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1 Orthogonality and Unitary Matrices

Definition 1. Let u, v ∈ Cm. These vectors are orthogonal (perpendicular) if uHv = 0.

Definition 2. Let q0, q1, . . . , qn−1 ∈ Cm. These vectors are said to be mutually orthonormal if for all 0 ≤ i, j < n

qHi qj =

{
1 if i = j

0 otherwise
.

Notice that for n vectors of length m to be mutually orthonormal, n must be less than or equal to m.
This is because n mutually orthonormal vectors are linearly independent and there can be at most m linearly
independent vectors of length m.

Definition 3. Let Q ∈ Cm×n (with n ≤ m). Then Q is said to be an orthonormal matrix if QHQ = I (the
identity).

Exercise 4. Let Q ∈ Cm×n (with n ≤ m). Partition Q =
(
q0 q1 · · · qn−1

)
. Show that Q is an orthonor-

mal matrix if and only if q0, q1, . . . , qn−1 are mutually orthonormal.

Definition 5. Let Q ∈ Cm×m. Then Q is said to be a unitary matrix if QHQ = I (the identity).

Notice that unitary matrices are always square and only square matrices can be unitary. Sometimes the
term orthogonal matrix is used instead of unitary matrix, especially if the matrix is real valued.

Exercise 6. Let Q ∈ Cm×m. Show that if Q is unitary then Q−1 = QH and QQH = I.

Exercise 7. Let Q0, Q1 ∈ Cm×m both be unitary. Show that their product, Q0Q1, is unitary.

Exercise 8. Let Q0, Q1, . . . , Qk−1 ∈ Cm×m all be unitary. Show that their product, Q0Q1 · · ·Qk−1, is unitary.

The following is a very important observation: Let Q be a unitary matrix with

Q =
(
q0 q1 · · · qm−1

)
.
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Let x ∈ Cm. Then

x = QQHx =
(
q0 q1 · · · qm−1

)(
q0 q1 · · · qm−1

)H
x

=
(
q0 q1 · · · qm−1

)


qH0
qH1
...

qHm−1

x

=
(
q0 q1 · · · qm−1

)


qH0 x

qH1 x
...

qHm−1x


= (qH0 x)q0 + (qH1 x)q1 + · · ·+ (qHm−1x)qm−1.

What does this mean?

• The vector x =


χ0

χ1

...

χm−1

 gives the coefficients when the vector x is written as a linear combination

of the unit basis vectors:
x = χ0e0 + χ1e1 + · · ·+ χm−1em−1.

• The vector

QHx =


qH0 x

qH1 x
...

qHm−1x


gives the coefficients when the vector x is written as a linear combination of the orthonormal vectors
q0, q1, . . . , qm−1:

x = (qH0 x)q0 + (qH1 x)q1 + · · ·+ (qHm−1x)qm−1.

• The vector (qHi x)qi equals the component of x in the direction of vector qi.

Another way of looking at this is that if q0, q1, . . . , qm−1 is an orthonormal basis for Cm, then any x ∈ Cm

can be written as a linear combination of these vectors:

x = α0q0 + α1q1 + · · ·+ αm−1qm−1.

Now,

qHi x = qHi (α0q0 + α1q1 + · · ·+ αi−1qi−1 + αiqi + αi+1qi+1 + · · ·+ αm−1qm−1)

= α0 qHi q0︸ ︷︷ ︸
0

+ α1 qHi q1︸ ︷︷ ︸
0

+ · · ·+ αi−1 qHi qi−1︸ ︷︷ ︸
0

+ αi q
H
i qi︸︷︷︸
1

+ αi+1 qHi qi+1︸ ︷︷ ︸
0

+ · · ·+ αm−1 qHi qm−1︸ ︷︷ ︸
0

= αi.

Thus qHi x = αi, the coefficient that multiplies qi.
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Exercise 9. Let U ∈ Cm×m be unitary and x ∈ Cm, then ‖Ux‖2 = ‖x‖2.

Exercise 10. Let U ∈ Cm×m and V ∈ Cn×n be unitary matrices and A ∈ Cm×n. Then ‖UA‖2 = ‖AV ‖2 = ‖A‖2.

Exercise 11. Let U ∈ Cm×m and V ∈ Cn×n be unitary matrices and A ∈ Cm×n. Then ‖UA‖F = ‖AV ‖F =
‖A‖F .

