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1 Motivation

Correctness in the presence of error (e.g., when floating point computations are performed) takes on a
different meaning. For many problems for which computers are used, there is one correct answer and we
expect that answer to be computed by our program. The problem is that most real numbers cannot be
stored exactly in a computer memory. They are stored as approximations, floating point numbers, instead.
Hence storing them and/or computing with them inherently incurs error. The question thus becomes “When
is a program correct in the presense of such errors?”

Let us assume that we wish to evaluate the mapping f : D → R where D ⊂ Rn is the domain and
R ⊂ Rm is the range (codomain). Now, we will let f̂ : D → R denote a computer implementation of this

function. Generally, for x ∈ D it is the case that f(x) 6= f̂(x). Thus, the computed value is not “correct”.

From the Notes on Conditioning, we know that it may not be the case that f̂(x) is “close to” f(x). After

all, even if f̂ is an exact implementation of f , the mere act of storing x may introduce a small error δx and
f(x+ δx) may be far from f(x) if f is ill-conditioned.

The following defines a property that captures correctness in the presense of the kinds of errors that are
introduced by computer arithmetic:

Definition 1 Let given the mapping f : D → R, where D ⊂ Rn is the domain and R ⊂ Rm is the range
(codomain), let f̂ : D → R be a computer implementation of this function. We will call f̂ a (numerically)

stable implementation of f on domain D if for all x ∈ D there exists a x̂ “close” to x such that f̂(x) = f(x̂).

In other words, f̂ is a stable implementation if the error that is introduced is similar to that introduced
when f is evaluated with a slightly changed input. This is illustrated in Figure 1 for a specific input x. If
an implemention is not stable, it is numerically unstable.

2 Floating Point Numbers

Only a finite number of (binary) digits can be used to store a real number number. For so-called single-
precision and double-precision floating point numbers 32 bits and 64 bits are typically employed, respectively.
Let us focus on double precision numbers.
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Figure 1: In this illustation, f : D → R is a function to be evaluated. The function f̌ represents the
implementation of the function that uses floating point arithmetic, thus incurring errors. The fact that for a
nearby value x̌ the computed value equals the exact function applied to the slightly perturbed x, f(x̌) = f̌(x),
means that the error in the computation can be attributed to a small change in the input. If this is true,
then f̌ is said to be a (numerically) stable implementation of f for input x.

Recall that any real number can be written as µ× βe, where β is the base (an integer greater than one),
µ ∈ (−1, 1) is the mantissa, and e is the exponent (an integer). For our discussion, we will define F as the
set of all numbers χ = µβe such that β = 2, µ = ±.δ0δ1 · · · δt−1 has only t (binary) digits (δj ∈ {0, 1}),
δ0 = 0 iff µ = 0 (the mantissa is normalized), and −L ≤ e ≤ U . Elements in F can be stored with a finite
number of (binary) digits.

• There is a largest number (in absolute value) that can be stored. Any number that is larger “overflows”.
Typically, this causes a value that denotes a NaN (Not-a-Number) to be stored.

• There is a smallest number (in absolute value) that can be stored. Any number that is smaller
“underflows”. Typically, this causes a zero to be stored.

Example 2 For x ∈ Rn, consider computing

‖x‖2 =

√√√√n−1∑
i=0

χ2
i . (1)

Notice that
‖x‖2 ≤

√
n
n−1
max
i=0
|χi|
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and hence unless some χi is close to overflowing, the result will not overflow. The problem is that if some
element χi has the property that χ2

i overflows, intermediate results in the computation in (1) will overflow.
The solution is to determine k such that

|χk| = maxn−1
i=0 |χi|

and to then instead compute

‖x‖2 = |χk|

√√√√n−1∑
i=0

(
χi
χk

)2

.

It can be argued that the same approach also avoids underflow if underflow can be avoided..

In our further discussions, we will ignore overflow and underflow issues.
What is important is that any time a real number is stored in our computer, it is stored as the nearest

floating point number (element in F ). We first assume that it is truncated (which makes our explanation
slightly simpler).

Let positive χ be represented by
χ = .δ0δ1 · · · × 2e,

where δ0 = 1 (the mantissa is normalized). If t digits are stored by our floating point system, then χ̂ =
.δ0δ1 · · · δt−1 × 2e is stored. Let δχ = χ− χ̂. Then

δχ = .δ0δ1 · · · δt−1δt · · · × 2e︸ ︷︷ ︸
χ

− .δ0δ1 · · · δt−1 × 2e︸ ︷︷ ︸
χ̂

= .0 · · · 0︸ ︷︷ ︸
t

δt · · · × 2e < .0 · · · 01︸ ︷︷ ︸
t

× 2e = 2e−t.

