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Preface

As of the creation of this book, thirteen articles related the Formal Linear Algebra Meth-
ods Environment (FLAME) project have been published in the ACM Transactions on
Mathematical Software (ACM TOMS). While we would like to think that each individ-
ual article constitutes a contribution to the field, together they provide a roadmap for
what we believe to be a better design for such libraries. Since articles published over
the span of almost a decade are not likely to be read as a coherent collection, we have
assembled them into a single document.

The FLAME Project

The objective of the FLAME project has been to transform the development of dense
linear algebra libraries from an art reserved for experts to a science that can be under-
stood by novice and expert alike. The methodology encompasses a new notation for
expressing algorithms, a methodology for systematic derivation of algorithms, Applica-
tion Program Interfaces (APIs) for representing the algorithms in code, and tools for
the mechanical derivation, implementation and analysis of algorithms.

As a demonstration of the potential of the approach, these techniques have been
used to create a new library for dense and banded linear algebra operations. However,
that library, which we call libflame, is not the topic of this book.

Target Audience

Our book The Science of Programming Matrix Computations targets mostly the novice
and we consider it a good introduction for undergraduates and beginning graduate
students. By contrast, this book targets more seasoned researchers: undergraduate and
graduate students as well as experts in high-performance scientific computing. It is
meant to impress upon the reader our view that the FLAME methodology is a very
viable unified solution to the programmability problem for the domain of dense matrix
computations.

v
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The Articles

In this document, the articles are given in the order in which they were submitted,
which is slightly different from the order in which they appeared. As we discuss how
they are connected, we group them into three sets: a set that together describes the
methodology; a set that describes how high performance is attained by the building
blocks of high performance, matrix-matrix operations; and a set that discusses new
algorithms that resulted from the application of the insights.

The FLAME Methodology The first set of articles describes the core methodology
and the tools that were developed as part of the FLAME project.

• John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.
FLAME: Formal Linear Algebra Methods Environment.ACM TOMS, 27(4):422-
455, 2001.

In this article, we lay out a vision that has subsequently become the
FLAME project. Many insights are already presented in this article.
We give the notation for expressing algorithms and show how it facil-
itates the formal derivation of families of algorithms for matrix opera-
tions. The article previews what later became the FLAME/C API for
representing such algorithms in code. The performance benefits that
result from choosing the best algorithm from a family of variants are
also demonstrated.

• Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-
Ort́ı, and Robert van de Geijn. The Science of Deriving Dense Linear Algebra
Algorithms. ACM TOMS, 31(1):1-26, 2005.

In this article, the process by which an algorithm is discovered for a
given linear algebra operation is shown to be systematic to the point
where it can be reduced to filling out what we have come to call “The
Worksheet”. The insights in this article change algorithm development
from a fine art that is practiced only by experts to a science that can
now be understood and applied by a relative novice.

• Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. Repre-
senting Linear Algebra Algorithms in Code: The FLAME APIs. ACM TOMS,
31(1):27-59, 2005.

The FLAME methodogy can be used to derive algorithms hand-in-hand
with their proofs of correctness. But the algorithm must still be rep-
resented in code. To reduce the chance of introducing coding errors in
this translation, we propose Application Programming Interfaces (APIs)
that allow the code to closely resemble the algorithms. The resulting
APIs allow FLAME to be used in a pedagogical setting as well as to
implement production-quality libraries such as the libflame library.
The API is key to FLAME’s practical utility because it preserves and
translates correctness from algorithm to implementation.
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• Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field
G. Van Zee, and Ernie Chan. Programming Matrix Algorithms-by-Blocks for
Thread-Level Parallelism. ACM TOMS, 36(3), Article 14.

Large Fix “to appear”

One of the goals of the FLAME project has been to make libraries more
flexible. This is particularly important given that at this moment in
time we do not know what architectures will dominate scientific com-
puting ten or even five years into the future. In this article, we illustrate
how the FLAME methodology supports high-level abstraction and sep-
aration of concerns, yielding an attractive and powerful solution to the
programmability problem for multithreaded architectures like Symmet-
ric MultiProcessors (SMPs) and/or multicore systems.
We include this article in the set of core articles because it describes an
extension of the FLAME API that supports matrices (hierarchically)
stored by blocks, algorithms that compute by blocks, and a runtime
system that schedules such algorithms to threads, all of which have
become core elements in the FLAME methodology.

The Building Blocks of High Performance Library development in the area of scien-
tific computing has to deliver high performance. The two articles in this set describe
how algorithms and architectures interact and how data movement can be amortized
near-optimally for matrix-matrix operations, the building blocks of high-performance
linear algebra libraries.

• Kazushige Goto and Robert A. van de Geijn. Anatomy of High-Performance
Matrix Multiplication, ACM TOMS, 34(3): Article 12.

This article described Kazushigo Goto’s techniques for implementing
matrix-matrix multiplication that enable his GotoBLAS library for the
Basic Linear Algebra Subprograms (BLAS). Among other things, the
paper argues that matrices should be primarily blocked for the L2 cache
(as opposed to the conventional wisdom that the L1 cache should be
targeted). The resulting simple but effective design has served, and
continues to serve, many architectures. It disproves the conventional
wisdom that the problem of tuning this operation is so complex that
blind tuning must be employed, as in the ATLAS library.

• Kazushige Goto and Robert van de Geijn. High-Performance Implementation of
the Level-3 BLAS. ACM TOMS, 35(1): Article 3.

This article extends Goto’s techniques for implementing matrix multi-
plication to other commonly encountered matrix-matrix operations.

Evidence and New Algorithms In order for a new approach like the FLAME method-
ology to take hold, solid evidence of its potential must be demonstrated. This final set
of articles serves that purpose. In addition to making individual contributions, together
they establish the applicable scope of the notation, techniques, and tools.
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• Enrique S. Quintana-Ort́ı and Robert van de Geijn, Formal Derivation of Algo-
rithms: The Triangular Sylvester Equation. ACM TOMS, 29(2):218–243, 2003.

This article appeared in print before “The Science of Deriving Dense
Linear Algebra Algorithms” but was rewritten after acceptence so that it
is better read after that paper. The systematic derivation methodology
is applied to a challenging linear algebra operation: the solution of a
triangular Sylvester equation. The result is a family of more than a
dozen new high-performance algorithms for this operation. It provides
early evidence of the value of systematic derivation.

• Brian Gunter and Robert van de Geijn. Parallel Out-of-Core Computation and
Updating of the QR Factorization. ACM TOMS, 31(1):60-78, 2005.

This article describes a novel high-performance parallel algorithm for
computing the QR factorization of a matrix that is sufficiently large
that it must be stored on disk. It fits into the story by demonstrating
once again how the FLAME notation allows complex algorithms to be
described and how the Parallel Linear Algebra Package (PLAPACK)
API can be extended to closely match the FLAME API, thus providing
a compatible API for programming distributed memory architectures.
Beyond this, it describes an algorithm-by-blocks that is later used in our
article “Programming Matrix Algorithms-by-Blocks for Thread-Level
Parallelism”. Such algorithms-by-blocks have since become a standard
part of libraries that target multicore architectures since they increase
opportunities for parallelism.

• Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ort́ı, Robert van de Geijn,
and Field Van Zee. Accumulating Householder Transformations, Revisited. ACM
TOMS, 32 (2):169-179, 2006.

This article revisits techniques for accumulating Householder transfor-
mations so that advantage can be taken of the performance of matrix-
matrix operations. These results were first reported by others in the late
1980s and early 1990s, but were somehow “lost”. In the context of this
book, the article illustrates yet again how the FLAME notation can be
used to describe linear algebra algorithms. Interestingly, we discovered
the results independent from the earlier articles by recognizing that the
conventional algorithm for accumulating such transformations is equiv-
alent to a merging of the algorithm described in this article with the
inversion of a triangular matrix. This insight came to us by applying
the FLAME methodology to each of these operations separately. (This
insight is not mentioned in the article itself.)

• Gregorio Quintana-Ort́ı and Robert van de Geijn. Improving the Performance of
Reduction to Hessenberg Form. ACM TOMS, 32(2):180-194, 2006.

The FLAME notation is used to describe a new algorithm that computes
a reduction to Hessenberg form, achieving higher performance by cast-
ing more computation in terms of matrix-matrix multiplication. The



ix

FLAME APIs were used to implement the algorithms, allowing very
rapid development.

• Field G. Van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A. van de Geijn.
Scalable Parallelization of FLAME Code via the Workqueuing Model. ACM
TOMS, 34(2), 29 pages, 2008.

Part of the problem with the FLAME API is that it discourages the
use of indices. Directives that are part of OpenMP, an API for shared
memory multiprocessor programming, generally require a loop index to
indicate how a loop can be parallelized. The workqueuing model instead
allows tasks to be specified and enqueued, which fits the FLAME/C
API nicely. This work is now superceded by the developments de-
scribed in our paper “Programming Matrix Algorithms-by-Blocks for
Thread-Level Parallelism.” In that paper it is shown how, in addition,
dependencies between tasks can be handled via the FLAME/C API.

• Paolo Bientinesi, Brian Gunter, and Robert van de Geijn. Families of Algorithms
Related to the Inversion of a Symmetric Positive Definite Matrix. ACM TOMS,
35(1), Article 3.

In this article, the performance benefits of using the FLAME method-
ology to derive families of algorithms for the same operation is clearly
demonstrated. It is shown that algorithms perform very differently on
different architectures, ranging from sequential to SMP parallel to dis-
tributed memory parallel. More importantly, it is shown that often
different algorithms are superior depending on parameters like archi-
tecture, problem size, and implementation details. This suggests that
conventional libraries, which often incorporate only one or two algo-
rithms, are at an inherent disadvantage.

• Enrique S. Quintana-Ort́ı and Robert van de Geijn. Updating an LU Factorization
with Pivoting. ACM TOMS, 35(2), Article 11.

This article describes how LU factorization with pivoting can be mod-
ified to allow the “updating” of a previously-factored submatrix. The
result is very similar to the technique developed for updating a QR
factorization in the included article “Parallel Out-of-Core Computation
and Updating of the QR Factorization.” It provides the key insight
for the algorithm-by-blocks that is the prime example in the included
article “Programming Matrix Algorithms-by-Blocks for Thread-Level
Parallelism.”

Other Related Journal Articles

Two articles should also be considered part this collection, but are not for the sim-
ple reason that they were not published through ACM Transactions of Mathematical
Software.
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• Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn.
A note on parallel matrix inversion. SIAM Journal on Scientific Computing,
22(5):1762–1771, 2001.

This is the first journal paper to use what later became the FLAME
notation. It also uses the merging of the three sweeps that were tra-
ditionally use to compute the inverse of a general matrix into a single
sweep as a way to argue that the stability of the new algorithm is similar
to that of the traditional algorithm.

• Paolo Bientinesi and Robert A. van de Geijn. The Science of Deriving Stability
Analyses. Submitted to the SIAM Journal on Matrix Analysis and Applications.

This paper shows how the systematic derivation of algorithms can be ex-
tended to also systematically derive numerical stability analyses for the
resulting algorithms. This is significant because the FLAME method-
ology often yields new algorithms for which numerical stability results
must be established.

Further Reading

The individual articles reference many related papers, including our own. Among these,
the following documents are featured prominently.

• Robert A. van de Geijn. Using PLAPACK. The MIT Press, 2007.

Many of the insights that led to the FLAME methodology came from
our experience building parallel linear algebra libraries for distributed
memory architectures. This book discribes the Parallel Linear Algebra
Package (PLAPACK) API, which inspired the FLAME notation and
API.

• John A. Gunnels. A Systematic Approach to the Design and Analysis of Linear
Algebra Algorithms. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-01-44 (Ph.D. Dissertation). December 2001.

The research described in this dissertation was the first to explore what
became the FLAME methodology. It also pioneered the use of Mathe-
matica as a tool for mechanical translation of FLAME-like algorithms
to code (targeting distributed memory architectures) and performance
estimates.

• Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Lin-
ear Algebra Algorithms. The University of Texas at Austin, Department of Com-
puter Sciences. Technical Report TR-06-46 (Ph.D. Dissertation). September 2006.

In this dissertation, it is shown that the methodology described in “The
Science of Deriving Dense Linear Algebra Algoritms” is sufficiently sys-
tematic that it can be mechanically executed by a tool that can perform
algebraic manipulation, like Mathematica. In addition, it is shown that
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the methodology can be extended to the derivation of numerical stability
results.

• Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Program-
ming Matrix Computations. www.lulu.com/content/1911788/, 2008.

This book presents the FLAME methodology for deriving and imple-
menting dense linear algebra operations at a much slower pace, making
it appropriate for undergraduates and novices.

• Field G. Van Zee. libflame The Complete Reference. www.lulu.com/content/5915632/,
2009.

This is the official reference manual for the libflame library.

Additional Information

For additional information regarding the FLAME project and other publications, please
visit

http://www.cs.utexas.edu/users/flame/.
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demonstrates that lessons learned in the distributed-memory world can guide us toward better
approaches even in the sequential world.

We present performance experiments on the Intel (R) Pentium (R) III processor that demonstrate
that high performance can be attained by coding at a high level of abstraction.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—
Domain specific architectures; D.2.2 [Software Engineering]: Design Tools and Techniques—
Software libraries; G.4 [Mathematical Software]:— Algorithm design and analysis; Efficiency,
User interfaces

General Terms: Algorithms; Design; Performance; Theory

Additional Key Words and Phrases: Formal derivation, libraries, linear algebra, performance

1. INTRODUCTION

When considering the unmanageable complexity of computer systems, Dijkstra
[2000] recently made the following observations:

(i) When exhaustive testing is impossible—i.e., almost always—our trust can
only be based on proof (be it mechanized or not).

(ii) A program for which it is not clear why we should trust it, is of dubious
value.

(iii) A program should be structured in such a way that the argument for its
correctness is feasible and not unnecessarily laborious.

(iv) Given the proof, deriving a program justified by it, is much easier than,
given the program, constructing a proof justifying it.

These comments relate to issues that, in context of linear algebra libraries, are
orthogonal to the concerns related to numerical stability.

In this paper we make a number of new contributions to the development of
linear algebra libraries with regards to the above observations:

—By borrowing from Dijkstra’s own contributions to computing science, we
show how to systematically derive families of algorithms for a given matrix
operation.

—The derivation leads to a structured statement of the algorithms that mirrors
how the algorithms are often explained in a classroom setting.

—The derivation of the algorithms provides a proof of their correctness.

—By implementing the algorithms so that the code mirrors the algorithm that
is the end-product of this derivational process, opportunities for the intro-
duction of error are reduced. As a result, the proof of the correctness of the
algorithm allows us to assert the correctness of the code.

While the resulting infrastructure, the Formal Linear Algebra Methods Envi-
ronment (FLAME), has allowed us to quickly and reliably implement compo-
nents of a high-performance linear algebra library, it can equally well benefit
library users who need to customize a given routine, or to extend the function-
ality of their own library.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.
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424 • J. A. Gunnels et al.

1.1 Related Work

Advances in software engineering for scientific applications have often been
led by libraries for dense linear algebra operations. The first such package to
achieve widespread use and to embody new techniques in software engineer-
ing was EISPACK [Smith et al. 1976]. EISPACK was also likely the first such
package to pay careful attention to the numerical stability of the underlying
algorithms. The mid-1970s witnessed the introduction of the Basic Linear Alge-
bra Subprograms (BLAS) [Lawson et al. 1979]. At that time the BLAS were a set
of vector operations that allowed libraries to attain high performance on com-
puters possessing a flat memory while remaining highly portable between plat-
forms and simultaneously enhancing modularity and code readability. The first
successful library to exploit these BLAS was LINPACK [Dongarra et al. 1979].
By the late 1980s, it was recognized that in order to overcome the gap between
processor and memory performance on modern microprocessors, it was neces-
sary to reformulate matrix algorithms in terms of matrix-matrix multiplication-
like operations, the level-3 BLAS [Dongarra et al. 1990]. LAPACK [Anderson
et al. 1992], first released in the early 1990s, is a high-performance package for
linear algebra operations written in terms of the level-3 BLAS. LAPACK offers
a functionality that is a superset of LINPACK and EISPACK while achieving
high performance on essentially all sequential and shared-memory architec-
tures in a portable fashion.

A major simplification in the implementation of the level-3 BLAS themselves
came from the observation that they can be cast in terms of optimized matrix-
matrix multiplication [Agarwal et al. 1994; Gustavson et al. 1998b; Kågström
et al. 1998]. Further, the performance of the resulting, more portable, system
was comparable to the vendor-supplied BLAS in many cases.

With the advent of distributed-memory parallel architectures, a parallel ver-
sion of LAPACK, ScaLAPACK [Choi et al. 1992], was developed. A major design
goal of the ScaLAPACK project was to preserve and re-use as much code from
LAPACK as possible. Thus, all layers in the ScaLAPACK software architecture
were designed to resemble similar layers in the LAPACK software architecture.
It was this decision that complicated the implementation of ScaLAPACK. The
introduction of data distribution (across memories) creates a problem analogous
to that of creating and maintaining the data structures required for storing
sparse matrices. The mapping from indices to matrix element(s) was no longer
a simple one. Combining this complication with the monolithic structure of
the software led to code that was laborious to construct and is difficult to main-
tain. The Parallel Linear Algebra Package (PLAPACK) achieves a functionality
similar to that of ScaLAPACK, targeting the same distributed-memory archi-
tectures while using a FLAME-like approach to hide details related to indexing
into and distribution of matrices [van de Geijn 1997]. Indeed, the primary in-
spiration for FLAME came from earlier work on PLAPACK.

A number of recent library efforts have explored the notion of utilizing hier-
archical data structures for storing matrices [Anderson et al. 2000; Gustavson
et al. 1998a; Gustavson 1997; 2001]. The central idea is that, by storing matri-
ces by blocks rather than by row- or column-major ordering, data preparation

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.
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(copying) for good cache re-use is virtually eliminated. Combining this with re-
cursive and standard algorithms that exploit these data structures, impressive
performance improvements have been demonstrated. Notice that more com-
plex data structures for sequential algorithms introduce a complexity similar
to that encountered when data is distributed to the memories of a distributed-
memory architecture. Since PLAPACK effectively addressed that problem for
those architectures, we have strong evidence that FLAME can be extended
to accommodate more complex data structures in the context of hierarchical
memories.

1.2 A Case for Systematic Derivation and Simplicity of Code

Some would immediately draw the conclusion that a change to a more modern
programming language like C++ is a highly desirable, if not a necessary pre-
cursor to writing elegant code. The fact is, that most applications that call linear
algebra packages are still written in Fortran and/or C. Interfacing such an ap-
plication with a library written in C++ presents certain complications. How-
ever, during the mid-1990s, the Message-Passing Interface (MPI) introduced
the scientific computing community to a programming model, object-based pro-
gramming, that possesses many of the advantages typically associated with the
intelligent use of an object-oriented language [Snir et al. 1996]. Using objects
(e.g. communicators in MPI) to encapsulate data structures and hide complex-
ity, a much cleaner approach can be achieved.

Our own work on PLAPACK borrowed from this approach in order to hide
details of data distribution and data mapping in the realm of parallel linear
algebra libraries. The primary concept also germane to this paper is that PLA-
PACK raises the level of abstraction at which one programs, so that indexing
is essentially removed from the code, allowing the routine to reflect the algo-
rithm as it is naturally derived in a classroom setting. Since our initial work
on PLAPACK, we have experimented with similar interfaces in such contexts
as (parallel) out-of-core linear algebra packages [Gunter et al. 2001; Reiley and
van de Geijn 1999] and a low-level implementation of the sequential Basic Lin-
ear Algebra Subprograms (BLAS) [Gunnels et al. 2001; Gunnels and van de
Geijn 2001b].

One strong motivation for systematically deriving algorithms and reducing
the complexity of translating these algorithms to code comes from the fact that
for a given operation, a different algorithm may provide higher performance de-
pending on the architecture and/or the problem dimensions. In Gunnels et al.
[2001] we showed that the efficient, transportable implementation of matrix-
matrix multiplication on a sequential architecture with a hierarchical memory
requires a hierarchy of matrix algorithms whose organization, in a very real
sense, mirrors that of the memory system under consideration. Perhaps surpris-
ingly, this is necessary even when the problem size is fixed. In the same paper
we described a methodology for composing these routines. In this way, minimal
coding effort is required to attain superior performance across a wide spectrum
of algorithms, architectures, and problem sizes. Analogously, in Gunnels et al.
[1998], it was demonstrated that an efficient implementation of parallel matrix
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multiplication requires both multiple algorithms and a method for selecting an
appropriate algorithm for the presented case, if one is to handle operands of
various sizes and shapes. In Gunter et al. [2001] and Reiley [1999], we arrived
at a similar conclusion in the context of out-of-core factorization algorithms and
their implementation, using the Parallel Out-of-Core Linear Algebra PACKage
(POOCLAPACK). To summarize our experiences: as high-performance archi-
tectures incorporate cache, local, shared, and distributed memories, all within
one system, multiple algorithms for a single operation become necessary for
optimal performance. Traditional approaches make the implementation of li-
braries that span all possibilities, almost impossible.

FLAME is the latest step in the evolution of these systems. We consider
FLAME to be an environment in the sense that it encourages the developer to
systematically construct a family of algorithms for a given matrix operation.
Ideally, the steps that lead to the algorithms are carefully documented, provid-
ing the proof that the algorithms are correct. Only after its correctness can be
asserted, should the algorithm be translated to code. Since the code mirrors
the end-product of the algorithmic derivation process, its correctness can be
asserted as well, and minimal debugging and testing will be necessary. Once
the code delivers the correct results, functionality can be extended and/or per-
formance optimizations can be incorporated. We illustrate FLAME in the sim-
plest setting, for sequential algorithms. Minor modifications to PLAPACK and
POOCLAPACK allow the porting to distributed-memory architectures and/or
out-of-core computations with essentially no change to the code.

1.3 Overview

In Section 2 we review some basic insights from formal derivation. In Section 3
we use the LU factorization without pivoting to illustrate the steps we use to
develop a family of algorithms for a given operation. In Section 4 we summarize
our systematic steps for deriving linear algebra algorithms. In Section 5 we
show how library extensions added to the C programming language, together
with careful formatting, allow one to write code that reflects the algorithm. The
fact that the techniques can be applied to a more difficult operation like LU
factorization with partial pivoting is demonstrated in Section 6. In Section 7
we show that it is not the case that high performance is compromised by raising
the level of abstraction at which one codes. Future directions and conclusions
are discussed in Sections 8 and 9.

2. THE CORRECTNESS OF LOOPS

In a standard text by Gries and Schneider [1992] used to teach discrete math-
ematics to undergraduates in computer science, we find the following material
pages 236–237):

We prefer to write a while loop using the syntax
do B→ S od

where Boolean expression B is called the guard and statement S is
called the repetend.
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[The l]oop is executed as follows: If B is false, then execution of the
loop terminates; otherwise S is executed and the process is repeated.
Each execution of repetend S is called an iteration. Thus, if B is
initially false, then 0 iterations occur.

The text goes on to state:

We now state and prove the fundamental invariance theorem for
loops. This theorem refers to an assertion P that holds before and
after each iteration (provided it holds before the first). Such a predi-
cate is called a loop-invariant.

(12.43) Fundamental invariance theorem. Suppose
—{P ∧ B}S{P} holds—i.e. execution of S begun in a state

in which P and B are true terminates with P true—and
—{P} do B→ S od true—i.e. execution of the loop begun

in a state in which P is true terminates.
Then {P} do B→ S od {P ∧ ¬B} holds. [In other words,
if the loop is entered in a state where P is true, it will
complete in a state where P is true and guard B is false].

The text proceeds to prove this theorem using the axiom of mathematical
induction.

Let us translate the above programming construct into our setting, which
we use to accommodate linear algebra algorithms. Consider the loop

while B do
S

enddo

where B is some condition and S is the body of the loop, the above theorem
says that

—The loop is entered in a state where some condition P holds, and
—for each iteration, P holds at the top of the loop, and
—the body of the loop S has the property that, if it is executed starting in a

state where P holds, it completes in a state where P holds.

Then if the loop completes, it will do so in a state where conditions P and ¬ B
both hold. Naturally, P and B are chosen such that P ∧¬ B implies that the
desired linear algebra operation has been computed.

A method that formally derives a loop (i.e., iterative implementation) ap-
proaches the problem of determining the body of the loop as follows: First, one
must determine conditions B and P . Next, the body S should be developed
so that it maintains condition P while making progress towards completing
the iterative process (eventually B should become false). The operations that
comprise S follow naturally from simple manipulation of equalities and equiv-
alences using matrix algebra. Thanks to the fundamental invariance theorem,
this approach implies correctness of the loop.

What we will argue in this paper is that for a large class of dense linear al-
gebra algorithms there is a systematic way of determining different conditions,
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P, that allow us develop loops to compute a given linear algebra operation. The
different conditions yield different algorithmic variants for computing the op-
eration. We demonstrate this through the example of LU factorization without
pivoting. Once we have demonstrated the techniques in this simpler setting,
we will also argue in Section 6, although somewhat more informally, the cor-
rectness of a hybrid iterative/recursive LU factorization with partial pivoting.

3. A CASE STUDY: LU FACTORIZATION

We illustrate our approach by considering LU factorization without pivoting.
Given a non-singular, n×n matrix, A, we wish to compute an n×n lower trian-
gular matrix L with unit main diagonal and an n×n upper triangular matrix
U so that A= LU . The original matrix A is overwritten by L and U in the
process. We will denote this operation by

A← Â=LU(A)

to indicate that A is overwritten by the LU factors of A. Because FLAME
produces many variants of LU factorization, it is worthwhile to emphasize
the fact that, if exact arithmetic is performed, all variants will result in
identical results. To see this, assume that L1U1= L2U2 are two different
factorizations. Multiplying both sides by L−1

2 on the left and U−1
1 on the

right yields L= L−1
2 L1=U2U−1

1 =U , where L is unit lower-triangular and U
upper-triangular. Now, L=U implies L=U = I . It follows that L1= L2 and
U1=U2, so our assumption has been contradicted and the proof of uniqueness
is complete.

3.1 A Classical Derivation

The usual derivation of an algorithm for the LU factorization proceeds as
follows:

Partition

A =
(
α11 aT

12

a21 A22

)
, L =

(
1 0

l21 L22

)
, and U =

(
υ11 uT

12

0 U22

)
Now A = LU translates to(

α11 aT
12

a21 A22

)
=
(

1 0
l21 L22

)(
υ11 uT

12

0 U22

)
=
(

υ11 uT
12

l21υ11 l21uT
12 + L22U22

)
so the following equalities hold:

α11= υ11 aT
12 = uT

12

a21= υ11l21 A22 = l21uT
12 + L22U22

Thus, we arrive at the following algorithm

—Overwrite α11 and aT
12 with υ11 and uT

12, respectively (no-op).
—Update a21 ← l21 = a21/υ11.
—Update A22 ← A22 − l21uT

12.
—Factor A22 → L22U22 (recursively or iteratively).
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Fig. 1. Unblocked lazy algorithm for LU factorization.

The algorithm is usually implemented as a loop, as illustrated in Figure 1. When
presented in a classroom setting, this algorithm is typically accompanied by the
following progression of pictures:

Here the double lines indicate how far the computation has progressed through
the matrix. At the current stage the active part of the matrix resides in the
lower-right quadrant of the left picture. Next, the different parts to be updated
are identified and the updates given (middle picture). Finally, the boundary
that indicates how far the computation has progressed is moved forward (right
picture). It is this sequence of three pictures that we will try to capture in the
derivation, the specification, and implementation of the algorithm.

3.2 But What is the Loop-Invariant?

Notice that in the above algorithm the original matrix is overwritten by inter-
mediate results until it finally contains L and U . Let Â indicate the matrix in
which the LU factorization is computed, keeping in mind that Â overwrites
A as part of the algorithm. Notice that after k iterations of the algorithm
in Figure 1, Â contains a partial result. We will denote this partial result
by Âk .

In order to prove correctness, one question we must ask is—What interme-
diate value, Âk , is in Â at any particular stage of the algorithm? More precisely,
we will ask the question—What are the contents at the beginning of the loop
that implements the computation of the factorization (e.g., the loop in Figure 1)?
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To answer this question, partition the matrices as follows:

A =
(

A(k)
TL A(k)

TR

A(k)
BL A(k)

BR

)
, L =

(
L(k)

TL 0

L(k)
BL L(k)

BR

)
,

U =
(

U (k)
TL U (k)

TR

0 U (k)
BR

)
and Âk =

(
Â(k)

TL Â(k)
TR

Â(k)
BL Â(k)

BR

)

where A(k)
TL, L(k)

TL, U (k)
TL , and Â(k)

TL are all k× k matrices and “T”, “B”, “L”, and “R”
stand for Top, Bottom, Left, and Right, respectively.

Notice that (
A(k)

TL A(k)
TR

A(k)
BL A(k)

BR

)
=
(

L(k)
TL 0

L(k)
BL L(k)

BR

)(
U (k)

TL U (k)
TR

0 U (k)
BR

)

=
(

L(k)
TLU (k)

TL L(k)
TLU (k)

TR

L(k)
BLU (k)

TL L(k)
BLU (k)

TR + L(k)
BRU (k)

BR

)
so that the following equalities must hold:

A(k)
TL = L(k)

TLU (k)
TL (1)

A(k)
TR = L(k)

TLU (k)
TR (2)

A(k)
BL = L(k)

BLU (k)
TL (3)

A(k)
BR = L(k)

BLU (k)
TR + L(k)

BRU (k)
BR (4)

We now show that different conditions on the contents of Â dictate different al-
gorithmic variants for computing the LU factorization, and that these different
conditions can be systematically generated from equations 1–4.

Notice that in equations 1–4 the following partial results towards the com-
putation of the factorization can be identified:

L\U (k)
TL , L(k)

BL, U (k)
TR, L(k)

BLU (k)
TR, and L\U (k)

BR

Here we use the notation L\U to denote lower and upper triangular matrices
that are stored in a square matrix by overwriting the lower and upper triangular
parts of that matrix. Recall that L has ones on the diagonal, which need not be
stored. We restrict our study to algorithms that employ Gaussian elimination
and do not involve redundant computations. Further, we require that one or
more of the partial results contributing to the final computation have been
computed. A few observations:

—If L(k)
TL has been computed, the elements of U (k)

TL has been computed as well.

—Since L(k)
BL= A(k)

BLU (k)−1
TL , data dependency considerations imply that U (k)

TL must
be computed before L(k)

BL.

—Similarly, since U (k)
TR= L(k)−1

TL A(k)
TR, data dependency analysis implies that L(k)

TL
needs to be computed before U (k)

TR.

—Since the computation overwrites A, if L(k)
BLU (k)

TR has been computed, Â(k)
BR must

contain A(k)
BR − L(k)

BLU (k)
TR.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

9



FLAME: Formal Linear Algebra Methods Environment • 431

Table I. Possible Loop-Invariants for LU Factorization without Pivoting

Condition Âk contains

No computation has occurred.

(
A(k)

TL A(k)
TR

A(k)
BL A(k)

BR

)
Only (1) is satisfied.

(
L\U (k)

TL A(k)
TR

A(k)
BL A(k)

BR

)
Only (1) and (2) have been satisfied.

(
L\U (k)

TL U (k)
TR

A(k)
BL A(k)

BR

)
Only (1) and (3) have been satisfied.

(
L\U (k)

TL A(k)
TR

L(k)
BL A(k)

BR

)
Only (1), (2), and (3) have been satisfied.

(
L\U (k)

TL U (k)
TR

L(k)
BL A(k)

BR

)
(1), (2), and (3) have been satisfied and as much of (4) has

been computed without computing any part of L(k)
BR or U (k)

BR.

(
L\U (k)

TL U (k)
TR

L(k)
BL A(k)

BR − L(k)
BLU (k)

TR

)
(1), (2), (3), and (4) have all been satisfied.

(
L\U (k)

TL U (k)
TR

L(k)
BL L\U (k)

BR

)

—If L(k)
BR has been computed, we assume that U (k)

BR has been computed as well
(see first bullet).

—If L\U (k)
BR has been computed, A(k)

BR − L(k)
BLU (k)

TR must have been computed first.

Taking into account the above observations, we give possible contents of
Âk in Table I. The first and last conditions indicate that no computation has
been performed, or that the final result has been computed, neither of which
is a reasonable condition to maintain as part of the loop. This leaves five loop-
invariants which, we will see, lead to five different variants for LU factorization.

Note that in this paper, we will not concern ourselves with the question of
whether the above conditions exhaust all possibilities. However, they do give
rise to many commonly discussed algorithms. In fact, in Dongarra et al. [1984]
six variants, called the ijk orders, of A= LU are listed. The jki form is com-
monly known as a left-looking algorithm while the ikj form is left-looking on
AT . Together, they correspond to the row- and column-lazy variants discussed
in this paper. The kij and kji forms both correspond to what has been tradi-
tionally called the right-looking algorithm; here, both would be deemed forms
of the eager algorithm, one a column, and one a row-oriented version. The ijk
and jik forms are more commonly known as the Doolittle (Crout) algorithm and
correspond to row and column-oriented versions of the row-column-lazy variant
considered in this document. The lazy algorithm discussed in this paper has no
corresponding variant in the ijk family of algorithms. Further, the conditions
delineated above yield all algorithms depicted on the cover of, and discussed in,
G.W. Stewart’s [1998] recent book on matrix factorization. This comes as no sur-
prise since we, like Stewart, have adopted some common implicit assumptions
about both matrix partitioning and the nature of algorithmic advancement. Our
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a priori assumptions were only slightly less constricting than those imposed by
the authors who employed the ijk scheme mentioned above. In this paper we
have restricted ourselves to a consideration of only those algorithms whose
progress is “simple”. That is, each iteration of the algorithm is geographically
monotonic and formulaically identical. The combination of these two properties
leads to algorithms whose (inductive) proofs of correctness are straightforward
and whose implementations, given our framework, are virtually foolproof.

We will label any algorithm “Lazy” if it does the least amount of computa-
tion possible in the inductive step and “Eager” if it performs as much work as
possible at that point. We explain our classification further in Gunnels and van
de Geijn [2001a]. It needs to be evaluated against a large class of algorithms
before we make any definitive claims regarding is usefulness.

3.3 Lazy Algorithm

This algorithm is often referred to in the literature as a bordered algorithm.
Stewart [1998], rather colorfully, refers to it as Sherman’s march.

Unblocked Algorithm. Let us assume that only (1) has been satisfied. To
determine the body of the loop (statement S), the question becomes how to
update the contents of Â:(

Â(k)
BR Â(k)

TR

Â(k)
BL A(k)

BR

)
=
(

L\U (k)
BR A(k)

TR

A(k)
BL A(k)

BR

)

→
(

Â(k+1)
BR Â(k+1)

TR

Â(k+1)
BL Â(k+1)

BR

)
=
(

L\U (k+1)
BR A(k+1)

TR

A(k+1)
BL A(k+1)

BR

)
To answer this, repartition(

A(k)
TL Â(k)

TR

A(k)
BL Â(k)

BR

)
=

 A(k)
00

(
a(k)

01 A(k)
02

)(
a(k) T

10

A(k)
20

) (
α

(k)
11 a(k) T

12

a(k)
21 A(k)

22

)
where A(k)

00 is k× k (and thus equal to A(k)
TL), and α

(k)
11 is a scalar. Repartition

Âk , L, and U similarly. This repartitioning identifies submatrices that must
be updated in order to be able to move the boundary (indicated by the double
lines) forward. Notice that using this new partitioning, Âk currently contains(

L\U (k)
TL A(k)

TR

A(k)
BL A(k)

BR

)
=

 L\U (k)
00

(
a(k)

01 A(k)
02

)(
a(k) T

10

A(k)
20

) (
α

(k)
11 a(k) T

12

a(k)
21 A(k)

22

)
After moving the double lines, the partitioning of A becomes(

A(k+1)
TL A(k+1)

TR

A(k+1)
BL A(k+1)

BR

)
=


(

A(k)
00 a(k)

01

a(k) T
10 α11

) (
A(k)

02

a(k) T
12

)
(

A(k)
20 a(k)

21

)
A(k)

22
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and the partitionings of Âk+1, L, and U change similarly. Thus, Âk+1 must
contain (

L\U (k+1)
TL A(k+1)

TR

A(k+1)
BL A(k+1)

BR

)
=


(

L\U (k)
00 u(k)

01

l (k) T
10 υ

(k)
11

) (
A(k)

02

a(k) T
12

)
(

A(k)
20 a(k)

21

)
A(k)

22


To summarize, in order to maintain the loop-invariant, the contents of Â must
be updated like L\U (k)

00

(
a(k)

01 A(k)
02

)(
a(k) T

10

A(k)
20

) (
α

(k)
11 a(k) T

12

a(k)
21 A(k)

22

)→

(

L\U (k)
00 u(k)

01

l (k) T
10 υ

(k)
11

) (
A(k)

02

a(k) T
12

)
(

A(k)
20 a(k)

21

)
A(k)

22


Thus, it suffices to compute u(k)

01 , l (k)
10 , and υ(k)

11 , overwriting the corresponding
parts a(k)

01 , a(k)
10 , and α(k)

11 .
To determine how to compute these quantities, consider A(k)

00 a(k)
01 A(k)

02

a(k) T
10 α

(k)
11 a(k) T

12

A(k)
20 a(k)

21 A(k)
22

 =
 L(k)

00 0 0

l (k) T
10 1 0
L(k)

20 l (k)
21 L(k)

22


U (k)

00 u(k)
01 U (k)

02

0 υ
(k)
11 u(k) T

12

0 0 U (k)
22



=

 L(k)
00 U (k)

00 L(k)
00 u(k)

01 L(k)
00 U (k)

02

l (k) T
10 U (k)

00 l (k) T
10 u(k)

01 + υ(k)
11 l (k) T

10 U (k)
02 + u(k) T

12

L(k)
20 U (k)

00 L(k)
20 U (k)

01 + l (k)
21 υ

(k)
11 L(k)

20 U (k)
02 + l (k)

21 u(k) T
12 + L(k)

22 U (k)
22


From this equation we find that the following equalities must hold:

A(k)
00 = L(k)

00 U (k)
00 a(k)

01 = L(k)
00 u(k)

01 A(k)
02 = L(k)

00 U (k)
02

a(k)T
10 = l (k)T

10 U (k)
00 α

(k)
11 = l (k)T

10 u(k)
01 + υ(k)

11 a(k)T
12 = l (k)T

10 U (k)
02 + u(k)T

12

A(k)
20 = L(k)

20 U (k)
00 a(k)

21 = L(k)
20 U (k)

01 + l (k)
21 υ

(k)
11 A(k)

22 = L(k)
20 U (k)

02 + l (k)
21 u(k)T

12 + L(k)
22 U (k)

22
(5)

To compute u(k)
01 one must solve the triangular system L(k)

00 u(k)
01 =a(k)

01 . The
result can overwrite a(k)

01 . To compute l (k)
10 we solve the triangular system

l (k) T
10 U (k)

00 =a(k) T
10 . The result can overwrite a(k) T

10 . To determine υ11 we merely
compute υ(k)

11 = α(k)
11 − l (k) T

10 u(k)
01 . The result can overwrite α(k)

11 . This motivates the
algorithm in Figure 2 (left) for overwriting a given non-singular, n×n matrix
A with its LU factorization.

To demonstrate that in deriving the algorithm we have constructively proven
its correctness, consider the following:

THEOREM 3.1. The algorithm in Figure 2 (left) overwrites a given non-
singular, n×n matrix, A, with its LU factorization.

PROOF. To prove this theorem, we merely invoke the Fundamental Invari-
ance theorem. Here the guard B is ABR 6= 0× 0, predicate P is
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Fig. 2. Unblocked and blocked versions of the lazy variant for computing the LU factorization of
a square matrix A (without pivoting).

Â contains =
(

L\UTL ATR

ABL ABR

)
where L\UTL is k × k

and the statement S is the body of the loop in Figure 2 (left).
First, notice that the statement

Partition A =
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

has the property that after its execution P holds since L\UTL, ATR, and ABL are
all empty (they have row and/or column dimensions equal to zero) and ABR = A.
Thus, just before the loop is first entered

Â =
(

L\UTL ATR

ABL ABR

)
= ABR = A

and we conclude that P holds when k = 0.
Recall that the body of the loop was developed so that {P ∧B}S{P} holds, i.e.

if the condition holds at the top of the loop, then it holds at the bottom of the
loop (just before the enddo). Also, since at each step the size of ABR decreases
by one, guard B will eventually become false, {P} do B→ S od true holds (i.e.
execution of the loop begun in a state in which P is true terminates). We have
shown that all of the conditions of the Fundamental Invariance theorem hold.
We therefore conclude that if the loop is entered in a state where P holds, it
will complete in a state where P is true and guard B is false.
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This means that Â contains (
L\UTL ATR

ABL ABR
) where ABR is 0 × 0 and completion

of the loop transpires when k = n. Thus the final contents of the matrix are
Â = L\UTL where LTL and UTL are unit-lower and upper-triangular matrices of
order n. We conclude that upon exiting the loop, the matrix has been overwritten
by its LU factorization.

Blocked Algorithm. For performance reasons it, becomes beneficial to derive
a blocked version of the above algorithm. The derivation closely follows that of
the unblocked algorithm: Again assume that only (1) has been satisfied. The
question is now how to compute Âk+b from Âk for some small block size b (i.e.
1< b�n). To answer this, repartition

A =
(

A(k)
TL A(k)

TR

A(k)
BL A(k)

BR

)
=

 A(k)
00 A(k)

01 A(k)
02

A(k)
10 A(k)

11 A(k)
12

A(k)
20 A(k)

21 A(k)
22

 (6)

where A(k)
00 is k × k (and thus equal to A(k)

TL), and A(k)
11 is b× b. Repartition L, U ,

and Âk conformally. Notice it is our assumption that Âk holds

Âk =
(

L\U (k)
TL A(k)

TR

A(k)
BL A(k)

BR

)
=

 L\U (k)
00 A(k)

01 A(k)
02

A(k)
10 A(k)

11 A(k)
12

A(k)
20 A(k)

21 A(k)
22


The desired contents of Âk+b are given by

Âk+b =
(

Â(k+b)
TL Â(k+b)

TR

Â(k+b)
BL Â(k+b)

BR

)
=

 L\U (k)
00 U (k)

01 A(k)
02

L(k)
10 L\U (k)

11 A(k)
12

A(k)
20 A(k)

21 A(k)
22


Thus, it suffices to compute U (k)

01 , L(k)
10 , L(k)

11 , and U (k)
11 .

To derive how to compute these quantities, consider

A =

 A(k)
00 A(k)

01 A(k)
02

A(k)
10 A(k)

11 A(k)
12

A(k)
20 A(k)

21 A(k)
22

 =
 L(k)

00 0 0

L(k)
10 L(k)

11 0
L(k)

20 L(k)
21 L(k)

22


U (k)

00 U (k)
01 U (k)

02

0 U (k)
11 U (k)

12

0 0 U (k)
22



=

 L(k)
00 U (k)

00 L(k)
00 U (k)

01 L(k)
00 U (k)

02

L(k)
10 U (k)

00 L(k)
10 U (k)

01 + L(k)
11 U (k)

11 L(k)
10 U (k)

02 + L(k)
11 U (k)

12

L(k)
20 U (k)

00 L(k)
20 U (k)

01 + L(k)
21 U (k)

11 L(k)
20 U (k)

02 + L(k)
21 U (k)

12 + L(k)
22 U (k)

22


This yields the equalities

A(k)
00 =L(k)

00 U (k)
00 A(k)

01 =L(k)
00 U (k)

01 A(k)
02 =L(k)

00 U (k)
02

A(k)
10 =L(k)

10 U (k)
00 A(k)

11 =L(k)
10 U (k)

01 + L(k)
11 U (k)

11 A(k)
12 =L(k)

10 U (k)
02 + L(k)

11 U (k)
12

A(k)
20 =L(k)

20 U (k)
00 A(k)

21 =L(k)
20 U (k)

01 + L(k)
21 U (k)

11 A(k)
22 =L(k)

20 U (k)
02 + L(k)

21 U (k)
12 + L(k)

22 U (k)
22

(7)
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Fig. 3. Blocked versions of LU factorization without pivoting for five commonly encountered vari-
ants. The different variants share the skeleton that partitions and repartitions the matrix. Exe-
cuting the operations in one of the five boxes yields a specific algorithm.

Thus,

(1) To compute U (k)
01 we solve the triangular system L(k)

00 U (k)
01 = A(k)

01 . The result
can overwrite A(k)

01 .

(2) To compute L(k)
10 we solve the triangular system L(k)

10 U (k)
00 = A(k)

10 . The result
can overwrite A(k)

10 .

