q0,0 1,0 Am—1,0
Qg1 g1 Qm—1,1

1.7 Hermitian transpose (adjoint) of a matrix

The Hermitian transpose of A is given by

QQ,0 Qp,1

T 1,0 a1

Af(= a0 = A" = |)

QAm—1,0 Qm—1,1

Qp,n—1

A1n—1

A —1,n—1

T

Qon—1 Aln-—-1

Qm—1,n—

1

Qm—1,0

am—l,l

am—l,n—l

1.8 Exercises

Exercise 1. Partition A

Convince yourself that the following hold:

ag
T al
‘(ao‘m"“‘anq): .
T
Am—1
T
ag
ST
aq
* . :<a0‘a1""‘an—1)'
=T
Am—1
ay’
H alt
'(ao‘m"“‘an—l) = .
H
Am—1
H
dg
=T
a
1 = = =
[] i :(ao‘al""‘an_l).
~T
Am—1

Exercise 2. Partition x into subvectors:

Zo
&
xr =
TN-1
Convince yourself that the following hold:
xg
z1
e I =
TN-1
.xT:(xg‘xﬂ...‘J;]Tv_l)
o ot = (afl [l | |2l)
Exercise 3. Partition A
Ap,o Ao1 -+ Agn-1
Ao A e A1 v
A=))) ;
Avi—10 Am-11 - Am—1nN-1

X, M—-1 N—-1
. miXn — R
where A; j € C™ ™. Here) . " m; =m and) j—o Mi =n.

Convince yourself that the following hold:

T
T T T
Ap,o Ao - Agn—r Ado Ao A
T T T
Aip Ay o AN Ao Al o Ay
. p—
T T T
Av-10 Av-11 - Am-in— Aon-1 Ain-1 0 Au—ina
H H H H
Ao,o Aoy 0 Agn—t Ao Aty o AN
H H H
Aip Ay o AN Aga Aty o AN
. pr—
H H H
AM—LO AM—Ll AM—l,N—l Ao,N—l Al,N—l AM—l,N—l

2 Vector-vector Operations

2.1 Scaling a vector (scal)

Let x € C™ and « € C, with

Xn—1
Then ax equals the vector x “stretched” by a factor a:

ar =«

AXn—1

If y := axr with

then the following loop computes y:
for::=0,...,n—1

i = ax
endfor
Exercise 4. Convince yourself of the following:
T _
e ax’ = (axo ‘ ax1 ‘ ‘ aXn—_1)
o (ax)? = azT
o (ax)? =axt
i) QT
I axy
o =
TN-1 QTN -1
2.2 Scaled vector addition (axpy)
Let z,y € C™ and a € C, with
Xo Yo
X1 U1
T = and y= .
Xn—1 ¢n71

Then az + y equals the vector

X0 %o axo ahg
X1 (1 ax1 ar)
ar+y =« . + . = . + .
Xn—1 Ql)n,1 aXn—1 le)nfl

This operation is known as the axpy operation: scalar times z plus y. Typically, the vector y is overwritten
with the result:

X0 o axo a)g
X1 (5 axi ay
Yy =ar+y=u« . + . . + .
Xn—1 ’(/}nfl aXn—1 Oé’(/Jn,1

so that the following loop updates y:
for::=0,...,n—1

i = axi + ¢
endfor
Exercise 5. Convince yourself of the following:
o Yo axg + Yo
z1 Y1 az + Y
o«) +) =) . (Provided x;,y; € C™ and Zf\;}l n;=mn.)
TN-1 YN-1 ary_1+YN-1
2.3 Dot (inner) product (dot)
Let z,y € C™ with
X0 Yo
X1 (2
T = and y=)
Xn—1 wn—l
Then the dot product of x and y is defined by
H
X0 Yo Yo
" X1 (! o (G
ry = . . :(Xo X1 Xn—l) :
Xn—1 wn—l wn—l
n—1
= %1?0 +K¢1 + -+ X7L—1¢n—1 = ZE%
i=0

The following loop computes o := 7 y:

a:=0

fori:=0,...,n—1
a =X+ «
endfor

Exercise 6. Convince yourself of the following:

H

Lo Yo
1 Y1 _ _
o - , = Zf;ol xfly;. (Provided z;,y; € C" and Zfiol n; =mn.)
TN-1 YN-1

Exercise 7. Prove that 2y = yHx.