2 Toward the SVD

Lemma 12. Given A ∈ Cm×n there exists unitary U ∈ Cm×m, unitary V ∈ Cn×n, and diagonal D ∈ Rm×n

such that A = UDV H where D =

(
DTL 0

0 0

)
with DTL = diag(δ0, · · · , δr−1) and δi > 0 for 0 ≤ i < r.

Proof: First, let us observe that if A = 0 (the zero matrix) then the theorem trivially holds: A = UDV H

where U = Im×m, V = In×n, and D =

(
0

)
, so that DTL is 0× 0. Thus, w.l.o.g. assume that A 6= 0.

We will prove this for m ≥ n, leaving the case where m ≤ n as an exercise, employing a proof by induction
on n.

• Base case: n = 1. In this case A =
(
a0

)
where a0 ∈ Rm is its only column. By assumption, a0 6= 0.

Then

A =
(
a0

)
=
(
u0

)
(‖a0‖2)

(
1
)H

where u0 = a0/‖a0‖2. Choose U1 ∈ Cm×(m−1) so that U =
(
u0 U1

)
is unitary. Then

A =
(
a0

)
=
(
u0

)
(‖a0‖2)

(
1
)H

=
(
u0 U1

)( ‖a0‖2
0

)(
1
)H

= UDV H

where DTL =
(
δ0

)
=
(
‖a0‖2

)
and V =

(
1
)

.

• Inductive step: Assume the result is true for all matrices with 1 ≤ k < n columns. Show that it is
true for matrices with n columns.

Let A ∈ Cm×n with n ≥ 2. W.l.o.g., A 6= 0 so that ‖A‖2 6= 0. Let δ0 and v0 ∈ Cn have the
property that ‖v0‖2 = 1 and δ0 = ‖Av0‖2 = ‖A‖2. (In other words, v0 is the vector that maximizes
max‖x‖2=1 ‖Ax‖2.) Let u0 = Av0/δ0. Note that ‖u0‖2 = 1. Choose U1 ∈ Cm×(m−1) and V1 ∈ Cn×(n−1)

so that Ũ =
(
u0 U1

)
and Ṽ =

(
v0 V1

)
are unitary. Then

ŨHAṼ =
(
u0 U1

)H
A
(
v0 V1

)
=

(
uH0 Av0 uH0 AV1

UH
1 Av0 UH

1 AV1

)
=

(
δ0u

H
0 u0 uH0 AV1

δUH
1 u0 UH

1 AV1

)
=

(
δ0 wH

0 B

)
,

where w = V H
1 AHu0 and B = UH

1 AV1. Now, we will argue that w = 0, the zero vector of appropriate
size:

δ20 = ‖A‖22 = ‖UHAV ‖22 = max
x 6=0

‖UHAV x‖22
‖x‖22

= max
x 6=0

∥∥∥∥∥
(
δ0 wH

0 B

)
x

∥∥∥∥∥
2

2

‖x‖22
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≥

∥∥∥∥∥
(
δ0 wH

0 B

)(
δ0

w

)∥∥∥∥∥
2

2∥∥∥∥∥
(
δ0

w

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
(
δ20 + wHw

Bw

)∥∥∥∥∥
2

2∥∥∥∥∥
(
δ0

w

)∥∥∥∥∥
2

2

≥ (δ20 + wHw)2

δ20 + wHw
= δ20 + wHw.

Thus δ20 ≥ δ20 + wHh which means that w = 0 and ŨHAṼ =

(
δ0 0

0 B

)
.

By the induction hypothesis, there exists unitary Ǔ ∈ C(m−1)×(m−1), unitary V̌ ∈ C(n−1)×(n−1), and

Ď ∈ R(m−1)×(n−1) such that B = ǓĎV̌ H where Ď =

(
ĎTL 0

0 0

)
with ĎTL = diag(δ1, · · · , δr−1).

Now, let

U = Ũ

(
1 0

0 Ǔ

)
, V = Ṽ

(
1 0

0 V̌

)
, and D =

(
δ0 0

0 Ď

)
.

(There are some really tough to see ”checks” in the definition of U , V , and D!!) Then A = UDV H

where U , V , and D have the desired properties.

• By the Principle of Mathematical Induction the result holds for all matrices A ∈ Cm×n with
m ≥ n.

�

Exercise 13. Let D = diag(δ0, . . . , δn−1). Show that ‖D‖2 = maxn−1
i=0 |δi|.