(3) To compute L(k)
11 and U (k)

11 we simply update A(k)
11 ← A(k)

11 − L(k)
10 U (k)

01 =
A(k)

11 − A(k)
10 A(k)

01 after which the result can be factored into L(k)
11 and U (k)

11 using
the unblocked algorithm. The result can overwrite A(k)

11 .

The preceding discussion motivates the algorithm in Figure 2 (right) and
Figure 3(b) for overwriting the given non-singular, n×n matrix A with its LU
factorization. A careful analysis shows that the blocked algorithm does not
incur even a single extra computation relative to the unblocked algorithm.

The proof of the following theorem is similar to that of Theorem 3.1.
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THEOREM 3.2. The algorithm in Figure 2 (right) overwrites a given non-
singular, n× n matrix, A, with its LU factorization.

3.4 Row-Lazy Algorithm

As a point of reference, Stewart [1998] calls this algorithm Pickett’s charge
south.

Let us assume that only (1) and (2) have been satisfied. We will now discuss
only a blocked algorithm that computes Âk+b from Âk while maintaining these
conditions.

Repartition A, L, U , and Âk conformally as in (6). Our assumption is that
Âk holds

Âk =
(

L\U (k)
TL U (k)

TR

A(k)
BL A(k)

BR

)
=

 L\U (k)
00 U (k)

01 U (k)
02

A(k)
10 A(k)

11 A(k)
12

A(k)
20 A(k)

21 A(k)
22


The desired contents of Âk+b are given by

Âk+b =
(

Â(k+b)
TL Â(k+b)

TR

Â(k+b)
BL Â(k+b)

BR

)
=

 L\U (k)
00 U (k)

01 U (k)
02

L(k)
10 L\U (k)

11 U (k)
12

A(k)
20 A(k)

21 A(k)
22


Thus, it suffices to compute L(k)

10 , L\U (k)
11 , and U (k)

12 . Recalling the equalities in (7)
we notice that

(1) To compute L(k)
10 we can solve the triangular system L(k)

10 U (k)
00 = A(k)

10 . The
result can overwrite A(k)

10 .

(2) To compute L(k)
11 and U (k)

11 we can update A(k)
11 ← A(k)

11 − L(k)
10 U (k)

01 = A(k)
11 −

A(k)
10 A(k)

01 after which the result can be factored into L(k)
11 and U (k)

11 . The result
can overwrite A(k)

11 .

(3) To compute U (k)
12 we can update A(k)

12 ← A(k)
12 − L(k)

10 U (k)
02 after which we solve

the triangular system L(k)
11 U (k)

12 = A(k)
12 , overwriting the original A(k)

12 .

These steps, and the preceding discussion, lead one directly to the algorithm
in Figure 3(c).

The proof of the following theorem is similar to that of Theorem 3.1.

THEOREM 3.3. The algorithm in Figure 3(c) overwrites a given non-singular,
n× n matrix, A, with its LU factorization.

3.5 Column-Lazy Algorithm

This algorithm is referred to as a left-looking algorithm in Dongarra et al. [1991]
while Stewart [1998] calls it Pickett’s charge east.

Let us assume that only (1) and (3) have been satisfied. Now it suffices to
compute U (k)

01 , L\U (k)
11 , and L(k)

21 . Using the same techniques as before, one derives
the algorithm in Figure 3(d). Again, this algorithm overwrites the given non-
singular, n×n matrix, A, with its LU factorization.

The proof of the following theorem is similar to that of Theorem 3.1.
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THEOREM 3.4. The algorithm in Figure 3(d) overwrites a given non-singular,
n× n matrix, A, with its LU factorization.

3.6 Row-Column-Lazy Algorithm

This algorithm is often referred to as Crout’s methods in the literature
[Crout 1941].

We assume that only (1), (2), and (3) have been satisfied. This time, it suffices
to compute L\U (k)

11 , U (k)
12 , and L(k)

21 , yielding the algorithm in Figure 3(e). Again,
this algorithm overwrites a given non-singular, n × n matrix, A, with its LU
factorization.

The proof of the following theorem is similar to that of Theorem 3.1.

THEOREM 3.5. The algorithm in Figure 3(e) overwrites a given non-singular,
n× n matrix, A, with its LU factorization.

3.7 Eager Algorithm

This algorithm is often referred to as classical Gaussian elimination.
We proceed under the assumption that (1), (2), and (3) have been satisfied,

and as much of (4) as possible has been computed, without completing the com-
putation of any part of LBR and UBR . Repartition A, L, U , and Âk conformally
as in (6). Notice, our assumption is that Âk holds(

L\U (k)
TL U (k)

TR

L(k)
BL A(k)

BR − L(k)
BLU (k)

TR

)
=

 L\U (k)
00 U (k)

01 U (k)
02

L(k)
10 A(k)

11 − L(k)
10 U (k)

01 A12 − L(k)
10 U (k)

02

L(k)
20 A(k)

21 − L(k)
20 U (k)

01 A(k)
22 − L(k)

20 U (k)
02


The desired contents of Âk+b are given by(

L\U (k+b)
TL U (k+b)

TR

L(k+b)
BL A(k+b)

BR − L(k+b)
BL U (k+b)

TR

)

=

 L\U (k)
00 U (k)

01 U (k)
02

L(k)
10 L\U (k)

11 U (k)
12

L(k)
20 L(k)

21 A(k)
22 − L(k)

20 U (k)
02 − L(k)

21 U (k)
12


Thus, it suffices to compute L\U (k)

11 , L(k)
21 , U (k)

12 , and to update Â(k)
22 . Recalling the

equalities in (7) we find

(1) To compute L(k)
11 and U (k)

11 we factor Â(k)
11 which already contains A(k)

11 −
L(k)

10 U (k)
01 . The result can overwrite Â(k)

11 .

(2) To compute U (k)
12 we update Â(k)

12 which already contains A(k)
12 − L(k)

10 U (k)
02 by

solving L(k)
11 U (k)

12 = Â(k)
12 , overwriting the original Â(k)

12 .

(3) To compute L(k)
21 we update A(k)

21 which already contains A(k)
21 − L(k)

20 U (k)
01 by

solving L(k)
21 U (k)

11 = Â(k)
21 , overwriting the original Â(k)

21 .

(4) We then update Â(k)
22 which already contains A(k)

22 − L(k)
20 U (k)

02 with Â(k)
22 −

L(k)
21 U (k)

12 , overwriting the original Â(k)
22 .
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The resulting algorithm is given in Figure 3(a). Notice that this algorithm is
the blocked equivalent to the algorithm derived in Section 3.1.

The proof of the following theorem is similar to that of Theorem 3.1.

THEOREM 3.6. The algorithm in Figure 3(a) overwrites a given non-singular,
n× n matrix, A, with its LU factorization.

4. A RECIPE FOR DERIVING ALGORITHMS

The derivations of the different algorithmic variants of LU factorization, de-
tailed above, were extremely systematic. The following recipe was used:

(1) State the operation to be performed.
(2) Partition the operands. Notice that some justification is needed for the par-

ticular way in which they are partitioned. For LU factorization, this has to
do with the fact that blocks of zeroes must be isolated in L and U , since
they are triangular matrices.

(3) Multiply out all matrix products corresponding to this partitioning.
(4) Equate the submatrix relations that result from the partitioning of Step 3.

These define computations that the algorithm must perform in order to
maintain correctness.

(5) Pick a loop-invariant from the set of possible loop-invariants that satisfy
the equations given in Step 4. Notice that this loop-invariant plays the role
of an induction hypothesis.

(6) From that loop-invariant, derive the steps required to maintain the loop-
invariant while moving the algorithm forward in the desired direction. This
requires the following substeps:

(a) Repartition so as to expose the boundaries after they are moved.
(b) Indicate the current contents for the repartitioned matrices.
(c) Indicate the desired contents for the repartitioned matrices such that

the loop-invariant is maintained.
(d) Determine the computations required to transform (update) the con-

tents indicated in 6b to those indicated in 6c, (Naturally, it must be
verified that these computations are possible).

(7) Update the partitioning of the matrices.
(8) Continue until the partitioning yields the null matrix for the “BR”

submatrix.
(9) Classify the algorithm. We have developed a systematic way of classifying

the derived algorithms based upon the nature of the inductive step. While
we used this classification in the labeling of the algorithms in the previous
section, we will not go into further detail here.

A more complete recipe for a broader class of linear algebra operations can be
found in Gunnels and van de Geijn [2001a].

We again point out that the recipe implicitly provides a proof of correct-
ness for the algorithm, since Steps 5–6d emulate the proof by mathematical

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

18



440 • J. A. Gunnels et al.

Fig. 4. Partitioning of matrix A with all dimensions annotated when A00 = ATL is ( j −1)× ( j −1).

induction. Further, the technique employed for deriving these variants of
LU factorization generalizes to other factorization algorithms, for example,
Cholesky and QR.

5. ENCODING THE ALGORITHM IN C

In this section we briefly discuss how dense linear algebra algorithms, as pre-
sented in Figures 1–3, can be translated into code. We first show a more tra-
ditional approach, as it appears in popular packages like LAPACK. Next, we
present an alternative framework that allows implementation at a higher level
of abstraction that mirrors how we naturally present the algorithms. This sec-
ond approach has been successfully used in PLAPACK; our FLAME framework
represents a refinement of this methodology.

5.1 Classic Implementation with the BLAS

Let us consider the blocked eager algorithm for the LU factorization presented
in Figure 3(a). This algorithm requires an LU factorization of a small ma-
trix, A11← L\U11=LU fact.(A11), triangular solves with multiple right-hand-
sides to update A12←U12= L−1

11 A12 and A21← L21= A21U−1
11 , and a matrix-

matrix multiply to update A22← A22− L21U12. The triangular solves and
matrix-matrix multiply are part of the Basic Linear Algebra Subprograms
(BLAS) (calls to the routines DTRSM and DGEMM, respectively). To understand
this code, it helps to consider the partitioning of the matrix for a typical
loop index j , as illustrated in Figure 4: A11 is B by B and starts at element
A(J,J), A21 is N - (J - 1) - B by B and starts at element A(J + B,J) , A12 is B
by N - (J - 1) - B and starts at element A(J,J + B), and A22 is N - (J - 1) - B by
N - (J - 1) - B and starts at element A(J + B,J + B). The resultant code is given in
Figure 5.

Given this picture, it is relatively easy to determine all of the parameters
that must be passed to the appropriate BLAS routines.

5.2 The Algorithm is the Code

We would argue that it is relatively easy to generate the code in Figure 5 given
the algorithm in Figure 3(a) and the picture in Figure 4. However, the transla-
tion of the algorithm to the code is made tedious and error-prone by the fact that
one has to think very carefully about indices and matrix dimensions. While this
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Fig. 5. Fortran implementation of blocked eager LU factorization algorithm using the BLAS. (Find
the bug without referring to Fig. 4 or the text!).

is not much of a problem when implementing just one algorithm, real difficul-
ties may arise when implementing a number of possible algorithmic variants
for a given operation, or, in the case of a library such as LAPACK, implementing
even a single such variant of each of a large number of operations. One becomes
even more acutely aware of these issues when distributed-memory architec-
tures enter the picture, as in ScaLAPACK.

In an effort to make the code look like the algorithms given in Figure 3, while
simultaneously accounting for the constraints imposed by C and Fortran, we
have developed FLAME. The algorithmic and code skeletons shared by the five
variants for the LU factorization, developed earlier in this paper, are given
in Figures 6 and 7, respectively. To understand the code, it suffices to realize
that A is being passed to the routine as a data structure, A, that describes all
attributes of this matrix, such as dimensions and method of storage. Inquiry
routines like FLA Obj length are used to extract information, in this case the
row dimension of the matrix. Finally, ATL, A00, etc. are simply references into
the original array described by A.

If one is familiar with the coding conventions used to name the BLAS kernels,
it is clear that the following code segments, when entered in the appropriate
place (lines 22–34) in the code in Figure 7, implement the different variants of
the LU factorization:
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Fig. 6. Algorithm skeleton for LU factorization without pivoting.

Lazy algorithm
23 FLA Trsm(FLA RIGHT, FLA UPPER TRIANGULAR, FLA NO TRANSPOSE, FLA NONUNIT DIAG,

24 ONE, A00, A10);

25 FLA Trsm(FLA LEFT, FLA LOWER TRIANGULAR, FLA NO TRANSPOSE, FLA UNIT DIAG,

26 ONE, A00, A01);

27 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A10, A01, ONE, A11);

28 FLA LU nopivot level2(A11);

Row-lazy algorithm
23 FLA Trsm(FLA RIGHT, FLA UPPER TRIANGULAR, FLA NO TRANSPOSE, FLA NONUNIT DIAG,

24 ONE, A00, A10);

25 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A10, A01, ONE, A11);

26 FLA LU nopivot level2(A11);

27 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A10, A02, ONE, A12);

28 FLA Trsm(FLA LEFT, FLA LOWER TRIANGULAR, FLA NO TRANSPOSE, FLA UNIT DIAG,

29 ONE, A11, A12);

Column-lazy algorithm
23 FLA Trsm(FLA LEFT, FLA LOWER TRIANGULAR, FLA NO TRANSPOSE, FLA UNIT DIAG,

24 ONE, A00, A01);

25 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A10, A01, ONE, A11);

26 FLA LU nopivot level2(A11);

27 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A20, A01, ONE, A21);

28 FLA Trsm(FLA RIGHT, FLA UPPER TRIANGULAR, FLA NO TRANSPOSE, FLA NONUNIT DIAG,

29 ONE, A11, A21);

Row-column-lazy algorithm
23 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A10, A01, ONE, A11);

24 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A20, A01, ONE, A21);

25 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A10, A02, ONE, A12);

26 FLA LU nopivot level2(A11);

27 FLA Trsm(FLA LEFT, FLA LOWER TRIANGULAR, FLA NO TRANSPOSE, FLA UNIT DIAG,

28 ONE, A11, A12);
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Fig. 7. A code skeleton for the C implementation of many of the blocked LU factorization algo-
rithms using FLAME.

27 FLA Trsm(FLA RIGHT, FLA UPPER TRIANGULAR, FLA NO TRANSPOSE, FLA NONUNIT DIAG,

30 ONE, A11, A21);

Eager algorithm
23 FLA LU nopivot level2( A11 );

24 FLA Trsm(FLA LEFT, FLA LOWER TRIANGULAR, FLA NO TRANSPOSE, FLA UNIT DIAG,

25 ONE, A11, A12);

26 FLA Trsm(FLA RIGHT, FLA UPPER TRIANGULAR, FLA NO TRANSPOSE, FLA NONUNIT DIAG,

27 ONE, A11, A21);

28 FLA Gemm(FLA NO TRANSPOSE, FLA NO TRANSPOSE, MINUS ONE, A21, A12, ONE, A22);

5.3 Positive Features of the FLAME Approach

One can argue that determining which of the two methods for coding the al-
gorithms might be deemed “superior”, is simply a matter of taste. However, to
support our case, we list the following questions and/or observations:

—What if a bug were introduced into the code in Figure 5? Indeed, in that
code we “accidentally” replaced N - (J - 1) - B with N - J - B. This kind of bug
is extremely hard to track down since the only clue is that the code produces
the wrong answer or causes a segmentation fault. A similar bug is not as
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easily introduced into the code implemented using FLAME since it does not
contain indices. Furthermore, with this approach it is easy to perform a run-
time check in order to determine if the dimensions of the different matrix
operands passed to a routine, are consistent.

—When coding all variants of the LU factorization one inherently has to derive
all algorithms, leading to descriptions like those given in Figure 3. However,
translating those to code like that given in Figure 5 would require several
careful considerations of the picture in Figure 4 . Moreover, due to the detailed
and extensive indexing involved in that approach, considerable testing would
be required before one could declare the code to be bug-free. By contrast, given
the algorithms, it has been argued that it is straightforward to generate
all variants using FLAME. As has already been mentioned, since the code
closely resembles the algorithm, one can be much more confident about its
correctness before the code is tested.

—What if we wished to parallelize the given code? Notice that parallelizing
a small subset of the functionality of LAPACK as part of the ScaLAPACK
project has taken considerable effort. The FLAME code can be transformed
into PLAPACK code essentially by replacing FLA by PLA . This highlights
the one-to-one correspondence between FLAME and PLAPACK codes; this
correspondence is found to be lacking when one considers LAPACK and
ScaLAPACK codes in the same light.

—What if we needed a parallel out-of-core version of the code? In principle, the
FLAME code can be transformed into Parallel Out-of-Core Linear Algebra
PACKage (POOCLAPACK) code by replacing FLA by POOCLA .

5.4 But What About Fortran?

Again using MPI as an inspiration, a Fortran interface is available for FLAME.
Examples of Fortran code are available on the FLAME web page, given at the
end of this paper.

5.5 Proving the Implementation Correct

In Section 3.3 we proved correctness of the lazy algorithm and in subsequent
subsections of Section 3 asserted that the correctness of the other algorithms
can be established in much the same way. If the routines called by the described
FLAME code correctly implement the operations implied by their names, then it
can be argued that the code itself is correct. Indeed, debugging is not necessary.

There are a number of reasons that we feel comfortable in making such a
bold assertion. The justifications for the statement rely upon features of both
our systematic algorithmic design methodology, the library supporting the im-
plementation of the algorithm, and the relationship between the two.

The manner in which we systematically generate algorithms relies, primar-
ily, on two design pillars, which together make up FLAME. The first is that we
have limited the class of problems under consideration to those in linear alge-
bra. The second is that our algorithms consistently build upon the Fundamen-
tal Invariance theorem. This restriction leads to the development of algorithms
whose correctness can be established.

ACM Transactions on Mathematical Software, Vol. 27, No. 4, December 2001.

23



FLAME: Formal Linear Algebra Methods Environment • 445

FLAME is designed to express these systematically generated algorithms in
a manner that is both concise and unambiguous. Therefore, the FLAME code
can be made to mirror the algorithms thus produced. This leads one to conclude
that the two most common sources of error are eliminated. The translation from
algorithm to code can be easily automated because of the one-to-one relation
between the two, so that a very common mistake can be obviated, namely the
code not reflecting the algorithm (when one considers a textual version of the
algorithm as it might be presented in a textbook). A second common mistake
made with such codes, indexing errors, is eliminated from the top-level ex-
pression of FLAME code because FLAME does not do explicit indexing. To be
certain, there are a few support routines within FLAME that perform indexing.
However, these routines are so small, that they are amenable to both standard
proof-of-correctness techniques and to truly “exhaustive” testing. In a sense,
these routines are analogous to FLAME’s “assembly language” and their relia-
bility is comparable to that of a robust compiler.

Because our method of derivation leads to a class of algorithms whose proof
of correctness is straightforward and since the language we use to express
the produced algorithms should not lead to any (unintentional) mistranslation
from algorithm to code, we feel that the coupled system leads to programs whose
correctness follows from a mathematical derivation of the algorithm.

6. LU FACTORIZATION WITH PARTIAL PIVOTING

We now demonstrate that the techniques that we introduced using the example
of LU factorization without pivoting, are also applicable to the case of LU factor-
ization with partial pivoting. The latter algorithm is the one commonly imple-
mented, but involves complications that have traditionally made its derivation
coding a more intricate and time-consuming procedure.

6.1 Notation

Let Im denote the m×m identity matrix and P̃m(i) be the m×m permutation
matrix such that P̃m(i)A only swaps the first and ith rows of A. Here, we consider
an m×n matrix, A, where m≥n, and define

Pm(p0, p1, . . . , pk−1) =
(

Ik−1 0

0 P̃m−k+1(pk−1)

)
· · ·
(

I1 0

0 P̃m−1(p1)

)
P̃m(p0)

and Pm;i: j = Pm(pi, . . . , pj ). Here pk equals the index, relative to the top row
of the currently active matrix (ABR in previous discussions), of the row that
is swapped at the kth step of LU factorization with partial pivoting. Thus
Pm(p0, p1, . . . , pk−1)A equals the matrix that results after swapping rows 0 and
p0 followed by swapping rows 1 and p1 + 1, and so forth, in that order. Also,
Pm;i: j A equals the matrix that results after swapping rows i and pi followed by
i + 1 and pi+1 + 1, and so forth, in that order.

It is well-known that LU factorization with partial pivoting produces the LU
factorization

Pm;0:n−1 A= LU (8)
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6.2 Derivation of the Invariants

Now, let us examine the possible contents of matrix Ãk =PA, where
P = Pm;0:k−1, the matrix as it has been overwritten partially into the LU factor-
ization with partial pivoting. Equation 8 is equivalent to

(
Ik 0
0 Pm−k;k:n−1

)
Ãk = LU

or

Ãk =
(

Ik 0
0 QT

)
LU

where

Q = Pm−k;k:n−1

Partitioning

Ãk =
(

Ã(k)
TL Ã(k)

TR

Ã(k)
BL Ã(k)

BR

)
, L =

(
L(k)

TL 0

L(k)
BL L(k)

BR

)
, and U =

(
U (k)

TL U (k)
TR

0 U (k)
BR

)
,

we find that(
Ã(k)

TL Ã(k)
TR

Ã(k)
BL Ã(k)

BR

)
=
(

Ik 0
0 QT

)(
L(k)

TL 0

L(k)
BL L(k)

BR

)(
U (k)

TL U (k)
TR

0 U (k)
BR

)

=
(

L(k)
TLU (k)

TL L(k)
TLU (k)

TR

L̃(k)
BLU (k)

TL L̃(k)
BLU (k)

TR + L̃(k)
BRU (k)

BR

)

where LBL= QL̃(k)
BL and LBR = QL̃(k)

BR . Thus, for 0≤ k<n, the equalities in
equations 1–4 must again hold, except that L(k)

BL, L(k)
BR , and A(k), are now re-

placed by L̃(k)
BL, L̃(k)

BR , and Ã(k), respectively. We mention, as before, that unac-
cented submatrices of L and U denote final values. As for LU factorization
without pivoting, different conditions on the contents of Âk logically dictate dif-
ferent variants for computing the LU factorization with partial pivoting. These
are given in Table 1, with the provisos mentioned above. Notice that in addition,
a necessary condition is that p0, . . . , pk−1 have been computed.

The second and third conditions listed in Table 1 are impractical since the
computation of p0, . . . , pk−1 requires that the entries of L(k)

BL be computed. By
taking entries 4 through 6, listed in Table 1, together with the requirement
that p0, . . . , pk−1 have been computed, and using them as part of predicate
P , three different variants for LU factorization with partial pivoting can be
derived. These conditions again lead to column-lazy (left-looking), row-column-
lazy (Crout), and eager (right-looking) variants, respectively, this time with
partial pivoting incorporated.
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6.3 Derivation of the Eager Algorithm

Let us concentrate on the eager algorithm. Notice, our assumption is that Âk
holds

Âk =
(

L\U (k)
TL U (k)

TR

L̃(k)
BL Â(k)

BR

)
=

 L\U (k)
00 U (k)

01 U (k)
02

L̃(k)
10 Ã(k)

11 − L̃(k)
10 U (k)

01 Ã(k)
12 − L̃(k)

10 U (k)
02

L̃(k)
20 Ã(k)

21 − L̃ (k)
20 U (k)

01 Ã(k)
22 − L̃(k)

20 U (k)
02

 .
The desired contents of Âk+b are given by

Âk+b =
(

L\U (k+b)
TL U (k+b)

TR

L̄(k+b)
BL Â(k+b)

BR

)

=

 L\U (k)
00 U (k)

01 U (k)
02

L(k)
10 L\U (k)

11 U (k)
12

L̄(k)
20 L̄(k)

21 Ā(k)
22 − L̄(k)

20 U (k)
02 − L̄(k)

21 U (k)
12


where, Q1 = Pm−k;k:k+b−1, Ā(k)

BR = Q1 Ã(k)
BR , and ( L̄(k)

10

L̄(k)
20

)← Q1( L̃(k)
10

L̃(k)
20

). Note that
L\U (k)

11 and L(k)
21 are defined by equation 9, below, and L(k)

10 = L̄(k)
10 .

With some effort it can be verified that the following updates have the desired
effect:

—Compute Q1, given by {pk , . . . , pk+b−1}, L(k)
11 , U (k)

11 , and L̄(k)
21 such that(

Â(k)
11

Â(k)
21

)
=
(

L(k)
11

L̄(k)
21

)
U (k)

11 (9)

overwriting (
Â(k)

11

Â(k)
21

)
←
(

L\U (k)
11

L̄(k)
21

)
—Permute and overwrite: ( Â(k)

10

Â(k)
20

)← Q1( L̃(k)
10

L̃(k)
20

).

—Permute and overwrite: ( Â(k)
12

Â(k)
22

)← Q1( Â(k)
12

Â(k)
22

).

—Update Â(k)
12 ← U (k)

12 = L−1(k)
11 Â(k)

12 and Â(k)
22 ← Â(k)

22 − L̄(k)
21 U (k)

12 .

In Figure 8 we show how an eager blocked LU factorization with partial
pivoting can be expressed in our algorithmic format. In this algorithm, the op-
eration LUpiv(B) returns the result of an LU factorization with partial pivoting
of matrix B, as well as the pivot indices. In that figure, p1 is a vector of pivot
indices and P (p1) takes the place of Pm−k;k:k+b−1.

An unblocked algorithm results when the block size, b, is always chosen to
equal unity. In this case, the operation[

A(1)
BR , p1

]← [(
L\U11

L21

)
, p1

]
= LUpiv

(
A(1)

BR

)
(10)

is replaced by a determination of the index of the element in vector A(1)
BR , followed

by a swap of that element with the first element of that vector, and finally a
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Fig. 8. Eager blocked LU factorization with partial pivoting.

scaling of the elements of A21 by 1/A11. (Notice that now A21 is a vector and
A11 is a scalar). In other words, the operation in equation 10 is replaced by

Choose p1 s.t.
∣∣[A(1)

BR

]
p1

∣∣ = maxi
∣∣[A(1)

BR

]
i

∣∣
Swap

[
A(1)

BR

]
1 ↔

[
A(1)

BR

]
p1

A21 ← L21 = A21/A11

Here [x]i indicates the ith element of vector x. It is important to realize that
multiple partitionings of the same matrix reference the same data. Thus after
swapping the elements of A(1)

BR , A11 contains what was [A(1)
BR]p1 before the swap.

6.4 Implementation

A FLAME implementation of the blocked algorithm in Figure 8 is given in
Figure 9. Notice that a FLAME implementation of the unblocked algorithm
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Fig. 9. FLAME recursive LU factorization with partial pivoting.
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would look similar. Let us assume that the latter is correctly implemented in
the FLAME routine

void FLA LU level2(FLA ObjA, FLA Obj ipiv)

Now, the correctness of the algorithm in Figure 8 depends only on the correct-
ness of the LU factorization with partial pivoting of A(1)

BR and the other operation.
Thus, there is the option of implementing the LU factorization of the panel A(1)

BR
as a recursive call to the given routine (line 31). Only when the panel becomes
very small is a routine that uses level-2 BLAS (matrix-vector computations)
called (line 30).

Notice that the implementation is very flexible in that it is neither purely
recursive nor purely iterative. By playing with the algorithmic block size b
(nb alg), one can attain a purely recursive algorithm (when b = n/2 for an
m×n input matrix A), purely iterative (by always calling FLA LU level2 for the
subproblem) or an iterative algorithm that recursively calls itself. An induction
on the level of the recursion would establish the correctness of the given code.
A more detailed discussion on the correctness of recursively formulated linear
algebra algorithms can be found in Gustavson and Jonsson [2000] and Elmroth
and Gustavson [2000].

7. EXPERIMENTS

In this section, we report the results of three different experiments. The first
measures the impact of the FLAME approach on productivity. The second
experiment demonstrates that FLAME makes the implementation of high-
performance linear algebra algorithms more accessible to novices. In the final
experiment we demonstrate that the attained performance is superb.

7.1 Productivity Experiment

As an experiment to measure, albeit roughly, the degree to which FLAME re-
duces code development time, one of the authors implemented all level-3 BLAS
operations given in Figure 10 in terms of matrix-matrix multiplication. This
exercise can easily require months to complete, even by a programmer who is
experienced in the implementation of such operations. This includes time spent
on extensive testing of the correctness of the implementations. The entire li-
brary of operations was completed using FLAME in a matter of about ten hours,
including testing. As of this writing, we have used the resulting library for about
nine months without encountering a bug in the implementations. The result-
ing code is included on the FLAME webpage given at the end of this paper. The
prototype implementation of FLAME required to support the implementations
of the level-3 BLAS took approximately one man-week.

It should be noted that the number of lines of code required for the imple-
mentation is not necessarily less than that required for a more conventional
implementation. This is already evident when considering Figures 5 and 7.
However, the effort is greatly reduced by the fact that the subroutines for the
different operations use similar code skeletons. Moreover, we believe that the
resulting code is substantially more readable.
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Fig. 10. Level-3 BLAS operations implemented as part of the productivity experiment.

7.2 Accessibility Experiment

It is our claim that the FLAME approach to the derivation and implementation
of linear algebra algorithms greatly simplifies the development of linear alge-
bra libraries. To demonstrate this, we handed a recipe for deriving algorithms,
similar to the one in Section 4, to a class of computer science undergraduates
at UT-Austin. These students had a limited background in linear algebra and
essentially no background in high-performance computing. Using the FLAME
approach they implemented blocked algorithms for linear algebra operations
that are part of the level-3 BLAS. The results of this experiment can be found
in Gunnels and van de Geijn [2001a].

7.3 Performance Experiment

To illustrate that correctness, simplicity, and modularity does not necessarily
come at the expense of performance, we measured the performance of the LU
factorization with pivoting given in Figure 9 followed by forward and backward
substitution, that is, essentially the LINPACK benchmark. For comparison,
we also measured the performance of the equivalent operations provided by
ATLAS R3.2 [Whaley and Dongarra 1998].

Some details: Performance was measured on an Intel (R) Pentium (R) III
processor-based laptop with a 256K L2 cache running the Linux (Red Hat 6.2)
operating system. All computations were performed in 64-bit (double precision)
arithmetic. For both implementations the same compiler options were used.

In Figure 11 we report performance for four different implementations, in-
dicated by the curves marked.

ATLAS:. This curve reports performance for the LU factorization provided by
ATLAS R3.2, using the BLAS provided by ATLAS R3.2.

ATL-FLAME:. This curve reports the performance of our LU factorization coded
using FLAME with BLAS provided by ATLAS R3.2. The outer-most block size
used for the LU factorization is 160 for these measurements. (Notice that
multiples of 40 are optimal for the ATLAS matrix-matrix multiply on this
architecture).

ITX-FLAME:. Same as the previous implementation, except that we provided
our own optimized matrix-matrix multiply (ITXGEMM). Details of this opti-
mization are the subject of another paper [Gunnels et al. 2001]. This time the
outer-most block size was 128. (Notice that multiples of 64 are optimal for the
ITXGEMM matrix-matrix multiplication routine on this architecture).
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Fig. 11. Performance of LU factorization with pivoting followed by forward and backward
substitution.

ITX-FLAME-opt:. Same as the ITX-FLAME implementation, except that we
optimized the level-2 BLAS based LU factorization of an intermediate panel,
as well as the pivot routine, by not using the high-level FLAME approach for
those operations. For these routines we call DSCAL, DGER, and DSWAP directly.

For all implementations, the forward and backward substitutions are provided
by the ATLAS R3.2 DTRSV routine.

Notice that for small matrices, the performance of ATL-FLAME is somewhat
inferior to that of ATLAS, because of the overhead for manipulating the objects
that encode the information about the matrices. This is due to the fact that
this manipulation of objects introduces an O(n) overhead which is amortized
over a computational cost that is O(n3). When the level-2 BLAS based LU
factorization is coded without this overhead, the performance is comparable for
small matrices. The performance boost witnessed when the ITXGEMM matrix-
matrix multiply kernel is used is entirely due to the superior performance of
that kernel, relative to the ATLAS DGEMM implementation.

It is important to realize that the performance difference between the imple-
mentation offered as part of ATLAS R3.2 and our own implementation is not
the point of this performance comparison or, more generally, of this paper. With
some effort, either implementation can be improved to match the performance
of the other. Our primary point is that FLAME enables one to expend markedly
less time to implement these algorithms in a provably correct manner. At
the same time, the resulting implementation attains performance comparable
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to that of, what are widely considered to be, standard high-performance
implementations.

8. FUTURE DIRECTIONS

Many aspects of the approach we have described are extremely systematic—the
generation of the loop-invariants, the derivation of the algorithm, as well as the
translation to code. Not discussed, is the fact that the analysis of the run-time of
the resulting algorithm on sequential or, for that matter, parallel, architectures,
is equally systematic. We are pursuing a project that exploits this systematic
approach in order to automatically generate entire (parallel) linear algebra
libraries as well as run-time estimates for the generated subroutines [Gunnels
2001]. The goal is to create a mechanism that will automatically choose between
different algorithms based on architectural and/or problem parameters.

A considerably less ambitious project, already nearing completion, allows the
user to program in a language-independent manner (i.e. by writing an ASCII
version of the algorithms presented in this paper). Since it is our central the-
sis that the level of abstraction presented in this paper is the correct one, it
seems an unnecessary onus to force the user to become familiar with the pa-
rameters and constraints of the underlying library. Obviously, the library must
provide the necessary functionality, but the applications programmer should
be concerned with nothing beyond the facilities provided by the library. Thus,
the programmer should be allowed to express their algorithms at a higher level
of abstraction, for example in terms of equations that can be automatically
translated to (library) function calls.

9. CONCLUSION

A colleague of ours, Dr. Timothy Mattson of Intel, recently made the following
observation: “Literature professors read literature. Computer Science profes-
sors should, at least occasionally, read code”. When one does this, certain pat-
terns emerge and one tends to become more readily able to distinguish good
code from bad.

In this paper, we have illustrated that a more formal approach to the design
of matrix algorithms, combined with the right level of abstraction for coding,
leads to a software architecture for linear algebra libraries that is dramatically
different from the one that resulted from the more traditional approaches used
by packages such as LINPACK, LAPACK, and ScaLAPACK. The approach is
such that the library developer is forced to give careful attention to the deriva-
tion of the algorithm. The benefit is that the code produced is a direct translation
of the resulting algorithm, greatly reducing opportunities for the introduction
of common bugs related to indexing. Our experience shows that there is no sig-
nificant loss of performance. Indeed, since more variants for a given operation
can now be more easily developed, we often observe a performance benefit from
the approach.

Throughout the paper we concentrate on the correctness of the algorithm.
This is not the same as proving that the algorithm is numerically stable.
While we do not claim that our methodology will automatically generate stable
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algorithms, we do claim that the skeleton used to express the algorithm, and to
implement the code, can be used to implement variants of several algorithms.
These variants include those whose numerical stability properties are known.
The methodology and framework also facilitate the discovery and implementa-
tion of new algorithms for which numerical properties can then be subsequently
established and, thus, to select the variant whose properties most closely match
the requirements of the application under consideration.
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In this paper we apply a formal approach for the derivation of dense linear algebra algorithms to
the triangular Sylvester equation. The result is a large family of provably correct algorithms. By
using a coding style that reflects the algorithms as they are naturally presented, the correctness
of the algorithms carries through to the correctness of the implementations. Analytically moti-
vated heuristics are used to subsequently choose members from the family that can be expected to
yield high performance. Finally, we report performance on the Intel (R) Pentium (R) III processor
that is competitive with that of recursive algorithms reported previously in the literature for this
operation.
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1. INTRODUCTION

In a recent paper the Formal Linear Algebra Methods Environment (FLAME)
was introduced [Gunnels et al. 2001a]. FLAME is both a systematic approach
for deriving (dense) linear algebra algorithms and a library for the implemen-
tation of the resulting algorithms. The rationale is that by formally deriving
algorithms, correctness can be asserted. Moreover, by providing a framework for
coding that mirrors the derived algorithms, the opportunity for the introduction
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of coding errors is greatly reduced and thus the correctness of the algorithms
carries through to the implementations. In that paper the simple example of
LU factorization was used to illustrate the basic techniques.

In this paper, we demonstrate the versatility of FLAME by concentrating on
a more complex linear algebra operation, the solution of the Sylvester equation

AX+ XB = C, (1)

where A is an m×m matrix, B is n×n, C and X are m×n, and X is the sought-
after solution. Let 3(A) = {αi }mi=1 and 3(B) = {β j }nj=1 denote, respectively,
the eigenspectra of A and B; then (1) has a (unique) solution if and only if
αi + β j 6= 0 for all i = 1, . . . , m and j = 1, . . . , n. For further details on the
existence of solutions of the Sylvester equation and numerical solvers see, for
example, Bartels and Stewart [1972], Golub et al. [1979], and Hammarling
[1982].

Sylvester equations have numerous applications in control theory, signal
processing, filtering, image restoration, the decoupling of ordinary and partial
differential equations, and block-diagonalization of matrices; see, for example,
Aliev and Larin [1998], Calvetti and Reichel [1996], Golub and Van Loan [1996],
and Sima [1996]. Also note that B = AT yields the Lyapunov equation such that
everything derived here can be used (and simplified) for this type of equations,
playing a vital role in many areas of computer-aided control system design.

In particular, we focus on the triangular case of Equation (1), where both
A and B are (upper) triangular matrices. The solution of the triangular case
arises, for example, as an intermediate subproblem in the Sylvester equation
solver described in Bartels and Stewart [1972]. The cost of solving the triangular
Sylvester equation of dimension m× n, using a traditional serial (nonblocked)
algorithm, is m2n+mn2 floating-point operations [Golub and Van Loan 1996].

While the solution of the triangular Sylvester equation is a well-studied
problem, this paper presents a number of contributions:

—an illustration of the application of FLAME to a problem arising in control
theory;

—the derivation of a large family of provably correct algorithms which includes,
as a small subset, algorithms that are closely related to known traditional
methods as well as recently proposed recursive algorithms;

—an analysis that provides heuristics for composing members of the family to
yield high performance;

—a demonstration that high performance can be attained using the techniques
here described.

Altogether, dozens of new high-performance algorithms and implementations
are given.

While this paper is written to be self-contained, it is highly recommended
that the reader consult the already mentioned earlier paper on FLAME as well
as a recent paper that gives theoretical insight into high-performance matrix
multiplication algorithms [Gunnels et al. 2001b]. Also, since the original sub-
mission of this paper we have refined the formal derivation approach. This more
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refined approach is described in detail in Bientinesi et al. [2002]. In rewriting
this paper, we have adopted the notation and steps of this latest paper.

This paper is structured as follows: In Section 2, we review traditional algo-
rithms for the solution of the triangular Sylvester equation. A worksheet for the
systematic derivation of linear algebra algorithms is discussed in Section 3. We
use this worksheet to derive algorithms that are closely related to traditional
algorithms as well as a more general family of algorithms in Section 4. In Sec-
tion 5 we describe insights that we use to identify candidates from the family
that are likely to yield high performance. Performance results on an Intel (R)
Pentium (R) III processor are given in Section 6. A discussion of how the algo-
rithms can be made practical is given in Section 7. A very brief discussion of
experimental evidence of the numerical stability of the derived algorithms is
given in Section 8. Concluding remarks follow in Section 9.

2. TRADITIONAL SOLVERS FOR THE TRIANGULAR SYLVESTER EQUATION

Blocked algorithms usually obtain a higher performance in modern computers
by rearranging the computations as possible in terms of matrix multiplica-
tion [Dongarra et al. 1990]. The Linear Algebra Package (LAPACK) [Anderson
et al. 1995] is a library that illustrates the benefits of reformulating algo-
rithms to be rich in matrix-matrix products. Some of the latest research on
high-performance implementation of matrix multiplication is embodied in the
packages ATLAS [Whaley and Dongarrra 1998], PHIPAC [Bilmes et al. 1997], and
ITXGEMM [Gunnels et al. 2001b].

In particular, blocked algorithms for solving the triangular Sylvester equa-
tion can easily be derived from the serial algorithms and are usually composed
of two nested loops which iterate over blocks of columns and rows of the solution
matrix. For each iteration of the inner loop a new block of the solution is ob-
tained. Depending on the algorithm, some updates may be needed before a new
block of the solution is obtained (leading to a lazy algorithm, which postpones
much of the work) or after it is computed (an eager algorithm in such case).

As an example, we next present a traditional row-lazy/column-eager blocked
triangular Sylvester equation solver. Assume A is partitioned into bm × bm
blocks, Ai, j , i, j = 1, . . . , m/bm, and B is partitioned into bn × bn blocks, Bi, j ,
i, j = 1, . . . , n/bn. For simplicity, hereafter, we assume that m and n are in-
teger multiples of bm and bn, respectively. These partitions induce conformal
partitions of X and C into bm × bn blocks. Setting both bm and bn to 1 leads to
element-wise algorithms, while setting only one of them produces row-oriented
or column-oriented variants. The algorithm is stated in Figure 1, where we
borrow the colon notation from MATLAB [The MathWorks, Inc. 1993]. This algo-
rithm can easily be modified to overwrite C with the solution of the equation.
The Sylvester equation arising at each iteration of the inner loop is usually
solved using a nonblocked, row-oriented or column-oriented version of the al-
gorithm. Notice that just before a new block of the solution is obtained, the
corresponding block-row of C is updated with respect to the previous blocks of
X in the same block-column, leading to a row-lazy updating scheme. On the
other hand, when this new block is computed, it is used to update the remaining
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Fig. 1. Row-lazy/column-eager blocked triangular Sylvester equation solver.

Fig. 2. Worksheet for developing linear algebra algorithms.

blocks of C in the same block-row in a column-eager updating scheme. Three
more variants of the algorithm are obtained by rearranging the updates to be
row-lazy/eager and column-lazy/eager [Kågström and Poromaa 1992].

Recursive variants of these solvers have been recently developed in Jonsson
and Kågström [2001]. Briefly, a recursive algorithm employs the same algo-
rithm for solving the Sylvester equation in the inner loop, but uses a smaller
dimension of the block sizes bm and bn. The higher efficiency of these algo-
rithms is obtained by decoupling the dimensions of the blocks for the matrix
multiplications from those of the Sylvester equations. The goal is to perform as
much of the computation in terms of matrix multiplications as possible, while
maximizing the size of the matrices involved in these products.

3. A WORKSHEET FOR DERIVING LINEAR ALGEBRA ALGORITHMS

In Figure 2, we give a generic “worksheet” for deriving a large class of linear
algebra algorithms. Expressions in curly brackets denote predicates that de-
scribe the state of the various variables at the given point of the algorithm. For
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this paper, it suffices to realize that the statements between the assertions in
the curly brackets must be such that, at the indicated points in the algorithm,
those assertions hold.

The generic linear algebra operation is given by [D, E, F, . . .] :=
op(A, B, C, D, . . .). Notice that some operands may be both input and output
parameters. Constraints on these parameters, for example, those that describe
structure or original contents, are given by the predicate Ppre, the precondition.
The postcondition, Ppost, is the predicate that describes the desired state upon
completion of the algorithm.

We will require that the state given by the predicate Pinv, the loop-invariant,
be maintained at the top of the loop. Notice that Pinv must thus hold before the
loop is entered, it must hold at the end of the loop so it will again hold at the
top of the loop, and it will hold upon completion of the loop. This is indicated in
Figure 2 at the various points where Pinv occurs in the assertions.

The loop-guard, G, is the condition under which the program remains in the
loop. Thus, after the loop completes, ¬G must hold. If (Pinv ∧¬G)⇒ Ppost then
we can conclude that the loop computes the desired result.

Since the loop-invariant must hold before the loop commences, the initial-
ization, Step 4 in Figure 2, must have the property that starting in the state
Ppre, the initialization leaves us in a state where Pinv holds.

In order to make progress toward the condition under which the loop is
completed, we will see that regions of the operands to be used and/or updated
must be identified and added to regions that have already been updated in
a consistent manner. It is this identification of submatrices and shifting of
boundaries that occurs in Steps 5a and 5b in Figure 2.

The exposure of submatrices to be used and/or updated dictates the state
Qbefore before any updates have actually occurred. The update itself, SU , must
be such that the state Qafter holds. This state must be such that after the shifting
of the boundaries the loop-invariant again holds at the bottom of the loop.

In Section 4, we illustrate how the worksheet allows us to derive algorithms
for the solution of Equation (1).

4. DERIVATION OF ALGORITHMS FOR THE TRIANGULAR
SYLVESTER EQUATION

Let us use the notation C := X = Ä(A, B, C) to denote the operation that
overwrites matrix C with the solution of Equation (1). Let Ĉ denote the original
contents of C so that the precondition in Figure 2 becomes

C = Ĉ ∧ UpTriang(A) ∧ UpTriang(B)
∧ m(A) = n(A) = m(C) ∧ m(B) = n(B) = n(C) ;

here, UpTriang(Z ) returns true if Z is upper triangular, and m(Z ) and n(Z )
return, respectively, the row and column dimensions of Z . We now wish to
compute

C = X = Ä(A, B, Ĉ), (2)

the postcondition Ppost in Figure 2.
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Note: Throughout the rest of the paper, we will use the following notation:

Ĉ The original contents of matrix C
X The solution of (1)
C The current contents of C

First, we derive two block-row-oriented (with respect to matrix C) solvers
by partitioning only the first of the coefficient matrices, A. Analogous block-
column-oriented versions could be obtained by partitioning B instead of A.
Finally, we will investigate algorithms where both A and B are partitioned into
four quadrants.