As we discuss matrix-vector multiplication and matrix-matrix multiplication, the closely related operation
2Ty is also useful:

T
X0 o Yo
T X1 Py Y1
ry = . . Z(Xo X1 Xn—l)
Xn—1 wn—l 1%—1
n—1
= Xoto +X1¥1 o+ Xn1¥no1 = Y Xathi-
i=0

3 Matrix-vector Operations

3.1 Matrix-vector multiplication

Be sure to understand the relation between linear transformations and matrix-vector multiplication (LAFF

Notes Week 2)).
Let ye C™, A e C™*" and x € C" with

o Q0,0 Q.1 s Qo,n—1 X0
U1 Q1,0 a1.1 ce A1,n—1 X1
y= , A= , and z=
Wm—1 Um—1,0 OQm-1,1 °° Qm_1n-1 Xn—1

Then y = Az means that

o Q0,0 Q.1 ce @o,n—1 Xo
U1 1,0 1.1 s a1,n—1 X1
V-1 Um—1,0 OQm-1,1 °*° Qm_-1n-1 Xn—1

http://www.ulaff.net
http://www.ulaff.net

Q0,0 Q.1 ce @o,n—1 X0

1,0 1.1 A1n—1 X1

Am—-1,0 Om—-1,1 “°° OQm—_1n-1 Xn—1

Now, partition

ai
A: (aO ‘ al ‘ DEEEEY ‘ an—l) = .

Focusing on how A can be partitioned by columns, we find that

Xo
X1
yzsz(ao‘a1‘~~~‘an_1) .
Xn—1
= aoXotaix1+ -+ an-1Xn-1
Xoao + x1a1 + -+ Xn—1an-1
= Xn-1@n-1+ (- + (x1a1 + (x0a0 +0)) - -),

where 0 denotes the zero vector of size m. This suggests the following loop for computing y := Axz:

y:=0
for j:=0,...,n—1

Y= Xja; +y (axpy)
endfor

In Figure |1 (left), we present this algorithm using the FLAME notation (LAFF Notes Week 3).
Focusing on how A can be partitioned by rows, we find that

~T ~T

Yo ap ag *
(1 af aix
T ~T
wnfl A —1 A —1 T

This suggests the following loop for computing y := Ax:

fori:=0,...,m—1
0, ::EiiT:B—l—wi (“‘dot??)
endfor

Here we use the term “dot” because for complex valued matrices it is not really a dot product. In Figure
(right), we present this algorithm using the FLAME notation (LAFF Notes Week 3).

It is important to notice that this first “matrix-vector” operation (matrix-vector multiplication) can be
“layered” upon vector-vector operations (axpy or ¢ ‘dot’?).

http://www.ulaff.net
http://www.ulaff.net

Algorithm: [y] := MVMULT_UNB_VARI1(A4, z,y)

Algorithm: [y] := MVMULT_UNB_VAR2(A, z,y)

B

Partition A—)(ALIAR) ,x—><xT>

where Ap is 0 columns,
z7 has 0 elements
while n(AL) < n(A) do
Repartition
(ALlAR)ﬁ(Aolth‘Az)’

Zo
T

(> - xa
TB

T2

yi=xi101 +y

Continue with
(Ac]an)e(40]a]a),

Zo
T

(> < X1
B

T2

endwhile

A
Partition A — Lz LY — I
Ap YB

where Ar has 0 rows, yr has 0
rows

while m(Ar) <m(A) do
Repartition
A
A 0 yr Yo
A - a’{ ? - ’(/}1
b Az e Y2
Y1 =afz+ P

Continue with
A Y
Ar }) yr .
1 — | a1 =< | ¥
B A, YB

endwhile

Figure 1: Matrix-vector multiplication algorithms for y := Az + y. Left: via axpy operations (by columns).

Right: via “dot products” (by rows).