Exercise 14. Let A =

(
AT

0

)
. Use the SVD of A to show that ‖A‖2 = ‖AT ‖2.

Exercise 15. Assume that U ∈ Cm×m and V ∈ Cn×n be unitary matrices. Let A,B ∈ Cm×n with B = UAV H .
Show that the singular values of A equal the singular values of B.

Exercise 16. Let A ∈ Cm×n with A =

(
σ0 0

0 B

)
and assume that ‖A‖2 = σ0. Show that ‖B‖2 ≤ ‖A‖2.

(Hint: Use the SVD of B.)

Exercise 17. Prove Lemma 12 for m ≤ n.

You can use the following as an outline for your proof: Proof: First, let us observe that if A = 0 (the zero

matrix) then the theorem trivially holds: A = UDV H where U = Im×m, V = In×n, and D =

(
0

)
, so

that DTL is 0× 0. Thus, w.l.o.g. assume that A 6= 0.
We will employ a proof by induction on m.

• Base case: m = 1. In this case A =
(
âT0

)
where âT0 ∈ R1× n is its only row. By assumption,

âT0 6= 0. Then

A =
(
âT0

)
=
(

1
) (
‖âT0 ‖2

) (
v0

)H
4



where v0 = (âT0 )H/‖âT0 ‖2. Choose V1 ∈ Cn×(n−1) so that V =
(
v0 V1

)
is unitary. Then

A =
(
âT0

)
=
(

1
)(
‖âT0 ‖2) 0

)(
v0 V1

)H
= UDV H

where DTL =
(
δ0

)
=
(
‖âT0 ‖2

)
and U =

(
1
)

.

• Inductive step: Similarly modify the inductive step of the proof of the theorem.

• By the Principle of Mathematical Induction the result holds for all matrices A ∈ Cm×n with
m ≥ n.

�

3 The Theorem

Theorem 18 (Singular Value Decomposition). Given A ∈ Cm×n there exists unitary U ∈ Cm×m, unitary

V ∈ Cn×n, and Σ ∈ Rm×n such that A = UΣV H where Σ =

(
ΣTL 0

0 0

)
with ΣTL = diag(σ0, · · · , σr−1)

and σ0 ≥ σ1 ≥ · · · ≥ σr−1 > 0. The σ0, . . . , σr−1 are known as the singular values of A.

Proof: Notice that the proof of the above theorem is identical to that of Lemma 12. However, thanks to
the above exercises, we can conclude that ‖B‖2 ≤ σ0 in the proof, which then can be used to show that the
singular values are found in order. �
Proof:(Alternative) An alternative proof uses Lemma 12 to conclude that A = UDV H . If the entries on
the diagonal of D are not ordered from largest to smallest, then this can be fixed by permuting the rows and
columns of D, and correspondingly permuting the columns of U and V . �

4 Geometric Interpretation (Again)

We will now quickly illustrate what the SVD Theorem tells us about matrix-vector multiplication (linear
transformations) by examining the case where A ∈ R2×2. Let A = UΣV T be its SVD decomposition. (Notice
that all matrices are now real valued, and hence V H = V T .) Partition

A =
(
u0 u1

)( σ0 0

0 σ1

)(
v0 v1

)T
.

Since U and V are unitary matrices, {u0, u1} and {v0, v1} form orthonormal bases for the range and domain
of A, respectively:
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R2: Domain of A. R2: Range (codomain) of A.

Let us manipulate the decomposition a little:

A =
(
u0 u1

)( σ0 0

0 σ1

)(
v0 v1

)T
=

[(
u0 u1

)( σ0 0

0 σ1

)](
v0 v1

)T
=

(
σ0u0 σ1u1

)(
v0 v1

)T
.

Now let us look at how A transforms v0 and v1:

Av0 =
(
σ0u0 σ1u1

)(
v0 v1

)T
v0 =

(
σ0u0 σ1u1

)( 1

0

)
= σ0u0

and similarly Av1 = σ1u1. This motivates the pictures

R2: Domain of A. R2: Range (codomain) of A.
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Now let us look at how A transforms any vector with (Euclidean) unit length. Notice that x =

(
χ0

χ1

)
means that

x = χ0e0 + χ1e1,

where e0 and e1 are the unit basis vectors. Thus, χ0 and χ1 are the coefficients when x is expressed using
e0 and e1 as basis. However, we can also express x in the basis given by v0 and v1:

x = V V T︸ ︷︷ ︸
I

x =
(
v0 v1

)(
v0 v1

)T
x =

(
v0 v1

)( vT0 x

vT1 x

)

= vT0 x︸︷︷︸
α0

v0 + vT1 x︸︷︷︸
α1

v1 = α0v0 + α0v1 =
(
v0 v1

)( α0

α1

)
.