Also, since χ is positive,
χ = .δ0δ1 · · · × 2e ≥ .1× 2e ≥ 2e−1.

Thus,
δχ

χ
≤ 2e−t

2e−1
= 21−t

which can also be written as
δχ ≤ 21−tχ.

A careful analysis of what happens when χ might equal zero or be negative yields

|δχ| ≤ 21−t|χ|.

Now, in practice any base β can be used and floating point computation uses rounding rather than
truncating. A similar analysis can be used to show that then

|δχ| ≤ u|χ|

where u = 1
2β

1−t is known as the machine epsilon or unit roundoff. When using single precision or
double precision real arithmetic, u ≈ 10−8 or 10−16, respectively. The quantity u is machine dependent; it is
a function of the parameters characterizing the machine arithmetic. The unit roundoff is often alternatively
defined as the maximum positive floating point number which can be added to the number stored as 1
without changing the number stored as 1. In the notation introduced below, [1 + u] = 1.

Exercise 3 Assume a floating point number system with β = 2 and a mantissa with t digits so that a typical
positive number is written as .d0d1 . . . dt−1 × 2e, with di ∈ {0, 1}.
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• Write the number 1 as a floating point number.

Answer: . 10 · · · 0︸ ︷︷ ︸
t

digits

× 21.

End of Answer:

• What is the largest positive real number u (represented as a binary fraction) such that the floating point
representation of 1 + u equals the floating point representation of 1? (Assume rounded arithmetic.)

• Show that u = 1
221−t.

3 Notation

When discussing error analyses, we will distinguish between exact and computed quantities. The function
[expression] returns the result of the evaluation of expression, where every operation is executed in floating
point arithmetic. For example, assuming that the expressions are evaluated from left to right, [χ+ ψ + ζ/ω]
is equivalent to [[[χ] + [ψ]] + [[ζ] / [ω]]]. Equality between the quantities lhs and rhs is denoted by lhs = rhs.
Assignment of rhs to lhs is denoted by lhs := rhs (lhs becomes rhs). In the context of a program, the
statements lhs := rhs and lhs := [rhs] are equivalent. Given an assignment κ := expression, we use the
notation κ̌ (pronounced “check kappa”) to denote the quantity resulting from [expression], which is actually
stored in the variable κ.

4 Floating Point Computation

We introduce definitions and results regarding floating point arithmetic. In this note, we focus on real valued
arithmetic only. Extensions to complex arithmetic are straightforward.

4.1 Model of floating point computation

The Standard Computational Model (SCM) assumes that, for any two floating point numbers χ and
ψ, the basic arithmetic operations satisfy the equality

[χ op ψ] = (χ op ψ)(1 + ε), |ε| ≤ u, and op ∈ {+,−, ∗, /}.

The quantity ε is a function of χ, ψ and op. Sometimes we add a subscript (ε+, ε∗, . . . ) to indicate what
operation generated the (1 + ε) error factor. We always assume that all the input variables to an operation
are floating point numbers. We can interpret the SCM as follows: These operations are performed
exactly and it is only in storing the result that a roundoff error occurs (equal to that introduced
when a real number is stored as a floating point number).

Remark 4 Given χ, ψ ∈ F , performing any operation op ∈ {+,−, ∗, /} with χ and ψ in floating point

arithmetic, [χ op ψ], is a stable operation: Let ζ = χ op ψ and ζ̂ = ζ + δζ = [χ (op) ψ]. Then |δζ| ≤ u|ζ| and

hence ζ̂ is close to ζ (it has k correct binary digits).

For certain problems it is convenient to use the Alternative Computational Model (ACM) [6] which
also assumes for the basic arithmetic operations that

[χ op ψ] =
χ op ψ

1 + ε
, |ε| ≤ u, and op ∈ {+,−, ∗, /}.

As for the standard computation model, the quantity ε is a function of χ, ψ and op. Note that the ε’s
produced using the standard and alternative models are generally not equal.
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Remark 5 Notice that the Taylor series expansion of 1/(1 + ε) is given by

1

1 + ε
= 1 + (−ε) +O(ε2),

which explains how the SCM and ACM are related.

Remark 6 Sometimes it is more convenient to use the SCM and sometimes the ACM. Trial and error, and
eventually experience, will determine which one to use.

4.2 Stability of a numerical algorithm

In the presence of round-off error, an algorithm involving numerical computations cannot be expected to
yield the exact result. Thus, the notion of “correctness” applies only to the execution of algorithms in exact
arithmetic. Here we briefly introduce the notion of “stability” of algorithms.

Let f : D → R be a mapping from the domain D to the range R and let f̌ : D → R represent the
mapping that captures the execution in floating point arithmetic of a given algorithm which computes f .