3.2 Rank-1 update
Let y e C™, A e C™*", and x € C™ with

o Q0,0 Qp,1
U1 Q1,0 11
y= . , A=
Ym—1 Am—-1,0 OUm—1,1

The outerproduct of y and x is given by

T
o Xo
1 X1
T
yxr = . . =
wmfl Xn—1
YoXo Yox1
P1Xo0 Y1xa

Ym-1X0 Ym-1X1

Q0,n—1 X0
a1.n—1 X1
, and z=

Amp—1,n—1 Xn—1

Yo
¢:1 (XO X1 Xn—l)

¢m71

2/)0anl
lenfl

w’lnf 1Xn-1

Also,

yxT:y(Xo X1 ot Xeot)= (X0y X1y o Xn-1Y)
This shows that all columns are a multiple of vector y. Finally,
Yo PoxT
P I O B
Ym—1 Ymrx"

which shows that all columns are a multiple of row vector 27. This motivates the observation that the
matrix yz” has rank at most equal to one (LAFF Notes Week 10).
The operation A := yxT + A is called a rank-1 update to matrix A:

ap,0 ag1 ot Q-1
Q1,0 1,1 ce a1 n—1
Um—-1,0 Um—-1,1 ~°° Qm_1n-1
YoXo + a0 YoX1 + o1 - YoXn—-1 + Q0,n—1
YiXxo + a1,0 Pix1 +ag e V1Xn—1+ 01n—1
Vm—1X0 + ¥m=-1,0 Ym—1X1+ ¥m-1,1 " Ym—1Xn-1+ CUn-1n-1
Now, partition
~T
ap
ar
A p— (ao ‘ a/l ‘ PR ‘ an71 > p— .
=T
am—l

Focusing on how A can be partitioned by columns, we find that
ya' +A = (XoY ‘ X1y ‘ ‘ Xn—1Y)"‘(ao ‘ a1 ‘ ‘ Op—1)
= (Xoy + ao ‘ X1y + a1 ‘ ‘ Xn—1Y + Qn-1)
Notice t;lat each column is updated with an axpy operation. This suggests the following loop for computing
A=yx' + A

for j:=0,...,n—1
aj = XY +a; (axpy)
endfor
In Figure |2| (left), we present this algorithm using the FLAME notation (LAFF Notes Week 3).
Focusing on how A can be partitioned by rows, we find that

’(/J()Q?T ag

T wll'T a?
yr' +A = : + :

wquT az;,l

http://www.ulaff.net
http://www.ulaff.net

Algorithm: [A] := RANK1_UNB_VAR1(y,z, A)

Algorithm: [A] := RANK1_UNB_VAR2(y,z, A)

s Y A
Partition z — [— , A— (Aj | Ap) Partition y — L , A— d
Tp yB Ap
where z7 has 0 rows, A7 has 0 where ypr has 0 rows, Ap has 0
columns . TOWS
while m(zr) <m(z) do while m(yr) < m(y) do
Repartition Repartition
To Yo Ao
xT yr Ar —
=1 x1 |> y_ = ¥ | " =1 a
x B B
:) Y2 Ag
(ALlAR)_)(Aolafl‘A2>
a1 = yx1 + a1 al :== 12T +af
Continue with Continue with
y) Yo Ag
xT yr Ar T
<~ xu) — |~ | , — | a
Tp YB E— Ap
) Y2 Az
(4] an)« (0] ar]|4)

endwhile endwhile

Figure 2: Rank-1 update algorithms for computing A := yz” + A. Left: by columns. Right: by rows.

’(/)()(,UT + ag
wll‘T + a{

T . 3T
wM71x + Ay 1

Notice that each row is updated with an axpy operation. This suggests the following loop for computing
A= yaT + A:

fori:=0,...,m—1
a) =’ +a; (axpy)
endfor

In Figure |2| (right), we present this algorithm using the FLAME notation (LAFF Notes Week 3).
Again, it is important to notice that this “matrix-vector” operation (rank-1 update) can be “layered”
upon the axpy vector-vector operation.

4 Matrix-matrix multiplication

Be sure to understand the relation between linear transformations and matrix-matrix multiplication (LAFF

Notes Weeks 3 and 4).
We will now discuss the computation of C' := AB + C, where C € C™*", A € C™** and B € C**". (If
one wishes to compute C := AB, one can always start by setting C' := 0, the zero matrix.)