Thus, in the basis formed by v0 and v1, its coefficients are α0 and α1. Now,

Ax =
(
σ0u0 σ1u1

)(
v0 v1

)T
x =

(
σ0u0 σ1u1

)(
v0 v1

)T (
v0 v1

)( α0

α1

)

=
(
σ0u0 σ1u1

)( α0

α1

)
= α0σ0u0 + α1σ1u1.

This is illustrated by the following picture, which also captures the fact that the unit ball is mapped to an
“ellipse”1with major axis equal to σ0 = ‖A‖2 and minor axis equal to σ1:

R2: Domain of A. R2: Range (codomain) of A.

Finally, we show the same insights for general vector x (not necessarily of unit length).

1It is not clear that it is actually an ellipse and this is not important to our observations.
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R2: Domain of A. R2: Range (codomain) of A.

Another observation is that if one picks the right basis for the domain and codomain, then the com-
putation Ax simplifies to a matrix multiplication with a diagonal matrix. Let us again illustrate this for
nonsingular A ∈ R2×2 with

A =
(
u0 u1

)
︸ ︷︷ ︸

U

(
σ0 0

0 σ1

)
︸ ︷︷ ︸

Σ

(
v0 v1

)
︸ ︷︷ ︸

V

T

.

Now, if we chose to express y using u0 and u1 as the basis and express x using v0 and v1 as the basis, then

ŷ = UUT︸ ︷︷ ︸
I

y = (uT0 y)u0 + (uT1 y)u1 =

(
ψ̂0

ψ̂1

)

x̂ = V V T︸ ︷︷ ︸
I

x = (vT0 x)v0 + (vT1 x)v1 ==

(
χ̂0

χ̂1.

)
.

If y = Ax then

U UT y︸︷︷︸
ŷ

= UΣV Tx︸ ︷︷ ︸
Ax

= UΣx̂

so that ŷ = Σx̂ and (
ψ̂0

ψ̂1.

)
=

(
σ0χ̂0

σ1χ̂1.

)
.

These observation generalize to A ∈ Cm×m.

5 Consequences of the SVD Theorem

Throughout this section we will assume that
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• A = UΣV H is the SVD of A ∈ Cm×n, with U and V unitary and Σ diagonal.

• Σ =

(
ΣTL 0

0 0

)
where ΣTL = diag(σ0, . . . , σr−1) with σ0 ≥ σ1 ≥ . . . ≥ σr−1 > 0.

• U =
(
UL UR

)
with UL ∈ Cm×r.

• V =
(
VL VR

)
with VL ∈ Cn×r.

We first generalize the observations we made for A ∈ R2×2. Let us track what the effect of Ax = UΣV Hx
is on vector x. We assume that m ≥ n.

• Let U =
(
u0 · · · um−1

)
and V =

(
v0 · · · vn−1

)
.

• Let

x = V V Hx =
(
v0 · · · vn−1

)(
v0 · · · vn−1

)H
x =

(
v0 · · · vn−1

)
vH0 x

...

vHn−1x


= vH0 xv0 + · · ·+ vHn−1xvn−1.

This can be interpreted as follows: vector x can be written in terms of the usual basis of Cn as
χ0e0+· · ·+χ1en−1 or in the orthonormal basis formed by the columns of V as vH0 xv0+· · ·+vHn−1xvn−1.

• Notice that Ax = A(vH0 xv0 + · · ·+ vHn−1xvn−1) = vH0 xAv0 + · · ·+ vHn−1xAvn−1 so that we next look at
how A transforms each vi: Avi = UΣV Hvi = UΣei = σiUei = σiui.

• Thus, another way of looking at Ax is

Ax = vH0 xAv0 + · · ·+ vHn−1xAvn−1

= vH0 xσ0u0 + · · ·+ vHn−1xσn−1un−1

= σ0u0v
H
0 x+ · · ·+ σn−1un−1v

H
n−1x

=
(
σ0u0v

H
0 + · · ·+ σn−1un−1v

H
n−1
)
x.