The algorithm is said to be backward stable if for all x ∈ D there exists a perturbed input x̌ ∈ D,
close to x, such that f̌(x) = f(x̌). In other words, the computed result equals the result obtained when the
exact function is applied to slightly perturbed data. The difference between x̌ and x, δx = x̌ − x, is the
perturbation to the original input x.

The reasoning behind backward stability is as follows. The input to a function typically has some errors
associated with it. Uncertainty may be due to measurement errors when obtaining the input and/or may
be the result of converting real numbers to floating point numbers when storing the input on a computer.
If it can be shown that an implementation is backward stable, then it has been proved that the result could
have been obtained through exact computations performed on slightly corrupted input. Thus, one can think
of the error introduced by the implementation as being comparable to the error introduced when obtaining
the input data in the first place.

When discussing error analyses, δx, the difference between x and x̌, is the backward error and the
difference f̌(x)−f(x) is the forward error. Throughout the remainder of this note we will be concerned with
bounding the backward and/or forward errors introduced by the algorithms executed with floating point
arithmetic.

The algorithm is said to be forward stable on domain D if for all x ∈ D it is that case that f̌(x) ≈ f(x).
In other words, the computed result equals a slight perturbation of the exact result.

4.3 Absolute value of vectors and matrices

In the above discussion of error, the vague notions of “near” and “slightly perturbed” are used. Making
these notions exact usually requires the introduction of measures of size for vectors and matrices, i.e., norms.
Instead, for the operations analyzed in this note, all bounds are given in terms of the absolute values of
the individual elements of the vectors and/or matrices. While it is easy to convert such bounds to bounds
involving norms, the converse is not true.

Definition 7 Given x ∈ Rn and A ∈ Rm×n,

|x| =


|χ0|
|χ1|

...
|χn−1|

 and |A| =


|α0,0| |α0,1| . . . |α0,n−1|
|α1,0| |α1,1| . . . |α1,n−1|

...
...

. . .
...

|αm−1,0| |αm−1,1| . . . |αm−1,n−1|

.
Definition 8 Let M∈{<,≤,=,≥, >} and x, y ∈ Rn. Then

|x|M |y| iff |χi|M |ψi|,
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with i = 0, . . . , n− 1. Similarly, given A and B ∈ Rm×n,

|A|M |B| iff |αij |M |βij |,

with i = 0, . . . ,m− 1 and j = 0, . . . , n− 1.

The next Lemma is exploited in later sections:

Lemma 9 Let A ∈ Rm×k and B ∈ Rk×n. Then |AB| ≤ |A||B|.

Exercise 10 Prove Lemma 9.

Answer: Let C = AB. Then the (i, j) entry in |C| is given by

|γi,j | =

∣∣∣∣∣
k∑
p=0

αi,pβp,j

∣∣∣∣∣ ≤
k∑
p=0

|αi,pβp,j | =
k∑
p=0

|αi,p||βp,j |

which equals the (i, j) entry of |A||B|. Thus |AB| ≤ |A||B|.
End of Answer:

The fact that the bounds that we establish can be easily converted into bounds involving norms is a
consequence of the following theorem, where ‖ ‖F indicates the Frobenius matrix norm.

Theorem 11 Let A,B ∈ Rm×n. If |A| ≤ |B| then ‖A‖1 ≤ ‖B‖1, ‖A‖∞ ≤ ‖B‖∞, and ‖A‖F ≤ ‖B‖F .

Exercise 12 Prove Theorem 11.

4.4 Deriving dense linear algebra algorithms

In various papers, we have shown that for a broad class of linear algebra operations, given an operation one
can systematically derive algorithms for computing it [5]. The primary vehicle in the derivation of algorithms
is a worksheet to be filled in a prescribed order [2]. We do not discuss the derivation worksheet in this note in
order to keep the focus of on the derivation of error analyses. However, we encourage the reader to compare
the error worksheet, introduced next, to the worksheet for deriving algorithms, as the order in which the
error worksheet is filled mirrors that of the derivation worksheet.

5 Stability of the Dot Product Operation and Introduction to the
Error Worksheet

The matrix-vector multiplication algorithm discussed in the next section requires the computation of the
dot (inner) product (Dot) of vectors x, y ∈ Rn: κ := xT y. In this section, we give an algorithm for this
operation and the related error results. We also introduce the error-worksheet as a framework for presenting
the error analysis side-by-side with the algorithm.