4.1 Block-Row-Oriented Solvers

We start our derivation of block-row-oriented algorithms by partitioning matrix
A into four quadrants

A→
(

ATL ATR

ABL = 0 ABR

)
,

where ABR is a km × km block. The indices {T }, {B}, {L}, and {R} stand for top,
bottom, left, and right, respectively. Accordingly, we next apply a conformal
partition to C, Ĉ, and X by blocks of rows

C→
(

CT

CB

)
, Ĉ→

(
ĈT

ĈB

)
, and X →

(
X T

X B

)
,

where CB, ĈB, and X B are km × n blocks.
With these partitionings, Equation (1) can be rewritten as(

ATL ATR

0 ABR

)(
X T

X B

)
+
(

X T

X B

)
B =

(
ĈT

ĈB

)
.

Notice that the solution of this partitioned equation is given by(
X T

X B

)
= Ä

((
ATL ATR

0 ABR

)
, B,

(
ĈT

ĈB

))
(3)

=
(
Ä(ATL, B, ĈT − ATRÄ(ABR, B, ĈB))

Ä(ABR, B, ĈB)

)
. (4)

To avoid the recomputation of an intermediate result, X B = Ä(ABR, B, ĈB),
there are data dependencies which induce a strict order on the sequence of
operations: provided C originally contains Ĉ, first, CB := X B = Ä(ABR, B, CB)
is solved, then the update CT := CT − ATRCB is computed, and, finally, CT :=
X T = Ä(ATL, B, CT ) is solved.

While Equation (4) gives all computations necessary to compute the solution,
at an intermediate stage we would expect only some of these computations to
have been computed. It is this insight that allows us to identify feasible loop-
invariants, given in Table I. Notice that when any of these conditions is chosen
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Table I. Feasible Loop-Invariants for the Block-Row-Oriented Algorithms
to Solve the Triangular Sylvester Equation

Case Loop-invariant Resulting variant

R1

(
CT

CB

)
=
(

ĈT

Ä(ABR, B, ĈB)

)
Lazy

R2

(
CT

CB

)
=
(

ĈT − ATRÄ(ABR, B, ĈB)

Ä(ABR, B, ĈB)

)
Eager

as the loop-invariant, Pinv, the loop-guard G : m(CT ) > 0 has the property that
(Pinv ∧ ¬G)⇒ Ppost.

Now, the initialization (Step 4 in Figure 2)

A→
(

ATL ATR

0 ABR

)
, C→

(
CT

CB

)
, and Ĉ→

(
ĈT

ĈB

)
,

where ABR is 0× 0 and CB and ĈB have 0 rows, has the property that, starting
in a state where the precondition holds, it leaves the matrix C in a state where
Pinv is true.

Next, we must make progress toward making G false. In other words, we
must derive a body of the loop that allows the computation of C to proceed
forward (up) by bm rows while ensuring that the loop-invariant is satisfied
at the beginning of the next iteration. To derive these steps, we repartition
matrices A, C, and Ĉ as

(
ATL ATR

0 ABR

)
→
 A00 A01 A02

0 A11 A12

0 0 A22

 ,
(

CT

CB

)
→
 C0

C1

C2

 ,

(
ĈT

ĈB

)
→

 Ĉ0

Ĉ1

Ĉ2

 ,

where A11 is a bm × bm block and C1 and Ĉ1 have bm rows. The parameter
bm determines the granularity of our block-row-oriented algorithm. By setting
bm = 1 we obtain a non-blocked row-oriented algorithm.

The double lines in these partitionings indicate how far the computation has
progressed. The idea now is that progress is made by shifting various subma-
trices, from one side of the double lines to the other. Thus, at the bottom of the
loop, we will continue with

(
ATL ATR

0 ABR

)
←
 A00 A01 A02

0 A11 A12

0 0 A22

 ,
(

CT

CB

)
←
 C0

C1

C2

 ,

(
ĈT

ĈB

)
←
 Ĉ0

Ĉ1

Ĉ2

 .
4.1.1 Lazy Algorithm. If we wish to maintain loop-invariant R1,(

CT

CB

)
=
(

ĈT

Ä(ABR, B, ĈB)

)
,
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in terms of these repartitioned matrices, the current contents of C are given by

Qbefore :

 C0

C1

C2

 =


(
Ĉ0

Ĉ1

)
Ä(A22, B, Ĉ2)

 . (5)

As part of the body of the loop, the contents of C must be updated so that

Qafter :

 C0

C1

C2

 =
 Ĉ0

Ä

((
A11 A12

0 A22

)
, B,
(

Ĉ1

Ĉ2

))  (6)

=
 Ĉ0(

Ä(A11, B, Ĉ1 − A12Ä(A22, B, Ĉ2))
Ä(A22, B, Ĉ2)

)  . (7)

The question now is what the statements, SU , are that allow the computation
to move forward while maintaining the indicated loop-invariant. Comparing
Equations (5) and (7), we conclude that we need only to perform the operations

C1 := C1 − A12C2 ,
C1 := Ä(A11, B, C1) .

The completed worksheet is stated in Figure 3. By recognizing that Ĉ is only
introduced for the sake of the assertions in curly brackets, the final algorithm
is given in Figure 4. We classify the resulting algorithm as “lazy,” in the sense
that at a given stage, as little as possible of C has been updated while allowing
progress toward the solution to be made.

For those more comfortable with traditional algorithms, this is equivalent
to the solver in Figure 5 (left). The lazy row-block oriented algorithms just
presented, in the FLAME and the traditional formulations, are special cases of
the algorithm in Figure 1, with bn = n.

4.1.2 Eager Algorithm. If we wish to maintain the loop-invariant R2 in
terms of the repartitioned matrices the current contents of C are instead given
by

Qbefore :

 C0

C1

C2

 =

(

Ĉ0 − A02Ä(A22, B, Ĉ2)
Ĉ1 − A12Ä(A22, B, Ĉ2)

)
Ä(A22, B, Ĉ2)

 . (8)

Now the contents of C must be updated so that

Qafter :

 C0

C1

C2

 =
 Ĉ0 − (A01| A02 )Ä

((
A11 A12

0 A22

)
, B,
(

Ĉ1

Ĉ2

))
Ä

((
A11 A12

0 A22

)
, B,
(

Ĉ1

Ĉ2

))
 (9)

=
 Ĉ0 − A01Ä(A11, B, Ĉ1 − A12Ä(A22, B, Ĉ2))− A02Ä(A22, B, Ĉ2)(

Ä(A11, B, Ĉ1 − A12Ä(A22, B, Ĉ2))
Ä(A22, B, Ĉ2)

) . (10)
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Fig. 3. Worksheet for the lazy block-row algorithm to solve the triagular Sylvester equation.

Comparing Equations (8) and (10), we conclude that we need only to perform
the operations:

C1 := Ä(A11, B, C1) ,
C0 := C0 − A01C1 .

The algorithm is stated in Figure 4 and is equivalent to the traditional solver in
Figure 5 (right). We classify the resulting algorithm as “eager,” in the sense that
at a given stage, as much as possible of C has been updated without computing
the final answer.
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Fig. 4. Lazy and eager block-now-oriented triangular Sylvester equation solvers derived from R1
(lazy) and R2 (eager).

Fig. 5. Lazy and eager traditional block-now-oriented triangular Sylvester equation solvers.

4.1.3 Proving Correctness and Cost. The following theorems prove the cor-
rectness of the the lazy and eager block-row-oriented algorithms and present
their computational costs.

THEOREM 1. The lazy and eager block-row-oriented algorithms in Figure 4
overwrite matrix C with the solution of the triangular Sylvester equation AX+
XB = C.

PROOF. For the lazy algorithm, the proof follows from the fact that the algo-
rithm was derived so that the loop terminates and the assertions in Figure 3
are true. A similar worksheet can be given for the eager algorithm.

THEOREM 2. The lazy and eager block-row oriented triangular Sylvester equ-
ation solvers in Figure 4 both require m2n+mn2 floating-point operations.

PROOF. We prove the theorem for the case where bm is constant.
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Table II. Cost of the Lazy and Eager Block-row-oriented Triangular Sylvester Equation
Solvers Derived from R1 (Lazy) and R2 (Eager)

Cost
Operation Lazy variant Eager variant

C1 := C1 − A12C2
∑m/bm−1

k=0 2bmkmn ≈ m2n

C1 := Ä(A11, B, C1)
∑m/bm−1

k=0 (b2
mn+ bmn2) ≈ mn2

∑m/bm−1
k=0 (b2

mn+ bmn2) ≈ mn2

C0 := C0 − A01C1
∑m/bm−1

k=0 2m̄bmn ≈ m2n

Total m2n+mn2 m2n+mn2

In the algorithms in Figure 4 the size of CB increases from bm×n to (m−bm)×
n, while the size of ABR increases from bm×bm to (m−bm)× (m−bm). Assuming
CB currently is km × n, and ABR is thus currently km × km, the different parts
of the matrices have the following dimensions:

m̄ bm km︷︸︸︷
A00

︷︸︸︷
A01

︷︸︸︷
A02

0 A11 A12

0 0 A22

}m̄
}bm
}km

n︷︸︸︷
C0

C1

C2

}m̄
}bm
}km

Here, m̄ = m− km − bm.
The number of floating-point operations required to move the computation

forward by bm rows in the lazy and eager versions of the algorithm is given by

C1 := C1 − A12C2 2bmkmn
C1 := Ä(A11, B, C1) b2

mn+ bmn2

C0 := C0 − A01C1 2m̄bmn

For simplicity we neglect the lower-order terms in the computation of the cost of
the algorithms. If we consider the algorithm to iterate for k = 0, 1, 2, . . . , m/bm−
1, then km = kbm. Table II reports the cost of these three operations and the
overall cost of the algorithms, proving the theorem.

Notice that if the triangular Sylvester equations arising in the block-
row-oriented algorithms are solved using a traditional, nonblocked solver,
m ≈ n, and bm ¿ m, half the computation is in operations involving smaller
Sylvester equations and the other half is in matrix multiplications.

4.1.4 Implementation. The FLAME library allows code to mirror the de-
rived algorithms, thus largely inheriting the proven correctness. Implementa-
tions of the lazy and eager algorithms using FLAME are given in Figure 6.

4.2 Block-Column-Oriented Solvers

By partitioning B instead of A, we obtain algorithms which compute the
solution by column blocks.

4.3 A Family of Blocked Algorithms

We now show that a partitioning of both coefficient matrices leads to a family
of 16 different blocked algorithms.
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Fig. 6. Block-row-oriented triangular Sylvester equation solvers implemented using FLAME.

Consider starting our derivation of blocked algorithms by partitioning both
coefficient matrices into four quadrants

A→
(

ATL ATR

0 ABR

)
, B→

(
BTL BTR

0 BBR

)
,

where ABR is a km × km block and BTL is a kn × kn block. Accordingly, we next
apply a conformal partition to C, Ĉ, and X :

C→
(

CTL CTR

CBL CBR

)
, Ĉ→

(
ĈTL ĈTR

ĈBL ĈBR

)
, X →

(
X TL X TR

X BL X BR

)
,
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Fig. 7. Data dependencies for the partitioned triangular Sylvester matrix equation.

where CBL, ĈBL, and X BL are km × kn blocks.
Now, Equation (1) becomes

(
ATL ATR

0 ABR

)(
X TL X TR

X BL X BR

)
+
(

X TL X TR

X BL X BR

)(
BTL BTR

0 BBR

)
=
(

ĈTL ĈTR

ĈBL ĈBR

)

and the solution, in partitioned form, is given by

(
X TL X TR

X BL X BR

)
= Ä

((
ATL ATR

0 ABR

)
,
(

BTL BTR

0 BBR

)
,

(
ĈTL ĈTR

ĈBL ĈBR

))
(11)

=
(
Ä(ATL, BTL, ĈTL − ATR X BL) Ä(ATL, BBR, ĈTR − ATR X BR − X TL BTR)

Ä(ABR, BTL, ĈBL) Ä(ABR, BBR, ĈBR − X BL BTR)

)
.

(12)

The dependencies among the operations induce a certain order: the first
operation that must be performed is solving CBL := X BL = Ä(ABR, BTL, ĈBL);
after that, only the updates CTL := ĈTL− ATR X BL or CBR := ĈBR− X BL BTR are
possible, and so on. Figure 7 shows graphically these data dependencies. Due to
the dependencies, there are only sixteen valid loop-invariants, as summarized
in Table III. Notice that we label six of these cases as duals, since they involve
analogous updates.

Repartition the matrices of the equation into nine blocks, as follows:

(
ATL ATR

0 ABR

)
→
 A00 A01 A02

0 A11 A12

0 0 A22

 ,
(

BTL BTR

0 BBR

)
→
 B00 B01 B02

0 B11 B12

0 0 B22

 ,
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Table III. Valid Loop-Invariants for the Blocked Algorithms to Solve the Triangular
Sylvester Equation

Operations performed Dual
Case (Current contents of C) Case

C1

(
ĈTL ĈTR
X BL ĈBR

)
C2

(
ĈTL − ATR X BL ĈTR

X BL ĈBR

) (
ĈTL ĈTR
X BL ĈBR − X BL BTR

)
C11

C3

(
ĈTL − ATR X BL ĈTR

X BL ĈBR − X BL BTR

)
C4

(
X TL ĈTR
X BL ĈBR

) (
ĈTL ĈTR
X BL X BR

)
C12

C5

(
X TL ĈTR − X TL BTR
X BL ĈBR

) (
ĈTL ĈTR − ATR X BR
X BL X BR

)
C13

C6

(
X TL ĈTR
X BL ĈBR − X BL BTR

) (
ĈTL − ATR X BL ĈTR

X BL X BR

)
C14

C7

(
X TL ĈTR
X BL X BR

)
C8

(
X TL ĈTR − X TL BTR
X BL ĈBR − X BL BTR

) (
ĈTL − ATR X BL ĈTR − ATR X BR

X BL X BR

)
C15

C9

(
X TL ĈTR − ATR X BR
X BL X BR

) (
X TL ĈTR − X TL BTR
X BL X BR

)
C16

C10

(
X TL ĈTR − ATR X BR − X TL BTR
X BL X BR

)

where A11 and B11 are, respectively, bm × bm and bn × bn blocks. Conformally,
repartition

(
CTL CTR

CBL CBR

)
→
 C00 C01 C02

C10 C11 C12

C20 C21 C22

 ,

where C11 is a bm × bn block, and consider analogous repartitionings of Ĉ and
X . Notice that, again, the double lines mark how far (the boundaries of) the
computation has progressed. For the blocked algorithms, the solvers march
through matrices C, Ĉ, and X from the bottom-left corner to the top-right one,
moving bm rows and bn columns at each iteration. In A, the double lines move
toward the top-left corner, while in B the direction is toward the bottom-right
corner. (If A and/or B were lower triangular matrices, all other possibilities in
the direction of the computation would be observed.)

We next illustrate the derivation of a blocked algorithm resulting from a
specific case, C2. In this case, the current contents of C are given by

Qbefore :

(
ĈTL − ATR X BL ĈTR

X BL ĈBR

)
=

(

Ĉ00 − A02 X 20

Ĉ10 − A12 X 20

) (
Ĉ01 Ĉ02

Ĉ11 Ĉ12

)
X 20

(
Ĉ21 Ĉ22

)
 .
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Consider now the following repartitioning, which corresponds to the next
stage where the computation has moved forward by a block of dimension bm×bn:(

ATL ATR

0 ABR

)
→
 A00 A01 A02

0 A11 A12

0 0 A22

 ,
(

BTL BTR

0 BBR

)
→
 B00 B01 B02

0 B11 B12

0 0 B22

 ,

(
CTL CTR

CBL CBR

)
→
 C00 C01 C02

C10 C11 C12

C20 C21 C22

 ,

with Ĉ and X repartitioned as C. With this new repartitioning, we wish the
contents of C to become

Qafter :
(

CTL − ATR X BL CTR

X BL CBR

)

=

(

C00 − A02 X 20 − A01 X 10 C01 − A02 X 21 − A01 X 11
)

C02(
X 10 X 11

X 20 X 21

) (
C12

C22

)  .
Therefore, in order to move the computation forward in case C2 it can be easily
shown that the operations shown in Figure 8 (center) must be performed (no-
tice that Ĉ and X are only introduced for the sake of the assertions in curly
brackets). We leave it as an exercise to the reader to derive the other variants.

THEOREM 3. The algorithms in Figure 8 overwrite matrix C with the solution
of the triangular Sylvester equation AX+ XB = C.

PROOF. Generating the worksheets for the blocked algorithms would yield
a proof much like the one given for Theorem 1.

The next theorem derives the cost of the blocked triangular Sylvester equa-
tion solver presented in Figure 8.

THEOREM 4. Given that matrices X and C are m×n, A is an m×m triangular
matrix, and B is an n × n triangular matrix, the blocked triangular Sylvester
equation solver in Figure 8 requires m2n+mn2 floating-point operations.

PROOF. We prove the theorem for the case where the blocks sizes bm and bn
are constant.

In the algorithm presented in Figure 8 the size of CBL increases from bm×bn
to (m−bm)× (n−bn), while the size of ABR increases from bm×bm to (m−bm)×
(m− bm), and that of BTL increases from bn× bn to (n− bn)× (n− bn). Assuming
CBL is currently km × kn, and ABR, BTL are currently km × km and kn × kn,
respectively, the different parts of the matrices have the following dimensions:

m̄ bm km︷︸︸︷
A00

︷︸︸︷
A01

︷︸︸︷
A02

0 A11 A12

0 0 A22

}m̄
}bm
}km

kn bn n̄︷︸︸︷
B00

︷︸︸︷
B01

︷︸︸︷
B02

0 B11 B12

0 0 B22

}kn
}bn
}n̄

kn bn n̄︷︸︸︷
C00

︷︸︸︷
C01

︷︸︸︷
C02

C10 C11 C12

C20 C21 C22

}m̄
}bm
}km

Here, m̄ = m− km − bm and n̄ = n− kn − bn.
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Fig. 8. Blocked triangular Sylvester equation solvers derived from C1, C2, and C3.

The number of floating point operations required to move the computation
forward is given by

C10 := Ä(A11, B00, C10) b2
mkn + bmk2

n
C21 := Ä(A22, B11, C21 − C20 B01) 2bnkmkn + b2

nkm + bnk2
m

C11 := Ä(A11, B11, C11 − C10 B01 − A12C21) 2bmbnkn+ 2bmbnkm+ b2
mbn+ bmb2

n
C00 := C00 − A01C10 2bmknm̄
C01 := C01 − A01C11 − A02C21 2bmbnm̄+ 2bnkmm̄

For simplicity we neglect the lower-order terms in the computation of the cost
of the algorithm, which leads us to consider only the operations denoted as
Ä(X 10), C̄21, Ä(X 21), C̄00, and C̄01. If we consider the algorithm to iterate for
k = 0, 1, 2, . . . , max(m/bm, n/bn) − 1, then km = kbm and kn = kbn, and some
algebra proves the theorem.
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As we would hope, the blocked algorithm requires the same computational
cost as the block-row solvers. The blocked algorithms for the remaining 15 cases
are obtained by simply deriving the set of operations that will satisfy the loop-
invariant in each case, and they all can be shown to present the same cost.

5. HEURISTICS

In Section 4, we derived a large number of algorithms for the solution of the
triangular Sylvester equation. The question now becomes how to design a near-
optimal implementation. In this section, we present both theoretical and prac-
tical insights that help guide the way.

First, let us review observations regarding blocked algorithms in general.
All are designed to spend a substantial part of the computation in the matrix
multiplication (DGEMM) kernel. Thus, it makes sense to pick block sizes bm and
bn that allow the individual calls to the matrix-matrix multiply to attain the
highest performance, subject to other constraints.

Consider the matrix multiplication C ← AB + C, where A is m × k, B is
k × n, and then C is m × n. In Gunnels et al. [2001b], it was shown that, for
architectures with two levels of cache memory, there are two block sizes that
influence the performance of DGEMM: b1 and b2, which are related to the sizes of
the L1 and L2 caches, respectively. In Table IV we show how the three matrix
dimensions, m, n, and k, affect performance of DGEMM. Where it says “large” in
the table, the larger the dimensions, the better the performance.

Logic suggests that we attempt to minimize the amount of computation in
the solution of the smaller Sylvester equations that show up in the body of
the loop, thereby maximizing the amount of computation in DGEMM at this level
(notice that each of these smaller Sylvester equations can be solved using the
same algorithm, generating a recursion with multiple levels). In Section 4.1 we
mentioned that the block-row-oriented algorithms spend approximately half
of the computation in these subproblems. By symmetry, the same is true for
the block-column-oriented algorithms. We now show that, if the block sizes are
chosen carefully, the blocked algorithms spend only a third of the computation
in the subproblems.

Consider the part of the total computational cost that is spent in solving
the Sylvester equations in the body of the loop if we apply, for example, the
algorithm derived for C2, with bm, bn ¿ m, n. (Here we can assume without
loss of generality that m/bm ≥ n/bn.) At each iteration of the algorithm we
need to solve two large Sylvester equations, for Ä(X 10) and Ä(X 21), with an
overall computational cost of mn2+ bmn3

3bn

( bm
bn − 2

)
flops (floating-point arithmetic

operations). The question therefore becomes what are the values of bm and
bn that minimize this value, that is, min{bm,bn}

bm
bn

( bm
bn − 2

)
. This minimum is

attained for bm = bn and, in such case, approximately a third of the computation
is spent in the subproblems. We can conclude that we should pursue the use of
square block sizes.

Let us revisit the observations made regarding the matrix-matrix multipli-
cation. Table V gives two heuristics for choosing different blocked and/or block-
row and block-column when targeting different levels of the memory hierarchy.

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.

51



Formal Derivation of Algorithms: The Triangular Sylvester Equation • 235

Table IV. Factors Affecting the Performance of the Matrix Multiplication

Shape Performance

Two dimensions large, one dimension equal to b2 Best
One dimension large, two dimensions equal to b2 ↑
Two dimensions equal to b2, one dimension equal to b1 ↓
One dimension equal to b2, two dimensions equal to b1 Good
All dimensions ≤ b1 Worse
One or more dimensions equal to 1 Worst

Table V. Two Heuristics for Choosing Algorithms and Block Sizes

Case Strategy Comment:
m n Heuristic 1 Heuristic 2 dims. passed to DGEMM

large large blocked (bm = bn = b2) block-row (b = b2) Two large/one equal to b2.
b2 large block-column (b = b2) One large/two equal to b2.

large b2 block-row (b = b2) One large/two equal to b2.
b2 b2 blocked (bm = bn = b1) block-row (b = b1) Two equal to b2/one equal to b1.
b1 b2 block-column (b = b1) One equal to b2/two equal to b1.
b1 b1 any Blocking is less important.

Consider the top-level blocking. If one takes bm = bn = b2 (as in Heuristic
1) then two-thirds of the computation will be in matrix multiplication. If, on
the other hand, one considers a block-row-oriented algorithm, with block size
bm = b2 (as in Heuristic 2), then only half of the computation is in terms of
the matrix-matrix multiplication. However, in this second alternative, one of
the dimensions involved in the matrix-matrix multiplication always equals b2,
one always equals n, and the third ranges from small to large (C2 acts as an ea-
ger algorithm). A similar observation can be made for a block-column-oriented
algorithm. By contrast, if a blocked algorithm is used, one dimension always
equals b2 while two of the dimensions range from small to large or vice-versa.
Furthermore, when blocked algorithms are used, a larger number of calls to
DGEMM are made. Thus, in practice, we can expect the calls to DGEMM employed
by the block-row or block-column algorithms to attain higher performance than
the calls employed by the blocked algorithms when bm = bn = b2.

Heuristic 2 does not require blocked algorithms. However, we now show that
by picking bm and bn carefully, some blocked algorithms can be used to im-
plement the second heuristic in a particularly elegant fashion. As indicated in
Table VI, notice that by setting bm = m or bn = n, some of the cases of the blocked
algorithms become either block-column or block-row algorithms, respectively.
Notice that four variants, C1, C2, C3, and C11, have the property that by pick-
ing the block sizes carefully, they can become either block-row or block-column
algorithms. For these variants, the following strategy will automatically gen-
erate an algorithm which conforms to the second heuristic: recursively call the
given algorithm with, progressively, the block sizes b2×n, b2×b2, b1×b2, b1×b1,
followed by some strategy for solving the small b1 × b1 Sylvester equation sub-
problems that remain at the lowest level of the recursion. For example, we can
employ the same algorithm to reduce the subproblem to a certain size, b0 × n,
apply an additional level of recursion to reduce it further to b0 × b0, and solve
this square subproblems using a nonblocked algorithm.
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Table VI. Illustration That by Picking the Block Sizes
Appropriately, Some of the Blocked Algorithms Become

Block-Row or Block-Column Algorithms

Cases
Resulting algorithm bm = m bn = n

Lazy block-column C1, C2, C4, C5 —
Eager block-column C3, C6, C8, C11 —
Lazy block-row — C1, C11, C12, C13
Eager block-row — C2, C3, C14, C15

6. EXPERIMENTAL RESULTS

In this section we report the performance attained by our algorithms as the
rate of computations achieved in millions of flops per second (MFLOPS/sec).
We consider here triangular Sylvester equations of dimension m × n, and an
operation count of m2n+mn2 flops.

We report performance on an Intel (R) Pentium (R) III (650-MHz) processor
with a 16-kbyte L1 data cache and a 256-kbyte L2 cache running RedHat
Linux 7.1. All computations were performed in 64-bit (double precision)
arithmetic, and the same options were used when compiling the different
implementations. For all experiments, the implementations were linked to an
implementation of the Basic Linear Algebra Subprograms (BLAS) [Lawson
et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990] provided by ATLAS

(Release R3.2). This library provides high-performance implementations of
commonly encountered matrix operations. For some experiments, the matrix
multiplication kernel (DGEMM) provided by ATLAS was replaced by our own
high-performance implementation, ITXGEMM [Gunnels et al. 2001b], while the
rest of the BLAS were provided by ATLAS.

We analyze performance for five different implementations, indicated by the
curves marked as follows:

—unb. Eager column-oriented implementation using Fortran-77. (We also im-
plemented eager/lazy and row-/column-oriented variants, but the results
were inferior for those.) Due to the poor performance of this approach, we
only report results for the smaller problem sizes.

—Trad. blocked. Row-eager/column-eager blocked implementation of the
solver using using Fortran-77, similar to that in Figure 1. (We also imple-
mented all other variants; their performance proved inferior.)

—C1, C2, and C3. Our implementations of the solvers using FLAME and the
heuristics described in Section 5. At the lowest level of the recursion, the
subproblems are computed using the unblocked (unb) solver. Although we
implemented all blocked, block-row, and block-column algorithms, we only
present results for C1, C2, and C3. The remaining blocked algorithms ob-
tained performance that was virtually identical to C1, C2, and C3. Also, we
already argued that the block-row and block-column algorithms are special
cases of C1, C2, C3, and C11.

Figure 9 (left) reports the performance for these algorithms using DGEMM

from ATLAS R3.2. For reference, we also include the performance of the DGEMM
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Fig. 9. Performance of our triangular Sylvester equation solvers using DGEMM from ATLAS R3.2 (Left)
and ITXGEMM (Right).

routine for a matrix multiplication with k = b2. We only report the results using
the second heuristic described in Section 5, with block sizes 120×n, 120×120,
40× 120, 40× 40, 20× 40, and 20× 20, for the different levels of the recursion.
It is interesting to note that algorithm C3 performs somewhat better than C1
and C2.

Experts in the field will appreciate the fact that C3 performs most of its
computation in the updates C00 := C00 − A01C10 and C22 := C22 − C21 B12,
which are both rank-k updates. Typical implementations of DGEMM are tuned
to perform best for that particular case of matrix multiplication. By contrast,
C1 and C2 perform some or most of their computation in updates that involve
matrices with small m or n dimensions, the performance of which is often not
as highly tuned.

In Figure 9 (right) we report performance from the same experiments as
reported in Figure 9 using DGEMM from ITXGEMM instead. For ITXGEMM, block sizes
128×n, 128×128, 64×128, 64×64, 16×64, and 16×16, for the different levels
of the recursion, yield high performance. Since this implementation of matrix
multiplication is highly tuned for all matrix sizes, differences in performance
of C1, C2, and C3 are less noticable. In addition, a higher percentage of the
performance of matrix multiplication is achieved.

Figure 10 reports the performance of the best solver (that derived from C3)
using both Heuristic 1 and Heuristic 2. It appears that on this architecture the
algorithms benefit noticeably from the larger matrix sizes involved in the calls
to DGEMM in Heuristic 2.

Although not reported here, our solvers, when linked to ATLAS R3.2, obtain
performance similar to that reported in Jonsson and Kågström [2001] when
we adjust for the different clock rate of the processor on which they performed
their experiments.

7. APPLICATION TO PRACTICAL IMPLEMENTATIONS

This paper is intended to demonstrate the application of the FLAME approach
to a more complex operation. However, we now show how the insights gained
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Fig. 10. Performance of the triangular Sylvester equation solvers using Heuristic 1 and
Heuristic 2.

in the simpler setting where matrices A and B are triangular matrices can be
easily extended to the more complex case that arises in practice.

7.1 Solution of the General Sylvester Equation

Let us start by considering the general case as it typically occurs in practice,
for example in control theory:

ĀX̄ + X̄ B̄ = C̄, (13)

where Ā and B̄ are general, real valued, square matrices. A typical first step is
to compute real Schur decompositions of matrices Ā and B̄:

Ā→ Q A AQT
A and B̄→ Q B BQT

B, (14)

where Q A and Q B are unitary matrices and A and B are quasi upper triangular
(block triangular with 1× 1 and 2× 2 blocks on the diagonal). Then(

QT
A ĀQ A

)(
QT

A X̄ Q B
)+ (QT

A X̄ Q B
)
QT

B B̄Q B =
(
QT

AC̄Q B
)

or

AX+ XB = C, (15)

where X = QT
A X̄ Q B and C = QT

AC̄Q B. Thus, the steps for computing the
solution to Equation (13) become:

(1) Compute the real Schur decompositions. Approximate cost: 30(m3 + n3)
flops1.

(2) Compute C = QT
AC̄Q B. Approximate cost: 2m3 + 2n3 flops.

(3) Solve Equation (15). Approximate cost: m2n+mn2 flops.
(4) Compute X̄ = Q AX QT

B. Approximate cost: 2m3 + 2n3 flops.

1Part of this computation is an iteration that converges to the decomposition. Since the rate of
convergence depends on the spectrum of the matrices, this operation count varies depending on
the input matrices.
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This then produces the desired solution of the original problem stated in
Equation (13).

The first observation is that the cost of the solution of the triangular Sylvester
equation is only a small part of the overall cost.

7.2 Solution of the Quasitriangular Sylvester Equation

The second observation is that what is really needed is a family of algorithms
for the solution of the quasitriangular Sylvester equation. We now discuss how
the algorithms presented in the previous sections must be adjusted for this
case.

(1) A is at most 2 × 2 and B is 1 × 1: In this case Equation (15) is equivalent
to (A+ β I )x = c, where B = β is a scalar and x and c are vectors. Since A
is at most 2× 2, this equation can be solved via Gaussian elimination with
partial pivoting.

(2) A is at most 2× 2 and B is 2× 2: In this case Equation (15) is given by

A( x1 x2 )+ ( x1 x2 )
(
β11 β12
β21 β22

)
= ( c1 c2 ),

where βi j is a scalar and x j and c j are vectors. This problem can be restated
as (

A+ β11 I β21 I
β12 I A+ β22 I

)
=
(

c1

c2

)
.

Since this system is at most 4× 4, we can again use Gaussian elimination
with partial pivoting.

(3) A is upper triangular and B is 1 × 1: In this case Equation (15) is again
equivalent to (A+ β I )x = c. Since A is upper triangular, so is A+ β I and
therefore any algorithm for the solution of a triangular system can be used.

(4) A is quasitriangular and B is 1× 1: For this case, we can apply any of the
algorithms derived in Section 4.1 with the constraint that the block size bm
should always be chosen so that A11 is either upper triangular or 2 × 2. If
A11 is 2 × 2, the subproblem C11 := Ä(A11, B, C11) can then be computed
using the approach in case 1. If it is upper triangular, the approach in case 3
above can be employed.

(5) A is quasitriangular and B is 2× 2: For this case, we can apply any of the
algorithms derived in Section 4.1 with the constraint that the block size bm
should always be chosen so that A11 is either 1×1 or 2×2. The subproblem
C11 := Ä(A11, B, C11) can then be computed using the approach in case 2
above.

(6) A and B are both quasitriangular: If both A and B are quasitriangular,
then any of the blocked algorithms discussed in previous sections can be
applied provided the following:
—The block sizes bm and/or bn are chosen so that A10, A20, A21, B10, B20,

and B21 all only contain zeroes.
—Eventually an algorithm is called for the smaller subproblems with 1×1

or 2× 2 matrix B11.
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With this, we have arrived at a practical implementation for the quasitriangular
Sylvester equation.

8. STABILITY EXPERIMENTS

The stability analysis of unblocked algorithms for the triangular Sylvester
equation has been well studied; see, for example, the thorough treatment
in Higham [2002]. In this section, we discuss experimental data that provides
some evidence that the derived blocked algorithms exhibit stability similar to
that of the unblocked algorithms. Additional comments about the need for sys-
tematic stability analyses are given in the conclusion of the paper.

All stability experiments in this section were run on an Intel (R) Pentium III
platform using MATLAB 6.0 (machine precision ε ≈ 2.2×10−16). Implementations
of all the codes were developed for that purpose using a special (MATLAB) version
of the FLAME Application Programming Interface (API).

In order to evaluate the numerical properties of our solvers, we use an ex-
ample of a generalized Sylvester equation

ÂX B̂ + ĈX D̂ = Ê, (16)

from Gardiner et al. [1992]. In that example

Â = diag(1, 2, . . . , m)+Um,
B̂ = In + 2−pU T

n ,
Ĉ = Im + 2−pU T

m ,
D̂ = 2−pIn − diag(n, n− 1, . . . , 1)+Um,

where p is a parameter and Uk is a k × k matrix with unit entries below the
diagonal and all other entries zero. As p is increased, the system approaches
singularity and the numerical condition of Equation (16) gets worse. The prob-
lem is then transformed into a standard Sylvester Equation (1) by solving the
systems A = Ĉ−1 Â and B = D̂

T
B̂
−T

. The right-hand-side matrix C is set to
be an m × n matrix so that the true solution matrix X has all unit entries.
Matrices A and B are then reduced to real Schur form using the QR algorithm,
resulting in quasitriangular matrices with 1 × 1 and 2 × 2 diagonal blocks.
The right-hand-side matrix C is updated with the corresponding orthogonal
matrices computed by the QR algorithm.

Table VII reports the relative error

‖X − X̃ ‖∞/‖X ‖∞
of the solution X̃ computed by means of a traditional nonblocked solver (unb)
and our variants C1 and C3 for a problem of size m = n = 128. The remaining
blocked algorithms obtained numerical performances very similar to those of C1
and C3. At the lowest level, all algorithms dealt with tiny Sylvester equations of
size 1×1, 1×2, 2×1, and 2×2, transforming these into an equivalent small linear
system, and using Gaussian elimination with partial pivoting to solve these
small subproblems. Our blocked variants employed block sizes bm×bn = 64×32,
32×16, and 16×8 at the first three levels of the recursion. At deeper levels bm
and bn were set to 1 or 2, depending on whether a 2×2 block is encountered in the
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Table VII. Numerical Performance of the Sylvester Solvers

‖X − X̂ ‖∞/‖X̂ ‖∞
p unb C1 C3

10 1.296496677377634e-10 2.250667595002365e-10 2.256006397319266e-10
20 2.336569168070665e-07 2.336517769523788e-07 2.336504013166624e-07
30 8.702811282624316e-04 8.702811330852456e-04 8.702811100522159e-04
40 8.466351601860348e-01 8.466396448984768e-01 8.466546182582525e-01

diagonal of the quasitriangular matrices A and/or B. No significant differences
were found when we used nonsquare block sizes, smaller block sizes at deeper
levels of the recursion, etc.

The conclusion of our experiments is that it appears that the derived blocked
algorithms exhibit numerical stability that is similar to that of the unblocked
algorithms.

9. CONCLUDING REMARKS

In this paper, we have made a number of contributions to the solution of the
triangular Sylvester equation. These include:

—The systematic derivation and proof of correctness of a family of algorithms
using the FLAME approach.

—The implementation of the family using the FLAME library.
—A heuristic for composing high-performance implementations from members

of the family of algorithms.
—A demonstration of excellent performance.
—Altogether, we have presented dozens of new algorithms for the solution of

this problem.

Many of our observations can be extended to blocked algorithms for dense
linear algebra operations in general. These include:

—The FLAME approach is a powerful tool for the derivation of provably correct
blocked algorithms.

—The FLAME library provides a prototype environment for the rapid imple-
mentation of such algorithms.

—The heuristics developed for composing members of the family are likely to
be extendable to blocked algorithms in general.

—The FLAME approach and library naturally support the hybrid recur-
sive/iterative algorithms that are both general and required for near-optimal
implementation.

Clearly, this paper raises as many questions as it solves. For example, given
that a large number of algorithms are systematically derived, the question of
the numerical stability of the resulting algorithms must be addressed. While
for some operations, for the triangular Sylvester equation whether or not all
algorithms are equally stable is not immediately obvious. Thus, a systematic
approach to deriving stability results would be highly desirable. We intend to
study this question in the future.
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ADDITIONAL INFORMATION

For additional information on FLAME please visit

http://www.cs.utexas.edu/users/flame/.
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1. INTRODUCTION

In this article we show that for a broad class of linear algebra operations, fami-
lies of algorithms can be systematically derived. We further demonstrate that,
given the predicates which describe the input and output, the process of deriving
such a family of algorithms is completely prescribed and that the methodology
employed is such that the algorithms so produced are guaranteed to be correct.

1.1 Verification and Derivation

The title of this article was taken from the title of Gries’ [1981] undergraduate
text The Science of Programming. That text introduces students to the concept
of verifying the correctness of programs. The approach is based on the early
work of Floyd [1967], Dijkstra [1968, 1976], and Hoare [1969], among others.

Ideally, algorithmic derivation is constructive: predicates that describe the
desired states of the variables at various points in the program are derived first.
The statements in the program are then chosen so as to change the state from
that described by one predicate to that entailed by the next predicate. Since the
statements are chosen to make the predicates true, the program is guaranteed
to be correct.

A key obstacle to the formal derivation of algorithms for all but the simplest
examples is the determination of these predicates. For iterative algorithms
(those that depend on a loop) the predicate (called the loop-invariant) that
describes the state of the variables just before and after the evaluation of the
condition that guards the loop, is not easily ascertained a priori [Misra 1976;
Ernst et al. 2000; Ernst 2000]. Thus, in practice, the program is often written
first, at which time predicates that can be used to prove the program correct
are determined. This kind of a posteriori verification of correctness can often
be mechanically performed by automatic theorem provers (Formal Methods)
[Kaufmann et al. 2000; Kaufman and Moore 1997].

1.2 Derivation of Linear Algebra Algorithms

A fundamental contribution of our work is the observation that, for a broad class
of dense linear algebra operations that are typically implemented using a loop,
the determination of a loop-invariant is systematic. Moreover, multiple loop-
invariants can be systematically determined, leading to different members of a
family of algorithms for the same operation. Thus, our approach is to use formal
derivation constructively, which is distinctly different from Formal Methods:
the resulting algorithm is guaranteed to be correct and need not be verified a
posteriori.

An additional enabling observation and contribution is that notation is in-
herently simplified by raising the level at which data (matrices) are described
so that indexing details are hidden.

1.3 Relation to Other Articles on Our Project

This article is the third in what we hope will be a series that illustrates the
benefits of the formal derivation of algorithms to the high-performance linear
algebra library community.
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—The first article [Gunnels et al. 2001] gave a broad outline of the approach,
introducing the concept of formal derivation and its application to dense lin-
ear algebra algorithms. In that article we also showed that by introducing
an Application Programming Interface (API) for coding the provably cor-
rect algorithms, claims about the correctness of the algorithms allow claims
about the correctness of the implementation to be made. Finally, we showed
that excellent performance can be attained by employing these methods. The
primary vehicle for illustrating the techniques in that article was the LU
factorization.

The treatment of the systematic approach was relatively vague in that ar-
ticle in part because we had not yet had the insight that a “worksheet”, intro-
duced later in this article, provides a convenient framework for the derivation
of the algorithms.

—We showed that the method applies to more complex operations in the
second article [Quintana-Ortı́ and van de Geijn 2003]. In that article
we showed how a large number of new high-performance algorithms for
the solution of the triangular Sylvester equation can be derived using the
methodology.

As originally submitted, that article did not include the worksheet. How-
ever, this (third) was written and submitted before the final submission of the
second paper, which was subsequently rewritten by explaining the derivation
of those algorithms with the aid of the worksheet.

In a number of workshop articles we have also given a more cursory treatment
of the techniques [Gunnels and van de Geijn 2001b; Bientinesi et al. 2002].

This, third article focuses specifically on the system for deriving algo-
rithms: it gives a step-by-step “recipe” that novice and veteran alike can
use to rapidly derive correct algorithms. The second article discussed above
should be viewed as an application of the current one to a much more complex
operation.

1.4 Scope

The techniques in this article apply to linear algebra operations for which there
are algorithms that consist of a simple initialization followed by a loop. While
this may appear to be extremely restrictive, the linear algebra libraries com-
munity has made tremendous strides towards modularity. As a consequence,
almost any operation can be decomposed into operations (linear algebra build-
ing blocks) that, on the one hand, are themselves meaningful linear algebra
operations and, on the other hand, exhibit this simple structure. Over the last
few years, we have shown that this category includes all Basic Linear Algebra
Subprograms (BLAS) (levels 1, 2, and 3) [Bientinesi et al. 2002; Bientinesi and
van de Geijn 2002; Lawson et al. 1979; Dongarra et al. 1988, 1990; Gunnels
and van de Geijn 2001a], all major factorization algorithms (LU, Cholesky, and
QR) [Gunnels et al. 2001], matrix inversion (of general, symmetric, and trian-
gular matrices) [Quintana et al. 2001], and a large number of operations that
arise in control theory [Quintana-Ortı́ and van de Geijn 2003].
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1.5 Organization of the Article

While the research described in this article represents, in our opinion, an orig-
inal contribution, the format is that of a tutorial and includes exercises for the
reader. The reason for this is two-fold: First, it emphasizes the systematic na-
ture of the approach. Second, it is our experience that it is only when the reader
applies the methodology him/herself that the potential of the approach becomes
completely clear.

We assume only that the reader has a basic understanding of linear al-
gebra. In particular, it is important to recall how to multiply partitioned
matrices. For those not fluent in the art of high-performance implementa-
tion of linear algebra algorithms we suggest first reading Gunnels et al.
[2001]. That article also contains a more complete discussion of how our ap-
proach relates to the state-of-the-art in high-performance linear algebra library
development.

In Section 2 we review those basic results regarding the verification of the
correctness of programs that will be exploited in later sections to derive al-
gorithms. In Section 3 we relate these results to operations and algorithms
encountered in linear algebra, using notation more familiar to researchers
in that area. This notation is further refined by raising the level of abstrac-
tion used to describe data (matrices), hiding indexing details. We also show
how, by annotating the algorithm with predicates that describe the state of
the variables, the correctness of linear algebra algorithms can be verified a
posteriori.

The real contribution of this article is found in Section 4. There we describe
our systematic approach by showing how predicates that describe the state
of variables at various points in the algorithm can be systematically derived.
These predicates then dictate the various components of the algorithm so that
the derivation is constructive and is guaranteed to yield a correct algorithm.
While the methodology inherently derives loops for carrying out a given oper-
ation, we briefly discuss how recursive algorithms fit into this framework in
Section 4.10.

Ironically, the new methodology generates as many questions as it solves, as
we point out in the conclusion. There, we also suggest future directions that
can be pursued in order to fully exploit the methodology.

Although it is the derivation of the algorithms that is our central focus, we
do address the practical issues of stability, implementation, and performance.
So as not to distract from the central message, these topics are discussed in the
appendix.