Corollary 19. A = ULΣTLV
H
L . This is called the reduced SVD of A.

Proof:

A = UΣV H =
(
UL UR

)( ΣTL 0

0 0

)(
VL VR

)H
= ULΣTLV

H
L .

�

Corollary 20. Let A = ULΣTLV
H
L be the reduced SVD with UL =

(
u0 · · · ur−1

)
, ΣTL = diag(σ0, . . . , σr−1),

and VL =
(
v0 · · · vr−1

)
. Then A = σ0u0v

H
0 + σ1u1v

H
1 + · · · + σr−1ur−1v

H
r−1 (each term nonzero and

an outer product, and hence a rank-1 matrix).

Proof: We leave the proof as an exercise. �

Corollary 21. C(A) = C(UL).

Proof:
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• Let y ∈ C(A). Then there exists x ∈ Cn such that y = Ax (by the definition of y ∈ C(A)). But then

y = Ax = UL ΣTLV
H
L x︸ ︷︷ ︸

z

= ULz,

i.e., there exists z ∈ Cr such that y = ULz. This means y ∈ C(UL).

• Let y ∈ C(UL). Then there exists z ∈ Cr such that y = ULz. But then

y = ULz = UL ΣTLΣ−1TL︸ ︷︷ ︸
I

z = ULΣTL V H
L VL︸ ︷︷ ︸
I

Σ−1TLz = A VLΣ−1TLz︸ ︷︷ ︸
x

= Ax

so that there exists x ∈ Cn such that y = Ax, i.e., y ∈ C(A).

�

Corollary 22. The rank of A is r.

Proof: The rank of A equals the dimension of C(A) = C(UL). But the dimension of C(UL) is clearly r. �

Corollary 23. N (A) = C(VR).

Proof:

• Let x ∈ N (A). Then

x = V V H︸ ︷︷ ︸
I

x =
(
VL VR

)(
VL VR

)H
x =

(
VL VR

)( V H
L

V H
R

)
x

=
(
VL VR

)( V H
L x

V H
R x

)
= VLV

H
L x+ VRV

H
R x.

If we can show that V H
L x = 0 then x = VRz where z = V H

R x. Assume that V H
L x 6= 0. Then

ΣTL(V H
L x) 6= 0 (since ΣTL is nonsingular) and UL(ΣTL(V H

L x)) 6= 0 (since UL has linearly independent
columns). But that contradicts the fact that Ax = ULΣTLV

H
L x = 0.

• Let x ∈ C(VR). Then x = VRz for some z ∈ Cr and Ax = ULΣTL V H
L VR︸ ︷︷ ︸

0

z = 0.

�

Corollary 24. For all x ∈ Cn there exists z ∈ C(VL) such that Ax = Az.

Proof:

Ax = A V V H︸ ︷︷ ︸
I

x = A
(
VL VR

)(
VL VR

)H
x

= A
(
VLV

H
L x+ VRV

H
R x
)

= AVLV
H
L x+AVRV

H
R x

= AVLV
H
L x+ ULΣTL V H

L VR︸ ︷︷ ︸
0

V H
R x = A VLV

H
L x︸ ︷︷ ︸
z

.
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Cn Cm

N (A) = C(VR)

dim n− r

C(AH) = C(VL)

dim r C(A) = C(UL)

dim r

N (AH) = C(UR)

dim m− r

z

xn

x = z + xn
y = Az

y = Ax = ULΣTLV
H
L x

y

Figure 1: A pictorial description of how x = z + xn is transformed by A ∈ Cm×n into y = Ax = A(z + xn).
We see that C(VL) and C(VR) are orthogonal complements of each other within Cn. Similarly, C(UL) and
C(UR) are orthogonal complements of each other within Cm. Any vector x can be written as the sum of a
vector z ∈ C(VR) and xn ∈ C(VC) = N (A).

Alternative proof (which uses the last corollary):

Ax = A
(
VLV

H
L x+ VRV

H
R x
)

= AVLV
H
L x+A VRV

H
R x︸ ︷︷ ︸

∈ N (A)

= A VLV
H
L x︸ ︷︷ ︸
z

.

�
The proof of the last corollary also shows that

Corollary 25. Any vector x ∈ Cn can be written as x = z + xn where z ∈ C(VL) and xn ∈ N (A) = C(VR).