5.1 An algorithm for computing Dot

We will consider the algorithm given in Figure 2. It uses the FLAME notation [5, 2] to express the compu-
tation

κ :=
((

(χ0ψ0 + χ1ψ1) + · · ·
)

+ χn−2ψn−2

)
+ χn−1ψn−1 (2)

in the indicated order.
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Algorithm Dot: κ := xT y

κ := 0

Partition x→
(
xT
xB

)
, y →

(
yT
yB

)
where xT and yT are empty

While m(xT ) < m(x) do

Repartition(
xT
xB

)
→

 x0

χ1

x2

 ,

(
yT
yB

)
→

 y0

ψ1

y2


where χ1 and ψ1 are scalars

κ := κ+ χ1ψ1

Continue with(
xT
xB

)
←

 x0

χ1

x2

 ,

(
yT
yB

)
←

 y0

ψ1

y2


endwhile

Figure 2: Algorithm for computing κ := xT y.

5.2 A simple start

Before giving a general result, let us focus on the case where n = 2:

κ := χ0ψ0 + χ1ψ1.

Then, under the computational model given in Section 4, if κ := χ0ψ0 + χ1ψ1 is executed, the computed
result, κ̌, satisfies

κ̌ =

[(
χ0

χ1

)T (
ψ0

ψ1

)]
= [χ0ψ0 + χ1ψ1]

= [[χ0ψ0] + [χ1ψ1]]

= [χ0ψ0(1 + ε
(0)
∗ ) + χ1ψ1(1 + ε

(1)
∗ )]

= (χ0ψ0(1 + ε
(0)
∗ ) + χ1ψ1(1 + ε

(1)
∗ ))(1 + ε

(1)
+ )

= χ0ψ0(1 + ε
(0)
∗ )(1 + ε

(1)
+ ) + χ1ψ1(1 + ε

(1)
∗ )(1 + ε

(1)
+ )

=

(
χ0

χ1

)T (
ψ0(1 + ε

(0)
∗ )(1 + ε

(1)
+ )

ψ1(1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)

=

(
χ0

χ1

)T (
(1 + ε

(0)
∗ )(1 + ε

(1)
+ ) 0

0 (1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)(
ψ0

ψ1

)

=

(
χ0(1 + ε

(0)
∗ )(1 + ε

(1)
+ )

χ1(1 + ε
(1)
∗ )(1 + ε

(1)
+ )

)T (
ψ0

ψ1

)
,

where |ε(0)
∗ |, |ε(1)

∗ |, |ε(1)
+ | ≤ u.
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Exercise 13 Repeat the above steps for the computation

κ := ((χ0ψ0 + χ1ψ1) + χ2ψ2),

computing in the indicated order.

5.3 Preparation

Under the computational model given in Section 4, the computed result of (2), κ̌, satisfies

κ̌ =

(((
χ0ψ0(1 + ε

(0)
∗ ) + χ1ψ1(1 + ε

(1)
∗ )
)
(1 + ε

(1)
+ ) + · · ·

)
(1 + ε

(n−2)
+ )

+ χn−1ψn−1(1 + ε
(n−1)
∗ )

)
(1 + ε

(n−1)
+ )

=

n−1∑
i=0

χiψi(1 + ε
(i)
∗ )

n−1∏
j=i

(1 + ε
(j)
+ )

, (3)

where ε
(0)
+ = 0 and |ε(0)

∗ |, |ε(j)∗ |, |ε(j)+ | ≤ u for j = 1, . . . , n− 1.
Clearly, a notation to keep expressions from becoming unreadable is desirable. For this reason we intro-

duce the symbol θj :

Lemma 14 Let εi ∈ R, 0 ≤ i ≤ n− 1, nu < 1, and |εi| ≤ u. Then ∃ θn ∈ R such that

n−1∏
i=0

(1 + εi)
±1 = 1 + θn,

with |θn| ≤ nu/(1− nu).

Proof: By Mathematical Induction.

Base case. n = 1. Trivial.

Inductive Step. The Inductive Hypothesis (I.H.) tells us that for all εi ∈ R, 0 ≤ i ≤ n− 1, nu < 1, and
|εi| ≤ u, there exists a θn ∈ R such that

n−1∏
i=0

(1 + εi)
±1 = 1 + θn, with |θn| ≤ nu/(1− nu).

We will show that if εi ∈ R, 0 ≤ i ≤ n, (n + 1)u < 1, and |εi| ≤ u, then there exists a θn+1 ∈ R such
that

n∏
i=0

(1 + εi)
±1 = 1 + θn+1, with |θn+1| ≤ (n+ 1)u/(1− (n+ 1)u).

Case 1:
∏n
i=0(1 + εi)

±1 =
∏n−1
i=0 (1 + εi)

±1(1 + εn). See Exercise 15.