11

http://www.ulaff.net
http://www.ulaff.net
http://www.ulaff.net

4.1 Element-by-element computation

Let
70,0 Y0,1 cee Yo,n—1 Q0 Qo1 te 0, k—1
71,0 1,1 T Y,n—1 Q1,0 1,1 ce a1 k—1
C= . A= .
Ym—-1,0 Ym-1,1 *°° TYm—-1,n—1 Am—-1,0 Um—-1,1 *°° Qmpm_1k-1
Bo,o Boai 0 Bon-1
B1,0 Bi1 o Pra-1
B = . .)
Br-1,0 Br-11 - Br—1,n—1
Then
C:=AB+C
k—1 k—1 k-1
> =0 ©0,pBp,0 + 70,0 > =0 Q0,pBp,1 + V0,1 e > =0 Q0,pBp,n—1 + V0,01
k—1 k—1 k—1
> =0 @1,pPp0 T 710 > p—0 W1pPp1 T 711 o Xm0 @pBpn—1 F Mim—1
k-1 k-1 k-1
Zp:() am—l,pﬂp,o + Ym-1,0 Zp:() O‘m—l,pﬂp,l +Ym-11 Zp:() am—l,pﬂp,n—l + Ym—-1,n—1

This can be more elegantly stated by partitioning

ag
=T
ay
A= , and B:(bo\bl\-.-\bn_l).
Q1
Then
T
0
ap
C = AB+C=|—— (bo\b1 -)
Ay
al'bo + 0.0 atby + 01 e atbp—1+ Yon—1
af'by + 71,0 alby +v11 - atby_1 + Y101
al _1bo+ Ym—10 GL_1b1 +Ym—11 0 @b _1bp—1 + Vm—1,n-1

4.2 Via matrix-vector multiplications

Partition
C’z(co‘cl‘---‘cn_l) and Bz(bo‘bl ‘u-‘bn_l)
Then
CimAB+C = A(by | b |+ [bus)+ (eo | e [[ens)= (Aboteo [Abter || Abus+en)

which shows that each column of C is updated with a matrix-vector multiplication: c; := Ab; + ¢;:

12

for j:=0,...,n—1
c; = Abj +¢; (matrix-vector multiplication)
endfor

4.3 Via row-vector times matrix multiplications

Partition
~T ~T
€o <
o ai
C=) and A=
T ~T
Cmfl a’mfl
Then
aT ar alB el
at ElT alTB + ElT
C:=AB+C= B+ =
~T ~T ~T ~T
amfl Cm71 a’mle + Cmfl

which shows that each row of C is updated with a row-vector time matrix multiplication: ¢} :=a! B + ¢ :

fori:=0,...,m—1
c; =a; b+c (row-vector times matrix-vector multiplication)
endfor

4.4 Via rank-1 updates

Partition

Az(ao‘a1‘~-‘ak_1) and B =

The

C:=AB+C

(ao‘al"“‘akq)

bT
k-1
= agbg +arbl +---+ap b, +C
= ar—1bf_y + (- (ard] + (aghf +C))--)
which shows that C' can be updated with a sequence of rank-1 update, suggesting the loop

forp:=0,...,k—1
C:= apgg +C (rank-1 update)
endfor

13

5 Summarizing All

The following actually summarizes ALL observations in this document:

Let
Co.,0 Con -+ Con-1 Ao Aoqx - Aok
Cio Cin -+ Cina Ao Ain - Ak
C= . .) A= } . .
Cv-10 Cym-11 -+ Cum-—1,n-1 Apv—10 Av-n - Am-1,k-1
By 1 Box -+ Bon-1
By Big -+ Bin-a
B= . .)
Bg_10 Br-11 -+ Brx_in-1
Then
C.=AB+C
Yaco’ AopBpo + Co0 Yoo AopBp,1 + Con e Yo AopBp,n—1+ Con-1
Saco A1,pBpo+Cipo Yoo A1,pBp1+Cin Yaco ALpBpn—1+CiN_1
K-1 4 .B C k-l g B C k-l 4 B . c
p=0 AM-1,pBp,0+ Crr—10 Zp:o M—-1,pBp1+Cp—-11 - p=0 AM-1pBp N1 +Cn-1,N1

(Provided the partitionings of C, A, and B are “conformal.)

14

	(Hermitian) Transposition
	Conjugating a complex scalar
	Conjugate of a vector
	Conjugate of a matrix
	Transpose of a vector
	Hermitian transpose of a vector
	Transpose of a matrix
	Hermitian transpose (adjoint) of a matrix
	Exercises

	Vector-vector Operations
	Scaling a vector (scal)
	Scaled vector addition (axpy)
	Dot (inner) product (dot)

	Matrix-vector Operations
	Matrix-vector multiplication
	Rank-1 update

	Matrix-matrix multiplication
	Element-by-element computation
	Via matrix-vector multiplications
	Via row-vector times matrix multiplications
	Via rank-1 updates

	Summarizing All