Corollary 26. AH = VLΣTLU
H
L so that C(AH) = C(VL) and N (AH) = C(UR).

The above corollaries are summarized in Figure 1.

Theorem 27. Let A ∈ Cn×n be nonsingular. Let A = UΣV H be its SVD. Then

1. The SVD is the reduced SVD.

2. σn−1 6= 0.

3. If

U =
(
u0 · · · un−1

)
,Σ = diag(σ0, . . . , σn−1), and V =

(
v0 · · · vn−1

)
,

then

A−1 = (V PT )(PΣ−1PT )(UPT )H =
(
vn−1 · · · v0

)
diag(

1

σn−1
, . . . ,

1

σ0
)
(
un−1 · · · u0

)
,

11



where P =


0 · · · 0 1

0 · · · 1 0
...

...
...

1 · · · 0 0

 is the permutation matrix such that Px reverses the order of the entries

in x. (Note: for this permutation matrix, PT = P . In general, this is not the case. What is the case
for all permutation matrices P is that PTP = PPT = I.)

4. ‖A−1‖2 = 1/σn−1.

Proof: The only item that is less than totally obvious is (3). Clearly A−1 = V Σ−1UH . The problem is that
in Σ−1 the diagonal entries are not ordered from largest to smallest. The permutation fixes this. �

Corollary 28. If A ∈ Cm×n has linearly independent columns then AHA is invertible (nonsingular) and

(AHA)−1 = VL
(
Σ2

TL

)−1
V H
L .

Proof: Since A has linearly independent columns, A = ULΣTLV
H
L is the reduced SVD where UL has n

columns and VL is unitary. Hence

AHA = (ULΣTLV
H
L )HULΣTLV

H
L = VLΣH

TLU
H
L ULΣTLV

H
L = VLΣTLΣTLV

H
L = VLΣ2

TLV
H
L .

Since VL is unitary and ΣTL is diagonal with nonzero diagonal entries, tey are both nonsingular. Thus(
VLΣ2

TLV
H
L

) (
VL
(
Σ2

TL

)−1
V H
L )
)

= I.

This means ATA is invertible and (ATA)−1 is as given. �

6 Projection onto the Column Space

Definition 29. Let UL ∈ Cm×k have orthonormal columns. The projection of a vector y ∈ Cm onto C(UL) is
the vector ULx that minimizes ‖y − ULx‖2, where x ∈ Ck. We will also call this vector y the component of
x in C(UL).

Theorem 30. Let UL ∈ Cm×k have orthonormal columns. The projection of y onto C(UL) is given by ULU
H
L y.

Proof: The vector ULx that we want must satisfy

‖ULx− y‖2 = min
w∈Ck

‖ULw − y‖2.

Now, the 2-norm is invariant under multiplication by the unitary matrix UH =
(
UL UR

)H
‖ULx− y‖22 = min

w∈Ck
‖ULw − y‖22

= min
w∈Ck

∥∥UH(ULw − y)
∥∥2
2

(since the two norm is preserved)

= min
w∈Ck

∥∥∥∥( UL UR

)H
(ULw − y)

∥∥∥∥2
2

= min
w∈Ck

∥∥∥∥∥
(
UH
L

UH
R

)
(ULw − y)

∥∥∥∥∥
2

2
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= min
w∈Ck

∥∥∥∥∥
(
UH
L

UH
R

)
ULw −

(
UH
L

UH
R

)
y

∥∥∥∥∥
2

2

= min
w∈Ck

∥∥∥∥∥
(
UH
L ULw

UH
R ULw

)
−

(
UH
L y

UH
R y

)∥∥∥∥∥
2

2

= min
w∈Ck

∥∥∥∥∥
(
w

0

)
−

(
UH
L y

UH
R y

)∥∥∥∥∥
2

2

= min
w∈Ck

∥∥∥∥∥
(
w − UH

L y

−UH
R y

)∥∥∥∥∥
2

2

= min
w∈Ck

(∥∥w − UH
L y
∥∥2
2

+
∥∥−UH

R y
∥∥2
2

)
(since

∥∥∥∥∥
(
u

v

)∥∥∥∥∥
2

2

= ‖u‖22 + ‖v‖22)

=

(
min
w∈Ck

∥∥w − UH
L y
∥∥2
2

)
+
∥∥UH

R y
∥∥2
2
.