Case 2:
∏n
i=0(1 + εi)

±1 = (
∏n−1
i=0 (1 + εi)

±1)/(1 + εn). By the I.H. there exists a θn such that

(1 + θn) =
∏n−1
i=0 (1 + εi)

±1 and |θn| ≤ nu/(1− nu). Then∏n−1
i=0 (1 + εi)

±1

1 + εn
=

1 + θn
1 + εn

= 1 +
θn − εn
1 + εn︸ ︷︷ ︸
θn+1

,
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which tells us how to pick θn+1. Now

|θn+1| =

∣∣∣∣θn − εn1 + εn

∣∣∣∣ ≤ |θn|+ u

1− u
≤

nu
1−nu + u

1− u
=
nu + (1− nu)u

(1− nu)(1− u)

=
(n+ 1)u− nu2

1− (n+ 1)u + nu2
≤ (n+ 1)u

1− (n+ 1)u
.

By the Principle of Mathematical Induction, the result holds.

Exercise 15 Complete the proof of Lemma 14.

The quantity θn will be used throughout this note. It is not intended to be a specific number.
Instead, it is an order of magnitude identified by the subscript n, which indicates the number of error factors
of the form (1 + εi) and/or (1 + εi)

−1 that are grouped together to form (1 + θn). Since the bound on |θn|
occurs often, we assign it a symbol as follows:

Definition 16 For all n ≥ 1 and nu < 1, define γn := nu/(1− nu).

With this notation, (3) simplifies to

κ̌ = χ0ψ0(1 + θn) + χ1ψ1(1 + θn) + · · ·+ χn−1ψn−1(1 + θ2) (4)

=


χ0

χ1

χ2

...
χn−1


T 

(1 + θn) 0 0 · · · 0
0 (1 + θn) 0 · · · 0
0 0 (1 + θn−1) · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + θ2)




ψ0

ψ1

ψ2

...
ψn−1

 (5)

=


χ0

χ1

χ2

...
χn−1


T I +


θn 0 0 · · · 0
0 θn 0 · · · 0
0 0 θn−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · θ2






ψ0

ψ1

ψ2

...
ψn−1

 ,

where |θj | ≤ γj , j = 2, . . . , n.

Two instances of the symbol θn, appearing even in the same expression, typically do not represent the
same number. For example, in (4) a (1 + θn) multiplies each of the terms χ0ψ0 and χ1ψ1, but these two
instances of θn, as a rule, do not denote the same quantity. In particular, One should be careful when
factoring out such quantities.

As part of the analyses the following bounds will be useful to bound error that accumulates:

Lemma 17 If n, b ≥ 1 then γn ≤ γn+b and γn + γb + γnγb ≤ γn+b.

Exercise 18 Prove Lemma 17.

5.4 Target result

It is of interest to accumulate the roundoff error encountered during computation as a perturbation of input
and/or output parameters:

• κ̌ = (x+ δx)T y; (κ̌ is the exact output for a slightly perturbed x)

• κ̌ = xT (y + δy); (κ̌ is the exact output for a slightly perturbed y)
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• κ̌ = xT y + δκ. (κ̌ equals the exact result plus an error)

The first two are backward error results (error is accumulated onto input parameters, showing that the
algorithm is numerically stable since it yields the exact output for a slightly perturbed input) while the last
one is a forward error result (error is accumulated onto the answer). We will see that in different situations,
a different error result may be needed by analyses of operations that require a dot product.

Let us focus on the second result. Ideally one would show that each of the entries of y is slightly perturbed
relative to that entry:

δy =

 σ0ψ0

...
σn−1ψn−1

 =

 σ0 · · · 0
...

. . .
...

0 · · · σn−1


 ψ0

...
ψn−1

 = Σy,

where each σi is “small” and Σ = diag(σ0, . . . , σn−1). The following special structure of Σ, inspired by (5)
will be used in the remainder of this note:

Σ(n) =

 0× 0 matrix if n = 0
θ1 if n = 1
diag(θn, θn, θn−1, . . . , θ2) otherwise.

(6)

Recall that θj is an order of magnitude variable with |θj | ≤ γj .

Exercise 19 Let k ≥ 0 and assume that |ε1|, |ε2| ≤ u, with ε1 = 0 if k = 0. Show that(
I + Σ(k) 0

0 (1 + ε1)

)
(1 + ε2) = (I + Σ(k+1)).

Hint: reason the case where k = 0 separately from the case where k > 0.

We state a theorem that captures how error is accumulated by the algorithm.

Theorem 20 Let x, y ∈ Rn and let κ := xT y be computed by executing the algorithm in Figure 2. Then

κ̌ =
[
xT y

]
= xT (I + Σ(n))y.

5.5 A proof in traditional format

In the below proof, we will pick symbols to denote vectors so that the proof can be easily related to the
alternative framework to be presented in Section 5.6.

Proof: By Mathematical Induction on n, the length of vectors x and y.

Base case. m(x) = m(y) = 0. Trivial.