2. CORRECTNESS OF ALGORITHMS

In this section, we review the relevant notation and results related to the formal
verification of programs. Notice that if one assumes that a program is already
given, then predicates can be added to the program, after which the program
can be verified a posteriori. More ideally, the predicates are derived first, and
the results given in this section are used to guide the derivation of various
components of the program.
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2.1 Notation

As part of our reasoning about the correctness of algorithms we will use predi-
cates to indicate assertions about the state of the variables encountered in an
algorithm. For example, after the command

α := 1,

which assigns the value 1 to the scalar variable α, we can assert that the pred-
icate “α = 1” is true. We can then indicate the state of variable α after the
assignment by the predicate {α = 1}.

Similarly, we can use predicates to assert how a statement changes the state.
If Q and R are predicates and S is a sequence of commands then {Q}S{R} has
the following interpretation [Gries 1981, page 100]:

If execution of S is begun in a state satisfying Q , then it is guaranteed
to terminate in a finite amount of time in a state satisfying R.

Here {Q}S{R} is called the Hoare triplet and Q and R are referred to as the
precondition and postcondition for the triplet, respectively.

EXAMPLE The predicate

{α = β}
α := α + 1
{α = (β + 1)}

is true. Here α = β is the precondition while α = (β+1) is the postcondition.

2.2 The Correctness of Loops

In a standard text by Gries and Schneider [1992, pages 236–237], used to
teach program verification to undergraduates in computer science, we find the
following1:

We prefer to write a while loop using the syntax
do G → S od

where Boolean expression G is called the [loop-]guard and statement
S is called the repetend.
[The l]oop is executed as follows: If G is false, then execution of the
loop terminates; otherwise S is executed and the process is repeated.
Each execution of repetend S is called an iteration. Thus, if G is
initially false, then 0 iterations occur.

The text goes on to state:

We now state and prove the fundamental invariance theorem for
loops. This theorem refers to an assertion P that holds before and
after each iteration (provided it holds before the first). Such a predi-
cate is called a loop-invariant.

1Small changes from the original text are delimited by [. . .]. In addition, in that text B is used to
denote the (loop-)guard, while we use G. The primary reason for this is that B is commonly used
to denote one of the matrix operands.
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(12.43) Fundamental Invariance Theorem. Suppose
(1) {P ∧G}S{P} holds—i.e. execution of S begun in a state

in which P and G are true terminates with P true—
and

(2) {P} do G → S od {true}—i.e. execution of the loop
begun in a state in which P is true terminates.

Then {P} do G → S od {P ∧ ¬G} holds. [In other words,
if the loop is entered in a state where P is true, it will
complete in a state where P is true and guard G is
false.]

The text proceeds to prove this theorem using the axiom of mathematical
induction.

3. VERIFICATION OF LINEAR ALGEBRA ALGORITHMS

In this section we introduce the relatively simple operation that computes
the solution of a triangular system with multiple right-hand sides. We use
this example to relate the notation that is more commonly used to verify
programs (given in Section 2) to the notation that is frequently encountered
in linear algebra related articles. In particular, we relate the loop as pre-
sented in the Fundamental Invariance Theorem to loops as they are more
commonly encountered in algorithms in linear algebra. Next, we show that
by describing algorithms for linear algebra at a level where indexing details
are hidden, a framework for presenting algorithms emerges wherein annota-
tions (predicates) that describe the state of the variables (matrices) can be
easily added. This then allows us to illustrate how a posteriori verification of
the correctness of linear algebra algorithms can be presented in the form of a
“worksheet”.

3.1 A Typical Linear Algebra Operation

Given a nonsingular m × m lower triangular matrix L and an m × n general
matrix B, let X equal the solution of the equation

LX = B. (1)

Partitioning matrices X and B in (1) by columns yields

L(x1 | x2 | · · · | xn ) = (b1 | b2 | · · · | bn )

or

( Lx1 | Lx2 | · · · | Lxn ) = (b1 | b2 | · · · | bn ).

From this we conclude that each column of the solution, x j , must satisfy
Lx j = bj . In other words, the solution of (1) requires the solution of a trian-
gular system for each column of B. Since the coefficient matrix, L, is the same
for all columns, the overall computation is referred to as a triangular solve with
multiple right-hand sides (TRSM). A simple algorithm for overwriting B with the
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Fig. 1. Simple algorithm for computing B := X = L−1 B.

Fig. 2. Annotated algorithm for the computation of B := X = L−1 B by columns.

solution X ,

B := X = L−1 B, (2)

is given in Figure 1.
We emphasize that rather than computing L−1, the solution of Lx j = bj is

computed, overwriting bj . Computing the solution of a triangular system of
equations this way is often referred to as forward substitution.

3.2 An Algorithm, Annotated for Verification

In order to relate the above material to the discussion in the previous section
regarding the verification of the correctness of a loop, we turn our attention
to Figure 2. Let B̂ denote the original contents of B, let m(A) and n(A) return
the row and column dimensions of matrix A, respectively, and let LowTr(A) be
true if and only if A is a lower triangular matrix. The precondition (Step 1a in
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Figure 2) is given by

Ppre : (B = B̂) ∧ (m(L) = n(L)) ∧ LowTr(L) ∧ (n(L) = m(B)).

NOTE 1. For brevity, we will assume throughout this article that the dimen-
sions and structure of the matrices are correct and will simply give the precon-
dition as Ppre : (B = B̂) ∧ . . . .

Since upon completion, the loop is to have computed (2), the postcondition is
given by Ppost : B = L−1 B̂ (Step 1b).

If one asks what has been computed at the top of the loop in Figure 1, one
discovers that the first j − 1 columns have been overwritten by the desired
solution. In our approach, we partition B and B̂ as

B → ( BL ‖ BR ) and B̂ → ( B̂L ‖ B̂R ) (3)

where (relating this to Figure 1) BL and B̂L represent the first j − 1 columns
of B and B̂, respectively. (Notice that subscripts L and R stand for Left and
Right, respectively.) Thus, at the top of the loop the desired current contents
of B are given by Pinv : ( BL ‖ BR ) = ( L−1 B̂L ‖ B̂R ) ∧ . . . , the loop-invariant
(Step 2). Since the loop in Figure 1 is executed as long as not all columns have
been updated, the loop-guard is given by n(BL) �= n(B) (Step 3).

Now, the loop-invariant must be true before the loop commences, which
is achieved by “boot-strapping” the partitioning in (3) by letting BL have no
columns (Step 4).

Finally, we are ready to discuss the body of the loop in Figure 2. In Figure 1,
the left-most column of the set of columns yet to be updated is updated, moving
it to the set of columns that have been updated. In our notation, we accomplish
this by repartitioning as in Step 5a, which means that the current contents of
B, in terms of the repartitioned matrices, is given by

Pbefore : ( B0 ‖ b1 | B2 ) = ( L−1 B̂0 ‖ b̂1 | B̂2 ) ∧ . . .

(Step 6). Next, the exposed column is updated (Step 8), which updates the
contents of B to

Pafter : ( B0 ‖ b1 | B2 ) = ( L−1 B̂0 ‖ L−1b̂1 | B̂2 ) ∧ . . .

(Step 7). After this, the updated column is moved from BR to BL (Step 5b).
The Fundamental Invariance Theorem can now be used to show that all

assertions in Figure 2 are true, proving that the algorithm is correct. Finally,
we notice that B̂ was only introduced for the benefit of the assertions in Figure 2.
Since the update in the body of the loop never referenced B̂ or its submatrices,
a final algorithm is given in Figure 3.

EXERCISE 3.1. Consider the alternative algorithm for computing the columns
of B in reverse order:

for j = n, . . . , 1
bj := x j = L−1bj

endfor

Create an annotated algorithm like that given in Figure 2 for this algorithm.
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Fig. 3. Final algorithm for the computation of B := X = L−1 B by columns.

Fig. 4. Worksheet for developing linear algebra algorithms.

4. A SYSTEM FOR DERIVING LINEAR ALGEBRA ALGORITHMS

The preceding two sections introduced the basic concepts behind the formal
verification of programs and how it relates to linear algebra algorithms. The
immediately previous section also introduced notation that hides intricate in-
dexing, which simplified the annotations required to verify the correctness of
the given algorithm for computing the solution of a triangular system with
multiple right-hand sides. In this section, we show that the combination of the
new notation that hides indexing details and the worksheet that organizes the
annotations, given in Figure 4, provide us with the means for systematically
deriving correct algorithms.
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We shall see that given the precondition and postcondition, a set of possible
loop-invariants is easily derived. Once a loop-invariant is selected from the
set of loop-invariants, all steps for filling out the worksheet are completely
prescribed. Thus, we unveil a system for constructively deriving families of
correct algorithms for a given operation. We illustrate the system by applying
it to the triangular solve with multiple right-hand sides.

Notice that the steps indicated in the section headers refer to the steps in
the worksheet.

4.1 Step 1: Precondition and Postcondition

The most general form that a linear algebra operation takes is given by

[D, E, . . .] := op(A, B, C, D, . . .), (4)

where the variables on the left of the assignment := are the output variables.
Notice that, as for the TRSM operation in the previous section, some of the input
variables can appear as output variables.

EXAMPLE (TRSM) In the previous section we saw that the triangular solve
with multiple right-hand sides, TRSM, can be expressed as B := L−1 B =
TRSM(L, B), where L is a nonsingular m × m lower triangular matrix and
B is an m × n general matrix. For the matrix multiplication on the right to
be well-defined, the column dimension of L must match the row dimension
of B. We will want to overwrite B with the result without requiring a work
array.

The description of the input and output variables dictates the precondi-
tion Ppre. For variables that are to be overwritten, it is important to intro-
duce variables that indicate the original contents. If Z is both an input and
an output variable, we will typically use Ẑ to denote the original contents
of Z .

EXAMPLE (CONTINUED) The variables for TRSM can be described by the precon-
dition

Ppre : (B = B̂) ∧ (m(L) = n(L)) ∧ LowTr(L) ∧ (n(L) = m(B))

where, as before, B̂ indicates the original contents of B. For brevity, typi-
cally we will only explicitly state the most important part of this predicate:
Ppre : (B = B̂) ∧ . . . .

The operation to be performed and the substitutions required to indicate the
original contents of variables dictate the postcondition Ppost.

EXAMPLE (CONTINUED) The operation to be performed, B := L−1 B, translates
to the postcondition Ppost : B = L−1 B̂.
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4.2 Step 2: Deriving Loop-Invariants

To determine a set of possible loop-invariants, we pick one of the variables
and partition it into two submatrices, either horizontally or vertically, or into
quadrants. The general rule is that if a matrix has special structure, for exam-
ple, triangular or symmetric, it is typically partitioned into quadrants that are
consistent with the structure. If the matrix has no special structure, it can be
partitioned vertically or horizontally, or into quadrants.

EXAMPLE (CONTINUED) Let us pick variable L. Since it is triangular, we par-
tition it as

L →

 LTL 0

LBL LBR


 .

Here LTL is square so that both submatrices on the diagonal are themselves
lower triangular. (The subscripts T L, BL, and BR stand for Top-Left,
Bottom-Left, and Bottom-Right, respectively.)

Next, we substitute this partitioned variable into the postcondition, which
is then used to determine the partitioning of the other variables.

EXAMPLE (CONTINUED) Substituting the partitioning of L into the postcondi-
tion yields

(some partitioning of B) =

 LTL 0

LBL LBR




−1

(some partitioning of B̂)

This suggests that B and B̂ should be partitioned horizontally into two
submatrices, or into quadrants. Let us consider the case where B and B̂
are partitioned horizontally into two submatrices. Then


 BT

BB


 =


 LTL 0

LBL LBR




−1 
 B̂T

B̂B


 .

In order to be able to multiply the matrices on the right out and to be able
to then set the submatrices on the left equal to the result on the right we
find that the following must hold:

(n(LTL) = m(B̂T )) ∧ (m(LTL) = m(BT )), (5)

which in turn implies that m(BT ) = m(B̂T ) since LTL is a square matrix.
This is convenient, since B and B̂ will reference the same matrix (B is
being overwritten).

We now perform the operation using the partitioned matrices. This gives
us the desired final contents of the output parameter(s) in terms of the
submatrices.
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Table I. Possible Loop-Invariants for the TRSM Example When the Process is Started by
Partitioning Matrix L into Quadrants. The Reason Listed for Rejecting the Loop-Invariant

Given in the Column Labeled “Comment” May Not be the Only Reason for Doing So

# Loop-Invariant Comment

1




BT

BB


 =




B̂T

B̂B


 Infeasible (Reason 1).

2




BT

BB


 =




L−1
TL B̂T

B̂B


 Loop-invariant 1.

3




BT

BB


 =




L−1
TL B̂T

B̂B − LBLL−1
TL B̂T


 Loop-invariant 2.

4




BT

BB


 =




L−1
TL B̂T

L−1
BR(B̂B − LBLL−1

TL B̂T )


 Infeasible (Reason 2).

EXAMPLE (CONTINUED)

 BT

BB


 =


 LTL 0

LBL LBR




−1 
 B̂T

B̂B


 =


 L−1

TL 0

− L−1
BRLBLL−1

TL L−1
BR





 B̂T

B̂B




and hence

 BT

BB


 =


 L−1

TL B̂T

L−1
BR(B̂B − LBLL−1

TL B̂T )


 . (6)

Different possible loop-invariants can now be derived by considering individual
operations that contribute to the final result. Each such operation may or may
not have been performed at an intermediate stage. Careful attention has to be
paid to the inherent order in which the operations should be resolved. Any of
the resulting conditions on the current contents of the output variable together
with the constraints on the structure and dimensions of the submatrices is now
considered a possible loop-invariant.

EXAMPLE (CONTINUED) A careful look at (6) shows that inherently L−1
TL B̂T

should be computed first, followed by B̂B − LBL(L−1
TL B̂T ), and, finally,

L−1
BR(B̂B − LBL(L−1

TL B̂T )). This leads to the subset of possible loop-invariants
given in Table I.

For each such possible loop-invariant, the subsequent steps performed will ei-
ther show it to be infeasible or will yield an algorithm for computing the oper-
ation. Reasons for declaring a loop-invariant infeasible include:

Reason 1: No loop-guard exists such that (Pinv ∧ ¬G) ⇒ Ppost.
Reason 2: No initialization step SI exists that involves only the partitioning of

the variables such that {Ppre}SI {Pinv} is true.
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EXAMPLE (CONTINUED) Unless noted otherwise, we will subsequently use the
loop-invariant


 BT

BB


 =


 L−1

TL B̂T

B̂B


 (7)

as our example, showing it to be feasible by deriving an algorithmic variant
corresponding to it. Notice that, strictly speaking, the conditions indicated
in (5) should be part of the loop-invariant.

4.3 Step 3: Derive the Loop-Guard

The loop-invariant Pinv and postcondition Ppost dictate the loop-guard G since
it must have the property that (Pinv ∧ ¬G) ⇒ Ppost.

EXAMPLE (CONTINUED) Comparing the loop-invariant in (7) with the postcon-
dition B = L−1 B̂ we see that if B = BT , B̂ = B̂T , and L = LTL then the
loop-invariant implies the postcondition: that the desired result has been
computed. Thus, we must choose a loop-guard G so that its negation, ¬G,
implies that the dimensions of these matrices match appropriately and
therefore that (Pinv ∧ ¬G) ⇒ Ppost. The loop-guard G :

(
m(LTL) �= m(L)

)
meets this condition.

NOTE 2. If no loop-guard can be found so that (Pinv ∧ ¬G) ⇒ Ppost, then the
loop-invariant is declared infeasible by Reason 1 in Step 2.

EXAMPLE (CONTINUED) Possible Loop-invariant 1 in Table I is rejected for
Reason 1: Since the contents of B never change, (for general triangular
matrix L) there is no loop-guard so that exiting the loop implies that the
postcondition holds.

4.4 Step 4: Derive the Initialization

The loop-invariant Pinv and precondition Ppre dictate the initialization step, SI .
More precisely, SI should partition the variables so that {Ppre}SI {Pinv} is true.

EXAMPLE (CONTINUED) Consider the initialization statement SI :

Partition B →

 BT

BB


, B̂ →


 B̂T

B̂B


, and L →


 LTL 0

LBL LBR




where BT and B̂T have 0 rows and LTL is 0 × 0

in Step 4 in Figure 5. Since then BT and B̂T have no rows, and BB = B
and B̂B = B̂, it is not hard to see that {Ppre}SI {Pinv} is true.

NOTE 3. If no initialization SI can be found so that {Ppre}SI {Pinv} is true
then the loop-invariant is declared infeasible by Reason 2 in Step 2.
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Fig. 5. Annotated algorithm for TRSM example.
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EXAMPLE (CONTINUED) Possible Loop-invariant 4 in Table I is rejected for
Reason 2: no matter how the matrices are initially partitioned, B must be
put in a state where it contains the final result (satisfies the postcondition)
in order to satisfy the loop-invariant.

4.5 Step 5: Determine How to Make Progress

The loop-guard G and the initialization SI dictate in what direction the vari-
ables need to be repartitioned to make progress towards making G false.

EXAMPLE (CONTINUED) Loop-guard G indicates that eventually LTL should
equal all of L, at which point G becomes false and the loop is exited. After
the initialization, LTL is 0 × 0. The partitioning of L is also such that LTL
should always be square. Thus, the repartitioning should be such that as
the computation proceeds, the dimensions of LBR should decrease as the
dimensions of LTL increase. This is accomplished by the shifting of the
double-lines as indicated in Steps 5a and 5b in Figure 5.

Notice that we are exposing blocks of rows and/or columns as part of the
movement of the double lines. The reason for this is related to performance
and will become more clearly apparent in Appendix A.2.

4.6 Step 6: Derive the State in Terms of the Repartitioned Variables

The repartitioning of the variables and the loop-invariant Pinv in Step 5a dic-
tates Pbefore, the state of the variables before the update SU . In particular, the
double lines in the repartitioning have semantic meaning in that they show
what submatrices of the repartitioned matrix correspond to the original sub-
matrices. Substituting the submatrices of the repartitioned matrix into the
appropriate place in the loop-invariant yields Pbefore. This is (often referred to
as) textual substitution into the expression that defines the loop-invariant.

EXAMPLE (CONTINUED) The repartitionings in Step 5a in Figure 5 identify
that

LTL = L00

LBL =

 L10

L20


 LBR =


 L11 0

L21 L22


 ,

BT = B0

BB =

 B1

B2


 , and

B̂T = B̂0

B̂B =

 B̂1

B̂2


 .

Textual substitution into the loop-invariant yields the state

Pbefore :




B0
 B1

B2





 =




L−1
00 B̂0

 B̂1

B̂2





 ∧ . . . (8)

4.7 Step 7: Derive the State in Terms of the Repartitioned Variables at the Bottom
of the Loop Body

The redefinition via partitioning of the variables in Step 5b and the loop-
invariant Pinv dictate the desired state of the variables after the update SU
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and after the shifting of the double-lines, Pafter. This can again be viewed
as textual substitution of the various submatrices into the loop-invariant.

EXAMPLE (CONTINUED) The redefinition in Step 5b in Figure 5 identifies the
following equivalent submatrices:

LTL =

 L00 0

L10 L11




LBL =
(

L20 L21

)
LBR = L22

,
BT =


 B0

B1




BB = B2

, and
B̂T =


 B̂0

B̂1




B̂B = B̂2

.

Textual substitution into the loop-invariant implies that the following
state must be true before the redefinition in Step 5b. In other words, the
update in Step 8 must leave the variables in the state

Pafter :





 B0

B1




B2


 =





 L00 0

L10 L11




−1 
 B̂0

B̂1




B̂2




which, inverting the triangular matrix and multiplying out the right-hand
side, is equivalent to

Pafter :





 B0

B1




B2


 =





 L−1

00 B̂0

L−1
11 (B̂1 − L10L−1

00 B̂0)




B̂2




(9)

4.8 Step 8: Derive How Submatrices Must be Updated

The difference in the states Pbefore and Pafter dictates the update SU .

EXAMPLE (CONTINUED) Comparing (8) and (9) we find that the updates

B1 := B1 − L10 B0

B1 := L−1
11 B1

are required to change the state from Pbefore to Pafter.

NOTE 4. If no update can be found that does not use the original contents
of a matrix to be overwritten, then either the loop-invariant is infeasible (for
Reason 1 in Step 2) or a temporary variable is inherently required.

EXAMPLE (CONTINUED) In our example, if the update inherently has to use
submatrices of B̂ (referencing the original contents of B), the loop-invariant
would be infeasible since the operation is expected to overwrite the original
matrix without requiring a temporary variable.
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Fig. 6. Algorithm for the TRSM example.

4.9 Step 9: The Final Algorithm

Often variables that indicate the original contents of a variable are only intro-
duced to facilitate the predicates denoting the states at different stages of the
algorithm. Whenever possible, such variables should be eliminated from the
final algorithm.

EXAMPLE (CONTINUED) By recognizing that B̂ is never referenced we can elim-
inate all parts of the algorithm that refer to this matrix, yielding the final
algorithm given in Figure 6.

EXERCISE 4.1. (Partition L Variant 2) Repeat Steps 3–8 for the feasible loop-
invariant

Pinv :





 BT

BB


 =


 L−1

TL B̂T

B̂B − LBLL−1
TL B̂T





 ∧ . . .

State the final algorithm by removing references to B̂, similar to the algorithm
given in Figure 6.

EXERCISE 4.2. Repeat Step 2 by choosing to partition B vertically:

B → ( BL ‖ BR ).

Show that this leads to a vertical partitioning of B̂: B̂ → ( B̂L ‖ B̂R ) while L is not
partitioned at all. Finally, show that this leads to two feasible loop-invariants:

( BL ‖ BR ) = ( L−1 B̂L ‖ B̂R ) ∧ . . . (10)
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and

( BL ‖ BR ) = ( B̂L ‖ L−1 B̂R ) ∧ . . . (11)

EXERCISE 4.3. (Partition B Variant 1) In Exercise 4.2 consider loop-invariant
(10). Show that by applying Steps 3–9 one can systematically derive the algo-
rithms in Figures 2 and 3.

If one repartitions

( BL ‖ BR ) → ( B0 ‖ b1 | B2 ) . . . ,

one recovers exactly those algorithms, while the repartitioning

( BL ‖ BR ) → ( B0 ‖ B1 | B2 ) . . . ,

yields the corresponding blocked algorithm.

EXERCISE 4.4. (Partition B Variant 2) Repeat Exercise 4.3 with loop-
invariant (11) and relate the result to Exercise 3.1.

4.10 Recursion

For the unblocked algorithms, where the boundaries move one row and/or col-
umn at a time, the operations that update the contents of some of the ma-
trices tend to be relatively simple. Algorithms for those operations can also
be systematically derived, hand-in-hand with the proof of their correctness.
Ultimately, these algorithms are built upon addition, subtraction, multiplica-
tion, and division as well as operations such as taking the square root of a
scalar. Thus, correct algorithms for these operations can be derived using our
techniques.

For the blocked algorithms, the operation for which we are deriving the algo-
rithms tends to show up as an operation in the body of the loop (the repetend).
Clearly the correctness of the blocked algorithm can be ensured by employ-
ing some correct algorithm for this operation in the repetend. In the simplest
case, a correct unblocked algorithm can be derived and utilized. However, the
implementation of the blocked algorithm itself can be called recursively, or a
different blocked algorithmic variant can be used. It is not difficult to see that,
as long as only a finite number of levels of such calls are allowed and a correct
implementation is called at every level, the correctness of the overall algorithm
is ensured.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this article we have presented a systematic approach to the derivation of
provably correct linear algebra algorithms. The methodology represents what
we believe to be a significant refinement of our earlier approach, presented
in Gunnels et al. [2001]. The result is a method which, in our opinion, puts
the derivation of families of correct algorithms for a class of dense linear alge-
bra operations on solid theoretical footing. We would like to think that it has
scientific, pedagogical, and practical implications.

ACM Transactions on Mathematical Software, Vol. 31, No. 1, March 2005.

78



The Science of Deriving Dense Linear Algebra Algorithms • 19

The fact that we can now systematically derive correct algorithms leads to a
number of additional issues:

—Once a correct algorithm has been derived, there is still the problem of trans-
lating this algorithm to code without introducing programming bugs. We hint
at a solution to this problem in Appendix A.1.

—If it were possible to fully automate the derivation and implementation of
provably correct algorithms for linear algebra operations, then one could
claim that this area of research is well-understood.

A prototype system, implemented by Sergey Kolos at UT-Austin as part
of a semester project, automatically derives all algorithms for some linear
algebra operations using Mathematica [Wolfram 1996] as a tool. Similarly,
a semi-automatic tool has been developed by one of the authors that uses
Mathematica to perform many of the indicated steps for a very broad class
of operations. These prototype tools demonstrate that automation may be
achievable.

—In practice, implementations of different algorithms will have different per-
formance characteristics as a function of such parameters as operand di-
mensions and architecture specifications (see also Section A.3). Thus, given
that a family of algorithms has been derived, one must choose from among
the algorithms. Systematic (or automatic) derivation of parameterized cost
analysis hand-in-hand with the algorithms and implementations would be
highly desirable. An alternative to this would be the identification of general
techniques for a heuristic for selection.

Some preliminary work on the automatic derivation of cost analyses for
parallel architectures shows that this may be possible [Gunnels 2001].

—Not all algorithmic variants will necessarily have the same stability proper-
ties. The most attractive solution to this problem would be to make systematic
(or automate) the derivation of the stability analysis, hand-in-hand with the
derivation of the algorithm. We are hopeful this also will be achievable in the
future.

—We have mentioned that the presented techniques have been shown to apply
to a wide range of linear algebra operations. It would be highly desirable
to more precisely characterize the class of problems to which the technique
applies.

In conclusion, it is our belief that the application of formal derivation methods
to dense linear algebra operations provides a new tool for examining a number
of challenging open questions.

Additional Information

Additional information regarding formal derivation of algorithms for linear
algebra operations can be found at http://www.cs.utexas.edu/users/flame/.
As part of that website we have started to maintain a list of operations to
which the methodology has been applied. It is our hope to eventually provide
for each such operation not only the derivations of the algorithms, but also the
implementations using APIs for various languages.
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APPENDIX

A. PRACTICAL CONSIDERATIONS

This article is intended to highlight the formal derivation method that allows
algorithms for linear algebra operations to be developed. However, we cannot
ignore the fact that in order for these methods to be accepted by the linear
algebra libraries community, it must be shown that the insights impact the
practical aspects of the development of libraries. In an effort to address these
issues without detracting from the central message of the article, we give a few
details in this appendix.

A.1 Implementation

The systematic derivation of provably correct algorithms solves only part of
the problem, namely that of establishing that there are no logic errors in the
algorithm. So called programming bugs are generally introduced in the trans-
lation of the algorithm into code. While the implementation of the algorithms
is not the topic of this article, we show in Figure 7 how an appropriately defined
API, our FLAME/C library [Gunnels and van de Geijn 2001a, 2001b; Gunnels
et al. 2001; Bientinesi et al. 2005b], can be used to program algorithms so that
the code closely resembles the algorithms. A similar API has been defined for
MATLAB (FLAME@lab) [Moler et al. 1987; Bientinesi et al. 2005b]. Finally,
the Parallel Linear Algebra Package (PLAPACK) [van de Geijn 1997; Alpatov
et al. 1997] API has been extended to allow parallel implementations to also
more closely reflect the presented algorithms.

Notice that the correctness of the implementations depends on the correct-
ness of the operations used to implement the derived algorithms. The oper-
ations that partition matrices, creating references into the original matrices,
are extremely simple. Thus their correctness can be established through normal
(exhaustive) debugging methods or, preferably, they can themselves be formally
proven correct. As mentioned in Section 4.10, algorithms and implementations
for operations required in the body of the algorithm can themselves be derived
using our techniques.

The code in Figure 7 illustrates how the FLAME/C API can be used to im-
plement the algorithms for TRSM that start by partitioning L. This example also
illustrates how recursion and iteration can be easily mixed in the implementa-
tion, as mentioned in Section 4.10.

A.2 Experimental Results

In this section we illustrate how the derivation methodology, combined with the
FLAME/C API, leads to high-performance algorithms and implementations for
the TRSM operation. Performance was measured on a 650 MHz Intel (R) Pentium
(R) III processor-based laptop with a 256K L2 cache running the Linux (Red
Hat 7.1) operating system. All computations were performed in 64-bit (double
precision) arithmetic. For our implementations, the FLAME/C API linked to
BLAS provided by the ATLAS Version R3.2 BLAS library for the Pentium III
processor [Whaley and Dongarra 1998]. In other words, whenever a call like
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Fig. 7. FLAME implementation of recursive blocked TRSM algorithm in Figure 6 (variant == 1)
and the algorithm in Exercise 4.1 (variant == 2).
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Fig. 8. Performance of unblocked TRSM implementations.

FLA Ger is made, it results in a call to the corresponding BLAS routine, in this
case the rank-1 update dger. The only exception occurs when FLA Gemm is called:
For some of the experiments, the ATLAS implementation of the DGEMM routine
is called by this routine. For other experiments, our ITXGEMM [Gunnels et al.
2001] implementation of DGEMM is called instead.

In our graphs we report the rate of computation, in millions of floating point
operations per second (MFLOPS), using the accepted operation count of n3 float-
ing point operations, where B is n × n. Notice that the theoretical peak of this
particular architecture is 650 MFLOPS. However, due to memory bandwidth
limitations, in practice the peak performance achieved by dgemm is around 525
MFLOPS. [Gunnels et al. 2001].

In Figure 8 we report the performance of various unblocked algorithms.
These implementations perform the bulk of their computation in the level-
2 BLAS operations dger, dgemv, and/or dtrsv [Dongarra et al. 1988]. It is
well-known that these operations cannot attain high-performance since they
perform O(n2) operations on O(n2) data, which makes the limited memory
bandwidth a bottleneck. Note that Partition L variant 1 and Partition L
variant 2 perform most of their computation in dgemv and dger, respectively.
This explains the relative performance of these implementations since high-
performance implementations of dgemv incur about half the memory traffic of
dger. Partition B variant 1 performs the bulk of its computation in dtrsv.
In theory, this implementation should actually be able to attain higher per-
formance than either of the other two implementations for small matrices as
matrix L can be kept in the L1 cache. However, its performance suffers con-
siderably from the fact that the FLAME approach to tracking submatrices is
particularly expensive for this implementation.
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Fig. 9. Performance of blocked and recursive TRSM implementations. Here FLAME/C is interfaced
with the DGEMM provided by ATLAS.

In Figure 9 we report the performance of blocked versions of the algorithms
when the algorithmic blocksize, b, equals 120 and an unblocked implementa-
tion of the indicated variant is used for the smaller subproblem. We also show
the performance of recursive implementations where the blocks were chosen to
equal b = 120, 40, 20, 10, after which an unblocked algorithm was used once ma-
trix L was smaller than 10×10. The matrix-matrix multiply called by FLA Gemm
in this case is provided by ATLAS. These block sizes were chosen in an attempt
to optimize the implementation that uses ATLAS.

In Figure 10 we report the same experiments as reported in Figure 9 ex-
cept that our ITXGEMM matrix multiplication kernel is used rather than the
ATLAS counterpart. The block sizes were adjusted to accommodate different
design decisions made when implementing this matrix multiplication kernel,
as indicated in the legend of the graph.

A.3 How to Choose

An interesting question becomes how to choose from among the different algo-
rithms. A lot of factors affect the answer to this question.

Quality of dgemm. Consider the matrix-matrix multiplication C := C − AB,
where C, A, and B are m × n, m × k, and k × n, respectively. The blocked
algorithms derived in this article inherently attempt to cast the bulk of their
computation in terms of this matrix-matrix multiplication.

Often, implementations of dgemm achieve better performance when k is small
relative to m and n than when m is small relative to n and k. When considering
the update B1 := B1 − L10 B0 in Variant 1, the block size, b, is typically chosen
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Fig. 10. Performance of blocked and recursive TRSM implementations. Here FLAME/C is interfaced
with the DGEMM provided by ITXGEMM.

so that m is small relative to n and k in the call to the matrix-matrix multiplica-
tion kernel. By contrast, those who worked out the details for Exercise 4.1 will
see that the bulk of computation is in the update B2 := B2 − L21 B1 in Variant 2.
This explains why Partition L variant 2 generally outperforms Partition L
variant 1 in Figure 9. When the implementation of dgemm is such that it per-
forms well in both cases, the performance of the two variants is nearly identical,
as is shown in Figure 10.

The conclusion is that the choice of the variant depends on the implementa-
tion of the underlying operations.

Size of the matrix and architecture specifications. Consider the situation
where we wish to solve LX = B in the case where together L and B do not fit
in the main memory of a processor and are thus stored on disk (out-of-core).
Assume also that L fills most of the memory of that processor. Then an out-of-
core implementation of TRSM can be achieved by loading most of the memory
with L. Next, an algorithm that partitions B by columns, as in Exercise 4.3,
can be used to bring blocks of columns of B, (B1 in the algorithm), into memory,
after which some other variant can be used to compute B1 := L−1 B1. Once
updated, B1 is returned to disk.

These same techniques can be applied as subproblems that partially fit in
various levels of the memory hierarchy (e.g., L2 and L1 caches) are encountered.

A.4 Stability

As mentioned in the conclusion, the stability of the derived algorithms is a real
concern which we hope to address as part of future research.
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For the particular operation that is used to illustrate our methodology in
this article, the stability of the different algorithms turns out to be relatively
well-understood: All of the derived algorithms, unblocked and blocked, have
roughly the same stability properties. For details regarding the stability of
the triangular solve with multiple right-hand sides see, for example, Higham
[2002].
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Parallel Out-of-Core Computation
and Updating of the QR Factorization

BRIAN C. GUNTER and ROBERT A. VAN DE GEIJN
The University of Texas at Austin

This article discusses the high-performance parallel implementation of the computation and up-
dating of QR factorizations of dense matrices, including problems large enough to require out-of-
core computation, where the matrix is stored on disk. The algorithms presented here are scalable
both in problem size and as the number of processors increases. Implementation using the Par-
allel Linear Algebra Package (PLAPACK) and the Parallel Out-of-Core Linear Algebra Package
(POOCLAPACK) is discussed. The methods are shown to attain excellent performance, in some
cases attaining roughly 80% of the “realizable” peak of the architectures on which the experiments
were performed.
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1. INTRODUCTION

With the recent improvements in memory access, storage capacity, and pro-
cessing power of high-performance computers, operating on large dense lin-
ear systems is not as daunting a task as it has been in the past. One such
realm where this new capability has been of extreme value is in the earth
sciences, particularly with regards to the determination of high resolution
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gravity field models. The estimation of these models involves the solution
of large overdetermined linear least-squares problems, which often contain
tens of thousands of parameters and millions of observations [Gunter et al.
2001b; Condi et al. 2003]. Since these systems have the potential to be mildly
ill-conditioned, the method chosen to compute the least-squares solution is
one utilizing the QR factorization, since it provides greater accuracy than
the method of normal equations. To tackle a problem of this size requires
the use of an efficient and scalable implementation of the QR factorization
that can take advantage of the power of modern day supercomputers. Ini-
tially, an in-core parallel implementation was developed [Gunter 2000], but
later an out-of-core (OOC) implementation was created to handle even larger
problems.

In reporting the results of our research, this article makes the following
contributions:

—It reviews the standard techniques for the high-performance implementation
of the QR factorization based on the Householder transformation [Dongarra
et al. 1986; Bischof and Van Loan 1987; Schreiber and Van Loan 1989;
Elmroth and Gustavson 1998, 2000, 2001; Bjorck 1996].

—It extends these techniques to the problem of updating the QR factorization
as additional batches of observations are added to the system [Dongarra et al.
1979].

—It demonstrates how the techniques used to update a QR factorization can be
used to implement an OOC QR factorization algorithm that is more scalable
than other previously proposed OOC approaches for this problem [D’Azevedo
and Dongarra 1997; Rabani and Toledo 2001; Toledo and Rabani 2002]. In
particular, while it was previously observed that so-called tiled approaches
are more scalable than so-called “slab” approaches for the OOC computation
of the Cholesky factorization [Toledo and Gustavson 1996; Reiley and van de
Geijn 1999; Reiley 1999; Gunter et al. 2001a] and a possibly unstable variant
of the LU factorization [Scott 1993], only nonscalable slab approaches had
been previously proposed for the OOC QR factorization.

—It discusses a parallel implementation of the algorithms using the Parallel
Linear Algebra Package (PLAPACK) [van de Geijn 1997] and its out-of-core
extension, the Parallel Out-of-Core Linear Algebra Package (POOCLA-
PACK) [Reiley and van de Geijn 1999; Reiley 1999; Gunter et al. 2001a;
Alpatov et al. 1997].

—It reports excellent performance attained on massively parallel distributed
memory supercomputers.

While we reported initial performance results for the implementations in a pre-
vious (conference) paper [Gunter et al. 2001a], this article goes into considerably
more depth.

This article is structured as follows: Section 2 briefly describes the notation
used. Section 3 reviews the QR factorization using Householder transforma-
tions. This includes a discussion of the block algorithm as well as the QR fac-
torization’s application to the least squares problem. Section 4 discusses how
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the standard QR factorization can be updated when new information becomes
available. This technique later becomes a key component of the OOC algorithm,
which is given in Section 5. The actual parallel implementation is discussed in
Section 6. Results from experiments are reported in Section 7. Section 8 pro-
vides some final thoughts and conclusions.

2. NOTATION

In this article we adopt the following conventions: Matrices, vectors, and scalars
are denoted by upper-case, lower-case, and lower-case Greek letters, respec-
tively. The identity matrix will be denoted by I and e1 will denote the first col-
umn of the identity matrix (in other words, the vector with first element equal
to unity and all other elements equal to zero). The dimensions and lengths of
such matrices and vectors will generally be obvious from the context.

Algorithms in this article are given in a notation that we have recently
adopted as part of the FLAME project [Gunnels et al. 2001; Quintana-Ortı́ and
van de Geijn 2003]. The double lines in the partitioned matrices and vectors
relate to how far into the matrices and vectors the computation has proceeded,
indicating which parts are in their factored form and which parts are in their
original form. We believe the notation to be intuitive, but suggest that the reader
consult some of these related papers for further clarification.

3. COMPUTING THE QR FACTORIZATION VIA HOUSEHOLDER
TRANSFORMATIONS

Given an m×n real-valued matrix A, with m ≥ n, the QR factorization is given
by

A = QR,

where the m× m matrix Q has mutually orthonormal columns (QT Q = I ) and
the m × n matrix R is upper triangular.

There are many different methods for computing the QR factorization, in-
cluding those based on Givens rotations, orthogonalization via Gram-Schmidt
and Modified Gram-Schmidt, and Householder transformations [Golub and
Van Loan 1996; Watkins 1991]. For dense matrices, the method of choice de-
pends largely on how the factorization is subsequently used, the stability of
the system, and the dimensions of the matrix. For problems where m � n,
the method based on Householder transformations is typically the algorithm of
choice, especially when Q does not need to be explicitly computed.

3.1 Householder Transformations (Reflectors)

Given the real-valued vector x of length m, partition

x =
(

χ1

x2

)
,

where χ1 equals the first element of x.
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Fig. 1. Unblocked Householder QR factorization.

We define the Householder vector associated with x as the vector

u =
(

1
x2/ν1

)
,

where ν1 = χ1+sign(χ1)‖x‖2. If β = 2
uT u then (I −βuuT )x = ηe1, annihilating all

but the first element of x. Here η = −sign(χ1)‖x‖2. The transformation I−βuuT ,
with β = 2/uT u is referred to as a Householder transformation or reflector.

Let us introduce the notation [u, η, β] := h(x) as the computation of the above
mentioned η, u, and β from vector x and the notation H(x) for the transforma-
tion (I − βuuT ) where [u, η, β] = h(x). An important feature of H(x) is that it
is orthonormal (H(x)T H(x) = H(x)H(x)T = I ) and symmetric (H(x)T = H(x)).

3.2 A Simple Algorithm for the QR Factorization via Householder Transformations

The computation of the QR factorization commences as described in Figure 1.
The idea is that Householder transformations are computed to successively
annihilate elements below the diagonal of matrix A one column at a time. The
Householder vectors are stored below the diagonal over the elements of A that
have been so annihilated. Upon completion, matrix R has overwritten the upper
triangular part of the matrix, while the Householder vectors are stored in the
lower trapezoidal part of the matrix. The scalars β discussed above are stored
in the vector b.
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Fig. 2. Blocked Householder QR factorization.

If the matrix Q is explicitly desired, it can be formed by computing the first
n columns of H1 H2 · · · Hn where Hi equals the ith Householder transformation
computed as part of the factorization described above. In our application, we
do not need to form Q explicitly and thus will not discuss the issue further.

3.3 A High-Performance (Blocked) Algorithm for the QR Factorization

It is well-known that high performance can be achieved in a portable fashion
by casting algorithms in terms of matrix-matrix multiplication [Anderson et al.
1992; Dongarra et al. 1990, 1991]. We now review how to do so for the QR
factorization [Schreiber and Van Loan 1989; Anderson et al. 1992].

Two observations play a key role:

—Let u1, . . . , uk equal the first k Householder vectors computed as part of the
factorization, and β1, . . . , βk the corresponding scalars. Then H1 H2 · · · Hk =
I + Y TY T where Y is a n × k unit lower-trapezoidal matrix, T is a k × k
upper-triangular matrix, and the j th column of the lower-trapezoidal part
of Y equals u j .

—The QR factorization of the first k columns of A yields the same k vectors
uk and the same values in the upper triangular part of those k columns as
would a full QR factorization.

Notice that this suggests the blocked algorithm given in Figure 2.
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NOTE 1. Notice that the algorithm stores the “T” matrices that are part of
the block Householder transformation I +Y TY T . This avoids having to recom-
pute those matrices as part of the OOC implementation of the QR factorization,
and results in a small but noticeable increase in performance [Elmroth and
Gustavson 1998, 2000, 20001]. It should be noted that when factoring tall, thin
matrices, the performance gain from saving the T matrices is much greater, in
some cases a factor of three or more. The cases examined in this study, in par-
ticular the OOC algorithm presented later, work primarily on roughly square
matrices, which explains why the performance gain is not as dramatic. In addi-
tion, while not implemented for this study, further optimizations can be gained
for certain types of problems by formulating the T matrices in terms of Level-3
operations [Elmroth and Gustavson 2000] as opposed to the traditional method,
which only incorporates Level-2 operations [Schreiber and Van Loan 1989].

3.4 Solving Multiple Linear Least-Squares Problems

Given a real-valued m × n matrix A and vector y of length m, the linear least-
squares problem is generally stated as

min
x

‖ y − Ax‖2,

where the desired result is a vector x that minimizes the above expression. It
is well-known that the minimizing vector x can be found by computing the QR
factorization A = QR, computing z = QT y , and solving Rx = zT where zT
denotes the first n elements of z.

Alternatively, one can think of this as follows: Append y to A to form ( A | y ).
Compute the QR factorization A = QR, storing the Householder vectors and
R over A. Update y by applying the Householder transformations used to
compute R to vector y , which overwrites y with z. Finally, solve Rx = zT
with the first n elements of the updated y . This second approach is remi-
niscent of how a linear system can be solved by appending the right-hand-
side vector to the system and performing an LU factorization (or, equivalently,
Gaussian elimination) on the appended system, followed by a back-substitution
step.

Finally, if there exists a set of right-hand-sides, one can simultaneously solve
a linear least-squares problem with A and columns of B by the following ap-
proach: Append B to A to form ( A | B ). Compute the QR factorization A = QR,
storing the Householder vectors and R over A. Update B by applying the House-
holder transformations used to compute R to matrix B, which overwrites B
with Z . Finally, solve RX = Z T with the first n rows of the updated B. It is this
second operation with a right-hand-side B that we will encounter in the OOC
implementation of the QR factorization. An algorithm for the first, forward
substitution-like, step is given in Figure 3.

NOTE 2. Again, because we store the “T” matrices that are part of the block
Householder transformation I + Y TY T , they need not be recomputed as part of
the “forward substitution” step on matrix B (see Note 1 for details).
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Fig. 3. Blocked update of the right-hand-side matrix B using a “forward substitution-like”
approach.

4. UPDATING THE QR FACTORIZATION

Frequently, the linear equations used in the least squares problem are col-
lected incrementally. For example, if the observations from a particular instru-
ment are only collected or contributed on a monthly basis, it would be useful
to combine each new batch of data into the existing solution without having to
recombine all of the previous data. We now review how the QR factorization
can be updated as additional batches of equations (i.e., observations) become
available [Dongarra et al. 1979; Golub and Van Loan 1996; Watkins 1991].

4.1 Factorization

Let us assume that we have computed Q and R such that A = QR, overwriting
A with the Householder vectors and upper triangular matrix R, and storing
the “T ” matrices in matrix T . Thus, we have available A = {Y \R} and T . Now,
consider the QR factorization of matrix(

A
C

)
= Q̄ R̄. (1)
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Fig. 4. Unblocked update to a QR factorization.

