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1 Background

This notes assumes that the reader understands the following
concepts:

e Linear combination of vectors.
e Linearly independent columns.

e Matrix-vector multiplication forms a linear combination of
the columns of the matrix: Let A € R™*" and x € R".

Partition
X0
X1
A—><a0‘a1‘---‘an_1) and z = -
Xn—1
then
Ax = xoap + x101 + -+ Xn—1Gn_1- Figure 1: Original picture that will be ap-

proximated by a rank-k update.
e Az =y only if y is in the column space of A (y € C(A4)).

e If A has linearly independent columns and y is not in C(A)
(and even if it is), the vector  that comes closest to solving
Ax ~ y is given by x = (ATA)"1ATy. Here (AT A)~1AT
is known as the pseudo-inverse. In this case the vector
z = Ax = A(ATA)~1 ATy is the projection of y onto the
column space of A, C(A).

2 Application
Let Y € R™*™ be a matrix that, for example, stores a picture. In this case, entry 1;; is, for example, a

number that represents the gray level of pixel (4, 7). The following instructions, executed in octave, generate
the picture in Figure 1.



Approximation AX when k = 30 Approximation Uy, Xt LVLT when k = 30

Figure 2: Multiple pictures generated by the rank-k approximations.
octave> lenna % this loads the matrix Y with the picture in file lenna
octave> image( Y ) % this dispays the image

Now, pick out k& columns of Y, and make them the columns of matrix A.

octave> k = 20; % pick out 20 columns
octave> n = size( Y, 2 ); % n equals the number of columns in Y
octave> A = Y( :, 1:floor(n/k):n );

If n = 400, the above will set the first column of A to the first column of Y, the second column of A to
column 21 of Y, etc. With a bit of luck, A has linearly independent columns. Let’s assume that it does.

Now, columns in the picture vary slowly from one column to the next. So, it might be that some arbitrary
column of Y, y;, is actually a linear combination of the columns you chose. In other words, there is a x;
such that Az; = y;. Well, that is probably a bit optimistic. So it is more likely that Az; ~ y;. In that case
the best choice for z; is given by z; = (AT A)~1ATy;, the linear least-squares solution. If x; is chosen in
that way, then Az; = A(AT A)~1ATy; is the projection of y; onto the column space of A, which means that
it is the best linear combination of the columns of A.



What does this mean? If we partition X and Y by columns,

X=(a|am | |oms ) and ¥=(golw| v )

then for each column of Y, y;, we can approximate that column (vertical line in the picture) by Az; =~ y;
where x; = (AT A)~LATy,.

Equivalently,
(Axo\Am\--ﬂAxnfl)%(yo\yﬂ---\ynq)
or
A(%‘xl""‘ﬁﬁn—l)%(yo‘yl"“‘yn—l),
where
X:<$o‘$1""‘$n_1> _ ((ATA)—lATyO‘(ATA)—lATyl‘...‘(ATA)—lATyn_l)
= (ATA)flAT(yo\yﬂ---\ynq)
= (ATA)"1ATY.

Notice: A € R™** and X is R¥*™:
o AT A ¢ RFXF,
o (ATA)"1 € R,
o (ATA)"1AT e R,
What we conclude is that Y ~ AX where X = (ATA)~1ATY:

octave> X = (A *x A ) \ (A’ xY ); % X =1inv( A2 * A ) *x A’ x Y
octave> image( A * X ) % this dispays the approximation of the image

3 Observations

Let A € R™** and X € R¥*". Then B = AX has rank at most k.
e The rank of B equals the number of linearly independent columns.
e The rank of B also equals the dimension of its column space.
e The dimension of a space equals the number of vectors in its basis.
e The subset of columns of B that are linearly independent for a basis for the column space of B.
e Thus, there are at most k vectors in that basis and the rank of matrix B is at most k.

For this reason, AX, as computed in the previous section, is said to be a rank-k approximation of matrix
Y. (In that section, we assumed A had linearly independent columns and those columns clearly become
columns in AX. Hence, the rank is exactly k unless the rank of X is less than k. )

Typically, as one increases k, the approximation gets better. Try this!



4 The Singular Value Decomposition (SVD)

Definition 1. Let U € R™*k. Then U is said to be orthonormal if each of its columns has length (2-norm)
one, and its columns are mutually orthogonal.

In other words,
0ifi #£j

o U= ( o ‘ U1 ‘ ‘ U1 ) then u/u; :{ 1 otherwise

e Another, very concise, way of saying this is UTU = I.

Theorem 2. (Singular Value Decomposition Theorem) Given Y € R™*™  there exists orthogonal matrices
UcR™" VeR™, and X € R™" such that Y = ULV, where U and V have orthonormal columns and

go

01

Or—1

and o9 > 01 > -+ > 0p—1 > 0.
This is probably the single most important result in linear algebra. We won’t prove it.
Now, assume that Y = UXV7 is the SVD of matrix Y. Partition, conformally,

v=(v|vr ), v=(Ve|Va), and E<E(§L zzR>’

where Uy, and V7, have k columns and X7, is k X k. so that

(oelvn) () (vl )’

XBR

Y1 0 VT
(v 1on) .
0 YBR Vi

S VE

( UL | Ur ) LT

YerVgi

= ULZTLVLT + UREBRVg.

Now, if 09 > --- > 0p_1 > 0}, > ---0,_1, then

Y = UpSr VL + UpSprVE =~ USr VY.

Notice: Previously, Y ~ AX, where A € R™**¥ and X € R¥*". Now, Y ~ Ur(SrrV/), where
U € R™*k and (SrLVE) € REX"  While AX was a rank-k approximation to Y, Uy Ve is the best
rank-k approximation to Y.

Try

Y

octave> lenna % this loads the matrix Y with the picture in file lenna
octave> image( Y ) % this dispays the image

octave> k = 20;

octave> [ U, Sigma, V] = svd( Y );

octave> UL = U( :, 1:k ); % first k columns

octave> VL = V( :, 1:k ); % first k columns

octave> SigmaTL = Sigma( 1:k, 1:k ); % TL submatrix of Sigma

octave> image( UL * SigmaTL * VL’ );

and, hopefully, the result looks better than what we got before!