Inductive Step. I.H.: Assume that if xT , yT ∈ Rk, k > 0, then[
xTT yT

]
= xTT (I + ΣT )yT , where ΣT = Σ(k).
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We will show that when xT , yT ∈ Rk+1, the equality
[
xTT yT

]
= xTT (I+ΣT )yT holds true again. Assume

that xT , yT ∈ Rk+1, and partition xT →
(
x0

χ1

)
and yT →

(
y0

ψ1

)
. Then

[(
x0

χ1

)T (
y0

ψ1

)]
=
[[
xT0 y0

]
+ [χ1ψ1]

]
(definition)

=
[
xT0 (I + Σ0)y0 + [χ1ψ1]

]
(I.H. with xT = x0,

yT = y0, and Σ0 = Σ(k))

=
(
xT0 (I + Σ0)y0 + χ1ψ1(1 + ε∗)

)
(1 + ε+) (SCM, twice)

=

(
x0

χ1

)T (
(I + Σ0) 0

0 (1 + ε∗)

)
(1 + ε+)

(
y0

ψ1

)
(rearrangement)

= xTT (I + ΣT )yT (renaming),

where |ε∗|, |ε+| ≤ u, ε+ = 0 if k = 0, and (I+ΣT ) =

(
(I + Σ0) 0

0 (1 + ε∗)

)
(1+ε+) so that ΣT = Σ(k+1).

By the Principle of Mathematical Induction, the result holds.

5.6 A weapon of math induction for the war on error (optional)

We focus the reader’s attention on Figure 3 in which we present a framework, which we will call the error
worksheet, for presenting the inductive proof of Theorem 20 side-by-side with the algorithm for Dot. This
framework, in a slightly different form, was first introduced in [1]. The expressions enclosed by { } (in the
grey boxes) are predicates describing the state of the variables used in the algorithms and in their analysis.
In the worksheet, we use superscripts to indicate the iteration number, thus, the symbols vi and vi+1 do not
denote two different variables, but two different states of variable v.

The proof presented in Figure 3 goes hand in hand with the algorithm, as it shows that before and after
each iteration of the loop that computes κ := xT y, the variables κ̌, xT , yT ,ΣT are such that the predicate

{κ̌ = xTT (I + ΣT )yT ∧ k = m(xT ) ∧ ΣT = Σ(k)} (7)

holds true. This relation is satisfied at each iteration of the loop, so it is also satisfied when the loop
completes. Upon completion, the loop guard is m(xT ) = m(x) = n, which implies that κ̌ = xT (I + Σ(n))y,
i.e., the thesis of the theorem, is satisfied too.

In details, the inductive proof of Theorem 20 is captured by the error worksheet as follows:

Base case. In Step 2a, i.e. before the execution of the loop, predicate (7) is satisfied, as k = m(xT ) = 0.

Inductive step. Assume that the predicate (7) holds true at Step 2b, i.e., at the top of the loop. Then
Steps 6, 7, and 8 in Figure 3 prove that the predicate is satisfied again at Step 2c, i.e., the bottom of
the loop. Specifically,

• Step 6 holds by virtue of the equalities x0 = xT , y0 = yT , and Σi0 = ΣT .

• The update in Step 8-left introduces the error indicated in Step 8-right (SCM, twice), yielding
the results for Σi+1

0 and σi+1
1 , leaving the variables in the state indicated in Step 7.

• Finally, the redefinition of ΣT in Step 5b transforms the predicate in Step 7 into that of Step 2c,
completing the inductive step.

By the Principle of Mathematical Induction, the predicate (7) holds for all iterations. In particular,
when the loop terminates, the predicate becomes

κ̌ = xT (I + Σ(n))y ∧ n = m(xT ).

11



Error side Step

κ := 0 { Σ = 0 } 1a

Partition x→
(
xT
xB

)
, y →

(
yT
yB

)
, Σ→

(
ΣT 0

0 ΣB

)
where xT and yT are empty, and ΣT is 0× 0

4

{
κ̌ = xTT (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k

}
2a

While m(xT ) < m(x) do 3{
κ̌ = xTT (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k

}
2b

Repartition(
xT

xB

)
→

 x0

χ1

x2

,( yT
yB

)
→

 y0
ψ1

y2

, (
ΣT 0

0 ΣB

)
→

 Σi
0 0 0

0 σi
1 0

0 0 Σ2


where χ1, ψ1, and σi

1 are scalars

5a

{
κ̌i = xT0 (I + Σi

0)y0 ∧ Σi
0 = Σ(k) ∧m(x0) = k

}
6

κ := κ+ χ1ψ1

κ̌i+1 =
(
κ̌i + χ1ψ1(1 + ε∗)

)
(1 + ε+) SCM, twice

(ε+ = 0 if k = 0)

=
(
xT0 (I + Σ

(k)
0 )y0 + χ1ψ1(1 + ε∗)

)
(1 + ε+) Step 6: I.H.