A key observation is that the QR factorization of(
R
C

)
(2)

produces the same upper triangular matrix R̄ as does the factorization in (1).
If we are not interested in explicitly forming Q̄ and are satisfied with storing
the Householder vectors required to first compute the QR factorization of A and
next the QR factorization in (2), then we have an approach for computing the
QR factorization of an updated system. The unblocked and blocked algorithm
for doing so is given in Figures 4 and 5, respectively.

NOTE 3. Notice that the algorithm is explicitly designed to take advantage
of the zeros below the diagonal of R. As a result, factoring A followed by an
update of the factorization requires essentially no more computation than the
factorization in (1). Also, the Householder vectors that are stored below the diag-
onal are not overwritten. It is the case that an additional vector b is required to
store the “β”s for the unblocked algorithm and an additional matrix is required
to store the triangular “T” matrices for the blocked algorithm.
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Fig. 5. Blocked update to a QR factorization.

4.2 Solving Multiple Linear Least-Squares Problems

If we now wish to compute multiple linear least-squares solutions, one for each
of the systems of linear equations defined by picking one column of the right-
hand-side of (

A
C

)
X =

(
B
D

)
,

the following approach will yield the desired result:

—Append ( A B
C D ).

—Overwrite A with its factors {Y \R}, also computing matrix T , as in Figure 2.
—Overwrite ( R

C ) with ( R̄
Y (C) ), also computing T (C) as in Figure 5.

—Update B by forward substitution as in Figure 3.

—Update ( B
D ) by forward substitution using the Householder transformations

computed as part of the update of R, as in Figure 6.
—Solve R̄ X = BT , where BT denotes the top n rows of the updated matrix B.
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Fig. 6. Forward substitution consistent with the QR factorization of an updated matrix.

5. OUT-OF-CORE ALGORITHMS

Having now described the in-core algorithm, we can apply a similar strategy
for problems that are too large to fit in the available memory of the machine.
To deal with these problems, we have developed an out-of-core algorithm that
allows us to store the bulk of the matrix components on disk, while only working
on select pieces in-core at any one time. The algorithm we will outline here is
unique in that it is both scalable and efficient.

5.1 Out-of-Core QR Factorization

Traditional OOC algorithms of the QR factorization have used a slab approach,
in which the OOC matrix is processed by bringing into memory one or more slabs
(blocks of columns) of the matrix at a time [Coleman et al. 1992; Klimkowski and
van de Geijn 1995; D’Azevedo and Dongarra 1997; Toledo and Gustavson 1996;
Scott 1993; Toledo and Rabani 2002]. The problem with this technique is that
it is inherently not scalable in the following sense: As the row dimension, m, of
A becomes larger and larger, the width of the slab you can bring into memory
becomes proportionally smaller. As m reaches into the millions, the number of
columns able to be brought into memory numbers only in the dozens, even on
today’s powerful machines with large memories.

The alternative that we have found to the slab approach is to work with the
matrix as a collection of tiles, where a tile is a submatrix that is roughly square.
As was shown for the OOC Cholesky factorization [Toledo and Gustavson 1996;
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Fig. 7. Factoring the first row of tiles using the out-of-core approach. Grey regions indicate com-
ponents that reside on disk.

Reiley and van de Geijn 1999; Reiley 1999; Gunter et al. 2001a], a tiled ap-
proach provides true scalability. We will see that the processing of these tiles
becomes a simple application of the algorithms in Figures 2, 3, 5, and 6. The
high performance achieved with these in-core procedures is maintained when
processing the tiles, providing the same benefits to the OOC approach. As the
problem size increases, additional tiles are simply added to the system, without
adversely affecting performance.

To demonstrate this, we begin in much the same way as we did with the
in-core algorithm, except now the matrix A resides entirely on disk and not in
memory. We partition the matrix into a series of tiles, as illustrated in Figure 7.
For the purposes of this example, we will assume that the matrix A is square
and divided into nine tiles of size t × t, forming a 3 × 3 grid of tiles.

(1) The first tile, A11, is read into memory and factored using the in-core algo-
rithm in Figure 2. Upon completion, A11 is written to disk. For now, the “T ”
matrices created during this step are kept in-core.
Notice that as the dimension t becomes larger, the cost of reading and writ-
ing A11( O(t2)) improves because it is amortized over the useful computation
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(O(t3))—the QR factorization. Consequently, the larger t becomes, the less
significant the I/O overhead.

(2) Next, tile A12 is brought into memory. It is updated consistent with the
factorization of A11, using the Householder vectors that have overwritten
the lower triangular part of A11 and the “T ” matrices still in memory. In
other words, the algorithm in Figure 3 is employed. Once updated, A12 is
written back to disk.
On the surface, it would thus appear that two tiles must be in memory,
consequently limiting the tile dimension t. However, a closer look at the
update in the body of the loop of the algorithm in Figure 3 shows that only
a panel of columns of A11, which can be discarded as soon as it has been used
to update A12, needs to be brought into memory. Thus, at most t×k elements
of A11 need to be in memory at a time. The cost of bringing these elements
into memory is amortized over O(kt2) computations. Similarly, the O(t2)
cost of bringing A12 into memory is amortized over O(t3) computations.
The larger t becomes, the less significant the I/O overhead.
The remaining tiles in the first row are processed similarly. Once the entire
first row has been processed, the “T ” matrices computed in the factorization
of A11 can be written to disk.

(3) After processing the first row, A21 is brought into memory. It must be up-
dated together with A11 according to the algorithm in Figure 5, generating
a new set of “T ” matrices. Once updated, A21 is written to disk, while the
newly generated “T ” matrices are kept in memory.
Again, it would appear that two tiles must be in memory, thus limiting the
tile dimension t. However, the update in the body of the loop of the algorithm
in Figure 5 shows that only a panel of rows of A11, which can be written
back to disk as soon as it has been used to update A21, needs to be brought
into memory. Thus, at most k × t elements of A11 need to be in memory at
a time. The cost of bringing these elements into memory is amortized over
O(kt2) computations. Similarly, the O(t2) cost of bringing A21 into memory
is amortized over O(t3) computations. The larger is t, the less significant
the I/O overhead.

(4) Once A21 is updated, A22 is brought into memory, to be updated according
to Step 3 above, using the algorithm in Figure 6.
It would appear that now A21, A12, and A22 must all be in memory simul-
taneously. However, the update in the body of the loop in Figure 6 requires
only a panel of columns of A21 and a panel of rows of A12 to be in memory.
Thus only A22 needs to be kept in memory, while panels of the other two
matrices are streamed from disk. The cost of the I/O involved is O(kt) per
iteration of the loop, which is amortized over O(kt2) computations. Mean-
while, the O(t2) cost of bringing A22 into memory is amortized over O(t3)
computations. The larger t becomes, the less significant the I/O overhead.
The remaining tiles in the second row are processed similarly.

(5) The third row of tiles is handled in the same manner as described in Steps 3
and 4. A31 is first factored with A11, creating a new set of “T ” matrices and
overwriting A31 with the corresponding Householder vectors. A32 is brought
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into memory and updated with column panels from A31, while A12 in row
panels of height k is also updated. The same is done for A33 and A13. Note
that only the first and third row of tiles are affected by these operations.

(6) Now, Steps 5.1–5 start to repeat: A22 is factored as A11 was in Step 5.1. The
remaining tiles in the second row are processed as described in Step 2. The
tiles in the third row below the tiles on the diagonal are processed as in
Step 3, and the remaining tiles in the third row are processed as in Steps 4
and 5. After this, it is back to Step 5.1 with A33 and so forth.

This process is illustrated in Figure 7. In that figure, it is the unshaded part of
the matrix that is in memory at a typical stage of the algorithm.

NOTE 4. In principle, most of the memory can be dedicated to storing a single
t×t tile. This allows t to be as large as possible, which then improves the indicated
ratios of I/O to useful computation.

5.2 Out-of-Core Updating

To update an existing OOC solution with a new set of equations is straight-
forward, as the OOC algorithm was designed to handle problems of arbitrary
length. The new data is simply divided into the appropriate tiles and combined
with the existing solution in the same manner that the 2nd and 3rd rows of
tiles were handled in the previous section.

6. IMPLEMENTATION

In this section, we discuss some practical considerations related to the actual
implementation of the OOC algorithms.

6.1 Parallel Implementation

So far in this article, parallel implementation has not been explicitly discussed.
We now give a few details.

It is well-known that a scalable implementation of dense linear algebra op-
erations requires the use of a so-called two-dimensional matrix distribution
[Hendrickson and Womble 1994; Stewart 1990]. Moreover, to ensure load-
balance as the active part of the matrix shrinks, an overdecomposition and
wrapping of the matrix is typically employed [Lichtenstein and Johnsson 1992;
Strazdins 1998; van de Geijn 1997; Dongarra et al. 1994].

The observation now is that if one has parallel implementations of the algo-
rithms in Figures 1–6, then the parallel implementation of the OOC algorithm
becomes straightforward. The parallel implementation of the QR factorization
is well-understood, and is available as part of our PLAPACK package, as well
as part of the Scalable Linear Algebra Package (ScaLAPACK) [Choi et al. 1992].
Since the remaining algorithms are, in essense, merely variations of the QR fac-
torization, we implemented them as modifications of the PLAPACK QR factor-
ization. Further modifications had to be made so that the panels being streamed
from disk were read into memory and/or written out to disk at the appropri-
ate time. Our POOCLAPACK package facilitates this read operation. Finally,
a routine that manages the processing of the tiles was also written.
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6.2 Optimizing I/O Performance

The OOC method described in Section 5 advocates a single-tile method, in which
most of memory is dedicated to a single tile. As argued, this is desirable because
the I/O overhead decreases as the tile size increases. While this is easy to justify
theoretically, in this section we point out a practical consideration that suggests
that keeping two tiles in memory may lead to better performance. The two tile
approach also leads to a simpler implementation.

First, a few details about the storage of matrices. The matrices assigned
locally to each processor as parts of tiles are stored in memory in column-major
order. Similarly, on disk, they are stored in column-major order. More precisely,
the columns are stored so that if a panel of columns is read by a processor from
disk, they are all contiguous in memory. This makes the reading of a tile and
of panels of columns relatively cheap, since I/O carries a large start-up cost
(latency). In other words, a panel of columns can be read essentially at peak
bandwidth. By contrast, the reading of a panel of rows is generally staged as
the reading of individual columns of that panel, incurring a latency related cost
for each such column. This makes the reading of a panel of rows prohibitively
expensive.

The update in Step 2 in Section 5.1 requires only column panels (of House-
holder vectors) to be read from disk. By contrast, the operations in Steps 3 and 4
require panels of rows to be brought in. Thus, it becomes advantageous to bring
the entire tile from which panels of rows are to be used into memory, leading to
a two-tile OOC algorithm. It is this approach that was actually implemented by
us and used to obtain the performance numbers described in the next section.

NOTE 5. By transposing tiles above the diagonal after processing, it is possi-
ble to implement the one-tile approach while still only reading panels of columns.
We did not do so in an effort to keep the implementation simple.

7. PERFORMANCE

In this section, we demonstrate that the presented algorithm attains very high
performance on distributed memory parallel architectures.

7.1 Target Architectures

The POOCLAPACK implementation of the OOC QR factorization and up-
date algorithm is essentially portable to any platform that supports the
Message-Passing Interface [Gropp et al. 1994; Snir et al. 1996] and the Ba-
sic Linear Algebra Subprograms [Lawson et al. 1979; Dongarra et al. 1988,
1990]. To date, the implementation has been ported to the SGI Origin 3000 and
Linux PC cluster environments, in addition to the Cray T3E and IBM P-series
systems.

In this article we report performance on two architectures:

—The Cray T3E-600. The system on which the experiments were performed
has 272 total processors, each with 128MB of available memory. The T3E
operates at a peak theoretical performance of 600 millions of floating
point operations per second per processor (MFLOPS/sec/proc). For reference,
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the matrix-matrix multiply operation (DGEMM) was benchmarked at 445
MFLOPS/sec/proc for the particular machine used in this study. The BLAS
used was provided as part of the Cray Scientific Library. It should also be
noted that since the T3E is a true 64-bit platform, all arithmetic was done
using 64-bit precision.

—The IBM P690. The system on which the experiments were performed con-
sists of SMP nodes, where each node consists of 16 Power4 (1.3 GHz) proces-
sors, with 32 GBytes of available memory. The P690s operate at four FLOPS
per cycle for a peak theoretical performance of 5200 MFLOPS/sec/proc, with
a DGEMM benchmark of 3723 MFLOPS/sec/proc. IBM’s optimized Engineering
and Scientific Subroutine Library (ESSL) was used in place of the standard
BLAS library. Again, all computation was performed in 64-bit arithmetic.

7.2 Reporting Performance

The operation count for a Householder transform-based QR factorization of an
m × m matrix is given by approximately 4

3 m3 floating point operations. While
our OOC algorithm requires more operations, due to the accumulation and
application of the “T ” matrices, it is this operation count that represents the
useful computation.

Thus, given Tp(m), the time in seconds required on p processors to factor an
m × m matrix, the rate in MFLOPS/sec/proc at which the processors compute
is given by the formula

Rp(m) =
4
3 m3

Tp(m)
× 10−6

p

Now, since the bulk of the computation is cast in terms of local matrix-matrix
multiplications, the upper bound on Rp(m) is given by the rate in MFLOPS/sec
attained by DGEMM, which we will denote by Rdgemm. We consider this to be the
peak performance that can be attained per processor, or the “realizable” peak
of the system. The performance of our OOC implementation will be reported as
a percentage of this realizable peak by the ratio

Rp(m)
Rdgemm

.

Depending on the architecture, this realizable peak is 70–99% of the theoretical
peak of the processor, which is defined by the clock speed multiplied by the
number of floating point operations that can be performed per clock cycle. We
believe that reporting performance relative to the realizable peak gives a clearer
insight into the overhead incurred by the parts of the QR factorization that
are not cast in terms of matrix-matrix multiplication, the overhead due to the
parallelization, and the overhead due to I/O.

7.3 Results

Figure 8 illustrates the performance of the OOC algorithm. In our experi-
ment, we vary both the number of processors used and the problem size in
the following way: Parameter t is chosen as the dimension of the tiles that will

ACM Transactions on Mathematical Software, Vol. 31, No. 1, March 2005.

101



Parallel Out-of-Core Computation and Updating of QR Factorization • 75

Fig. 8. Performance of the OOC algorithm on a Cray T3E and IBM P690.

be kept in memory. Naturally, as the number of processors increases, the total
available memory increases, and t can be increased. Factorizations of problems
of size 1 × 1 tiles through 3 × 3 tiles were subsequently timed (reported as the
Grid Size along the x-axis). The curves connect the data points corresponding
to the number of processors indicated in the legend. As the figure shows, the
performance is quite respectable.

It is interesting to note that as the problem size becomes larger, the per-
formance improves. This can be explained by the fact that as the problem size
increases, more of the computation is in the operations in Figures 3 and 6, which
casts more of the computation in matrix-matrix multiplication, the operation
that attains the highest performance.

There is a noticable difference between the two architectures regarding scal-
ability as the number of processors is increased. This can largely be attributed
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to the fact that the I/O performance of the specific Cray T3E used for these
experiments becomes a bottleneck as more processors access the disk simulta-
neously.

7.4 Further Possible Improvements

The use of asynchronous I/O (i.e., overlapping I/O with computation) was ex-
plored in a previous study on parallel OOC implementation of the Cholesky
factorization [Reiley and van de Geijn 1999; Reiley 1999; Gunter et al. 2001a].
While it was determined that a slight performance increase could be achieved
on machines with slower I/O bandwidths, the complexity of the code required to
do this was considered prohibitive for the algorithms presented in this article.
Advances in I/O technology with newer high performance machines also render
this performance increase practically negligible. Consequently, asynchronous
I/O was not used to achieve the performance numbers described in Figure 8.

While the above results were obtained using the Cray T3E and IBM P690,
it should be noted that the performance of the algorithm on other platforms is
comparable when examining the speed as a percentage of the realizable peak.

8. CONCLUSION

We have demonstrated that a modification of the standard in-core QR factor-
ization algorithm, combined with a tile-based approach for out-of-core imple-
mentations, results in a highly efficient and powerful method for computing
QR factorizations of large, dense matrices. We believe that the resulting im-
plementation is unique in that it is scalable both as the number of processors
is increased and as, for a fixed number of processors, the problem size is in-
creased. The performance of these algorithms is impressive, reaching roughly
80% of the “realizable” peak in some cases.

The application of these algorithms has already proven valuable to the Earth
Sciences, particularly with regard to the determination of the Earth’s gravity
field [Gunter 2000; Gunter et al. 2001b; Condi et al. 2003]. In addition, the tile-
based approach is well suited for other types of dense linear algebra operations,
such as the Cholesky decomposition [Gunter et al. 2001a; Reiley and van de
Geijn 1999; Reiley 1999].
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In this article, we present a number of Application Program Interfaces (APIs) for coding lin-
ear algebra algorithms. On the surface, these APIs for the MATLAB M-script and C program-
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specific architectures; D.2.2 [Software Engineering]: Design Tools and Techniques—Software
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General Terms: Algorithms, Design, Theory, Performance

Additional Key Words and Phrases: Application program interfaces, formal derivation, linear al-
gebra, high-performance libraries

1. INTRODUCTION

The Formal Linear Algebra Methods Environment (FLAME) encompasses a
methodology for deriving provably correct algorithms for dense linear algebra
operations as well as an approach to representing (coding) the resulting algo-
rithms [Gunnels et al. 2001; Quintana-Ortı́ and van de Geijn 2003; Bientinesi
et al. 2005b]. Central to the philosophy underlying FLAME are the observa-
tions that one best reasons about the correctness of algorithms at a high level
of abstraction and therefore algorithms should themselves be expressed at a
high level of abstraction, and that codes that implement such algorithms should
themselves use an API that captures this high level of abstraction. A key ob-
servation is that in reasoning about algorithms, intricate indexing is typically
avoided and it is with the introduction of complex indexing that programming
errors are often introduced and confidence in code is diminished. Thus a care-
fully designed API should avoid explicit indexing whenever possible. In this
article we give such APIs for the MATLAB M-script and C programming lan-
guages [Moler et al. 1987; Kernighan and Ritchie 1978]. We also show the
resulting MATLAB and C implementations to be part of a natural migratory
path towards high-performance parallel implementation.

Our FLAME@lab, FLAME/C and FLAME/PLAPACK interfaces strive to al-
low algorithms to be presented in code so that the knowledge expressed in the
algorithms is also expressed in the code. In particular, this knowledge is not ob-
scured by intricate indexing. In a typical development, an initial FLAME@lab
implementation gives the user the flexibility of MATLAB to test the algorithms
designed using FLAME before going to a high-performance sequential imple-
mentation using the FLAME/C API, and the subsequent parallel implemen-
tation using the Parallel Linear Algebra Package (PLAPACK) [van de Geijn
1997; Baker et al. 1998; Alpatov et al. 1997]. In our experience, an inexpe-
rienced user can use these different interfaces to develop and test MATLAB
and high-performance C implementations of an algorithm in less than an hour.
An experienced user can perform this task in a matter of minutes, and can
in addition implement a scalable parallel implementation in less than a day.
This represents a significant reduction in effort relative to more traditional ap-
proaches to such library development [Anderson et al. 1992; Choi et al. 1992].

The FLAME approach to deriving algorithms often yields a large number of
algorithms for a given linear algebra operation. Since the APIs given in this
paper allow these algorithms to be easily captured in code, they enable the
systematic creation of a repository of algorithms and their implementations.
As part of our work, we have started to assemble such a repository, the FLAME
Interface Repository (FIREsite).
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Fig. 1. Unblocked algorithm for triangular system solves (TRSM algorithm).

This article is organized as follows: In Section 2, we give an example of
how we represent a broad class of linear algebra algorithms in our previous
articles. The most important components of the FLAME@lab API are presented
in Section 3. The FLAME/C API is given in Section 4. A discussion of how
the developed algorithms, coded using the FLAME/C API, can be migrated
to parallel code written in C is discussed in Section 5. Performance issues are
discussed in Section 6. We discuss productivity issues and FIREsite in Section 7.
A few concluding remarks are given in Section 8. In the electronic appendix, a
listing of the most commonly used FLAME/C routines is given, as is a discussion
regarding how to interface more traditional code with FLAME/C.

There are some repeated comments in Sections 3 and 4. Thus a reader
can choose to skip the discussion of the FLAME@lab API in Section 3 or the
FLAME/C API in Section 4 while fully benefiting from the insights in those
sections. We assume the reader to have some experience with the MATLAB
M-script and the C programming languages.

2. A TYPICAL DENSE LINEAR ALGEBRA ALGORITHM

In Bientinesi et al. [2005b] we introduced a methodology for the systematic
derivation of provably correct algorithms for dense linear algebra algorithms.
It is highly recommended that the reader become familiar with that article
before proceeding with the remainder of this one. This section gives the minimal
background in an attempt to make the present article self-contained.

The algorithms that result from the derivation process present themselves
in a very rigid format. We illustrate this format in Figure 1, which gives an
(unblocked) algorithm for the computation of B := L−1 B, where B is an m × n
matrix and L is an m × m lower triangular matrix. This operation is often
referred to as a triangular solve with multiple right-hand sides (TRSM). The
presented algorithm was derived in Bientinesi et al. [2005b].
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At the top of the loop body, it is assumed that different regions of the operands
L and B have been used and/or updated in a consistent fashion. These regions
are initialized by

Partition B →
(

BT

BB

)
and L →

(
LTL 0
LBL LBR

)

where BT has 0 rows and LTL is 0 × 0.

Here T , B, L, and R stand for Top, Bottom, Left, and Right, respectively.

NOTE 1. Of particular importance in the algorithm are the single and dou-
ble lines used to partition and repartition the matrices. Double lines are used to
demark regions in the matrices that have been used and/or updated in a con-
sistent fashion. Another way of interpreting double lines is that they keep track
of how far into the matrices the computation has progressed.

Let B̂ equal the original contents of B and assume that B̂ is partitioned
as B. At the top of the loop it is assumed that BB contains the original con-
tents B̂B while BT has been updated with the contents L−1

TL B̂T . As part of the
loop, the boundaries between these regions are moved one row and/or column
at a time so that progress towards completion is made. This is accomplished
by

Repartition

(
BT

BB

)
→




B0

bT
1

B2


 and

(
LTL 0
LBL LBR

)
→




L00 0 0

l T
10 λ11 0

L20 l21 L22




where bT
1 is a row and λ11 is a scalar

...
Continue with

(
BT

BB

)
←




B0

bT
1

B2


 and

(
LTL 0
LBL LBR

)
←




L00 0 0
l T

10 λ11 0
L20 l21 L22


 .

NOTE 2. Single lines are introduced in addition to the double lines to de-
mark regions that are involved in the update or used in the current step of the
algorithm. Upon completion of the update, the regions defined by the double
lines are updated to reflect that the computation has moved forward.

NOTE 3. We adopt the often-used convention where matrices, vectors, and
scalars are denoted by upper-case, lower-case, and Greek letters, respec-
tively [Stewart 1973].

NOTE 4. A row vector is indicated by adding a transpose to a vector, for
example, bT

1 and l T
10.

The repartitioning exposes submatrices that must be updated before the
boundaries can be moved. That update is given by
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Fig. 2. Blocked algorithm for triangular system solves (TRSM algorithm).

bT
1 := bT

1 − l T
10 B0

bT
1 := λ−1

11 bT
1

Finally, the desired result has been computed when LTL encompasses all of L so
that the loop continues until m(LTL) < m(L) becomes false. Here m(X ) returns
the row dimension of matrix X .

NOTE 5. We would like to claim that the algorithm in Figure 1 captures how
one might naturally explain a particular algorithmic variant for computing the
solution of a triangular linear system with multiple right-hand sides.

NOTE 6. The presented algorithm only requires one to use indices from the
sets {T, B}, {L, R}, and {0, 1, 2}.

For performance reasons, it is often necessary to formulate the algorithm as
a blocked algorithm as illustrated in Figure 2. The performance benefit comes
from the fact that the algorithm is rich in matrix multiplication, which allows
processors with multi-level memories to achieve high performance [Dongarra
et al. 1990, 1991; Anderson et al. 1992; Gunnels et al. 2001].

NOTE 7. The algorithm in Figure 2 is implemented by the more traditional
MATLAB code given in Figure 3. We claim that the introduction of indices to
explicitly indicate the regions involved in the update complicates readability and
reduces confidence in the correctness of the MATLAB implementation. Indeed, an
explanation of the code inherently requires the drawing of a picture that captures
the repartitioned matrices in Figure 2. In other words, someone experienced with
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Fig. 3. MATLAB implementation for blocked triangular system solves (TRSM algorithm in Figure 2).
Here, mb is a parameter that determines the theoretical value for the block size and b is the actual
block size.

MATLAB can easily translate the algorithm in Figure 2 into the implementation
in Figure 3. The converse is considerably more difficult.

3. THE FLAME@LAB INTERFACE FOR MATLAB

In this section we introduce a set of MATLAB M-script functions that allow
us to capture in code, the linear algebra algorithms presented in the format
illustrated in the previous section. The idea is that by making the appearance
of the code similar to the algorithms in Figures 1 and 2, the opportunity for the
introduction of coding errors is reduced while simultaneously making the code
more readable.

3.1 Bidimensional Partitionings

As illustrated in Figures 1 and 2, in stating a linear algebra algorithm, one may
wish to partition a matrix as

Partition A →
(

ATL ATL

ABL ABR

)

where ATL is k × k.

In the FLAME@lab API, we hide complicated indexing by using MATLAB ma-
trices. Given a MATLAB matrix A, the following call creates one matrix for
each of the four quadrants:

[ ATL, ATR,...
ABL, ABR ] = FLA_Part_2x2( A,...

mb, nb, quadrant )

Purpose: Partition matrix A into four quadrants where the quadrant indi-
cated by quadrant is mb × nb.

Here quadrant is a MATLAB string that can take on the values ‘FLA TL’,
‘FLA TR’, ‘FLA BL’, and ‘FLA BR’ to indicate that mb and nb are the dimen-
sions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, re-
spectively.

NOTE 8. Invocation of the operation

[ ATL, ATR,...
ABL, ABR ] = FLA_Part_2x2( A,...

mb, nb, ‘FLA_TL’ )
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in MATLAB creates four new matrices, one for each quadrant. Subsequent mod-
ifications of the contents of a quadrant therefore do not affect the original con-
tents of the matrix. This is an important difference to consider with respect to
the FLAME/C API introduced in Section 4, where the quadrants are views (ref-
erences) into the original matrix, not copies of it!

As an example of the use of this routine, the translation of the algorithm
fragment on the left results in the code on the right:

Partition A →
(

ATL ATL

ABL ABR

)

where ATL is mb × nb

[ ATL, ATR,...

ABL, ABR ] = FLA_Part_2x2( A,...

mb, nb, ...

‘FLA_TL’ )

where the parameters mb and nb have values mb and nb, respectively. Examples
of the use of this routine can also be found in Figures 4 and 5.

NOTE 9. The above example stresses the fact that the formatting of the code
can be used to help capture the algorithm in code. Clearly, some of the benefit of
the API would be lost if in the example the code appeared as

[ ATL, ATR, ABL, ABR ] = FLA_Part_2x2( A, mb, nb, ‘FLA_TL’ )

since then, the left-hand side does not carry an intuitive image that ATL ,. . . , ABR
are the corresponding blocks of a 2 × 2 partitioning.

Also from Figures 1 and 2, we notice that it is useful to be able to take a 2×2
partitioning of a given matrix A and repartition it into a 3 × 3 partitioning so
that the submatrices that need to be updated and/or used for computation can
be identified. To support this, we introduce the call

[ A00, A01, A02,...
A10, A11, A12,...
A20, A21, A22 ] = FLA_Repart_2x2_to_3x3( ATL, ATR,...

ABL, ABR,...
mb, nb, quadrant )

Purpose: Repartition a 2×2 partitioning of matrix A into a 3×3 partitioning
where the mb × nb submatrix A11 is split from the quadrant indicated by
quadrant.

Here quadrant can again take on the values ‘FLA TL’, ‘FLA TR’, ‘FLA BL’, and
‘FLA BR’ to indicate that the mb×nb submatrix A11 is split from submatrix ATL,
ATR, ABL, or ABR, respectively.

Thus,

Repartition

(
ATL ATL

ABL ABR

)
→


 A00 A01 A02

A10 A11 A12

A20 A21 A22




where A11 is mb × nb
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Fig. 4. FLAME implementation for unblocked triangular system solves (TRSM algorithm in
Figure 1) using the FLAME@lab interface.

translates to the code

[ A00, A01, A02,...
A10, A11, A12,...
A20, A21, A22 ] = FLA_Repart_2x2_to_3x3( ATL, ATR,...

ABL, ABR,...
mb, nb, ‘FLA_BR’ )

where the parameters mb and nb have values mb and nb, respectively. Other
examples of the use of this routine can also be found in Figures 4 and 5.

NOTE 10. Similarly to what is expressed in Note 8, the invocation of the
operation
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Fig. 5. FLAME implementation for blocked triangular system solves (TRSM algorithm in Figure 2)
using the FLAME@lab interface.

[ A00, A01, A02,...
%A10, A11, A12,...
%A20, A21, A22 ] = FLA_Repart_2x2_to_3x3( ... )

creates nine new matrices A00, A01, A02, . . . .

NOTE 11. Choosing variable names can further relate the code to the algo-
rithm, as is illustrated by comparing


L00 0 0

l T
10 λ11 0

L20 l21 L22


 and

L00, l01 L02
l10t, lambda11, l12t
L20, l21, L22,
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in Figures 1 and 4. Although in the algorithm certain regions are identified
as containing only zeroes, variables are needed to store those regions in the
partitioning.

Once the contents of the so-identified submatrices have been updated, the
contents of ATL, ATR, ABL, and ABR must be updated to reflect that progress is
being made, in terms of the regions indicated by the double lines. This moving
of the double lines is accomplished by a call to

[ ATL, ATR,...
ABL, ABR ] = FLA_Cont_with_3x3_to_2x2( A00, A01, A02,...

A10, A11, A12,...
A20, A21, A22,...
quadrant )

Purpose: Update the 2 × 2 partitioning of matrix A by moving the bound-
aries so that A11 is joined to the quadrant indicated by quadrant.

This time the value of quadrant (‘FLA TL’, ‘FLA TR’, ‘FLA BL’, or ‘FLA BR’)
indicates to which quadrant the submatrix A11 is to be joined.

For example,

Continue with
(

ATL ATL

ABL LBR

)
←


 A00 A01 A02

A10 A11 A12

A20 A21 A22




translates to the code

[ ATL, ATR,...
ABL, ABR ] = FLA_Cont_with_3x3_to_2x2( A00, A01, A02,...

A10, A11, A12,...
A20, A21, A22,...
‘FLA_TL’ )

Further examples of the use of this routine can again be found in Figures 4
and 5.

3.2 Horizontal Partitionings

Similar to the partitioning into quadrants discussed above, and as illustrated in
Figures 1 and 2, in stating a linear algebra algorithm, one may wish to partition
a matrix as

Partition A →
(

AT

AB

)

where AT has k rows.

For this, we introduce the call
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[ AT,...
AB ] = FLA_Part_2x1( A,...

mb, side )

Purpose: Partition matrix A into a top and a bottom side where the side
indicated by side has mb rows.

Here side can take on the values ‘FLA TOP’ or ‘FLA BOTTOM’ to indicate that mb
is the row dimension of AT or AB, respectively.

Given that matrix A is already partitioned horizontally it can be repartitioned
into three submatrices with the call

[ A0,...
A1,...
A2 ] = FLA_Repart_2x1_to_3x1( AT,...

AB,...
mb, side )

Purpose: Repartition a 2×1 partitioning of matrix A into a 3×1 partitioning
where submatrix A1 with mb rows is split from the bottom of AT or the top of
AB, as indicated by side.

Here side can take on the values ‘FLA TOP’ or ‘FLA BOTTOM’ to indicate that
submatrix A1, with mb rows, is partitioned from AT or AB, respectively.

Given a 3 × 1 partitioning of a given matrix A, the middle submatrix can be
appended to either the first or last submatrix with the call

[ AT,...
AB ] = FLA_Cont_with_3x1_to_2x1( A0,...

A1,...
A2,...
side )

Purpose: Update the 2 × 1 partitioning of matrix A by moving the bound-
aries so that A1 is joined to the side indicated by side.

Examples of the use of the routines that deal with the horizontal partitioning
of matrices can be found in Figures 4 and 5.

3.3 Vertical Partitionings

Finally, in stating a linear algebra algorithm, one may wish to partition a matrix
as

Partition A → (
AL AR

)
where AL has k columns .

For this we introduce the call
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[ AL, AR ] = FLA_Part_1x2( A,...
int nb, int side )

Purpose: Partition matrix A into a left and a right side where the side
indicated by side has nb columns.

and

[ A0, A1, A2 ] = FLA_Repart_1x2_to_1x3( AL, AR,...
nb, side )

Purpose: Repartition a 1×2 partitioning of matrix A into a 1×3 partitioning
where submatrix A1 with nb columns is split from the right of AL or the left
of AR, as indicated by side.

Here side can take on the values ‘FLA LEFT’ or ‘FLA RIGHT’. Adding the middle
submatrix to the first or last submatrix is now accomplished by a call to

[ AL, AR ] = FLA_Cont_with_1x3_to_1x2( A0, A1, A2,...
side )

Purpose: Update the 1×2 partitioning of matrix A by moving the boundaries
so that A1 is joined to the side indicated by side.

3.4 Additional Routines

NOTE 12. Interestingly enough, the routines described in this section for the
MATLAB M-script language suffice to implement a broad range of algorithms
encountered in dense linear algebra. So far, we have yet to encounter algorithms
that cannot be elegantly described by partitioning into regions than can be in-
dexed by the sets {T, B}, {L, R}, {0, 1, 2}, {T, B}× {L, R}, and {0, 1, 2}× {0, 1, 2}.
However, there might be a potential use for a 4 × 4 partitioning in the future.
Also, MATLAB provides a rich set of operations on matrices and vectors, which
are needed to implement the updates to the exposed submatrices.

4. THE FLAME/C INTERFACE FOR THE C PROGRAMMING LANGUAGE

It is easily recognized that the FLAME@lab codes given in the previous section
will likely fall short of attaining peak performance. In particular, the copying
that inherently occurs when submatrices are created and manipulated repre-
sents pure overhead. But then, generally people do not use MATLAB if they
insist on attaining high performance. For that, they tend to code in C and link
to high-performance libraries such as the Basic Linear Algebra Subprograms
(BLAS) and the Linear Algebra Package (LAPACK) [Anderson et al. 1992; Law-
son et al. 1979; Dongarra et al. 1988, 1990]. In this section we introduce a set
of library routines that allow us to capture in C code, linear algebra algorithms
presented in the format given in Section 2.

Again, the idea is that by making C code look similar to the algorithms in
Figures 1 and 2, the opportunity for the introduction of coding errors is reduced.
Readers familiar with MPI [Gropp et al. 1994; Snir et al. 1996], PETSc [Balay
et al. 1996], and/or our own PLAPACK, will recognize the programming style,
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object-based programming, as being very similar to that used by those (and
other) interfaces. It is this style of programming that allows us to hide the in-
dexing details much as MATLAB does. However, as we will see, a more substan-
tial infrastructure must be provided in addition to the routines that partition
and repartition matrix objects.

4.1 Initializing and Finalizing FLAME/C

Before using the FLAME/C environment, one must initialize with a call to

void FLA_Init( )

Purpose: Initialize FLAME/C.

If no more FLAME/C calls are to be made, the environment is exited by
calling

void FLA_Finalize( )

Purpose: Finalize FLAME/C.

4.2 Linear Algebra Objects

The following attributes describe a matrix as it is stored in the memory of a
computer:

—the datatype of the entries in the matrix, for example, double or float,
—m and n, the row and column dimensions of the matrix,
—the address where the data is stored, and
—the mapping that describes how the two-dimensional array is mapped to

one-dimensional memory.

The following call creates an object (descriptor or handle) of type FLA Obj for
a matrix and creates space to store the entries in the matrix:

void FLA_Obj_create( int datatype, int m, int n, FLA_Obj *matrix )

Purpose: Create an object that describes an m × n matrix and create the
associated storage array.

Valid datatype values include

FLA INT, FLA DOUBLE, FLA FLOAT, FLA DOUBLE COMPLEX, and FLA COMPLEX

for the obvious datatypes that are commonly encountered. The leading dimen-
sion of the array that is used to store the matrix is itself determined inside of
this call.

NOTE 13. For simplicity, we chose to limit the storage of matrices to use
column-major storage. The leading dimension of a matrix can be thought of as
the dimension of the array in which the matrix is embedded (which is often
larger than the row-dimension of the matrix) or as the increment (in elements)
required to address consecutive elements in a row of the matrix. Column-major
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storage is chosen to be consistent with Fortran, which is often still the choice of
language for linear algebra applications. A C programmer should take this into
account in case he needs to interface with the FLAME/C API.

FLAME/C treats vectors as special cases of matrices: an n × 1 matrix or a
1 × n matrix. Thus, to create an object for a vector x of n double-precision real
numbers either of the following calls suffices:

FLA Obj create( FLA DOUBLE, n, 1, &x );
FLA Obj create( FLA DOUBLE, 1, n, &x );

Here n is an integer variable with value n and x is an object of type FLA Obj.
Similarly, FLAME/C treats scalars as a 1×1 matrix. Thus, the following call

is made to create an object for a scalar α:

FLA Obj create( FLA DOUBLE, 1, 1, &alpha );

where alpha is an object of type FLA Obj. A number of scalars occur frequently
and are therefore predefined by FLAME/C:

MINUS ONE, ZERO, and ONE.

If an object is created with FLA Obj create (or FLA Obj create conf to, given
in the electronic appendix), a call to FLA Obj free is required to ensure that all
space associated with the object is properly released:

void FLA_Obj_free( FLA_Obj *matrix )

Purpose: Free all space allocated to store data associated with matrix.

4.3 Inquiry Routines

In order to be able to work with the raw data, a number of inquiry routines can
be used to access information about a matrix (or vector or scalar). The datatype
and row and column dimensions of the matrix can be extracted by calling

int FLA_Obj_datatype( FLA_Obj matrix )
int FLA_Obj_length ( FLA_Obj matrix )
int FLA_Obj_width ( FLA_Obj matrix )

Purpose: Extract datatype, row, or column dimension of matrix, res-
pectively.

The address of the array that stores the matrix and its leading dimension
can be retrieved by calling

void *FLA_Obj_buffer( FLA_Obj matrix )
int FLA_Obj_ldim ( FLA_Obj matrix )

Purpose: Extract address and leading dimension of matrix, respectively.
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4.4 A Most Useful Utility Routine

Our approach to the implementation of algorithms for linear algebra operations
starts with the careful derivation of provably correct algorithms. The stated phi-
losophy is that if the algorithms are correct, and the API allows the algorithms
to be coded so that the code reflects the algorithms, then the code will be correct
as well.

Nonetheless, we single out one of the more useful routines in the FLAME/C
library, which is particularly helpful for testing:

void FLA_Obj_show( char *string1, FLA_Obj A, char *format,
char *string2 )

Purpose: Print the contents of A.

In particular, the result of

FLA_Obj_show( "A =[", A, "%lf", "];" );

is similar to

A = [
< entries_of_A >
];

which can then be fed to MATLAB. This becomes useful when checking results
against a MATLAB implementation of an operation.

4.5 An Example: Matrix-Vector Multiplication

We now give an example of how to use the calls introduced so far to write
a simple driver routine that calls a routine that performs the matrix-vector
multiplication y = Ax.

In Figure 6 we give the driver routine:

—line 1: FLAME/C program files start by including the FLAME.h header file.
—line 5–6: FLAME/C objects A, x, and y, which hold matrix A and vectors x

and y , are declared to be of type FLA Obj.
—line 10: Before any calls to FLAME/C routines can be made, the environment

must be initialized by a call to FLA Init.
—line 12–13: In our example, the user inputs the row and column dimension

of matrix A.
—line 15–17: Descriptors are created for A, x, and y .
—line 19–20: The routine in Figure 7, described below, is used to fill A and x

with values.
—line 22: Compute y = Ax using the routine for performing that operation

given in Figure 8.
—line 24–26: Print out the contents of A, x, and y .
—line 28–30: Free the created objects.
—line 32: Finalize FLAME/C.
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Fig. 6. A simple C driver for matrix-vector multiplication.

A sample routine for filling A and x with data is given in Figure 7. The macro
definition in line 3 is used to access the matrix A stored in array A using column-
major ordering.

The routine in Figure 8 is itself a wrapper to the level 2 BLAS routine
cblas dgemv, a commonly available kernel for computing a matrix-vector mul-
tiplication that is part of the C interface to the legacy BLAS [BLAST Forum
2001]. In order to call this routine, which requires parameters describing the
matrix, vectors, and scalars to be explicitly passed, all of the inquiry routines
are required.

4.6 Views

Figures 1 and 2 illustrate the need for partitionings as

Partition A →
(

ATL ATL

ABL ABR

)

where ATL is k × k.
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Fig. 7. A simple routine for filling a matrix.

In C we avoid complicated indexing by introducing the notion of a view, which is
a reference into an existing matrix or vector. Given a descriptor A of a matrix
A, the following call creates descriptors of the four quadrants:

void FLA_Part_2x2( FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,
FLA_Obj *ABL, FLA_Obj *ABR,

int mb, int nb, int quadrant )

Purpose: Partition matrix A into four quadrants where the quadrant indi-
cated by quadrant is mb × nb.

Here quadrant can take on the values FLA TL, FLA TR, FLA BL, and FLA BR
(defined in FLAME.h) to indicate that mb and nb specify the dimensions of
the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respectively.
Thus, the algorithm fragment on the left is translated into the code on the
right

Partition A →
(

ATL ATL

ABL ABR

)

where ATL is mb × nb

FLA_Part_2x2( A, &ATL, /**/ &ATR,

/* ************** */

&ABL, /**/&ABR,

mb, nb, FLA_TL );

where parameters mb and nb have values mb and nb, respectively. Examples of
the use of this routine can also be found in Figures 9 and 10.
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Fig. 8. A simple matrix-vector multiplication routine. This routine is implemented as a wrapper
to the BLAS routine cblas dgemv for matrix-vector multiplication.

NOTE 14. Invocation of the operation

FLA_Part_2x2( A, &ATL, /**/ &ATR,
/* ************** */

&ABL, /**/ &ABR,
mb, nb, FLA_TL );

in C creates four views, one for each quadrant. Subsequent modifications of the
contents of a view therefore affect the original contents of the matrix. This is an
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Fig. 9. FLAME/C implementation for unblocked triangular system solves (TRSM algorithm in
Figure 1).

important difference to consider with respect to the FLAME@lab API introduced
in Section 3, where the quadrants are copies of the original matrix!

NOTE 15. The above example remarks that formatting the code as well as
the careful introduction of comments helps in capturing the algorithm in code.
Clearly, much of the benefit of the API would be lost if in the example the code
appeared as

FLA_Part_2x2( A, &ATL, &ATR, &ABL, &ABR, mb, nb, FLA_TL );
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Fig. 10. FLAME/C implementation for blocked triangular system solves (TRSM algorithm in
Figure 2).
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From Figures 1 and 2, we also realize the need for an operation that takes a
2×2 partitioning of a given matrix A and repartitions this into a 3×3 partition-
ing so that submatrices that need to be updated and/or used for computation
can be identified. To support this, we introduce the call

void FLA_Repart_from_2x2_to_3x3

( FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,

FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,

FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,

int mb, int nb, int quadrant )

Purpose: Repartition a 2 × 2 partitioning of matrix A into a 3 × 3 parti-
tioning where mb×nb submatrix A11 is split from the quadrant indicated by
quadrant.

Here quadrant can again take on the values FLA TL, FLA TR, FLA BL, and FLA BR
to indicate that mb× nb submatrix A11 is split from submatrix ATL, ATR, ABL, or
ABR, respectively.

Thus,

Repartition

(
ATL ATL

ABL LBR

)
→


 A00 A01 A02

A10 A11 A12

A20 A21 A22




where A11 is mb × nb,

is captured in the code

FLA_Repart_from_2x2_to_3x3( ATL, ATR, &A00, /**/ &A01, &A02,

/* ******************** */

&A10, /**/ &A11, &A12,

ABL, ABR, &A20, /**/ &A21, &A22,

mb, nb, FLA_BR );

where parameters mb and nb have values mb and nb, respectively. Others exam-
ples of the use of this routine can also be found in Figures 9 and 10.