This is minimized when w = UH
L y. Thus, the vector that is closest to y in the space spanned by UL is given

by x = ULU
H
L y. �

Corollary 31. Let A ∈ Cm×n and A = ULΣTLV
H
L be its reduced SVD. Then the projection of y ∈ Cm onto

C(A) is given by ULU
H
L y.

Proof: This follows immediately from the fact that C(A) = C(UL). �

Corollary 32. Let A ∈ Cm×n have linearly independent columns. Then the projection of y ∈ Cm onto C(A) is
given by A(AHA)−1AHy.

Proof: From Corrolary 28, we know that AHA is nonsingular and that (AHA)−1 = VL
(
Σ2

TL

)−1
V H
L . Now,

A(AHA)−1AHy = (ULΣTLV
H
L )(VL

(
Σ2

TL

)−1
V H
L )(ULΣTLV

H
L )Hy

= ULΣTL V H
L VL︸ ︷︷ ︸
I

Σ−1TLΣ−1TL V H
L VL︸ ︷︷ ︸
I

ΣTLU
H
L y = ULU

H
L y.

Hence the projection of y onto C(A) is given by A(AHA)−1AHy. �

Definition 33. Let A have linearly independent columns. Then (AHA)−1AH is called the pseudo-inverse or
Moore-Penrose generalized inverse of matrix A.

7 Low-rank Approximation of a Matrix

Theorem 34. Let A ∈ Cm×n have SVD A = UΣV H and assume A has rank r. Partition

U =
(
UL UR

)
, V =

(
VL VR

)
, and Σ =

(
ΣTL 0

0 ΣBR

)
,

13



where UL ∈ Cm×k, VL ∈ Cn×k, and ΣTL ∈ Rk×k with k ≤ r. Then B = ULΣTLV
H
L is the matrix in Cm×n

closest to A in the following sense:

‖A−B‖2 = min
C ∈ Cm×n

rank(C) ≤ k

‖A− C‖2 = σk.

Proof: First, if B is as defined, then clearly ‖A−B‖2 = σk:

‖A−B‖2 = ‖UH(A−B)V ‖2 = ‖UHAV − UHBV ‖2

=

∥∥∥∥Σ−
(
UL UR

)H
B
(
VL VR

)∥∥∥∥
2

=

∥∥∥∥∥
(

ΣTL 0

0 ΣBR

)
−

(
ΣTL 0

0 0

)∥∥∥∥∥
2

=

∥∥∥∥∥
(

0 0

0 ΣBR

)∥∥∥∥∥
2

= ‖ΣBR‖2 = σk

Next, assume that C has rank t ≤ k and ‖A − C‖2 < ‖A − B‖2. We will show that this leads to a
contradiction.

• The null space of C has dimension at least n− k since dim(N (C)) + rank(C) = n.

• If x ∈ N (C) then
‖Ax‖2 = ‖(A− C)x‖2 ≤ ‖A− C‖2‖x‖2 < σk‖x‖2.

• Partition U =
(
u0 · · · um−1

)
and V =

(
v0 · · · vn−1

)
. Then ‖Avj‖2 = ‖σjuj‖2 = σj ≥ σs

for j = 0, . . . , k. Now, let x be any linear combination of v0, . . . , vk: x = α0v0 + · · ·+αkvk. Notice that

‖x‖22 = ‖α0v0 + · · ·+ αkvk‖22 ≤ |α0|2 + · · · |αk|2.

Then

‖Ax‖22 = ‖A(α0v0 + · · ·+ αkvk)‖22 = ‖α0Av0 + · · ·+ αkAvk‖22
= ‖α0σ0u0 + · · ·+ αkσkuk‖22 = ‖α0σ0u0‖22 + · · ·+ ‖αkσkuk‖22
= |α0|2σ2

0 + · · ·+ |αk|2σ2
k ≥ (|α0|2 + · · ·+ |αk|2)σ2

k

so that ‖Ax‖2 ≥ σk‖x‖2. In other words, vectors in the subspace of all linear combinations of
{v0, . . . , vk} satisfy ‖Ax‖2 ≥ σk‖x‖2. The dimension of this subspace is k + 1 (since {v0, · · · , vk}
form an orthonormal basis).

• Both these subspaces are subspaces of Cn. Since their dimensions add up to more than n there must
be at least one nonzero vector z that satisfies both ‖Az‖2 < σk‖z‖2 and ‖Az‖2 ≥ σk‖z‖2, which is a
contradiction.