=

(
x0
χ1

)T
(
I + Σ

(k)
0 0

0 1 + ε∗

)
(1 + ε+)

(
y0
ψ1

)
Rearrange

=

(
x0
χ1

)T (
I + Σ(k+1)

)( y0
ψ1

)
Exercise 19

8


κ̌i+1 =

(
x0
χ1

)T (
I +

(
Σi+1

0 0

0 σi+1
1

))(
y0
ψ1

)
∧
(

Σi+1
0 0

0 σi+1
1

)
= Σ(k+1) ∧m

(
x0
χ1

)
= (k + 1)

 7

Continue with(
xT

xB

)
←
(
x0

χ1

x2

)
,

(
yT
yB

)
←
(
y0
ψ1

y2

)
,

(
ΣT 0

0 ΣB

)
←

 Σi+1
0 0 0

0 σi+1
1 0

0 0 Σ2

 5b

{
κ̌ = xTT (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k

}
2c

endwhile {
κ̌ = xTT (I + ΣT )yT ∧ ΣT = Σ(k) ∧m(xT ) = k ∧m(xT ) = m(x)

}
2d{

κ̌ = xT(I + Σ(n))y ∧m(x) = n
}

1b

Figure 3: Error worksheet completed to establish the backward error result for the given algorithm that
computes the Dot operation.

This completes the discussion of the proof as captured by Figure 3.
In the derivation of algorithms, the concept of loop-invariant plays a central role. Let L be a loop and

P a predicate. If P is true before the execution of L, at the beginning and at the end of each iteration of L,
and after the completion of L, then predicate P is a loop-invariant with respect to L. Similarly, we give the
definition of error-invariant.

Definition 21 We call the predicate involving the operands and error operands in Steps 2a–d the error-
invariant for the analysis. This predicate is true before and after each iteration of the loop.

For any algorithm, the loop-invariant and the error-invariant are related in that the former describes the
status of the computation at the beginning and the end of each iteration, while the latter captures an error
result for the computation indicated by the loop-invariant.

The reader will likely think that the error worksheet is an overkill when proving the error result for the
dot product. We agree. However, it links a proof by induction to the execution of a loop, which we believe
is useful. Elsewhere, as more complex operations are analyzed, the benefits of the structure that the error
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worksheet provides will become more obvious. (We will analyze more complex algorithms as the course
proceeds.)

5.7 Results

A number of useful consequences of Theorem 20 follow. These will be used later as an inventory (library) of
error results from which to draw when analyzing operations and algorithms that utilize Dot.

Corollary 22 Under the assumptions of Theorem 20 the following relations hold:

R1-B: (Backward analysis) κ̌ = (x+ δx)T y, where |δx| ≤ γn|x|, and κ̌ = xT (y + δy), where |δy| ≤ γn|y|;

R1-F: (Forward analysis) κ̌ = xT y + δκ, where |δκ| ≤ γn|x|T |y|.

Proof: We leave the proof of R1-B as an exercise. For R1-F, let δκ = xTΣ(n)y, where Σ(n) is as in
Theorem 20. Then

|δκ| = |xTΣ(n)y|
≤ |χ0||θn||ψ0|+ |χ1||θn||ψ1|+ · · ·+ |χn−1||θ2||ψn−1|
≤ γn|χ0||ψ0|+ γn|χ1||ψ1|+ · · ·+ γ2|χn−1||ψn−1|
≤ γn|x|T |y|.

Exercise 23 Prove R1-B.

6 Stability of a Matrix-Vector Multiplication Algorithm

In this section, we discuss the numerical stability of the specific matrix-vector multiplication algorithm that
computes y := Ax via dot products. This allows us to show how results for the dot product can be used in
the setting of a more complicated algorithm.

6.1 An algorithm for computing Gemv

We will consider the algorithm given in Figure 4 for computing y := Ax, which computes y via dot products.

6.2 Analysis

Assume A ∈ Rm×n and partition

A =


aT0
aT1
...

aTm−1

 and


ψ0

ψ1

...
ψm−1

 .

Then 
ψ0

ψ1

...
ψm−1

 :=


aT0 x
aT1 x

...
aTm−1x

 .
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Algorithm Gemv: y := Ax
y := 0

Partition A→
(
AT
AB

)
, y →

(
yT
yB

)
where AT and yT are empty

While m(AT ) < m(A) do

Repartition(
AT
AB

)
→

A0

aT1
A2

 ,

(
yT
yB

)
→

 y0

ψ1

y2


where aT1 is a row and ψ1 is a scalar

ψ1 := aT1 x

Continue with(
xT
xB

)
←

 x0

χ1

x2

 ,

(
yT
yB

)
←

 y0

ψ1

y2


endwhile

Figure 4: Algorithm for computing y := Ax.