NOTE 16. The calling sequence of FLA Repart from 2x2 to 3x3 and related
calls is a testimony to throwing out the convention that input parameters should
be listed before output parameters or vice versa, as well as to careful formating.
It is specifically by mixing input and output parameters that the repartitioning
in the algorithm can be elegantly captured in code.

NOTE 17. Chosing variable names can further relate the code to the algo-
rithm, as is illustrated by comparing


L00 0 0

l T
10 λ11 0

L20 l21 L22


 and

L00, /**/ l01, L02,
/* ************************ */

l10t, /**/ lambda11, l12t,
L20, /**/ l21, L22, ...

in Figures 1 and 9.
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Once the contents of the corresponding views have been updated, the de-
scriptions of ATL, ATL, ABL, and ABR must be updated to reflect that progress is
being made, in terms of the regions identified by the double lines. Moving the
double lines is achieved by a call to

void FLA_Cont_with_3x3_to_2x2

( FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,

FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,

FLA_Obj *ABL, FLA_Obj *ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,

int quadrant )

Purpose: Update the 2 × 2 partitioning of matrix A by moving the bound-
aries so that A11 is joined to the quadrant indicated by quadrant.

Here the value of quadrant (FLA TL, FLA TR, FLA BL, or FLA BR) specifies that the
quadrant submatrix A11 is to be joined.

For example,

Continue with
(

ATL ATL

ABL LBR

)
←


 A00 A01 A02

A10 A11 A12

A20 A21 A22




translates to the code

FLA_Cont_with_3x3_to_2x2( &ATL, &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* ****************** */

&ABL, &ABR, A20, A21, /**/ A22,

FLA_TL );

Further examples of the use of this routine can again be found in Figures 9
and 10.

Similarly, a matrix can be partitioned horizontally into two submatrices with
the call

void FLA_Part_2x1( FLA_Obj A, FLA_Obj *AT,
FLA_Obj *AB,

int mb, int side )

Purpose: Partition matrix A into a top and bottom side where the side
indicated by side has mb rows.

Here side can take on the values FLA TOP or FLA BOTTOM to indicate that mb
indicates the row dimension of AT or AB, respectively.

Given that matrix A is already partitioned horizontally it can be reparti-
tioned into three submatrices with the call
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void FLA_Repart_from_2x1_to_3x1( FLA_Obj AT, FLA_Obj *A0,
FLA_Obj *A1,

FLA_Obj AB, FLA_Obj *A2,
int mb, int side )

Purpose: Repartition a 2×1 partitioning of matrix A into a 3×1 partitioning
where submatrix A1 with mb rows is split from the side indicated by side.

Here side can take on the values FLA TOP or FLA BOTTOM to indicate that mb
submatrix A1 is partitioned from AT or AB, respectively.

Given a 3 × 1 partitioning of a given matrix A, the middle submatrix can be
appended to either the first or last submatrix with the call

void FLA_Cont_with_3x1_to_2x1( FLA_Obj *AT, FLA_Obj A0,
FLA_Obj A1,

FLA_Obj *AB, FLA_Obj A2,
int side )

Purpose: Update the 2 × 1 partitioning of matrix A by moving the bound-
aries so that A1 is joined to the side indicated by side.

Examples of the use of the routine that deals with the horizontal partitioning
of matrices can be found in Figures 9 and 10.

Finally, a matrix can be partitioned and repartitioned vertically with the
calls

void FLA_Part_1x2( FLA_Obj A, FLA_Obj *AL, FLA_Obj *AR,
int nb, int side )

Purpose: Partition matrix A into a left and right side where the side indi-
cated by side has nb columns.

and

void FLA_Repart_from_1x2_to_1x3
( FLA_Obj AL, FLA_Obj AR,

FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,
int nb, int side )

Purpose: Repartition a 1×2 partitioning of matrix A into a 1×3 partitioning
where submatrix A1 with nb columns is split from the side indicated by side.

Here side can take on the values FLA LEFT or FLA RIGHT. Adding the middle
submatrix to the first or last is now accomplished by a call to

void FLA_Cont_with_1x3_to_1x2
( FLA_Obj *AL, FLA_Obj *AR,

FLA_Obj A0, FLA_Obj A1, FLA_Obj A2,
int side )

Purpose: Update the 1×2 partitioning of matrix A by moving the boundaries
so that A1 is joined to the side indicated by side.
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4.7 Computational Kernels

All operations described in the last subsection hide the details of indexing in the
linear algebra objects. To compute with and/or update data associated with a
linear algebra object, one calls subroutines that perform the desired operations.

Such subroutines typically take one of three forms:

—subroutines coded using the FLAME/C interface (including, possibly, a re-
cursive call),

—subroutines coded using a more traditional coding style, or
—wrappers to highly optimized kernels.

These are actually only three points on a spectrum of possibilities, since one
can mix these techniques.

A subset of currently supported operations is given in the electronic appendix
to this article. Here, we discuss how to create subroutines that compute these
operations. For additional information on supported functionality, please visit
the webpage given at the end of this article or [Gunnels and van de Geijn 2001a].

4.7.1 Subroutines Coded Using the FLAME/C Interface. The subroutine
itself could be coded using the FLAME approach to deriving algorithms [Bien-
tinesi et al. 2005b] and the FLAME/C interface described in this section.

For example, the implementation in Figure 10 of the blocked algorithm given
in Figure 2 requires the update B1 := L−1

11 B1, which can be implemented by a
call to the unblocked algorithm in Figure 9.

4.7.2 Subroutine Coded Using a More Traditional Coding Style. There is
an overhead for the abstractions that we introduce to hide indexing. For imple-
mentations of blocked algorithms, this overhead is amortized over a sufficient
amount of computation so that it is typically not of much consequence. (In the
case of the algorithm in Figure 2 when B is m × n, the indexing overhead
is O(m/b) while the useful computation is O(m2n).) However, for unblocked
algorithms or algorithms that operate on vectors, the relative cost is more sub-
stantial. In this case, it may become beneficial to code the subroutine using a
more traditional style that exposes indices. For example, the operation

FLA_Inv_scal( lambda11, b1t );

can be implemented by the subroutine in Figure 11. (It is probably more efficient
to instead implement it by calling cblas dscal or the equivalent BLAS routine
for the appropriate datatype.)

NOTE 18. Even when a routine is ultimately implemented using more tra-
ditional code, it is beneficial to incorporate the FLAME/C code as comments for
clarification.

4.7.3 Wrappers to Highly Optimized Kernels. A number of matrix and/or
vector operations have been identified to be frequently used by the linear al-
gebra community. Many of these are part of the BLAS. Since highly optimized
implementations of these operations are supported by widely available library
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Fig. 11. Sample implementation of the scaling routine FLA Inv scal.

implementations, it makes sense to provide a set of subroutines that are simply
wrappers to the BLAS. An example of this is given in Figure 8.

5. FROM FLAME@LAB TO FLAME/C TO PLAPACK

As mentioned, we view the FLAME@lab and FLAME/C interfaces as tools on
a migratory path that starts with the specification of the operation to be per-
formed, after which the FLAME derivation process can be used to systemati-
cally derive a family of algorithms for computing the operation, followed by an
initial implementation with FLAME@lab, a high-performance implementation
with FLAME/C, and finally a parallel implementation with a FLAME/C-like
extension of the PLAPACK interface.

5.1 Cases Where FLAME@lab is Particularly Useful

Since algorithms can clearly be directly translated to FLAME/C, the question of
the necessity for the FLAME@lab API arises. As is well known, MATLAB-like

ACM Transactions on Mathematical Software, Vol. 31, No. 1, March 2005.

131



52 • P. Bientinesi et al.

environments are extremely powerful interactive tools for manipulating ma-
trices and investigating algorithms; interactivity is probably the key feature,
allowing the user to dramatically speed up the design of procedures such as
input generation and output analysis.

The authors have had the chance to exploit the FLAME@lab API in a number
of research topics:

—In Quintana-Ortı́ and van de Geijn [2003], the interface was used to investi-
gate the numerical stability properties of algorithms derived for the solution
of the triangular Sylvester equation.

—In an ongoing study, we are similarly using it for the analysis of the stability
of different algorithms for inverting a triangular matrix. Several algorithms
exist for this operation. We derived them by using the FLAME methodology
and implemented them with FLAME@lab. For each variant, measurements
of different forms of residuals and forward errors had to be made [Higham
2002]. As part of the study, the input matrices needed to be chosen with
extreme care; often they are results from some other operation, such as the lu
function in MATLAB (which produces an LU factorization of a given matrix).

For these kinds of investigative studies, high performance is not required. It is
the interactive nature of tools as MATLAB that is especially useful.

5.2 Moving on to FLAME/C

Once derived algorithms have been implemented and tested with FLAME@lab,
the transition to a high-performance implementation using the FLAME/C API
is direct, requiring (consultation of the appropriate documentation and) the
translation for the operations in the loop body to calls to subroutines with the
functionality of the BLAS.

The most significant difference between the FLAME/C and FLAME@
lab APIs is that for the FLAME/C interface, the partitioning routines return
views (i.e., references) into the matrix. Thus, any subsequent modification of
the view results in a modification of the original contents of the matrix. The
use of views in the FLAME/C API avoids much of the unnecessary data copying
that occurs in the FLAME@lab API, possibly leading to a higher-performance
implementation. It is possible to call C routines from MATLAB, and we have
implemented such an interface. This could allow one to benefit from the interac-
tive environment MATLAB provides, while retaining most of the performance
benefits of coding subroutines in C.

5.3 And Finally the Parallel Implementation

While the PLAPACK API already hides details of indexing by using objects,
and to a large degree inspired the FLAME/C API, the notion of tracking all
submatrices of the matrices involved in the computation as FLAME/C does is
new. Specifically, the routines FLA Repart ... and FLA Cont with ... were not
part of the original PLAPACK API. As part of our project, we have now added
similar routines to the PLAPACK API. An implementation using PLAPACK for
TRSM is given in Figure 12. In essence, a parallel implementation can be created
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Fig. 12. FLAME/PLAPACK implementation for blocked triangular system solves (TRSM algorithm
in Figure 10).
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by replacing FLAME.h with PLA.h and all prefixes FLA with PLA . In PLAPACK,
objects are defined as pointers to structures that are dynamically allocated.
As a result, the declarations are somewhat different when compared to the
FLAME/C code in Figure 10. Furthermore, these objects so allocated must be
freed at the end of the routine. Finally, the constants MINUS ONE, ZERO, and ONE
must be created in each new routine. These idiosyncrasies suggest that it is
time to update the PLAPACK API to become closer to the FLAME API.

In addition to attaining performance by casting computation as much as
possible in terms of matrix-matrix operations (blocked algorithms), a parallel
implementation requires careful assignment of data and work to individual
processors. Clearly, the FLAME/C interface does not capture this, nor does the
most trivial translation of FLAME/C to FLAME/PLAPACK. It is here where
the full PLAPACK API allows the user to carefully manipulate the data and the
operations, while still coding at a high level of abstraction. This manipulation
is relatively systematic. Indeed, the Broadway compiler can to some degree
automate this process [Guyer and Lin 1999, 2000a, 2000b; Guyer et al. 2001].
Also, an automated system for directly translating algorithms such as those
given in Section 2 to optimized PLAPACK code has been prototyped [Gunnels
2001].

Further details regarding parallel implementations go beyond the scope of
this article.

5.4 MATLAB to Parallel Implementations

In some sense, our work answers the question of how to generate parallel im-
plementations from algorithms coded in MATLAB M-script [Moler et al. 1987].
For the class of problems to which this approach applies, the answer is to start
with the algorithm, and to create APIs that can target MATLAB, C, or parallel
architectures.

6. PERFORMANCE

In a number of articles that were already mentioned in the introduction we
have shown that the FLAME/C API can be used to attain high performance
for implementations of a broad range of linear algebra operations. Thus, we do
not include a traditional performance section. Instead, we discuss some of the
issues.

Conventional wisdom used to dictate that raising the level of abstraction at
which one codes adversely impacts the performance of the implementation. We,
like others, disagree for a number of reasons:

—By raising the level of abstraction, more ambitious algorithms can be im-
plemented, which can achieve higher performance [Gunnels et al. 2001;
Quintana-Ortı́ and van de Geijn 2003; Gunnels and van de Geijn 2001b;
Bientinesi et al. 2002; Alpatov et al. 1997; van de Geijn 1997].

One can, of course, argue that these same algorithms can also be imple-
mented at a lower level of abstraction. While this is true for individual op-
erations, implementing entire libraries at a low level of abstraction greatly
increases the effort required to implement, maintain, and verify correctness.
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—Once implementations are implemented with an API at a high level of ab-
straction, components can be selectively optimized at a low level of abstrac-
tion. We learn from this that the API must be designed to easily accommodate
this kind of optimization, as is also discussed in Section 4.7.

—Recent compiler technology [Guyer and Lin 1999, 2000a, 2000b; Guyer et al.
2001] allows library developers to specify dependencies between routines at
a high level of abstraction, which allows compilers to optimize between layers
of libraries, automatically achieving the kinds of optimizations that would
otherwise be performed by hand.

—Other situations in which abstraction offers the opportunity for higher per-
formance include several mathematical libraries and C++ optimization tech-
niques as well. For example, PMLP [Birov et al. 1998] uses C++ templates
to support many different storage formats, thereby decoupling storage for-
mat from algorithmic correctness in classes of sparse linear algebra, thus
allowing this degree of freedom to be explored for optimizing performance.
Also, PMLP features operation sequences and non-blocking operations in
order to allow scheduling of mathematical operations asynchronously from
user threads. Template meta-programming and expression templates sup-
port concepts including compile-time optimizations involving loop fusion, ex-
pression simplification, and removal of unnecessary temporaries; these allow
C++ to utilize fast kernels while removing abstraction barriers between ker-
nels, and further abstraction barriers between sequences of user operations
(systems include Blitz++ [Veldhuizen 2001]). These techniques, in conjunc-
tion with an appropriate FLAME-like API for C++, should allow our algo-
rithms to be expressed at a high level of abstraction without compromising
performance.

NOTE 19. The lesson to be learned is that by raising the level of abstrac-
tion, a high degree of confidence in the correctness of the implementation can
be achieved while more aggressive optimizations, by hand or by a compiler, can
simultaneously be facilitated.

7. PRODUCTIVITY AND THE FLAME INTERFACE REPOSITORY (FIRE)

In the abstract and introduction of this article, we make claims regarding the
impact of the presented approach on productivity. In this section, we narrate a
few experiences.

7.1 Sequential Implementation of Algorithms for the Triangular Sylvester Equation

A clear demonstration that the FLAME derivation process, in conjunction with
the FLAME APIs, can be used to quickly generate new algorithms and imple-
mentations for non-trivial operations came in the form of a family of algorithms
for the triangular Sylvester equations. Numerous previously unknown high-
performance algorithms were derived in a matter of hours, and implemented
using the FLAME/C API in less than a day. In response to the submitted re-
lated article, referees requested that the numerical properties of the result-
ing implementations be investigated. In an effort to oblige, the FLAME@lab
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interface was created, and numerical experiments were performed with
the aid of the MATLAB environment. The resulting article has now ap-
peared [Quintana-Ortı́ and van de Geijn 2003].

7.2 Parallel Implementation of the Reduction to Tridiagonal Form

As part of an effort to parallelize the Algorithm of Multiple Relatively Robust
Representations (MRRR) for dense symmetric eigenproblems, a parallel imple-
mentation of the reduction to tridiagonal form via Householder transforma-
tions was developed using PLAPACK [Bientinesi et al. 2005a]. First, a careful
description of the algorithms was created, in the format presented in Section 2.
Next, a FLAME@lab implementation was created, followed by a FLAME/C im-
plementation. Finally, the sequential code was ported to PLAPACK. The entire
development of this implementation from start to finish took about a day of the
time of two of the authors.

7.3 Undergraduate and Graduate Education

Before the advent of FLAME@lab and FLAME/C, projects related to the high-
performance implementation of linear algebra algorithms required students to
code directly in terms of BLAS calls with explicit indexing into arrays. Much
more ambitious projects can now be undertaken by less experienced students
since the most difficult component of the code, the indexing, has been greatly
simplified.

7.4 Assembling the FLAME Interface REpository (FIRE)

As part of undergraduate and graduate courses at UT-Austin, students have
been generating algorithms and implementations for a broad spectrum of linear
algebra operations. An undergraduate in one of these classes, Minhaz Khan,
took it upon himself to systematically assemble many of these implementations
in the FLAME Interface REpository (FIRE). To date, hundreds of implementa-
tions of dozens of algorithms have been catalogued, almost half single-handedly
by this student. After some experience was gained, he reported being able to
derive, prove correct, implement, and test algorithms at a rate of about seven
minutes per algorithm for BLAS-like operations involving several triangular
matrices.1

8. CONCLUSION

In this article, we have presented simple APIs for implementing linear algebra
algorithms using the MATLAB M-script and C programming languages. In
isolation, these interfaces illustrate how raising the level of abstraction at which
one codes allows one to avoid intricate indexing in the code, which reduces
the opportunity for the introduction of errors and raises the confidence in the
correctness of the code. In combination with our formal derivation methodology,
the APIs can be used to implement algorithms derived using that methodology

1These operations are similar to those supported by the LAPACK auxiliary routines DLAUUM and
DLAUU2.
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so that the proven correctness of those algorithms translates to a high degree
of confidence in the implementation.

We want to emphasize that the presented APIs are merely meant to illustrate
the issues. Similar interfaces for the Fortran, C++, and other languages are
easily defined, allowing special features of those languages to be used to raise
even further the level of abstraction at which one codes.

Finally, an increasing number of linear algebra operations have been cap-
tured with our formal derivation methodology. This set of operations includes, to
name but a few, the complete levels 1, 2, and 3 BLAS factorization operations
such as the LU and QR (with and without pivoting), reduction to condensed
forms, and linear matrix equations arising in control. An ever-growing collec-
tion of linear algebra operations written using the FLAME@lab and FLAME/C
interfaces can be found at the URI given below.

FURTHER INFORMATION

For further information on the FLAME project and to download the
FLAME@lab or FLAME/C interface, visit

http://www.cs.utexas.edu/users/flame/.

The FIREsite repository is being maintained at

http://www.cs.utexas.edu/users/flame/FIREsite.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.
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A theorem related to the accumulation of Householder transformations into a single orthogonal
transformation known as the compact WY transform is presented. It provides a simple charac-
terization of the computation of this transformation and suggests an alternative algorithm for
computing it. It also suggests an alternative transformation, the UT transform, with the same
utility as the compact WY Transform which requires less computation and has similar stability
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1. INTRODUCTION

Given a nonzero vector u ∈ R
m, a Householder transformation (or reflector)

is defined by H = I − uuT

τ
, where I denotes the (square) identity matrix and
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τ = uT u
2 [Householder 1958]. It is an orthogonal matrix (HT H = H HT = I )

and its own transpose (HT = H). This transformation has wide application in
the solution of linear least-squares problems, the computation of orthonormal
bases, and the solution of the algebraic eigenvalue problem.

Two transforms that capture the action of multiple Householder transfor-
mations and cast it in terms of high-performance matrix-matrix products were
proposed in the late 1980s, the WY transform [Bischof and Van Loan 1987]
and the compact WY transform (CWY) [Schreiber and Van Loan 1989]. A third
such transform was proposed and published by Walker in 1988 [Walker 1988] in
the setting of a GMRES algorithm based on Householder transformations and
rediscovered by Puglisi in 1992 in the setting of the QR factorization [Puglisi
1992]1. Yet few in the numerical analysis community appear to be aware of
these results as they relate to the CWY [Sun 1996]. It was a brief brainstorm-
ing session involving the authors of this article that independently rediscovered
this result once again. We believe the result to be of sufficient importance that
it warrants republishing.

In Section 2, we review the traditional way in which the CWY is computed.
In Section 3, we present the main theorem that characterizes the accumula-
tion of Householder transformations. In Section 4, we discuss opportunities
that appear due to the alternative characterization. Remarks on how to modify
LAPACK to accommodate the insights are given in Section 5. Experimental
results are presented in Section 6, followed by concluding remarks in the final
section.

2. COMPUTING THE COMPACT WY TRANSFORM

The following theorem presents the traditional formula for accumulating
Householder transformations into a CWY:

THEOREM 1. Let the matrix Uk−1 ∈ R
m×k have linearly independent columns.

Partition U by columns as

Uk−1 = (u0|u1| · · · |uk−1),

and consider the vector t = (τ0, τ1, . . . , τk−1)T with τi �= 0, 0 ≤ i < k. Then, there
exists a unique nonsingular upper triangular matrix Sk−1 ∈ R

k×k such that(
I − u0uT

0

τ0

) (
I − u1uT

1

τ1

)
· · ·

(
I − uk−1uT

k−1

τk−1

)
= (

I − Uk−1Sk−1U T
k−1

)
.

The matrices S0, S1, . . . , Sk−1 can be computed via the recurrence

S0 = 1/τ0 and Si =
(

Si−1 −Si−1U T
i−1ui/τi

0 1/τi

)
, 1 ≤ i < k. (1)

PROOF. The recurrence gives the standard algorithm for computing the accu-
mulation of Householder transformations into a CWY. It is proved by induction

1We emphasize that, while we will often refer to Puglisi’s paper in this article, it is Walker who
should be given credit for first proposing the methodology discussed in this article.
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Fig. 1. Traditional algorithm for computing S.

on k. (In our theorem, we lift the restriction that each transformation must
be a Householder transformation, a generalization that we will not use subse-
quently in the article.)

An algorithm for computing this transformation based on (1) is given in
Figure 1.

3. CENTRAL RESULT

We now state a theorem that will give a simpler characterization of the relation
between U and S.

THEOREM 2. Let U ∈ R
m×k have linearly independent columns. Then, there

exists a unique nonsingular upper triangular matrix S ∈ R
k×k such that I −

USUT is an orthogonal matrix. This matrix S satisfies S = T−1 with T + T T =
U T U, where T ∈ R

k×k is itself a unique nonsingular upper triangular matrix.
PROOF. We first prove existence. Consider U partitioned by columns as U =

(u0| · · · |uk−1), and let τi = uT
i ui/2, 0 ≤ i < k. We then recognize τi �= 0, and

each (I − uiuT
i

τi
) is a Householder transformation. Multiplying these Householder

transformations together results in an orthogonal matrix. From this, Theorem 1
yields the desired nonsingular upper triangular matrix S.

Since I − USUT is orthogonal,

0 = I − (I − USUT )(I − USUT )T = I − (I − USUT )(I − UST U T )
= I − (I − UST U T − USU T + USUT UST U T )
= U [(ST + S) − SUT UST ]U T .
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Thus, ST + S = SUT UST since U has full column rank. Now, as matrix S is
required to be nonsingular, S−1(ST + S)S−T = S−1SUT UST S−T , and therefore

S−1 + S−T = U T U. (2)

Finally, replacing S−1 by T in (2), we find that T = striu(U T U ) + 1
2 diag(U T U )

uniquely defines the upper triangular matrix T . Here striu(A) denotes the part
of matrix A that lies strictly above the diagonal of that matrix, and diag(A)
equals the diagonal matrix that has the same diagonal as A.

Under the assumptions of this theorem, S can be computed by the following
three steps:

(1) S := the upper triangular part of U T U ;
(2) Divide the diagonal elements of S by two;
(3) S := S−1.

An algorithm for the first step is given in the top part of Figure 2, while an
algorithm that combines the last two steps is given in the bottom part of that
figure.

NOTE 1. Puglisi arrived at the result in Theorem 2 by applying the
Woodbury-Morrison formula to I − U SU T . We believe our proof is simpler and
more revealing.

The two algorithms in Figure 2 together implement exactly the same compu-
tation as the traditional algorithm in Figure 1 except that, rather than comput-
ing σ11 in three steps (σ11 := uT

1 u1; σ11 := σ11/2; σ11 := 1/σ11), the traditional
algorithm simply sets σ11 to τ1, which has the same net result.

Update in Figure 1 Update in Figure 2

s01 := U T
0 u1

σ11 := 1/τ1
(= 2/

(
uT

1 u1
))

s01 := −S00s01σ11

s01 := U T
0 u1⎧⎨

⎩
σ11 := uT

1 u1
σ11 := σ11/2
σ11 := 1/σ11

s01 := −S00s01σ11

Other than one additional recomputation of uT
1 u1/2 per diagonal element of S,

the two algorithms perform the same operations. Therefore, they will have very
similar cost and numerical stability. This additional computation is an artifact
of the fact that the level 3 Basic Linear Algebra Subprograms (BLAS) routine
DSYRK [Dongarra et al. 1990], which would typically be used to compute U T U ,
also recomputes the diagonal of the result. Clearly, σ11, the diagonal element
of S, could simply be set to 1/τ1 in Figure 2. The computation of U T U and the
inversion of S can be implemented using any algorithm for those operations,
not just the ones in Figure 2.

NOTE 2. Puglisi makes the same connection between the traditional algo-
rithm for computing S and the separate steps just mentioned.
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Fig. 2. Computing S as proposed in Section 3. Top: Compute S := U T U (upper triangular part
only). Bottom: Divide the diagonal elements of S by 2 and compute S := S−1.

4. OPPORTUNITIES

While the result in the previous section provides a simple theoretical character-
ization of the relation between the Householder vectors and the CWY, we now
show how it provides opportunities for performance and numerical stability.

4.1 Potential Impact on Performance

The traditional algorithm in Figure 1 is rich in matrix-vector products, a
level 2 BLAS [Dongarra et al. 1988] operation. By contrast, Steps (1)–(3)
in Section 3 can inherently attain high performance: Step (1) can be im-
plemented by a call to an optimized implementation of the level 3 BLAS
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routine DSYRK, while the LAPACK routine DTRTRI can be used for Step (3).
Typically, k is small enough so that the inversion of the k × k matrix in Step
(3) will keep that matrix in cache memory, making that operation inherently
efficient.

NOTE 3. Puglisi makes the same observation.

4.2 The UT Transform

I − UT−1U T represents an alternative expression for the accumulation of the
Householder transformations. This formulation eliminates the need for the k3

floating-point operations (flops) required to compute S := T−1. We call this
formulation the UT transform.

The CWY is typically formed so that it can be applied to a matrix A ∈
R

m×n, as in the computation A := (I − USU T )A. One can instead compute
(I − UT−1U T )A. The parentheses in the following expressions indicate the or-
der in which operations in these two approaches are typically performed:

A := A − U [S [U T A]︸ ︷︷ ︸
W

] versus A := A − U [T−1 [U T A]︸ ︷︷ ︸
W

].

The computation of SW and T−1W , via the level 3 BLAS routines DTRMM and
DTRSM, respectively, requires exactly the same number of flops. Thus, avoid-
ing the inversion of matrix T translates directly into k3 fewer flops being
performed.

NOTE 4. Puglisi makes the same observation.

For different implementations of the BLAS, DTRSM may attain better or worse
performance than DTRMM. This would influence whether to compute and use the
UT transform or the CWY.

4.3 Potential Impact on Numerical Stability

Householder transformations are inherently used because of their exceptional
stability properties. The CWY is known to inherit these properties. Nonetheless,
it is also well known that computing W := T−1W as a triangular solve with
multiple right-hand sides is numerically more stable than computing W := SW
after explicitly inverting S := T−1. Thus, the UT transform is at least as stable
as the CWY, and possibly more stable.

NOTE 5. Puglisi makes a similar comment regarding stability.

5. MODIFICATIONS TO LAPACK

We now give details of how minor modifications to LAPACK can be made to
incorporate the insights in this article.

A detail that is not made obvious in the previous discussion is that the ma-
trix U that stores the Householder vectors as they are computed during a QR
factorization has the form U = (U1

U2

)
, where U1 is unit lower triangular. Thus,

the computation S = U T U can be broken down into S := U T
1 U1, followed by
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Fig. 3. Modification of traditional algorithm for computing S and T .

S := S + U T
2 U2, computing only the upper triangular part. The term U T

2 U2
is a simple call to DSYRK. The problem is that there is no routine in the BLAS
or LAPACK that computes only the upper triangular part of S = U T

1 U1, while
taking advantage of the special structure of U1.

To overcome this, let us examine routine DLARFT from LAPACK, which com-
putes the matrix S via the algorithm in Figure 1. Now, S can be computed
by initializing it to the upper triangular part of U T

2 U2, changing the update
s01 := U T

0 u1 to s01 := s01 + U T
0 u1 in Figure 1, and executing this modified

algorithm with U1 rather than all of U . Thus, first S is set to U T
2 U2, after

which the remaining computations are all accomplished by the modification
given in Figure 3 (left). This approach casts most computations in terms of
U T

2 U2 (DSYRK) and, in one sweep, performs the remaining computation with
matrices that are small enough to remain in cache. This is coded by mod-
ifying DLARFT, adding a call to DSYRK with U2 before the loop, changing the
upper limit of the loop from N (the row dimension of U ) to K (the row di-
mension of U1), and changing a ZERO to a ONE in the call to DGEMV so that
the result of the matrix-vector multiply is added to s01. Let us call the result
DLARFT NEW.

The new routine DLARFT NEW can then be turned into a computation of T by
further changing the algorithm in Figure 1, replacing σ11 = 1/τ1 by σ11 = τ1,
and deleting the update s01 = −S00s01σ11, as illustrated in Figure 3 (right). This
translates to a change in one line of DLARFT NEW and the deletion of one call to
DTRMV. Applying the UT transform so computed requires only that a single call
to DTRMM be changed to a call to DTRSM in DLARFB.
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6. EXPERIMENTS

We demonstrate the potential of the alternative approaches by modifying the
LAPACK routines for computing and applying the CWY, DLARFT and DLARFB, and
measuring its effect on the LAPACK QR factorization routine, DGEQRF.

6.1 Implementation

Three different implementations were examined: LAPACK, the standard
LAPACK implementation; CWY-alt, the modified LAPACK implementation
based on the algorithm in Figure 3 (left); and UT, the modified LAPACK im-
plementation based on the UT transform as described in Figure 3 (right).

6.2 Performance

The impact of the described modifications was measured by computing the
QR factorization of matrices of various sizes and using the result to solve a
linear system (with a single right-hand side). The first target platform was an
Intel Itanium 2 (900MHz) processor-based workstation, using the GOTO BLAS
library, Release 0.95 [Goto 2005]. The results are reported in Figure 4. In all
experiments, a blocksize of k = 32 was used.

Casting most computation in DLARFT in terms of DSYRK yields a slight degra-
dation in performance. We speculate that is due to inefficiencies in the imple-
mentation of that routine for the specific matrix dimensions that are encoun-
tered in our computation. By switching to the implementation based on the
UT transform, modest performance improvements are observed. As part of a
QR factorization, the amount of computation that is performed in the routines
that were optimized constitutes a lower order term so modest improvements
are all that can be expected. The performance results in Figure 4 highlight the
importance of how well the different kernels that are used by the algorithm are
tuned.

NOTE 6. Puglisi also comments on the inefficiency of the DSYRK operation in
similar experiments.

In Figure 5, we report performance attained on an eight CPU NEC SX-6
SMP server with a peak of 8 GFLOPS per CPU. Each CPU of this archi-
tecture is a vector processor, making it possible to highly and (more impor-
tantly) equally optimize any of the level 3 BLAS. While on a single CPU,
no benefit is observed from computing the triangular matrix via SYRK, on
multiple CPUs, a noticeable performance improvement results. This is be-
cause SYRK parallelizes better than the traditional algorithm for comput-
ing S which is rich in matrix-vector multiplication. Since the explicit inver-
sion of the triangular matrix constitutes very little computation relative to
the overall QR factorization, CWY-alt and UT attained essentially the same
performance.

NOTE 7. Walker originally proposed this methodology to improve paral-
lelism and reduce communication on distributed memory architectures.
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Fig. 4. Performance of the various implementations on an Intel Itanium 2 (900MHz) server (single
CPU), linked to GOTO BLAS release 0.95.

6.3 Numerical Stability

The effects of the modifications on numerical stability were also experimentally
examined and no meaningful improvements or degradations in the quality of
the residual were observed.
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Fig. 5. Performance of LAPACK and UT on a NEC SX-6 SMP server. Note: the performance of
CWY-alt and UT was virtually indistinguishable on this architecture.

7. CONCLUSION

In this article, an alternative characterization of the compact WY transform
was given. The characterization suggests a simple approach to computing
that transform and an alternative way of accumulating Householder trans-
formations, the UT transform, which eliminates the cost of the inversion of a
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triangular matrix. This alternative transform was already proposed, first by
Walker and again by Puglisi, a result that appears to have been lost to the
community. On sequential systems, the benefits of the methodology is highly
dependent on the tuning of the BLAS library. Performance gains can be expected
to be more significant on SMP and distributed memory architectures.
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In this article, a modification of the blocked algorithm for reduction to Hessenberg form is pre-
sented that improves performance by shifting more computation from less efficient matrix-vector
operations to highly efficient matrix-matrix operations. Significant performance improvements are
reported relative to the performance achieved by the current LAPACK implementation.
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1. INTRODUCTION

The reduction to Hessenberg form is an important and time consuming step
in the computation of the Schur decomposition of a square nonsymmetric ma-
trix. The Schur decomposition itself is important since it solves the nonsym-
metric eigenvalue problem [Golub and Van Loan 1996] and is a step towards
the solution of the Sylvester equation and other linear algebra equations that
arise in control theory [Sima 1996; Bartels and Stewart 1972; Golub et al. 1979;
Golub and Van Loan 1996]. Thus, improving the performance of this computa-
tion impacts a number of important applications.
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Algorithms for the computation of the reduction to Hessenberg form date
back to the early 1960s [Wilkinson 1965; Martin and Wilkinson 1968]. In the
1980s, it was observed that the key to attaining high performance on archi-
tectures with complex multilevel memories is to cast computation in terms of
matrix-matrix operations, like the matrix-matrix product. These operations are
supported by the level 3 Basic Linear Algebra Subprograms (BLAS) [Dongarra
et al. 1990]. The idea is that such operations perform O(n3) floating point op-
erations (flops) on O(n2) data, where n equals the matrix dimension of the
operands. This allows data to be brought into fast cache memory, amortizing
the cost of this data movement over a large number of computations. An algo-
rithm that casts part of the computation required for the reduction in terms of
matrix-matrix operations (level 3 BLAS) was first presented in Dongarra et al.
[1989]. Currently the most widely used library for linear algebra operations,
the Linear Algebra Package (LAPACK) [Anderson et al. 1999], incorporates one
such algorithm in the routine DGEHRD.

As we will review later in this article, inherently a considerable part of
the computation must be in terms of matrix-vector operations (level 2 BLAS
[Dongarra et al. 1988]) that attain only a modest percentage of the peak per-
formance of an architecture due to memory bandwidth limitations. Thus, even
if the rest of the computation is cast in terms of level 3 BLAS, the part that
requires level 2 BLAS will remain and will limit the percentage of peak that the
algorithm can achieve. The problem with the implementation that is currently
part of LAPACK is that it leaves more computation in terms of level 2 BLAS than
necessary. It is this shortcoming that the algorithm in this article addresses.

The primary benefit of our new implementation is a shift of computation
from level 2 to level 3 BLAS. A secondary benefit comes from the fact that the
computation that is not in level 3 BLAS involves less data, improving data lo-
cality and reducing cache traffic during those operations: The current LAPACK
implementation touches in every iteration (that is, n times) all columns to the
right of the current column, while our algorithm only touches the part of those
same columns that is below the current row.

The remainder of this article is organized as follows. Householder trans-
formations and related transforms are reviewed in Section 2. The traditional
(unblocked) algorithm for reduction to Hessenberg form is given in Section 3.
Blocked algorithms are then described in Section 4. Performance results are
given in Section 5, followed by concluding remarks in the final section.

2. HOUSEHOLDER TRANSFORMS

Given a nonzero vector u ∈ R
m, a Householder transformation (or reflector) is

defined by H = Im − uuT /τ , where Im denotes the (square) identity matrix of
order m and τ = uT u/2 [Householder 1958]. It is an orthogonal matrix (HT H =
HHT = Im) and symmetric (HT = H). This transformation has wide application
in the solution of linear least-squares problems, the computation of orthonormal
bases, and the solution of the algebraic eigenvalue problem.

Householder transformations will be used in this article to annihilate ele-
ments below the first subdiagonal of a given matrix. More precisely, given a
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vector x, partition x = (
χ1
x2

)
, where χ1 equals the first element of x. Define the

Householder vector associated with x as the vector u = ( 1
u2

)
, where u2 = x2/ρ1

with ρ1 = χ1 + sign(χ1)‖x‖2. Here sign(α) returns 1 or −1, depending on the
sign of α. Let τ = uT u/2. Then (I − uuT /τ )x = {0\\β} where β = −sign(χ1)‖x‖2,
and {0\\β} equals the zero vector with the first element replaced by β. Let us
introduce the notation [{u\\β}, τ ] := Hous(x) for the operation that computes
the aforementioned β, u, and τ from the given vector x. Here {u\\β} indicates
the vector u with the first element (which is implicitly equal to 1) overwritten
by the value β.

Multiplying two or more Householder transformations results again in an
orthogonal matrix, although not symmetric. This allows Householder transfor-
mations to be accumulated into a composed transformation. Traditionally, the
compact WY transform (CWY) is used, which has the form I − USUT , where
the columns of U consist of the Householder vectors being accumulated. Let
the columns of Uk−1 equal the first k Householder vectors u j , 0 ≤ j < k,(

I − u0uT
0 /τ0

) · · · (I − uk−1uT
k−1/τk−1

) = (
I − Uk−1Sk−1U T

k−1

)
,

where Sk−1 is given by the induction

S0 = 1/τ0 and Sk =
(

Sk−1 −Sk−1Uk−1uk/τk

0 1/τk

)
,

which is similar to the induction formula in Schreiber and Van Loan [1989].
A little-known alternative [Joffrain et al. ; Puglisi 1992; Walker 1988], which

we call the UT transform, has the form I − U T−1U T where(
I − u0uT

0 /τ0
) · · · (I − uk−1uT

k−1/τk−1
) = (

I − Uk−1T−1
k−1U T

k−1

)
,

with T0 = τ0 and Tk =
(

Tk−1 Uk−1uk

0 τk

)
. Note that T can be computed from U as

T = U T U (upper triangular part only), followed by the dividing of the diagonal
elements of the resulting T by two. Upper triangular matrices T and S are
related by S = T−1.

Both the CWY and the UT transform allow the application of a series of
Householder transformations to be cast in terms of high-performance matrix-
matrix operations:

(I−USUT )A = A − U [S[ U T A︸ ︷︷ ︸
GEMM

]

︸ ︷︷ ︸
TRMM

]

︸ ︷︷ ︸
GEMM

and (I−UT−1U T )A = A − U [ T−1[ U T A︸ ︷︷ ︸
GEMM

]

︸ ︷︷ ︸
TRSM

]

︸ ︷︷ ︸
GEMM

.

3. NEW NOTATION FOR THE TRADITIONAL REDUCTION ALGORITHM

In this section, we discuss the basic idea behind the algorithm for computing
the Hessenberg reduction of a square matrix A: A = QBQT , where Q is unitary
and B is upperHessenberg (B has zeroes below the first subdiagonal). We will
see that Q will be computed as a sequence of Householder transformations,
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that B can overwrite A, and that the Householder vectors can overwrite the
parts of A below the first subdiagonal.

Let us denote the original contents of matrix A as Â and assume that A is to
be overwritten by the upperHessenberg matrix. Partition

A →
(

α11 aT
12

a21 A22

)
and Â →

(
α̂11 âT

12

â21 Â22

)
.

Let [{u\\β}21, τ1] = Hous(a21), and H0 = H(u21, τ1) ≡ I − u21uT
21/τ1 so that

{0\\β}21 = H0a21. Then the first step of the reduction updates

A :=
(

α11 aT
12

a21 A22

)
:=

(
1 0
0 H0

) (
α11 aT

12

a21 A22

) (
1 0
0 H0

)
=

(
α11 aT

12 H0

{0\\β}21 H0 A22 H0

)
.

To complete an upperHessenberg reduction, the procedure continues by com-
puting Householder transformations from the updated A22 and applying them
to that matrix as well as the part of matrix A that appears above A22.

This procedure can be described more completely as follows. After k steps,
partition A and Â as

A →
(

BTL ATR

{0\\β}BL ABR

)
and Â →

(
ÂTL ÂTR

ÂBL ÂBR

)
,

where BTL and ÂTL are k×k, BTL is upperHessenberg, and {0\\β}BL is the matrix
of all zeroes except with βBL in the top-right corner. Notice that by now A has
been computed from Â by computing {Ȟ0, . . . , Ȟk−1} so that

A = Ȟk−1 · · · Ȟ0 ÂȞ0 · · · Ȟk−1, where Ȟ j =
(

I j+1 0
0 Hj

)
.

Let us examine how A must be updated as part of the kth step. Repartition

(
BTL ATR

{0\\β}BL ABR

)
→

⎛
⎜⎝ B00 a01 A02

{0\\β}T
10 α11 aT

12

0 a21 A22

⎞
⎟⎠ ,

where {0\\β}T
10 equals the row vector of all zeroes except for the last element,

which equals β10. Hk is now computed as Hk = H(u21, τ1) where [{u\\β}21, τ1] =
Hous(a21) and A is updated with⎛

⎜⎝ Ik 0 0

0 1 0
0 0 Hk

⎞
⎟⎠

⎛
⎜⎝ B00 a01 A02

{0\\β}T
10 α11 aT

12

0 a21 A22

⎞
⎟⎠

⎛
⎜⎝ Ik 0 0

0 1 0
0 0 Hk

⎞
⎟⎠

=

⎛
⎜⎝ B00 a01 A02 Hk

{0\\β}T
10 α11 aT

12 Hk

0 {0\\β}21 Hk A22 Hk

⎞
⎟⎠ .
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Fig. 1. Unblocked reduction to upperHessenberg form. In our algorithms “Repartition . . . ” and
“Continue with . . . ” are used to indicate progress through the matrix.

The thick lines that indicate progress through the matrix can then be moved
to include the next diagonal element:

(
BTL ATR

{0\\β}BL ABR

)
←

⎛
⎜⎝ B00 a01 A02 Hk

{0\\β}T
10 α11 aT

12 Hk

0 {0\\β}21 Hk A22 Hk

⎞
⎟⎠ .

We finish this section by noting that vector uk can be stored in the elements
of A from which it was computed since it, by design, has a first element that
equals 1, which, therefore, need not be stored. The scalars τk are typically stored
in an auxiliary vector. Thus, after k steps A contains( {U\\B}TL ATR

{U\\β}BL ABR

)
,

which is meant to indicate that the upperHessenberg matrix BTL is stored in
the upperHessenberg part of {U\\B}TL, the element βBL is stored in the top-
right element of {U\\β}BL, and the kth column1 of A stores uk below the first
subdiagonal of that column. The complete algorithm is now given in Figure 1.

In Figure 1, it is important to realize that H(u21, τ1) is never explicitly formed,
and the following formulas:

A02 := A02 H(u21, τ1) = A02
(
I − u21uT

21/τ1
)
,

aT
12 := aT

12 H(u21, τ1) = aT
12

(
I − u21uT

21/τ1
)
,

A22 := H(u21, τ1)A22 H(u21, τ1) = (
I − u21uT

21/τ1
)
A22

(
I − u21uT

21/τ1
)

1The 0th column of A is the left-most column here since we start indexing at 0.
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can be implemented as⎛
⎝ v01

ν11

v21

⎞
⎠ :=

⎛
⎜⎝

A02

aT
12

A22

⎞
⎟⎠ u21, (1)

⎛
⎜⎝

A02

aT
12

A22

⎞
⎟⎠ :=

⎛
⎜⎝

A02

aT
12

A22

⎞
⎟⎠ −

⎛
⎝ v01

ν11

v21

⎞
⎠ uT

21/τ1, (2)

wT
21 := uT

21 A22, (3)
A22 := A22 − u21wT

21/τ1. (4)

For the step where {U\\B}TL is k × k, the cost of each computation in (1)
and (2) is roughly 2n(n − k − 1) flops, while each cost in (3) and (4) is roughly
2(n − k − 1)2 flops. The total cost for reducing A ∈ R

n×n is thus approximately
n−1∑
k=0

(4n(n − k − 1) + 4(n − k − 1)2) flops ≈ 10
3

n3 flops.

4. BLOCKED ALGORITHMS

In Section 2, we noted that, by accumulating multiple Householder transforma-
tions into a single transform, higher performance can be achieved when these
transformations are to be applied to a matrix. The complication is that A must
be updated with part of the computations in (1)–(4) before the next Householder
transform can be computed. We first show how to progress to the point where
a number of Householder transformations have been accumulated, after which
we show how to then cast the remainder of the computation mostly in terms of
matrix-matrix products.

4.1 Building Up a Block

We will need a temporary matrix V ∈ R
n×b in which to store the vectors v that

appeared in (1), and a matrix T ∈ R
b×b that appears in the UT transform.