�
The above theorem tells us how to pick the best approximation with given rank to a given matrix.

8 An Application

Let Y ∈ Rm×n be a matrix that, for example, stores a picture. In this case, the (i, j) entry in Y is, for
example, a number that represents the grayscale value of pixel (i, j). The following instructions, executed
in octave or matlab, generate the picture of Mexican artist Frida Kahlo in Figure 2(top-left). The file
FridaPNG.png can be found at http://www.cs.utexas.edu/users/flame/Notes/FridaPNG.png.
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Original picture k = 1

k = 2 k = 5

k = 10 k = 25

Figure 2: Multiple pictures as generated by the code
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octave> IMG = imread( ’FridaPNG.png’ ); % this reads the image

octave> Y = IMG( :,:,1 );

octave> imshow( Y ) % this dispays the image

Although the picture is black and white, it was read as if it is a color image, which means a m×n× 3 array
of pixel information is stored. Setting Y = IMG( :,:,1 ) extracts a single matrix of pixel information. (If
you start with a color picture, you will want to approximate IMG( :,:,1), IMG( :,:,2), and IMG( :,:,3)

separately.)
Now, let Y = UΣV T be the SVD of matrix Y . Partition, conformally,

U =
(
UL UR

)
, V =

(
VL VR

)
, and Σ =

(
ΣTL 0

0 ΣBR

)
,

where UL and VL have k columns and ΣTL is k × k. so that

Y =
(
UL UR

)( ΣTL 0

0 ΣBR

)(
VL VR

)T
=

(
UL UR

)( ΣTL 0

0 ΣBR

)(
V T
L

V T
R

)

=
(
UL UR

)( ΣTLV
T
L

ΣBRV
T
R

)
= ULΣTLV

T
L + URΣBRV

T
R .

Recall that then ULΣTLV
T
L is the best rank-k approximation to Y .

Let us approximate the matrix that stores the picture with ULΣTLV
T
L :

>> IMG = imread( ’FridaPNG.png’ ); % read the picture

>> Y = IMG( :,:,1 );

>> imshow( Y ); % this dispays the image

>> k = 1;

>> [ U, Sigma, V ] = svd( Y );

>> UL = U( :, 1:k ); % first k columns

>> VL = V( :, 1:k ); % first k columns

>> SigmaTL = Sigma( 1:k, 1:k ); % TL submatrix of Sigma

>> Yapprox = uint8( UL * SigmaTL * VL’ );

>> imshow( Yapprox );

As one increases k, the approximation gets better, as illustrated in Figure 2. The graph in Figure 3 helps
explain. The original matrix Y is 387× 469, with 181, 503 entries. When k = 10, matrices U , V , and Σ are
387× 10, 469× 10 and 10× 10, respectively, requiring only 8, 660 entries to be stores.

9 SVD and the Condition Number of a Matrix

In “Notes on Norms” we saw that if Ax = b and A(x+ δx) = b+ δb, then

‖δx‖2
‖x‖2

≤ κ2(A)
‖δb‖2
‖b‖2

,

where κ2(A) = ‖A‖2‖A−1‖2 is the condition number of A, using the 2-norm.

Exercise 35. Show that if A ∈ Cm×m is nonsingular, then
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Figure 3: Distribution of singular values for the picture.

• ‖A‖2 = σ0, the largest singular value;

• ‖A−1‖2 = 1/σm−1, the inverse of the smallest singular value; and

• κ2(A) = σ0/σm−1.

If we go back to the example of A ∈ R2×2, recall the following pictures that shows how A transforms the
unit circle:
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R2: Domain of A. R2: Range (codomain) of A.

In this case, the ratio σ0/σn−1 represents the ratio between the major and minor axes of the “ellipse” on
the right.

10 An Algorithm for Computing the SVD?

It would seem that the proof of the existence of the SVD is constructive in the sense that it provides an
algorithm for computing the SVD of a given matrix A ∈ Cm×m. Not so fast! Observe that

• Computing ‖A‖2 is nontrivial.

• Computing the vector that maximizes max‖x‖2=1 ‖Ax‖2 is nontrivial.

• Given a vector q0 computing vectors q0, . . . , qm−1 is expensive (as we will see when we discuss the QR
factorization).

Towards the end of the course we will discuss algorithms for computing the eigenvalues and eigenvectors of
a matrix, and related algorithms for computing the SVD.
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