From Corollary 22 R1-B regarding the dot product we know that

y̌ =


ψ̌0

ψ̌1

...

ψ̌m−1

 =


(a0 + δa0)Tx
(a1 + δa1)Tx

...
(am−1 + δam−1)Tx

 =




aT0
aT1
...

aTm−1

+


δaT0
δaT1

...
δaTm−1


x = (A+ ∆A)x,

where |δai| ≤ γn|ai|, i = 0, . . . ,m− 1, and hence |∆A| ≤ γn|A|. .
Also, from Corollary 22 R1-F regarding the dot product we know that

y̌ =


ψ̌0

ψ̌1

...

ψ̌m−1

 =


aT0 x+ δψ0

aT1 x+ δψ1

...
aTm−1x+ δψm−1

 =


aT0
aT1
...

aTm−1

x+


δψ0

δψ1

...
δψm−1

 = Ax+ δy.

where |δψi| ≤ γn|ai|T |x| and hence |δy| ≤ γn|A||x|.
The above observations can be summarized in the following theorem:

Theorem 24 Error results for matrix-vector multiplication. Let A ∈ Rm×n, x ∈ Rn, y ∈ Rm and
consider the assignment y := Ax implemented via the algorithm in Figure 4. Then these equalities hold:

R1-B: y̌ = (A+ ∆A)x, where |∆A| ≤ γn|A|.

R2-F: y̌ = Ax+ δy, where |δy| ≤ γn|A||x|.

Exercise 25 In the above theorem, could one instead prove the result

y̌ = A(x+ δx),

where δx is “small”?
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Algorithm Gemm: C := AB
C := 0

Partition C →
(
CL CR

)
, B →

(
BL BR

)
where CL and BL are empty

While n(CL) < n(C) do

Repartition(
CL CR

)
→
(
C0 c1 C2

)
,
(
BL BR

)
→
(
B0 b1 B2

)
where c1 and b1 are columns

c1 := Ab1

Continue with(
CL CR

)
←
(
C0 c1 C2

)
,
(
BL BR

)
←
(
B0 b1 B2

)
endwhile

Figure 5: Algorithm for computing C := AB one column at a time.

7 Stability of a Matrix-Matrix Multiplication Algorithm

In this section, we discuss the numerical stability of the specific matrix-matrix multiplication algorithm that
computes C := AB via the matrix-vector multiplication algorithm from the last section, where C ∈ Rm×n,
A ∈ Rm×k, and B ∈ Rk×n.

7.1 An algorithm for computing Gemm

We will consider the algorithm given in Figure 5 for computing C := AC, which computes one column at a
time so that the matrix-vector multiplication algorithm from the last section can be used.

7.2 Analysis

Partition
C =

(
c0 c1 · · · cn−1

)
and B =

(
b0 b1 · · · bn−1

)
.

Then (
c0 c1 · · · cn−1

)
:=
(
Ab0 Ab1 · · · Abn−1

)
.

From Corollary 22 R1-B regarding the dot product we know that(
č0 č1 · · · čn−1

)
=
(
Ab0 + δc0 Ab1 + δc1 · · · Abn−1 + δcn−1

)
=
(
Ab0 Ab1 · · · Abn−1

)
+
(
δc0 δc1 · · · δcn−1

)
= AB + ∆C.

where |δcj | ≤ γk|A||bj |, j = 0, . . . , n− 1, and hence |∆C| ≤ γk|A||B|.
The above observations can be summarized in the following theorem:

Theorem 26 (Forward) error results for matrix-matrix multiplication. Let C ∈ Rm×n, A ∈ Rm×k,
and B ∈ Rk×n and consider the assignment C := AB implemented via the algorithm in Figure 5. Then the
following equality holds:

R1-F: Č = AB + ∆C, where |∆C| ≤ γk|A||B|.
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Exercise 27 In the above theorem, could one instead prove the result

Č = (A+ ∆A)(B + ∆B),

where ∆A and ∆B are “small”?

7.3 An application

A collaborator of ours recently implemented a matrix-matrix multiplication algorithm and wanted to check
if it gave the correct answer. To do so, he followed the following steps:

• He created random matrices A ∈ Rm×k, and C ∈ Rm×n, with positive entries in the range (0, 1).

• He computed C = AB with an implementation that was known to be “correct” and assumed it yields
the exact solution. (Of course, it has error in it as well. We discuss how he compensated for that,
below.)

• He computed Č = AB with his new implementation.

• He computed ∆C = Č − C and checked that each of its entries satisfied δγi,j ≤ 2kuγi,j .

• In the above, he took advantage of the fact that A and B had positive entries so that |A||B| = AB = C.
He also approximated γk = ku

1−ku with ku, and introduced the factor 2 to compensate for the fact that
C itself was inexactly computed.
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