In this discussion, we will also treat U ∈ R
n×b, which stored the Householder

vectors, as a separate matrix although in practice it overwrites part of A.
Partition all matrices involved as

A =
(

ATL ATR

ABL ABR

)
, Â =

(
ÂTL ÂTR

ÂBL ÂBR

)
, U =

(
UTL 0
UBL UBR

)
,

V =
(

VTL VTR

VBL VBR

)
, and T =

(
TTL TTR

0 TBR

)
,

where X TL ∈ R
k×k , k < b, for X ∈ {A, Â, U, V , T }. Consider(

I − uk−1uT
k−1/τk−1

) · · · (I − u0uT
0 /τ0

)
Â

(
I − u0uT

0 /τ0
) · · · (I − uk−1uT

k−1/τk−1
)

=
(

I −
(

UTL

UBL

)
T−T

TL

(
UTL

UBL

)T
) (

ÂTL ÂTR

ÂBL ÂBR

) (
I −

(
UTL

UBL

)
T−1

TL

(
UTL

UBL

)T
)
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=
(

I −
(

UTL

UBL

)
T−T

TL

(
UTL

UBL

)T
) ((

ÂTL ÂTR

ÂBL ÂBR

)
−

(
VTL

VBL

)
T−1

TL

(
UTL

UBL

)T
)

,

where
(

VTL

VBL

)
=

(
ÂTL ÂTR

ÂBL ÂBR

) (
UTL

UBL

)
. The idea is that not all of this has

overwritten A. Only the first k columns have been updated with that part of
the desired Hessenberg matrix:(

ATL ATR

ABL ABR

)
currently contains

(
BTL ÂTR

{0\\β}BL ÂBR

)
,

where(
BTL

{0\\β}BL

)
=

(
I −

(
UTL

UBL

)
T−T

TL

(
UTL

UBL

)T
) ((

ÂTL

ÂBL

)
−

(
VTL

VBL

)
T−1

TL U T
TL

)
.

The question now becomes how to update the next column of A so that the
next Householder transform can be computed (the next column of U ), from
which then the next columns of V and T can then be computed. Repartition

(
ATL ATR

ABL ABR

)
→

⎛
⎜⎝ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

⎞
⎟⎠ ,

(
ÂTL ÂTR

ÂBL ÂBR

)
→

⎛
⎜⎝ Â00 â01 Â02

âT
10 α̂11 âT

12

Â20 â21 Â22

⎞
⎟⎠ ,

(
VTL VTR

VBL VBR

)
→

⎛
⎜⎝ V00 v01 V02

vT
10 ν11 vT

12

V20 v21 V22

⎞
⎟⎠ ,

(
UTL 0
UBL UBR

)
→

⎛
⎜⎝ U00 0 0

uT
10 0 0

U20 u21 U22

⎞
⎟⎠ ,

and

(
TTL TTR

0BL TBR

)
→

⎛
⎜⎝ T00 t01 T02

0 τ11 tT
12

0 0 T22

⎞
⎟⎠ .

The next column of A must be updated by

⎛
⎝ b01

β11

b21

⎞
⎠ :=

⎛
⎜⎜⎝I −

⎛
⎜⎝

U00

uT
10

U20

⎞
⎟⎠ T−T

00

⎛
⎜⎝

U00

uT
10

U20

⎞
⎟⎠

T
⎞
⎟⎟⎠

⎛
⎜⎝

⎛
⎝ â01

α̂11

â21

⎞
⎠ −

⎛
⎜⎝

V00

vT
10

V20

⎞
⎟⎠ T−1

00 u10

⎞
⎟⎠

before the next Householder vector can be computed from the so updated b21.
After this, the next columns of V and T can be computed by the formulas

⎛
⎝ v01

ν11

v21

⎞
⎠ :=

⎛
⎜⎝

Â00 â01 Â02

âT
10 α̂11 âT

12

Â20 â21 Â22

⎞
⎟⎠

⎛
⎝ 0

0
u21

⎞
⎠ =

⎛
⎜⎝

Â02u21

âT
12u21

Â22u21

⎞
⎟⎠ (5)
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Fig. 2. Algorithm for building up blocks for the blocked algorithm in Figure 3.

and ⎛
⎝ t01

τ11

0

⎞
⎠ :=

⎛
⎝ U T

20u21

τ11

0

⎞
⎠ ,

where τ11 is the value returned by the routine that computes the Householder
reflection. We note that V here is accumulated since, at some future point, this
next column of V will be needed in order to update the next column of A.

An algorithm that embodies the above insights is given in Figure 2.
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4.2 A New Blocked Algorithm

Now we show how a blocked algorithm can be achieved by repeatedly perform-
ing the steps in Section 4.1.

Once again, assume the computation has proceeded to where

A →
( {U\\B}TL ATR

{U\\β}BL ABR

)
,

where BTL ∈ R
k×k and ATR and ABR have been updated according to the House-

holder transformations computed so far: A = Ȟk−1 · · · Ȟ0 ÂȞ0 · · · Ȟk−1. Repar-
tition

( {U\\B}TL ATR

{U\\β}BL ABR

)
→

⎛
⎜⎝ {U\\B}00 A01 A02

{U\\β}10 A11 A12

U20 A21 A22

⎞
⎟⎠ ,

where A11 ∈ R
b×b. The idea now is to call the algorithm in Figure 2 to compute(

A11 A12

A21 A22

)
:=

( {U\\B}11 A12

{U\\β}21 A22

)
,

(
V1

V2

)
, and T1,

where A12 and A22 are not updated yet. Upon return, the following computations
still need to be performed on the nonblank submatrices:⎛

⎜⎝ A01 A02

A12

A22

⎞
⎟⎠ .

These parts of the matrix must then be updated by

(A01 | A02) := (A01 | A02)

(
I −

(
U11

U21

)
T−1

1

(
U11

U21

)T
)

= (A01 | A02) − V0T−1
1

(
U11

U21

)T

and (
A12

A22

)
:=

(
I −

(
U11

U21

)
T−T

1

(
U11

U21

)T
) ((

A12

A22

)
−

(
V1

V2

)
T−1

1 U T
21

)
.

A complete blocked algorithm based on these insights given in Figure 3.

4.3 Outline of LAPACK-Style Algorithm

The implementation that is currently part of LAPACK updates A slightly dif-
ferently. Consider the repartitioning

( {U\\B}TL ATR

{U\\β}BL ABR

)
→

⎛
⎜⎝ {U\\B}00 A01 A02

{U\\β}10 A11 A12

U20 A21 A22

⎞
⎟⎠ ,
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Fig. 3. Blocked algorithm for computing the reduction to upperHessenberg form.

where A11 ∈ R
b×b. In the LAPACK implementation, the routine equivalent

to HESSREDBUILDBLK, DLAHRD, returns having computed V0, V1, and V2, and
having updated A01 as well as A11 and A21 with the final results for those sub-
matrices. Upon return, the updates still need to be performed on the nonblank
submatrices: ⎛

⎜⎝ A02

A12

A22

⎞
⎟⎠ .

These parts of the matrix must then be updated by

A02 := A02 − V0T−1
1 U T

21

and (
A12

A22

)
:=

(
I −

(
U11

U21

)
T−T

1

(
U11

U21

)T
) ((

A12

A22

)
−

(
V1

V2

)
T−1

1 U T
21

)
.
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Fig. 4. Areas touched (read/written) in every stage of both algorithms. B-2 stands for BLAS-2
computations, B-3 stands for BLAS-3 computations, R stands for reading operation, W stands for
writing operation. White areas are untouched (neither read nor written).

An inefficiency lies in the fact that the update of A01 as well as the computation
of V0 are cast in terms of level 2 BLAS rather than level 3 BLAS.

An additional performance hit comes from the fact that the LAPACK im-
plementation touches in every iteration (that is, n times) the entire rest of
the matrix (ATR, and ABR). By contrast, in every iteration, the algorithm in
Section 4.2 only touches ABR. This improves data locality and reduces cache
traffic.

We note that the LAPACK-style algorithm described herein and its current
implementation as part of LAPACK is different than the original LAPACK
implementation described in Dongarra et al. [1989]. The original algorithm
proposed in that paper cast even more computation in terms of matrix-vector
product.

Every step (processing of a column block) of both algorithms consists of two
stages: computation of multiple Householder transforms via unblocked algo-
rithms (stage 1), and updating of the remaining data with blocked algorithms
(stage 2). Stage 1 consists of the computation of several Householder reflec-
tors, one for every column in the column block, and the updating of the rest
of the column block, all of them via BLAS-2 operations. Stage 2 can be per-
formed, all of it with BLAS-3 operations. Figure 4 shows the blocks that are
touched (read/written) in these two stages for both algorithms. It can be easily
checked that the new implementation uses more BLAS-3 computations than
the LAPACK implementation. Moreover, the new implementation touches a
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smaller part of the matrix in stage 1. As the right part of matrix A is read
b times (once for every column being processed) in this stage, the amount of
data brought to the processor by the new implementation from main memory
is much smaller, thus reducing memory traffic.

4.4 Cost Analysis

The problem in all algorithms for reducing a matrix to upperHessenberg form
is that some of the computation is in level 2 BLAS operations which attain only
a fraction of the peak performance of current architectures. In particular, it is
the matrix-vector product in (5) that contributes O(n3) flops aggregate over all
iterations. It is the constant before n3 that sets the algorithms in Sections 4.2
and 4.3 apart.

For the new algorithm proposed in Section 4.2, the matrix in (5) is roughly (n−
k)×(n−k) during the iteration involving the kth column of A. The total number
of flops in this operation, over all iterations, is approximately 2

∑n−k
k=0(n − k)2 ≈

2
3 n3. By contrast, in the LAPACK-like algorithm, the matrix in that computation
spans all rows and is thus roughly n× (n−k). Combined over all iterations, the
number of flops computed with matrix-vector products for the LAPACK-style
algorithm is given by approximately 2

∑n−k
k=0 n(n − k) ≈ n3. Recalling that the

total cost of a reduction is about 10
3 n3 flops, the new algorithm performs about

20% of its computation in level 2 BLAS and about 80% in level 3 BLAS. By
contrast, the LAPACK-style algorithm spends about 30% in level 2 BLAS and
about 70% in level 3 BLAS.

Even though most computation is in high-performing level 3 BLAS, the time
spent in these matrix-vector products is often the dominant term since they
are executed at a much lower rate. As a result, the reduction in the amount of
computation performed in the matrix-vector products is significant as we will
see in the performance reported in the next section.

5. EXPERIMENTS

We now demonstrate that, by shifting the computation from level 2 BLAS
to level 3 BLAS operations, a noticeable performance improvement can be
observed.

Five different implementations were tested. The first two correspond to rou-
tines DGEHD2 and DGEHRD from the LAPACK library and implement the un-
blocked algorithm and the LAPACK-style blocked algorithm, respectively. The
other three (FLA 1, FLA 2, and FLA 3), implement the new blocked algorithms
using the Formal Linear Algebra Methods Environment (FLAME) Application
Programming Interface (API) for the C programming language. The FLAME
APIs allow code to closely resemble the algorithms as they are illustrated
in Figures 1–3. We refer the interested reader to other papers on FLAME
[Bientinesi et al. 2005; Bientinesi et al. 2005]. FLA 1 is an implementation of
the new algorithm using FLAME coding in both stage 1 (block computing) and
stage 2 (block updating). FLA 2 employs index coding for first stage and FLAME
coding for the second stage. FLA 3 is an implementation of the new algorithm
using usual index coding in both stages.
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Fig. 5. Performance on various architectures as a function of matrix size, n, using a block size of
nb = 32. When the matrix-vector product operation is relatively fast (on the Itanium 2), the overall
performance is better and the speedup that is observed is less, since less time is spent in matrix-
vector product. When the matrix-vector product is slow (on the Xeon and Pentium 4), the overall
performance is worse, and the speedup gained by shifting computation from the matrix-vector
product to the matrix-matrix product is more noticeable.

The implementations of the LAPACK-style and the new algorithm do not
accumulate T . Rather, they accumulate its inverse, S. Moreover, in our imple-
mentation, this matrix S is combined with U so that the product UST is accu-
mulated in a matrix W : I − UT−T U T becomes I − WUT and VT−1U T becomes
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VWT . We note that, in the previous sections, we presented the algorithms using
the UT transform since it is a more general way of stating the algorithm before
these kinds of details are incorporated.

In Figure 5, performance is reported for the Xeon (2.4GHz), Pentium 4
(1.8GHz), and Itanium 2 (1.5GHz) processors. The Pentium 4 has two levels
of cache, with a 512Kbyte L2 cache. The Xeon and Itanium 2 each have three
levels of cache, with 1Mbyte and 6Mbyte L3 caches, respectively. On all plat-
forms, BLAS libraries implemented by Kazushige Goto [2004] were used. Since,
in this article, we are primarily concerned with demonstrating the benefits of
the new algorithm rather than a complete study of the effect of blocking on dif-
ferent architectures, the block size was fixed at 32 for both blocked algorithms.
From additional experiments, it was obvious that, for smaller problems, smaller
blocksizes should be employed. On all three platforms, the new algorithm was
noticeably faster than the one implemented in LAPACK. As can be expected,
the difference was the least for the Itanium 2 processor which has a very fast
and very large (6MBytes) L3 cache.

6. CONCLUSION

In this article, we have presented a new blocked algorithm for the reduction of
a matrix to upperHessenberg form. While the new algorithm performs roughly
the same number of computations as the algorithm that is currently included in
LAPACK, it shifts more computation to high-performing matrix-matrix compu-
tations (level 3 BLAS). As a result, the overall performance of the computation
is improved. The predicted improvement in performance was observed in prac-
tice on processors that are currently in common use.

We note that the new algorithm can be applied to a symmetric matrix, yield-
ing a tridiagonal matrix. However, many operations can be saved by not updat-
ing the symmetric part stored in the upper triangular part of A. As a result,
our observation cannot be used to speedup the LAPACK routine for reduction to
tridiagonal form: the part of the matrix where the savings is attained is now not
updated. The same observation applies to the LAPACK routine for reduction
to bidiagonalization.
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1. INTRODUCTION
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In Gunnels et al. [2001] a layered approach to the implementation of matrix
multiplication was reported. The approach was shown to optimally amortize the
required movement of data between two adjacent memory layers of an architec-
ture with a complex multilevel memory. Like other work in the area [Agarwal
et al. 1994; Whaley et al. 2001], Gunnels et al. [2001] casts computation in
terms of an “inner-kernel” that computes C := ÃB + C for some mc × kc matrix
Ã that is stored contiguously in some packed format and fits in cache memory.
Unfortunately, the model for the memory hierarchy that was used is unrealistic
in at least two ways:

—It assumes that this inner-kernel computes with a matrix Ã that resides in
the level-1 (L1) cache.

—It ignores issues related to the Translation Look-aside Buffer (TLB).

The current article expands upon a related technical report [Goto and van de
Geijn 2002], which makes the observations that

—The ratio between the rate at which floating point operations (flops) can be
performed by the floating point unit(s) and the rate at which floating point
numbers can be streamed from the level-2 (L2) cache to registers is typically
relatively small. This means that matrix Ã can be streamed from the L2
cache.

—It is often the amount of data that can be addressed by the TLB that is the lim-
iting factor for the size of Ã. (Similar TLB issues were discussed in Strazdins
[1998].)

In addition, we now observe that

—There are in fact six inner-kernels that should be considered for building
blocks for high-performance matrix multiplication. One of these is argued to
be inherently superior over the others. (In Gunnel et al. [2001, 2005] three
of these six kernels were identified.)

Careful consideration of all these observations underlie the implementation of
the DGEMM Basic Linear Algebra Subprograms (BLAS) routine that is part of
the widely used GotoBLAS library [Goto 2005].

In Figure 1 we preview the effectiveness of the techniques. In those graphs
we report performance of our implementation as well as vendor implemen-
tations (Intel’s MKL (8.1.1) and IBM’s ESSL (4.2.0) libraries) and ATLAS
[Whaley and Dongarra 1998] (3.7.11) on the Intel Pentium4 Prescott processor,
the IBM Power 5 processor, and the Intel Itanium2 processor.1 It should be
noted that the vendor implementations have adopted techniques very similar
to those described in this paper. It is important not to judge the performance
of matrix-matrix multiplication in isolation. It is typically a building block for
other operations like the level-3 BLAS (matrix-matrix operations) [Dongarra
et al. 1990; Kågström et al. 1998] and LAPACK [Anderson et al. 1999]. How

1All libraries that were timed use assembly-coded inner-kernels (including ATLAS). Compiler op-
tions -fomit-frame-pointer -O3 -funroll-all-loops were used.
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Fig. 1. Comparison of the matrix-matrix multiplication described in this paper with various other
implementations. See Section 7 for details regarding the different architectures.

the techniques described in this article impact the implementation of level-3
BLAS is discussed in Goto and van de Geijn [2006].

This article attempts to describe the issues at a high level so as to make it
accessible to a broad audience. Low level issues are introduced only as needed.
In Section 2 we introduce notation that is used throughout the remainder of
the article. In Section 3 a layered approach to implementing matrix multipli-
cation is introduced. High-performance implementation of the inner-kernels is
discussed in Section 4. Practical algorithms for the most commonly encoun-
tered cases of matrix multiplication are given in Section 5. In Section 6 we give
further details that are used in practice to determine parameters that must
be tuned in order to optimize performance. Performance results attained with
highly tuned implementations on various architectures are given in Section 7.
Concluding comments can be found in the final section.

2. NOTATION

The partitioning of matrices is fundamental to the description of matrix
multiplication algorithms. Given an m × n matrix X , we will only consider
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m n k Illustration Label

large large large

:= +

gemm

large large small

:= +

gepp

large small large

:= +

gemp

small large large

:= +

gepm

small large small

:= +

gebp

large small small

:= +

gepb

small small large

:= +

gepdot

small small small

:= +

gebb

Fig. 2. Special shapes of GEMM C := AB+C. Here C, A, and B are m×n, m×k, and k ×n matrices,
respectively.

partitionings of X into blocks of columns and blocks of rows:

X = (X 0|X 1| · · · |X N−1) =

⎛
⎜⎜⎜⎝

X̌ 0

X̌ 1
...

X̌ M−1

⎞
⎟⎟⎟⎠ ,

where X j has nb columns and X̌ i has mb rows (except for X N−1 and X̌ M−1,
which may have fewer columns and rows, respectively).

The implementations of matrix multiplication will be composed from multi-
plications with submatrices. We have given these computations special names,
as tabulated in Figures 2 and 3. We note that these special shapes are very fre-
quently encountered as part of algorithms for other linear algebra operations.
For example, computation of various operations supported by LAPACK is cast
mostly in terms of GEPP, GEMP, and GEPM. Even given a single dense linear al-
gebra operation, multiple algorithms often exist where each of the algorithms
casts the computation in terms of these different cases of GEMM multiplication
[Bientinesi et al.].

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

172



Anatomy of High-Performance Matrix Multiplication • 12:5

Letter Shape Description

m Matrix Both dimensions are large or unknown.

p Panel One of the dimensions is small.

b Block Both dimensions are small.

Fig. 3. The labels in Figure 2 have the form GEXY where the letters chosen for X and Y indicate
the shapes of matrices A and B, respectively, according to the above table. The exception to this
convention is the GEPDOT operation, which is a generalization of the dot product.

3. A LAYERED APPROACH TO GEMM

In Figure 4 we show how GEMM can be decomposed systematically into the spe-
cial cases that were tabulated in Figure 2. The general GEMM can be decomposed
into multiple calls to GEPP, GEMP, or GEPM. These themselves can be decomposed
into multiple calls to GEBP, GEPB, or GEPDOT kernels. The idea now is that if these
three lowest level kernels attain high performance, then so will the other cases
of GEMM. In Figure 5 we relate the path through Figure 4 that always take the
top branch to a triple-nested loop. In that figure C, A, and B are partitioned
into submatrices as

C=

⎛
⎜⎝

C11 · · · C1N
...

...
CM1 · · · CM N

⎞
⎟⎠ , A =

⎛
⎜⎝

A11 · · · A1K
...

...
AM1 · · · AM K

⎞
⎟⎠ , and C =

⎛
⎜⎝

C11 · · · C1N
...

...
CM1 · · · CM N

⎞
⎟⎠ ,

where Cij ∈ R
mc×nr , Aip ∈ R

mc×kc , and Bpj ∈ R
kc×nr . The block sizes mc, nr , and

kc will be discussed in detail later in the paper.
A theory that supports an optimality claim regarding the general approach

mentioned in this section can be found in Gunnels et al. [2001]. In particular,
that paper supports the observation that computation should be cast in terms of
the decision tree given in Figure 4 if data movement between memory layers is
to be optimally amortized. However, the present article is self-contained, since,
we show that the approach amortizes such overhead well and thus optimality
is not crucial to our discussion.

4. HIGH-PERFORMANCE GEBP, GEPB, AND GEPDOT

We now discuss techniques for the high-performance implementation of GEBP,
GEPB, and GEPDOT. We do so by first analyzing the cost of moving data between
memory layers with an admittedly naive model of the memory hierarchy. In
Section 4.2 we add more practical details to the model. This then sets the stage
for algorithms for GEPP, GEMP, and GEPM in Section 5.

4.1 Basics

In Figure 6 (left) we depict a very simple model of a multilevel memory.
One layer of cache memory is inserted between the Random-Access Memory
(RAM) and the registers. The top-level issues related to the high-performance
implementation of GEBP, GEPB, and GEPDOT can be described using this simplified
architecture.

Let us first concentrate on GEBP with A ∈ R
mc×kc , B ∈ R

kc×n, and C ∈ R
mc×n.

Partition

B = (B0|B1| · · · |BN−1) and C = (C0|C1| · · · |CN−1)
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Fig. 4. Layered approach to implementing GEMM.
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Fig. 5. The algorithm that corresponds to the path through Figure 4 that always takes the top
branch expressed as a triple-nested loop.
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Fig. 6. The hierarchical memories viewed as a pyramid.

and assume that

Assumption (a). The dimensions mc, kc are small enough so that A and nr
columns from each of B and C (Bj and Cj , respectively) together fit in the cache.

Assumption (b). If A, Cj , and Bj are in the cache then Cj := ABj + Cj can
be computed at the peak rate of the CPU.

Assumption (c). If A is in the cache it remains there until no longer needed.

Under these assumptions, the approach to GEBP in Figure 7 amortizes the
cost of moving data between the main memory and the cache as follows. The
total cost of updating C is mckc + (2mc + kc)n memops for 2mckcn flops. Then
the ratio between computation and data movement is

2mckcn
mckc + (2mc + kc)n

flops
memops

≈ 2mckcn
(2mc + kc)n

flops
memops

when kc � n. (1)

Thus
2mckc

(2mc + kc)
(2)

should be maximized under the constraint that mckc floating point numbers fill
most of the cache, and the constraints in Assumptions (a)–(c). In practice there
are other issues that influence the choice of kc, as we will see in Section 6.3.
However, the bottom line is that under the simplified assumptions A should
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Algorithm: C := gebp(A, B, C )

+:=

nrkc

mc

Load A into cache (mckc memops)
for j = 0, . . . , N − 1

Load Bj into cache (kcnr memops)
Load Cj into cache (mcnr memops)

+:=
(Cj := ABj + Cj)

Store Cj into memory (mcnr memops)
endfor

Fig. 7. Basic implementation of GEBP.

occupy as much of the cache as possible and should be roughly square,2 while
leaving room in the cache for at least Bj and Cj . If mc = kc ≈ n/100 then
even if memops are 10 times slower than flops, the memops add only about 10%
overhead to the computation.

The related operations GEPB and GEPDOT can be analyzed similarly by keeping
in mind the following pictures:

GEPB

+:=

GEPDOT

+:=

.

4.2 Refinements

In discussing practical considerations we will again focus on the high-
performance implementation of GEBP. Throughout the remainder of the paper,
we will assume that matrices are stored in column-major order.

4.2.1 Choosing the Cache Layer. A more accurate depiction of the memory
hierarchy can be found in Figure 6(right). This picture recognizes that there
are typically multiple levels of cache memory.

The first question is in which layer of cache the mc × kc matrix A should
reside. Equation (2) tells us that (under Assumptions (a)–(c)) the larger mc ×nc,
the better the cost of moving data between RAM and the cache is amortized
over computation. This suggests loading matrix A in the cache layer that is
farthest from the registers (can hold the most data) subject to the constraint
that Assumptions (a)–(c) are (roughly) met.

The L1 cache inherently has the property that if it were used for storing A,
Bj and Cj , then Assumptions (a)–(c) are met. However, the L1 cache tends to
be very small. Can A be stored in the L2 cache instead, allowing mc and kc to be

2Note that optimizing the similar problem mckc/(2mc +2kc) under the constraint that mckc ≤ K is
the problem of maximizing the area of a rectangle while minimizing the perimeter, the solution of
which is mc = kc. We do not give an exact solution to the stated problem since there are practical
issues that also influence mc and kc.
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much larger? Let Rcomp and Rload equal the rate at which the CPU can perform
floating point operations and the rate at which floating point number can be
streamed from the L2 cache to the registers, respectively. Assume A resides
in the L2 cache and Bj and Cj reside in the L1 cache. Assume further that
there is “sufficient bandwidth” between the L1 cache and the registers, so that
loading elements of Bj and Cj into the registers is not an issue. Computing
ABj + Cj requires 2mckcnr flops and mckc elements of A to be loaded from the
L2 cache to registers. To overlap the loading of elements of A into the registers
with computation 2nr/Rcomp ≥ 1/Rload must hold, or

nr ≥ Rcomp

2Rload
. (3)

4.2.2 TLB Considerations. A second architectural consideration relates to
the page management system. For our discussion it suffices to consider that
a typical modern architecture uses virtual memory so that the size of usable
memory is not constrained by the size of the physical memory: Memory is par-
titioned into pages of some (often fixed) prescribed size. A table, referred to as
the page table, maps virtual addresses to physical addresses and keeps track
of whether a page is in memory or on disk. The problem is that this table itself
is stored in memory, which adds additional memory access costs to perform vir-
tual to physical translations. To overcome this, a smaller table, the Translation
Look-aside Buffer (TLB), that stores information about the most recently used
pages, is kept. Whenever a virtual address is found in the TLB, the translation
is fast. Whenever it is not found (a TLB miss occurs), the page table is consulted
and the resulting entry is moved from the page table to the TLB. In other words,
the TLB is a cache for the page table. More recently, a level 2 TLB has been
introduced into some architectures for reasons similar to those that motivated
the introduction of an L2 cache.

The most significant difference between a cache miss and a TLB miss is that
a cache miss does not necessarily stall the CPU. A small number of cache misses
can be tolerated by using algorithmic prefetching techniques as long as the data
can be read fast enough from the memory where it does exist and arrives at the
CPU by the time it is needed for computation. A TLB miss, by contrast, causes
the CPU to stall until the TLB has been updated with the new address. In other
words, prefetching can mask a cache miss but not a TLB miss.

The existence of the TLB means that additional assumptions must be met:

Assumption (d). The dimensions mc, kc are small enough so that A, nr
columns from B (Bj ) and nr column from C (Cj ) are simultaneously address-
able by the TLB so that during the computation Cj := ABj +Cj no TLB misses
occur.

Assumption (e). If A is addressed by the TLB, it remains so until no longer
needed.

4.2.3 Packing. The fundamental problem now is that A is typically a sub-
matrix of a larger matrix, and therefore is not contiguous in memory. This in
turn means that addressing it requires many more than the minimal number
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of TLB entries. The solution is to pack A in a contiguous work array, Ã. Param-
eters mc and kc are then chosen so that Ã, Bj , and Cj all fit in the L2 cache and
are addressable by the TLB.

Case 1. The TLB is the limiting factor. Let us assume that there are T TLB
entries available, and let TÃ, TBj , and TCj equal the number of TLB entries
devoted to Ã, Bj , and Cj , respectively. Then

TÃ + 2(TBj + TCj ) ≤ T.

The reason for the factor two is that when the next blocks of columns Bj+1
and Cj+1 are first addressed, the TLB entries that address them should replace
those that were used for Bj and Cj . However, upon completion of Cj := ÃBj +Cj
some TLB entries related to Ã will be the least recently used, and will likely
be replaced by those that address Bj+1 and Cj+1. The factor two allows entries
related to Bj and Cj to coexist with those for Ã, Bj+1 and Cj+1 and by the time
Bj+2 and Cj+2 are first addressed, it will be the entries related to Bj and Cj
that will be least recently used and therefore replaced.

The packing of A into Ã, if done carefully, needs not to create a substantial
overhead beyond what is already exposed from the loading of A into the L2
cache and TLB. The reason is as follows: The packing can be arranged so that
upon completion Ã resides in the L2 cache and is addressed by the TLB, ready
for subsequent computation. The cost of accessing A to make this happen need
not be substantially greater than the cost of moving A into the L2 cache, which
is what would have been necessary even if A were not packed.

Operation GEBP is executed in the context of GEPP or GEPM. In the former case,
the matrix B is reused for many separate GEBP calls. This means it is typically
worthwhile to copy B into a contiguous work array, B̃, as well so that TB̃j

is
reduced when C := ÃB̃ + C is computed.

Case 2. The size of the L2 cache is the limiting factor. A similar argument can
be made for this case. Since the limiting factor is more typically the amount
of memory that the TLB can address (e.g., the TLB on a current generation
Pentium4 can address about 256Kbytes while the L2 cache can hold 2Mbytes),
we do not elaborate on the details.

4.2.4 Accessing Data Contiguously. In order to move data most efficiently
to the registers, it is important to organize the computation so that, as much as
practical, data that is consecutive in memory is used in consecutive operations.
One way to accomplish this is to not just pack A into work array Ã, but to
arrange it carefully. We comment on this in Section 6.

From here on in this article, “Pack A into Ã” and “C := ÃB + C” will denote
any packing that makes it possible to compute C := AB+C while accessing the
data consecutively, as much as needed. Similarly, “Pack B into B̃” will denote
a copying of B into a contiguous format.

4.2.5 Implementation of GEPB and GEPDOT. Analyses of implementations of
GEPB and GEPDOT can be similarly refined.
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Algorithm: C := gepp blk var1(A, B, C ) Algorithm: C := gebp opt1(A, B, C )

Č0

Č1
.
.
.

+:=

Ǎ0

Ǎ1
.
.
.

B
+:=

Assumption: B “packed” in memory.

Pack B into B̃
for i = 0, . . . , M − 1

Či +:= Ǎi B̃ (gebp opt1)

endfor

Pack A into Ã
for j = 0, . . . , N − 1

:=
(Caux := ÃBj)

Unpack Cj := Cj + Caux

endfor

Fig. 8. Optimized implementation of GEPP (left) via calls to GEPB OPT1 (right).

5. PRACTICAL ALGORITHMS

Having analyzed the approaches at a relatively coarse level of detail, we now
discuss practical algorithms for all six options in Figure 4 while exposing addi-
tional architectural considerations.

5.1 Implementing GEPP with GEBP

The observations in Sections 4.2.1–4.2.4 are now summarized for the imple-
mentations of GEPP in terms of GEBP in Figure 8. The packing and computation
are arranged to maximize the size of Ã: by packing B into B̃ in GEPP VAR1, Bj
typically requires only one TLB entry. A second TLB entry is needed to bring in
Bj+1. The use of Caux means that only one TLB entry is needed for that buffer,
as well as up to nr TLB entries for Cj (nr if the leading dimension of Cj is
large). Thus, TÃ is bounded by T − (nr + 3). The fact that Cj is not contiguous
in memory is not much of a concern, since that data is not reused as part of the
computation of the GEPP operation.

Once B and A have been copied into B̃ and Ã, respectively, the loop in
GEBP OPT1 can execute at almost the peak of the floating point unit.

—The packing of B is a memory-to-memory copy. Its cost is proportional to kc×n
and is amortized over 2m×n×kc so that O(m) computations will be performed
for every copied item. This packing operation disrupts the previous contents
of the TLB.

—The packing of A to Ã rearranges this data from memory to a buffer that
will likely remain in the L2 cache and leaves the TLB loaded with useful
entries, if carefully orchestrated. Its cost is proportional to mc × kc and is
amortized over 2mc × kc × n computation so that O(n) computations will
be performed for every copied item. In practice, this copy is typically less
expensive.

This approach is appropriate for GEMM if m and n are both large, and k is not
too small.
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Algorithm: C := gepm blk var1(A, B, C ) Algorithm: C := gebp opt2(A, B, C )

C +:= A0A1 · · ·
B̌0

B̌1
.
.
.

+:=

Assumption: C “packed” in memory.

Set packed C̃ := 0
for p = 0, . . . , K − 1

C̃ +:= Ap B̌p (gebp opt2)

endfor

Unpack C := C̃ + C

Pack A into Ã
for j = 0, . . . , N − 1

Pack Bj into Baux

+:=
(Cj := ÃBaux + Cj)

endfor

Fig. 9. Optimized implementation of GEPM (left) via calls to GEBP OPT2 (right).

Fig. 10. Optimized implementation of GEMP (left) via calls to GEPB OPT1 (right).

5.2 Implementing GEPM with GEBP

In Figure 9 a similar strategy is proposed for implementing GEPM in terms of
GEBP. This time C is repeatedly updated so that it is worthwhile to accumulate
C̃ = AB before adding the result to C. There is no reuse of B̌p and therefore it
is not packed. Now at most nr TLB entries are needed for Bj , and one each for
Btemp, Cj and Cj+1 so that again TÃ is bounded by T − (nr + 3).

5.3 Implementing GEPP with GEPB

Figure 10 shows how GEPP can be implemented in terms of GEPB. Now A is packed
and transposed by GEPP to improve contiguous access to its elements. In GEPB B
is packed and kept in the L2 cache, so that it is TB̃ that we wish to maximize.
While Ai, Ai+1, and Caux each typically only require one TLB entry, Či requires
nc if the leading dimension of C is large. Thus, TB̃ is bounded by T − (nc + 3).

5.4 Implementing GEMP with GEPB

In Figure 11 shows how GEMP can be implemented in terms of GEPB. This time a
temporary C̃ is used to accumulate C̃ = (AB)T and the L2 cache is mostly filled
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Fig. 11. Optimized implementation of GEPM (left) via calls to GEBP OPT2 (right).

with a packed copy of B̃. Again, it is TB̃ that we wish to maximize. While Ci,
Ci+1, and Atemp each take up one TLB entry, Ǎi requires up to mc entries. Thus,
TB̃ is bounded by T − (mc + 3).

5.5 Implementing GEPM and GEMP with GEPDOT

Similarly, GEPM and GEMP can be implemented in terms of the GEPDOT operation.
This places a block of C in the L2 cache and updates it by multiplying a few
columns of A times a few rows of B. Since we will argue below that this approach
is likely inferior, we do not give details here.

5.6 Discussion

Figure 4 suggests six different strategies for implementing a GEMM operation.
Details for four of these options are given in Figures 8–11. We now argue that
if matrices are stored in column-major order, then the approach in Figure 8,
which corresponds to the path in Figure 4 that always takes the top branch in
the decision tree and is also given in Figure 5, can in practice likely attain the
best performance.

Our first concern is to attain the best possible bandwidth use from the L2
cache. Note that a GEPDOT-based implementation places a block of C in the L2
cache and reads and writes each of its elements as a few columns and rows of A
and B are streamed from memory. This requires twice the bandwidth between
the L2 cache and registers as do the GEBP and GEPBbased algorithms. Thus, we
expect GEPDOT-based implementations to achieve worse performance than the
other four options.

Comparing the pair of algorithms in Figures 8 and 9 the primary difference is
that the former packs B and streams elements of C from and to main memory,
while the latter streams B from main memory, computes C in a temporary
buffer, and finally unpacks by adding this temporary result to C. In practice,
the algorithm in Figure 8 can hide the cost of bringing elements of C from
and to memory with computation while it exposes the packing of B as sheer

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

181



12:14 • K. Goto and R. A. van de Geijn

overhead. The algorithm in Figure 9 can hide the cost of bringing elements of
B from memory, but exposes the cost of unpacking C as sheer overhead. The
unpacking of C is a more complex operation and can therefore be expected to
be more expensive than the packing of B, making the algorithm in Figure 8
preferable over the one in Figure 9. A similar argument can be used to rank
the algorithm in Figure 10 over the one in Figure 11.

This leaves us with having to choose between the algorithms in Figures 8
and 10, which on the surface appear to be symmetric in the sense that the roles
of A and B are reversed. Note that the algorithms access C a few columns and
rows at a time, respectively. If the matrices are stored in column-major order,
then it is preferable to access a block of those matrices by columns. Thus the
algorithm in Figure 8 can be expected to be superior to all the other presented
options.

Due to the level of effort that is required to implement kernels like GEBP, GEPB,
and GEPDOT, we focus on the algorithm in Figure 8 throughout the remainder of
this article.

We stress that the conclusions in this subsection are continguent on the
observation that on essentially all current processors there is an advantage to
blocking for the L2 cache. It is entirely possible that the insights will change if,
for example, blocking for the L1 cache is preferred.

6. MORE DETAILS YET

We now give some final insights into how registers are used by kernels like
GEBP OPT1, after which we comment on how parameters are chosen in practice.

Since it has been argued that the algorithm in Figure 8 will likely attain the
best performance, we focus on that algorithm:

+:=

nrkc

mc

6.1 Register Blocking

Consider Caux := ÃBj in Figure 8, where Ã and Bj are in the L2 and L1 caches,
respectively. This operation is implemented by computing mr × nr submatrices
of Caux in the registers.

:=

nrkc

mr

Notice that this means that during the computation of Cj it is not necessary
that elements of that submatrix remain in the L1 or even the L2 cache: 2mrnrkc
flops are performed for the mrnr memops that are needed to store the results
from the registers to whatever memory layer. We will see that kc is chosen to
be relatively large.

This figure allows us to discuss the packing of A into Ã in more detail. In our
implementation, Ã is stored so that each mr × kc submatrix is stored contigu-
ously in memory. Each such submatrix is itself stored in column-major order.
This allows Caux := ÃBj to be computed while accessing the elements of Ã by
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striding strictly contiguously through memory. Implementations by others will
often store Ã as the transpose of A, which requires a slightly more complex
pattern when accessing Ã.

6.2 Choosing mr × nr

The following considerations affect the choice of mr × nr :

—Typically half the available registers are used for the storing mr × nr subma-
trix of C. This leaves the remaining registers for prefetching elements of Ã
and B̃.

—It can be shown that amortizing the cost of loading the registers is optimal
when mr ≈ nr .

—As mentioned in Section 4.2.1, the fetching of an element of Ã from the L2
cache into registers must take no longer than the computation with a previ-
ous element so that ideally nr ≥ Rcomp/(2Rload) must hold. Rcomp and Rload
can be found under “flops/cycle” and “Sustained Bandwidth”, respectively, in
Figure 12.

A shortage of registers will limit the performance that can be attained by
GEBP OPT1, since it will impair the ability to hide constraints related to the
bandwidth to the L2 cache.

6.3 Choosing kc

To amortize the cost of updating mr ×nr elements of Cj the parameter kc should
be picked to be as large as possible.

The choice of kc is limited by the following considerations:

—Elements from Bj are reused many times, and therefore must remain in
the L1 cache. In addition, the set associativity and cache replacement policy
further limit how much of the L1 cache can be occupied by Bj . In practice,
kcnr floating point numbers should occupy less than half of the L1 cache so
that elements of Ã and Caux do not evict elements of Bj .

—The footprint of Ã (mc × kc floating point numbers) should occupy a consid-
erable fraction of the L2 cache.

In our experience the optimal choice is such that kc double precision floating
point numbers occupy half of a page. This choice typically satisfies the other
constraints as well as other architectural constraints that go beyond the scope
of this article.

6.4 Choosing mc

It was already argued that mc × kc matrix Ã should fill a considerable part of
the smaller of (1) the memory addressable by the TLB and (2) the L2 cache. In
fact, this is further constrained by the set-associativity and replacement policy
of the L2 cache. In practice, mc is typically chosen so that Ã only occupies about
half of the smaller of (1) and (2).
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7. EXPERIMENTS

In this section we report performance attained by implementations of the DGEMM

BLAS routine using the techniques described in the earlier sections. It is not
the purpose of this section to show that our implementations attain better
performance than those provided by vendors and other projects. (We do note,
however, that they are highly competitive.) Rather, we attempt to demonstrate
that the theoretical insights translate to practical implementations.

7.1 Algorithm Chosen

Implementing all algorithms discussed in Section 5 on a cross-section of archi-
tectures would be a formidable task. Since it was argued that the approach in
Figure 8 is likely to yield the best overall performance, it is that variant which
was implemented. The GEBP opt1 algorithm was carefully assembly-coded for
each of the architectures that were considered. The routines for packing A and
B into Ã and B̃, respectively, were coded in C, since compilers appear to be
capable of optimizing these operations.

7.2 Parameters

In Figure 12 we report the physical and algorithmic parameters for a cross-
section of architectures. Not all the parameters are taken into account in the
analysis in this paper. These are given for completeness.

The following parameters require extra comments.

Duplicate. This parameter indicates whether elements of matrix B are dupli-
cated as part of the packing of B. This is necessary in order to take advantage
of SSE2 instructions on the Pentium4 (Northwood) and Opteron processors.
Although the Core 2 Woodcrest has an SSE3 instruction set, instructions for
duplication are issued by the multiply unit and the same techniques as for the
Northwood architecture must be employed.

Sustained Bandwidth. This is the observed sustained bandwidth, in dou-
bles/cycle, from the indicated memory layer to the registers.

Covered Area. This is the size of the memory that can be addressed by the
TLB. Some architectures have a (much slower) level 2 TLB that serves the
same function relative to an L1 TLB as does an L2 cache relative to an L1
cache. Whether to limit the size of Ã by the number of entries in L1 TLB or L2
TLB depends on the cost of packing into Ã and B̃.

Ã (Kbytes). This indicates how much memory is set aside for matrix Ã.

7.3 Focus on the Intel Pentium 4 Prescott Processor (3.6 GHz, 64bit)

We discuss the implementation for the Intel Pentium 4 Prescott processor in
greater detail. In Section 7.4 we more briefly discuss implementations on a few
other architectures.

Equation (3) indicates that in order to hide the prefetching of elements of
Ã with computation parameter nr must be chosen so that nr ≥ Rcomp/(2Rload).
Thus, for this architecture, nr ≥ 2/(2×1.03) ≈ 0.97. Also, EM64T architectures,

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, Publication date: May 2008.

184



Anatomy of High-Performance Matrix Multiplication • 12:17

A
rc

h
it

ec
tu

re
L
1

ca
ch

e
L
2

ca
ch

e
L
3

ca
ch

e
T

L
B

B
lo

ck
si

ze
s

Sub
Architecture

Core

#ofregisters

flops/cycle

Duplicate

Size
(Kbytes)

LineSize

Associativity

Sustained
Bandwidth

Size
(Kbytes)

LineSize

Associativity

Sustained
Bandwidth

Size
(Kbytes)

LineSize

Associativity

Sustained
Bandwidth

PageSize
(Kbytes)

L1TLB

L2TLB

CoveredArea
(Kbytes)
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Fig. 12. Parameters for a sampling of current architectures.
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Fig. 13. Performance on the Pentium4 Prescott (3.6 GHz) of DGEMM for different choices of mc and
kc, where mc and kc are varied from 8 to 2000 in steps of 8. This architecture has a 2Mbyte L2
cache, which explains the performance degradation when the footprint of Ǎ is about that size. The
best performance is attained for mc × kc = 696 × 196, when the footprint is around 1 Mbyte.

of which this Pentium4 is a member, have 16 registers that can store two double
precision floating point numbers each. Eight of these registers are used for
storing entries of C: mr × nr = 4 × 4.

The choice of parameter kc is complicated by the fact that updating the in-
dexing in the loop that computes inner products of columns of Ã and B̃ is best
avoided on this architecture. As a result, that loop is completely unrolled, which
means that storing the resulting code in the instruction cache becomes an issue,
limiting kc to 192. This is slightly smaller than the kc = 256 that results from
the limitation discussed in Section 6.3.

In Figure 13 we show the performance of DGEMM for different choices of mc
and kc.3 This architecture is the one exception to the rule that Ã should be
addressable by the TLB, since a TLB miss is less costly than on other architec-
tures. When Ã is chosen to fill half of the L2 cache the performance is slightly
better than when it is chosen to fill half of the memory addressable by the TLB.

The Northwood version of the Pentium4 relies on SSE2 instructions to com-
pute two flops per cycle. This instruction requires entries in B to be duplicated,
a data movement that is incorporated into the packing into buffer B̃. The SSE3
instruction supported by the Prescott subarchitecture does not require this du-
plication when copying to B̃.

In Figure 14 we show the performance attained by the approach on this
Pentium 4 architecture. In this figure the top graph shows the case where
all matrices are square while the bottom graph reports the case where m =
3Ordinarily examining the performance for all possible combinations of mc and kc is not part of our
optimization process. Rather, the issues discussed in this paper are used to identify a few possible
combinations of parameters, and only combinations of mc and kc near these candidate parameters
are tried. The graph is included to illustrate the effect of picking different parameters.
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Fig. 14. Pentium4 Prescott (3.6 GHz).

n = 2000 and k is varied. We note that GEPP with k relatively small is perhaps
the most commonly encountered special case of GEMM.

—The top curve, labeled Kernel, corresponds to the performance of the kernel
routine (GEBP opt1).

—The next lower curve, labeled dgemm, corresponds to the performance of
the DGEMM routine implemented as a sequence of GEPP operations. The GEPP

operation was implemented via the algorithms in Figure 8.
—The bottom two curves correspond the percent of time incurred by routines

that pack A and B into Ã and B̃, respectively. (For these curves only the
labeling along the right axis is relevant.)

The overhead caused by the packing operations accounts almost exactly for the
degradation in performance from the kernel curve to the DGEMM curve.

The graphs in Figure 15 investigate the performance of the implementation
when m and n are varied. In the top graph m is varied while n = k = 2000.
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Fig. 15. Pentium4 Prescott(3.6 GHz).

When m is small, as it would be for a GEPM operation, the packing of B into
B̃ is not amortized over sufficient computation, yielding relatively poor perfor-
mance. One solution would be to skip the packing of B. Another would be to
implement the algorithm in Figure 9. Similarly, in the bottom graph n is varied
while m = k = 2000. When n is small, as it would be for a GEMP operation, the
packing of A into Ã is not amortized over sufficient computation, again yielding
relatively poor performance. Again, one could contemplate skipping the pack-
ing of A (which would require the GEBP operation to be cast in terms of AXPY

operations instead of inner-products). An alternative would be to implement
the algorithm in Figure 11.

7.4 Other Architectures

For the remaining architectures we discuss briefly how parameters are selected
and show performance graphs, in Figs. 16–20, that correspond to those for the
Pentium 4 in Figure 14.

AMD Opteron processor (2.2 GHz, 64bit). For the Opteron architecture nr ≥
Rcomp/(2Rload) = 2/(2 × 0.71) ≈ 1.4. The observed optimal choice for storing
entries of C in registers is mr × nr = 4 × 4.

Unrolling of the inner loop that computes the inner-product of columns of Ã
and B̃ is not necessary like it was for the Pentium4, nor is the size of the L1
cache an issue. Thus, kc is taken so that a column of B̃ fills half a page: kc = 256.
By taking mc × kc = 384 × 256 matrix Ã fills roughly one third of the space
addressable by the TLB.

The latest Opteron architectures support SSE3 instructions, we have noticed
that duplicating elements of B̃ is still beneficial. This increases the cost of
packing into B̃, decreasing performance by about 3%.

Performance for this architecture is reported in Figure 16.
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Fig. 16. Opteron (2.2 GHz).
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Fig. 17. Itanium2 (1.5 GHz).

Intel Itanium2 processor (1.5 GHz). The L1 data cache and L1 TLB are
inherently ignored by this architecture for floating point numbers. As a result,
the Itanium2’s L2 and L3 caches perform the role of the L1 and L2 caches of
other architectures and only the L2 TLB is relevant. Thus nr ≥ 4/(2×2.0) = 1.0.
Since there are ample registers available, mr × nr = 8 × 8. While the optimal
kc = 1K (1K doubles fill half of a page), in practice performance is almost as
good when kc = 128.

This architecture has many features that makes optimization easy: A very
large number of registers, very good bandwidth between the caches and the
registers, and an absence of out-of-order execution.

Performance for this architecture is reported in Figure 17.
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Fig. 18. POWER5 (1.9 GHz).
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Fig. 19. PPC440 FP2 (700 MHz).

IBM POWER5 processor (1.9 GHz). For this architecture, nr ≥ 4/(2×0.93) ≈
2.15 and mr ×nr = 4×4. This architectures has a D-ERAT (Data cache Effective
Real to Address Translation [table]) that acts like an L1 TLB and a TLB that
acts like an L2 TLB. Parameter kc = 256 fills half of a page with a column of B̃.
By choosing mc × kc = 256 × 256 matrix Ã fills about a quarter of the memory
addressable by the TLB. This is a compromise: The TLB is relatively slow. By
keeping the footprint of Ã at the size that is addressable by the D-ERAT, better
performance has been observed.

Performance for this architecture is reported in Figure 18.

PowerPC440 FP2 processor (700 MHz). For this architecture, nr ≥ 4/(2 ×
0.75) ≈ 2.7 and mr × nr = 8 × 4. An added complication for this architecture is
that the combined bandwidth required for moving elements of B̃ and Ã from the
L1 and L2 caches to the registers saturates the total bandwidth. This means
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Fig. 20. Core 2 Woodcrest (2.66 GHz).

that the loading of elements of C into the registers cannot be overlapped with
computation, which in turn means that kc should be taken to be very large in
order to amortize this exposed cost over as much computation as possible. The
choice mc × nc = 128 × 3K fills 3/4 of the L2 cache.

Optimizing for this architecture is made difficult by lack of bandwidth to the
caches, an L1 cache that is FIFO (First-In-First-Out) and out-of-order execution
of instructions. The addressable space of the TLB is large due to the large page
size.

It should be noted that techniques similar to those discussed in this paper
were used by IBM to implement their matrix multiply [Bachega et al. 2004] for
this architecture.

Performance for this architecture is reported in Figure 19.

Core 2 Woodcrest (2.66 GHz) processsor. At the time of the final revision of
this paper, the Core 2 Woodcrest was recently released and thus performance
numbers for this architecture are particularly interesting.

For this architecture, nr ≥ 4/(2 × 1.0) = 2 and mr × nr = 4 × 4. As for
the Prescott architecture, sixteen registers that can hold two double precision
numbers each are available, half of which are used to store the mr × nr entries
of C. The footprint of matrix Ã equals that of the memory covered by the TLB.

Performance for this architecture is reported in Figure 20.

8. CONCLUSION

We have given a systematic analysis of the high-level issues that affect the de-
sign of high-performance matrix multiplication. The insights were incorporated
in an implementation that attains extremely high performance on a variety of
architectures.

Almost all routines that are currently part of LAPACK [Anderson et al. 1999]
perform the bulk of computation in GEPP, GEMP, or GEPM operations. Similarly,
the important Basic Linear Algebra Subprograms (BLAS) kernels can be cast
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in terms of these three special cases of GEMM [Kågström et al. 1998]. Our recent
research related to the FLAME project shows how for almost all of these rou-
tines there are algorithmic variants that cast the bulk of computation in terms
of GEPP [Gunnels et al. 2001; Bientinesi et al. 2005a; Bientinesi et al. 2005b; Low
et al. 2005; Quintana et al. 2001]. These alternative algorithmic variants will
then attain very good performance when interfaced with matrix multiplication
routines that are implemented based on the insights in this paper.

One operation that cannot be recast in terms of mostly GEPP is the QR factor-
ization. For this factorization, about half the computation can be cast in terms
of GEPP while the other half inherently requires either the GEMP or the GEPM

operation. Moreover, the panel must inherently be narrow since the wider the
panel, the more extra computation must be performed. This suggests that fur-
ther research into the high-performance implementation of these special cases
of GEMM is warranted.

The source code for the discussed implementations is available from
http://www.tacc.utexas.edu/resources/software.
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1. INTRODUCTION

Attaining high performance for matrix-matrix operations such as symmetric
matrix-matrix multiply (SYMM), symmetric rank-k update (SYRK), symmetric
rank-2k update (SYR2K), triangular matrix-matrix multiply (TRMM), and
triangular solve with multiple right-hand sides (TRSM) by casting the bulk of
computation in terms of a general matrix-matrix multiply (GEMM) has become
a generally accepted practice [Kågström et al. 1998]. Variants on this theme
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4:2 • K. Goto and R. van de Geijn

Fig. 1. Performance of all level-3 BLAS on the IBM PPC440 FP2 (700 MHz). (Curves in the figure
appear, from top to bottom, in the order indicated in the legend.)

include loop-based algorithms and recursive algorithms, as well as hybrids that
incorporate both of these [Elmroth et al. 2004]. In this article we show that
better performance can be attained by specializing a high-performance GEMM

kernel [Goto and van de Geijn 2008] so that it computes the desired operation.
For the busy reader the results are previewed in Figure 1.

This article is organized as follows. In Section 2, we review the basic tech-
niques behind a high-performance matrix-matrix multiplication implementa-
tion. More traditional techniques for implementing level-3 BLAS are reviewed
in Section 3. Our alternative techniques are presented and used to obtain
highly optimized implementations of SYMM, SYRK, SYR2K, TRMM, and TRSM, in
Sections 4–7. Concluding remarks are given in the final section.

2. HIGH-PERFORMANCE IMPLEMENTATION OF MATRIX-MATRIX
MULTIPLICATION

To understand how to convert a high-performance matrix-matrix multiplica-
tion (GEMM) implementation into a fast implementation for one of the other
matrix-matrix operations that are part of the level-3 Basic Linear Algebra
Subprograms (BLAS) [Dongarra et al. 1990], one has to first review the state-
of-the-art of high-performance implementation of the GEMM operation. In this
section we give a minimal description, referring the interested reader to Goto
and van de Geijn [2008].

Consider the computation C := AB +C, where C, A, and B are m×n, m×k,
and k× n matrices, respectively. Assume for simplicity that m = bmM , n = bnN ,
and k = bk K , where M , N , K , bm, bn, and bk are all integers. Partition as in
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Fig. 2. Left: Partitioning of A and B. Right: Blocking for one individual panel-panel multiplication
(GEPP) operation, C := Aj Bj + C.

Fig. 3. Outline of optimized implementation of GEPP.

Figure 2(left):

A → ( A0 A1 · · · AK −1 ) and B →

⎛
⎜⎜⎜⎝

B̌0

B̌1
...

B̌K −1

⎞
⎟⎟⎟⎠ ,

where Ap and B̌p contain bk columns and rows, respectively.1 Then

C := A0 B̌0 + A1 B̌1 + · · · + AK −1 B̌K −1 + C.

A typical high-performance implementation of GEMM will focus on making each
update C := ApB̌p + C, which we will call a panel-panel multiplication (GEPP),
as fast as possible. The overall performance of GEMM is essentially equal to that
of each individual GEPP with panel width equal to an optimal size bk .

Figure 3 gives a high-performance algorithm for the GEPP operation, C :=
AB + C, where the “k” dimension is bk . The algorithm requires three highly
optimized components:

—Pack B: A routine for packing B into a contiguous buffer. On some architec-
tures this routine may also reorganize the data for specialized instructions
used by the GEBP kernel routine described below.

—Pack and transpose Ǎi: A routine for packing Ǎi into a contiguous buffer.
Often this routine also transposes the matrix to improve the order in which
it is accessed by the GEBP kernel routine.

—GEBP kernel routine: This routine computes Či := ÃB̃ + Či using the packed
buffers. GEBP stands for General block-times-panel multiply.

1The ˇ is used to indicate a partitioning by rows in this paper.
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Fig. 4. Performance of GEMM on Pentium4 (3.6 GHz). Left: The performance of the GEBP kernel
routine and GEMM is given by the curves labeled “Kernel” and“dgemm”. Right: The curves labeled
“Pack A” and “Pack B” indicate the percent of total time spent in each of these operations. In this
graph k = 192.

On current architectures the size of Ǎi is chosen to fill about half of the L2
cache (or the memory addressable by the TLB), as explained in Goto and van de
Geijn [2008]. Considerable effort is required to tune each of these components,
especially the GEBP kernel routine. In subsequent sections we will show how
other level-3 BLAS can be implemented in such a way that this effort can be
largely amortized by making minor modifications to the GEBP kernel.

In Figure 4 the performance and overhead of the various kernels is reported
for the high-performance implementation of DGEMM (double-precision GEMM)
from [Goto and van de Geijn 2008]. In that paper, the methodology is shown to
be competitive with the DGEMM implementations of vendor libraries. It is this
implementation upon which the remainder of this paper is based.

Throughout the article performance is presented for double precision (64-bit)
computation of the target operation on a number of architectures:

Clock Peak blocking size
Architecture (GHz) (GFLOPS/sec) bm bk Vendor library
Pentium4 (R) 3.6 7.2 768 192 MKL 8.0.1
Itanium2 (R) 1.5 6 128 1024 MKL 8.0.1
Power 5 1.9 7.6 256 256 ESSL 4.2.0
PPC440 FP2 0.7 2.8 128 3072 not available to us

We also compare against ATLAS 3.7.11, a public-domain implementation of
the BLAS [Whaley and Dongarra 1998], except for the Itanium2 system, on
which ATLAS 3.7.8 attained better performance. In our graphs that report the
rate of execution (GFLOPS/sec) the top line always represents the theoretical
peak of the processor. The blocking sizes bm and bk are as indicated in the
above table.

Key insights from Goto and van de Geijn [2008] are that (1) the submatrix
Âi is typically non-square, (2) the cost of packing Âi is significant, which means
that the column dimension of B should be large, and (3) the cost of packing B
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Fig. 5. Algorithms for computing SYMM. Left: Typical loop-based algorithm. Right: Casting in terms
of a single GEPP.

is significant and should therefore be amortized over as many blocks of A as
possible and repacking should be avoided.

3. TRADITIONAL APPROACHES FOR IMPLEMENTING THE LEVEL-3 BLAS

We use the symmetric matrix-matrix multiplication (SYMM), C := AB+C where
A is symmetric, as an example of how traditional approaches to implementing
the Level-3 BLAS proceed. We will assume that only the lower triangular part
of A is stored (in the lower triangular part of the array that stores A).

3.1 Loop-Based Approach

In Figure 5(left) we show a typical computation SYMM as a loop that traverses
the matrices a block of rows and/or columns at a time. We believe the notation
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4:6 • K. Goto and R. van de Geijn

used in that figure, which has been developed as part of the FLAME project,
to be sufficiently intuitive not to require further explanation [Bientinesi and
van de Geijn 2006; Gunnels et al. 2001]. Notice that the bulk of the computation
is cast in terms of GEPP. The size of A11 in each iteration is chosen to equal the
optimal bk discussed in Section 2 so that the GEPP updates AT

01 B0 and A21 B2
attain near-optimal performance. Since typically bk is small relative to m (the
dimension of A) the update C1 := A11 B1 + C1, which we will call a symmetric
block-matrix multiplication (SYBM) requires relatively few operations. Letting n
equal the column dimension of C, the total operation count of a SYMM operation
is 2m2n floating point operations (flops). A total of 2(m/bk)b2

kn = 2mbkn flops
are in the SYBM computations and 2(m − bk)mn in the GEPP operations. Even if
the performance attained by the SYBM operations is less than that of a GEPP, the
overall performance degrades only moderately if m >> bk . In our case, SYBM

is implemented by copying A11 into a temporary matrix, making it “general”
by copying the lower triangular part to the upper triangular part, and calling
GEMM.

There are two sources of complications and/or inefficiencies in this approach:

—The three operations (C0 := AT
10 B1 +C0, C1 := A11 B1 +C1, and C2 := A21 B1 +

C2) are typically treated as three totally separate operations, meaning that
B1 must be packed redundantly for each of the three operations. In Figure 4
it is shown that the packing of B1 is a source of overhead for an individual
GEPP operation that cannot be neglected.

—Since the shape and size of of C1 and the bk × bk block of A11 in the SYBM

operation do not match those of the corresponding submatrices in the GEPP

operation, optimization of the SYBM operation is not a matter of making minor
modifications to the kernel GEBP operation. A high-performance implemen-
tation would require a redesign of this kernel.

These problems are most noticeable when A is relatively small.

3.2 Recursive Algorithms

Partition

C →
(

CT

CB

)
, A →

(
ATL �

ABL ABR

)
, and B →

(
BT

BB

)
,

where ATL is a k × k matrix and BT and CT are k × n. Then C := AB + C yields(
CT

CB

)
=

(
ATL AT

BL
ABL ABR

) (
BT

BB

)
+

(
CT

CB

)

=
(

ATL BT + AT
BL BB + CT

ABL BT + ABR BB + CB

)
.

The terms ATL BT + CT and ABR BB + CB can be achieved by recursive calls to
SYMM. This time the bulk of the computation is cast in terms of GEMM: AT

BL BB
and ABL BT . Typically the recursion stops when matrix A is relatively small, at
which point A may be copied into a general matrix, after which GEMM can be
employed for this small problem.
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Fig. 6. Performance of different implementations of SYMM: The algorithm put forth later in this
paper, a loop-based algorithm, and a recursive algorithm.

There are two sources of complications and/or inefficiencies in this recursive
approach:

—The same panels of B will be packed multiple times as part of the individual
calls to GEMM, which itself is cast in terms of GEPP operations.

—Unless care is taken the recursion will not create subproblems of sizes that
are integer multiples of bk , which causes the GEMM operations to attain less
than optimal performance.

3.3 Performance

The performance of the two traditional approaches described in this section are
reported in Figure 6. In that graph we also report the performance attained by
the approach delineated later in this paper. The block size for the loop-based
algorithm was taken to equal 192 while the recursion terminated when the size
of the subproblem was less then or equal to 192.

4. SYMM

The alternative approach to implementing SYMM professed by this paper is
simple to describe: Execute exactly the same algorithm as was employed for
GEPP by modifying the routine that copies submatrices of matrix A into packed
form to accommodate the symmetric nature of matrix A.

To understand this fully, first consider the algorithm in Figure 5(right). No-
tice that if AT

10, A11, and A21 are copied into a single panel of columns of width
bk , then the GEPP algorithm in Figure 3 can be executed. This approach is
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Fig. 7. Performance of SYMM relative to GEMM. (For the Power5 architecture the line for dsymm and
dgemm are almost coincident. The dsymm line lies ever so slightly above that of dgemm.)

inefficient in the sense that these submatrices are first copied and then subse-
quently packed as part the GEPP algorithm. This suggests that instead of first
copying the three parts into a single column panel, the GEPP algorithm should
be modified so that the copying is done as needed, a block of bm × bk at a time,
as illustrated by

+=
��

While simple, the method has a number of immediate benefits:

—The packing of the block of rows of B is amortized over all computation with
A10, A11, and A21.

—The routine for packing submatrices of A needs only be modified slightly.
—The exact same kernel GEBP routine as for implementing GEPP can be used.

Interestingly enough, the approach yields performance that often exceeds that
of GEMM, as shown in Figure 7.
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5. SYRK AND SYR2K

Next we discuss the symmetric rank-k (SYRK) and symmetric rank-2k (SYR2K)
updates: C := AAT + C and C := ABT + BAT + C, where C is an m × m
symmetric matrix and A and B are m × k. We will assume that only the lower
triangular part of C is stored.

Let us focus on SYRK first. As for the GEMM and SYMM operations it is important
to understand how one panel-panel multiply is optimized: the case where A
contains bk columns (k = bk) Mimicking the GEPP implementation yields

�
�

�
�

��

+=

The idea now is that the computation of each row panel of C is modified to take
advantage of the fact that only the part that lies at or below the diagonal needs
to be updated. One straightforward way to accomplish this is to break each such
row panel into three parts:

+=

The kernel GEBP routine can be used to update the left part. A special kernel
updates the lower triangular block on the diagonal, and the right part is not
updated at all.

The implementation of SYR2K is a simple extension of this, where a slight
optimization is that each row panel of C is updated with the appropriate part
of both ABT and BAT since this keeps the panel of C in the L3 cache, if present.
Again, the performance is impressive, as illustrated in Figure 8.

6. TRMM

We will examine the specific case of the triangular matrix-matrix multiply
(TRMM) B := LB, where L is a lower triangular m × m matrix and B is m × n.

Again, this operation can be cast in terms of a sequence of panel-panel
multiplies:

=

�
�

�
�

��

0
0

0
0

An examination of how the GEPP algorithm can be modified for the special needs
of TRMM yields

+=
��

ACM Transactions on Mathematical Software, Vol. 35, No. 1, Article 4, Publication date: July 2008.

203



4:10 • K. Goto and R. van de Geijn

Fig. 8. Performance of SYRK (left) and SYR2K (right) relative to GEMM.

One notices that again most of the computation can be cast in terms of the ker-
nel GEBP routine, except for the computation with the blocks that contain part
of the diagonal. There are a number of ways of dealing with those special blocks:

—As the block is packed and transposed the elements in from the upper trian-
gular part can be set to zero, after which the kernel GEBP routine can be used
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without modification. The advantage is that only the packing routine needs
to be modified slightly. The disadvantage is that considerable computation is
performed with elements that equal zero.

—Modify the kernel GEBP routine so that it does not compute with elements
that lie above the diagonal. Conceptually this means changing a few loop-
bounds. In practice there is loop-unrolling that is incorporated in the kernel
GEBP routine that makes this somewhat more complex. One possibility for
overcoming this while making only slight changes to the kernel routine is to
set those elements that lie in a region covered by the loop-unrolling to zero
and to compute with those but not other elements that lie above the diagonal.
This can then be accomplished by only modifying loop-bounds in the kernel
routine without disturbing code related to loop-unrolling.

We favor the second solution in our implementations. The performance of the
TRMM routine is demonstrated in Figure 9(left).

7. TRSM

We will examine the specific case of the triangular solve with multiple right-
hand sides (TRSM) B := L−1 B, where L is a lower triangular m × m matrix and
B is m× n. An algorithm that casts most computation in terms of GEPP is given
in Figure 10.

Let us examine the combined updates B1 := L−1
11 B1 and B2 := B2 − L21 B1:

+=
��

It is in how to deal with the blocks that contain the diagonal that complications
occur. For these blocks

— B1 will have been copied into a packed array B̃.
—The current row panel will have bm rows. Let us denote this row panel by the

matrix C.
—A typical block of L11, A, that contains the diagonal will have the shape

A =
�
�

.

—Partitioning C, A, and B̃ as

C →
CT

CB ,
A →

�
�

ABL

AT L

ABR

AT R

, and

B̃ →
B̃T

B̃B

the operation to be performed can then given by
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Fig. 9. Performance of TRMM (left) and TRSM (right) relative to GEMM.

—CT := A−1
TR(CB − ATLCT ).

The data in CT coincides with the part of B that was copied into B̃. Thus
the result in CT needs also be updated in the corresponding part of B̃.

—CB := CB − ABL B̃T − ABR B̃B.
Again, the data in CB coincides with the part of B that was copied into B̃.
Thus the result in CB needs also be updated in the corresponding part of B̃.
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Fig. 10. Algorithm for computing TRSM that casts most computation in terms of GEPP.

Clearly, the kernel that implements this requires considerable care and cannot
be simply derived from the kernel GEBP routine. Performance of our implemen-
tation is reported in Figure 9.

8. CONCLUSION

In this article, we have presented a simple yet highly effective approach to
implementing level-3 BLAS routines by modifying the currently most effective
technique for implementing matrix-matrix multiplication. The methodology in-
herently avoids unnecessary recopying of data into packed format. It suggests
that routines like those that pack and kernel routines be exposed as building
blocks for libraries.

The performance comparison with the MKL library on the Itanium2 archi-
tecture may appear to present a counterexample to the techniques advocated
by this article, since for some operations the MKL implementation outperforms
our implementations. We note that their implementations require substantially
more effort than those supported by our work.

There are a number of other situations in which exposing these building
blocks will become advantageous if not necessary.

—A typical LU factorization (with or without pivoting) performs a TRSM oper-
ation with a matrix that subsequently becomes an operand in a GEPP. This
could allow a new packing of that data to be avoided if the packed array used
in the implementation of the TRSM is saved. Similar redundant repacking of
data is encountered in many LAPACK level routines by virtue of the strict
layering of such libraries upon the BLAS interface.
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—Implementation of level-3 BLAS on SMP or multi-core platforms could easily
incur redundant packing operations by the different threads. Exposing the
building blocks could avoid this, improving performance considerably. This
is discussed for DGEMM in [Marker et al. 2007].

We believe this suggests that the standardization of interfaces to such building
blocks is in order.

Implementations of the described techniques are available for essentially
all current architectures. Libraries can be obtained from http://www.tacc.
utexas.edu/resources/software/.
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1. INTRODUCTION

We discuss the need for the inclusion of families of algorithms and implemen-
tations in dense linear algebra libraries in order to more effectively address
situation specific requirements. Special situations may be due to architec-
tural features of a target platform or to application requirements. While this
observation is not new, the general consensus in the community has been
that traditional libraries are already too complex to develop when only one or
two algorithms are supported, making it impractical to consider including all
algorithms for all operations [Demmel and Dongarra 2005]. Obstacles include
the effort required to identify candidate algorithms, backward compatibility
with traditional development techniques, establishing the formal correctness1

through extensive testing, numerical stability analyses,2 and the time required
for empirical tuning. Recent developments towards the systematic and mechan-
ical development of libraries, as part of the Formal Linear Algebra Methods
Environment (FLAME) project, suggest that many of these obstacles can be
overcome if new software engineering approaches and tools are embraced. A
departure from traditional development methods has the potential for greatly
reducing the effort and expense of upgrading libraries as new architectures
become available and new situations arise.

The FLAME project encompasses a large number of theoretical and prac-
tical tools. At the core is a new notation for expressing dense linear algebra
algorithms [Quintana et al. 2001; Bientinesi and van de Geijn 2006]. This
notation has a number of attractive features: (1) it avoids the intricate indexing
into the arrays that store the matrices that often obscures the algorithm; (2) it
raises the level of abstraction at which the algorithm is represented; (3) it allows
different algorithms for the same operation and similar algorithms for different
operations to be easily compared and contrasted; and (4) it allows the state of the
matrix at the beginning and end of each loop (the loop-invariant)3 to be concisely
expressed. The notation supports a step-by-step process for deriving formally
correct families of loop-based algorithms requiring as input only a mathemati-
cal specification of the operation [Bientinesi et al. 2005a]. As part of the project,
Application Program Interfaces (APIs) for representing algorithms in code have
been defined for a number of programming languages [Bientinesi et al. 2005b].
These APIs allow the code to closely resemble the formally correct algorithms so
that (1) the implementation requires little effort and (2) the formal correctness
of the algorithms implies the formal correctness of the implementations. The
methodology is sufficiently systematic that it has been made mechanical using
Mathematica [Bientinesi 2006]. The project is also working towards making nu-
merical stability analysis [Bientinesi 2006] and performance analysis similarly
systematic and mechanical [Gunnels 2001].

1Formal correctness in computer science refers to correctness in the absence of round-off errors.
2In the presence of finite precision arithmetic a numerically stable algorithm will yield an answer
that equals the exact answer to a nearby problem.
3A formal definition of “loop-invariant” can be found in the book A logical Approach to Discrete
Math [Gries and Schneider 1992]. We caution that this term is often used by the compiler community
with a different (almost opposite) meaning.
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The breadth of the methodology has been shown to include all of the Basic
Linear Algebra Subprograms (BLAS) [Dongarra et al. 1988, 1990], many of
the higher level dense linear algebra operations supported by the Linear
Algebra Package (LAPACK) [Anderson et al. 1999] and all the operations in the
RECSY library [Jonsson and Kågström 2002a, 200b]. The primary contribution
of this paper is to highlight that multiple algorithms for a single operation must
be supported by a complete library. This way the user, or, better yet, an expert
system can select the best performing or the most appropriate algorithm for a
given situation.

This article uses the inversion of a Symmetric Positive Definite (SPD) matrix
operation as a case study. Such an operation is used to compute the covariance
matrix. While the algorithms presented here can be applied to a number of
problems, their development was motivated by specific applications within the
Earth, aerospace and medical sciences. For example, the determination of the
Earth’s gravity field from satellite and terrestrial data is a computationally
intensive process that involves the dense linear least squares solution of hun-
dreds of thousands of model parameters from millions of observations [Gunter
2004; Tapley et al. 2004; Sanso and Rummel 1989]. The statistics of these
solutions are often desired to aid in determining the accuracy and behavior of
the resulting models, so the covariance matrix is typically computed. Another
application involves the analysis of nuclear imaging in medicine, where the
investigation of noise propagation in Positron Emission Tomography (PET), as
well as Single Photon Emission Computed Tomography (SPECT), can involve
the inversion of large dense covariance matrices [Gullberg et al. 2003; Huesman
et al. 1999].

The inverse of a SPD matrix A is typically obtained by first comput-
ing the upper triangular Cholesky factor R of A, A = RT R, after which
A−1 = (RT R)−1 = R−1 R−T can be computed by first inverting the matrix
R (U = R−1) and then multiplying the result by its transpose (A−1 = UU T ).
We will show that there are multiple loop-based algorithms for each of these
three operations, all of which can be orchestrated so that the result overwrites
the input without requiring temporary space. Also presented will be two al-
gorithms that overwrite A by its inverse without the explicit computation of
these intermediate results, requiring only a single sweep through the ma-
trix, as was already briefly mentioned in Quintana et al. [2001]. The perfor-
mance benefit of the single-sweep algorithm for a distributed memory archi-
tecture is illustrated in Figure 1 in which the best algorithm for inverting a
SPD matrix proposed in this paper and implemented with PLAPACK [van de
Geijn 1997] is compared with the current three-sweep algorithm supported
by ScaLAPACK [Choi et al. 1992]. A secondary contribution of this paper lies
with the thorough treatment of loop-based algorithms, implementations, and
performance for these operations. Many references to classic inversion meth-
ods can be found in Householder [1964] and Higham [2002]. An in-place pro-
cedure for inverting positive definite matrices by the Gauss-Jordan method
is given by Bauer and Reinsch [1970]. Recent advances in data formats are
applied to matrix inversion in Andersen et al. [2002] and Georgieva et al.
[2000].
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Fig. 1. Comparison of the performance of the ScaLAPACK routine for inverting a SPD matrix
and our best one-sweep algorithm implemented with PLAPACK, as a function of the number of
processing nodes, p. The problem size is chosen to equal 5000

√
p so that the memory use per

processing node is constant. Total performance and performance per node are reported in the left
and right graph, respectively. Details on the cluster on which the experiment was performed are
given in Section 5.

The organization of the article is as follows: Section 2 introduces multiple
algorithms for each of the three sweeps: the computation of the Cholesky
factorization, the inversion of the resulting triangular matrix, and the multi-
plication of a triangular matrix by its transpose. Section 3 discusses one-sweep
algorithms for computing the inversion of a SPD matrix. Different scenarios
when different algorithms should be used are discussed in Section 4 followed
by performance results in Section 5. Conclusions are given in Section 6.

2. ALGORITHMS FOR THE INDIVIDUAL SWEEPS

In this section we present algorithms for the three separate operations that,
when executed in order, will compute the inverse of a SPD matrix. Each algo-
rithm is annotated with the names, in parenthesis, of the basic operations being
performed, specifying the shape of the operands. A detailed list of basic opera-
tions is provided in Figure 2. In Section 4 we discuss how performance depends
not only on the operation performed, but also on the shape of the operands
involved in the computation.

2.1 Cholesky Factorization: A := CHOL(A)

Given a SPD matrix A, its Cholesky factor is defined as the unique upper tri-
angular matrix R such that R has positive diagonal elements and A = RT R
(the Cholesky factorization of A). We will denote the function that computes
the Cholesky factor of A by CHOL(A). We assume that only the upper triangular
part of A is stored and A := CHOL(A) overwrites this upper triangular part with
the Cholesky factor R. A recursive definition of A := CHOL(A) is

(
ATL ATR

� ABR

)
:=

(
RTL RTR

� RBR

)
, where

⎧⎪⎨
⎪⎩

RTL = CHOL
(
ÂTL

)
RTR = R−T

TL ÂTR

RBR = CHOL
(
ÂBR − RT

TR RTR
)

,
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Fig. 2. Basic operations used to implement the different algorithms.
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Fig. 3. Loop-invariants (states of matrix A maintained at the beginning and the end of each
iteration) corresponding to the algorithms given in Figure 4.

where the base case for a 1×1 matrix A = α is CHOL(A) = √
α. In this definition,

Â represents the original contents of A,4 the quadrants ATL, RTL, and ÂTL are
all square and of equal dimensions, and � indicates the symmetric part of the
matrix that is not stored. It is this recursive definition, the Partitioned Matrix
Expression (PME) in FLAME terminology, that is the input to the FLAME
methodology for generating loop-based algorithms.

Three pairs of algorithmic variants for computing the Cholesky factoriza-
tion are presented in Figure 4. The function m(X ) returns the number or
rows of matrix X . For details on the notation used [Bientinesi et al. 2005a,
2005b]; Bientinesi and van de Geijn [2006]. The algorithms on the left are
unblocked algorithms, meaning that each iteration moves the computation
along by one row and column. Casting the algorithm in terms of matrix-matrix
operations (level-3 BLAS [Dongarra et al. 1990]) allows high performance
to be attained [Dongarra et al. 1991]. This is achieved by the blocked algo-
rithms on the right, which move through the matrix by blocks of b rows and
columns.

In Figure 3 we present the contents (state) of the matrix before and after each
iteration of the loop. In computer science, the predicate that defines this state
is known as the loop-invariant. This state should be a partial result toward
computing the PME since until the loop terminates not all of the result is yet
computed. Once a loop-invariant is determined, the algorithm is prescribed: the
update in the body of the loop must be such that this state is maintained from
one iteration to the next. See Bientinesi et al. [2006] for details on the FLAME
methodology as applied to this operation.

The experienced reader will recognize Variant 1 as the “bordered” algorithm,
Variant 2 as the “left-looking” algorithm, and Variant 3 as the “right-looking”
algorithm.5 All algorithms are known to be numerically stable.

2.2 Inversion of an Upper Triangular Matrix: R := R−1

In this section we discuss the “in-place” inversion of a triangular matrix, over-
writing the original matrix with the result. By in-place it is meant that no work

4Throughout this article, Â, R̂, and Û will denote the original contents of the matrices A, R, and
U , respectively.
5This terminology comes from the case where L = RT is computed instead.
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Fig. 4. Unblocked and blocked algorithms for computing the Cholesky factorization. We indicate
within parenthesis the name of the operation being performed. A complete list of basic operations,
with emphasis on the shape of the operands is given in Figure 2.

space is required. The PME for this operation is

(
RTL RTR
� RBR

)
:=

(
R̂−1

TL −R̂−1
TL R̂TR R̂−1

BR

� R̂−1
BR

)
.

Derivations of the algorithms can be found in Bientinesi et al. [2006].
Three blocked algorithms are given in Figure 5(left). They, respectively, main-

tain the loop-invariants in Figure 6(left). (Note again how the loop-invariants
relate to the PME.) For each blocked algorithm there is a corresponding un-
blocked algorithm, which is not presented. Also, three more pairs of unblocked
and blocked algorithms exist that sweep through the matrix from the bottom-
right to the top-left. Finally, two more blocked and unblocked pairs of algorithms
that are correct in the absense of round-off error but numerical unstable can
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Fig. 5. Blocked algorithms for inverting a triangular matrix and for multiplying a triangular
matrix by its transpose.

Fig. 6. States maintained in matrix R and U , respectively, by the algorithms given in Figure 5.
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be derived. We will only consider the three numerically stable algorithms in
Figure 5(left) [Bientinesi et al. 2006; Higham 2002].

2.3 Triangular Matrix Multiplication by Its Transpose: C = UUT

The PME for this operation is(
UTL UTR

� UBR

)
:=

(
Û TLÛ T

TL + Û TRÛ T
TR Û TRÛ T

BR

� Û BRÛ T
BR

)
.

Three loop-invariants are given in Figure 5(right) that correspond to the algo-
rithms in (right). As for the computation of R−1 there are three more algorithms
that sweep in the opposite direction. We do not present the corresponding un-
blocked algorithms.

All algorithms are known to be numerically stable, since they are special
cases of matrix-matrix multiplication.

2.4 Three-Sweep Algorithms

Application of the three operations in the order in which they were presented
yields the inversion of a SPD matrix: UU T = R−1 R−T = (RT R)−1 = A−1.
We refer to any algorithm that executes three algorithms, one for each op-
eration, a three-sweep algorithm. The current implementations of LAPACK
and ScaLAPACK use a three-sweep algorithm, consisting of Variant 2 for the
Cholesky factorization, Variant 1 for R := R−1, and Variant 2 for U := UU T .

3. ONE-SWEEP ALGORITHMS

We now present two algorithms that compute the inverse of a SPD matrix
by sweeping through the matrix once rather than three times. We show how
one of these algorithms can also be obtained by merging carefully chosen algo-
rithms from Sections 2.1–2.3 into a one-sweep algorithm. The numerical sta-
bility of the three-sweep algorithm is known [Higham 2002; Bientinesi et al.
2006], and therefore the merged one-sweep algorithm inherits the same stabil-
ity properties.6

The PME for computing A := A−1 can be stated as(
ATL ATR

� ABR

)
:=

(
Â−1

TL + Â−1
TL ÂTR BBR ÂT

TR Â−1
TL −Â−1

TL ÂTR BBR

� BBR

)
,

where we introduce BBR = (ÂBR − ÂT
TR Â−1

TL ÂTR)−1, the inverse of the Schur
complement. From this PME two loop-invariants can be identified, given in
Figure 7, and the application of the FLAME derivation techniques with these
loop-invariants yields the algorithms in Figure 8.

It is possible to identify more loop-invariants other than the two shown in
Figure 7, but the corresponding algorithms perform redundant computations
and/or are numerically instable. More loop-invariants yet can be devised by

6The order in which the merged one-sweep algorithm updates each entry is the same as the three-
sweep algorithm.
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Fig. 7. States maintained in matrix A corresponding to the algorithms given in Figure 8.

Fig. 8. One-sweep algorithms for inverting a SPD matrix.

considering the alternative PME(
ATL ATR

ABL ABR

)
=

(
BTL −BTL ÂT L Â−1

BR

� Â−1
BR + Â−1

BR ÂT
TR BTL ÂTR Â−1

BR

)

where BTL = (ÂTL − ÂTR Â−1
BR ÂT

TR)−1. The corresponding algorithms compute
the solution by sweeping the matrix from the bottom right corner as opposed
to the two algorithms that we present that sweep the matrix from the top left
corner.

A one-sweep algorithm can also be obtained by merging carefully chosen
algorithmic variants for each of the three sweeps discussed in Sections 2.1–2.3.
The result, in Figure 9, is identical to Figure 8(right), which was obtained by
applying the FLAME approach. The conditions under which algorithms can be
merged is a topic of current research and goes beyond the scope of this article.
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Fig. 9. One-sweep algorithm for inverting a SPD matrix as a merging of three sweeps. As a side
effect of the reordering of the updates, the sign of the operands in the right column might be the
opposite with respect to the corresponding update in the left column.

The real benefit of the one-sweep algorithm in Figure 9(left) comes from the
following observation: The order of the updates in that variant can be changed
as in Figure 9(right), so that the most time consuming computations (A22 −
AT

12 A12, A00 + A01 AT
01, and A02 + A01 A12) can be scheduled to be computed

simultaneously:

A00 + A01 AT
01 A02 + A01 A12

�

� � A22 − AT
12 A12

.

On a distributed memory architecture, where the matrix is physically dis-
tributed among memories, there is the opportunity to: 1) consolidate the
communication among processors by first performing the collective communica-
tions for the three updates followed by the actual computations, and 2) improve
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load-balance since during every iteration of the merged algorithm, on each el-
ement of the quadrants A00, A02 and A22 the same amount of computation is
performed.

4. DIFFERENT ALGORITHMS FOR DIFFERENT SITUATIONS

There are a number of reasons why different algorithms are more appropriate
under different circumstances. In this section we highlight a few.

4.1 Performance

The most prominent reason for picking one algorithm over another is related
to performance. Here we mention some high-level issues. Some experimental
results related to this are presented in Section 5. Please refer to Figure 2 for
the definition of the BLAS and BLAS-like operations GEMV, SYR, GEPP, SYPP,
etc.

Unblocked algorithms are typically used when the problem size is small and
the data fits in the L1 or L2 cache of the processor (for example, for the smaller
subproblems that occur as part of the blocked algorithms). Here it is the loading
and storing of data that critically impacts performance. The symmetric rank-1
update (SYR) requires the matrix to be read and written while the matrix-vector
multiply (GEMV) requires the matrix to only be read. This means that algorithms
that cast most computation in terms of GEMV incur half the memory operations
relative to those that use SYR.

Blocked algorithms cast most computation in terms of one of the matrix-
matrix multiplies (GEPP, GEMP, GEPM, SYPP, etc.) [Dongarra et al. 1990; Kågström
et al. 1998; Anderson et al. 1999]. There are architectural reasons why the
rank-k updates (GEPP and SYPP) on current sequential architectures inher-
ently attain somewhat better performance than the other cases [Goto and
van de Geijn 2002; Gunnels et al. 2001a]. As a result, it is typically best to
pick the algorithmic variant that casts most computation in terms of those
cases of matrix-matrix multiplication. (Note that this means a different al-
gorithmic variant is preferred than was for the corresponding unblocked
algorithm.)

What property of an algorithmic variant yields high performance on an SMP
architecture is a topic of current study. Not enough experience and theory has
been developed to give a definitive answer. On distributed memory architec-
tures it appears that casting computation in terms of rank-k updates is again
a good choice.

For out-of-core computation (where the problem resides on disk) the issues
are again much like they were for the unblocked algorithms: The I/O is much
less for algorithms that are rich in the GEMP and/or GEPM cases of matrix-matrix
multiplication since the largest matrix involved in these operations is only
read.

We have thus reasoned how performance depends not just on what operation
is performed, but even on the shape of the operands that are involved in the
operation. A taxonomy of operations that exposes the shape of the operands
is given in Figure 2. The algorithms that were presented earlier in this paper
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were annotated to expose the operations being performed and the legends of
the graphs in Section 5 indicate the operation in which most computation is
cast, using this taxonomy.

4.2 Algorithmic Fault-Tolerance

There is a real concern that some future architectures will require algorithmic
fault-tolerance to be a part of codes that execute on them. There are many
reasons quoted, including the need for low power consumption, feature size,
and the need to use off-the-shelf processors in space where they are subjected
to cosmic radiation [Gunnels et al. 2001b]. Check-pointing for easy restart
partially into the computation is most easily added to an algorithm that main-
tains a loop-invariant where each quadrant is either completely updated or not
updated at all. For such algorithms it is easy to keep track of how far into the
matrix the computation has progressed.

4.3 Related Operations

An operation closely related to the computation of the Cholesky factorization
is determining whether a symmetric matrix is numerically SPD. The cheapest
way for this is to execute the Cholesky factorization until a square root of a neg-
ative number occurs. Variant 1 will execute the fewest operations if the matrix
is not SPD and is therefore a good choice if a matrix is suspected not to be SPD.

4.4 Impact on Related Computer Science Research and Development

Dense linear algebra libraries are a staple domain for research and development
in many areas of computer science. For example, frequently-used linear algebra
routines are often employed to assess future architectures (through simulators)
and new compiler techniques. As a result, it is important that libraries used
for such assessments include all algorithms so that a poor choice of algorithm
can be ruled out as a source of an undesirable artifact that is observed in the
proposed architecture or compiler.

5. PERFORMANCE EXPERIMENTS

To evaluate the performance of the algorithms derived in the previous sections,
both serial and parallel implementations were tested on a variety of problem
sizes and on different architectures. Although the best algorithms for each
operation attain very good performance, this study is primarily about the qual-
itative differences between the performance of different algorithms on different
architectures.

5.1 Implementations

Implementing all the algorithms discussed in this paper on sequential, SMP,
and distributed memory architectures would represent a considerable coding
effort if traditional library development techniques were used. The APIs
developed as part of the FLAME project have the benefit that the code closely
resembles the algorithms as they are presented in this paper. Most importantly,
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they hide the indexing that makes coding in a traditional style error-prone and
time-consuming.

The FLAME/C (C) and PLAPACK (C interfaced with MPI) APIs [Bientinesi
et al. 2005b; van de Geijn 1997; Chtchelkanova et al. 1997; Gropp et al. 1994;
Snir et al. 1996] were used for all the implementations, making the coding effort
manageable.

5.2 Platforms

The two architectures chosen for this study were picked to highlight per-
formance variations when using substantially different architectures and/or
programming models.

Shared Memory. IBM Power 4 SMP System. This architecture consists of
an SMP node containing sixteen 1.3 GHz Power4 processors and 32 GBytes
of shared memory. The processors operate at four floating point operations
per cycle for a peak theoretical performance of 5.2 GFLOPS/proc (1 GFLOP
= 1 billion of floating point operations per second), with a sequential DGEMM

(double precision matrix-matrix multiply) benchmarked by the authors at 3.7
GFLOPS/proc.

On this architecture, we compared performance when parallelism was
attained in two different ways: 1) Implementing the algorithms with PLAPACK,
which employs message passing via calls to IBM’s MPI library; and 2) invok-
ing the sequential FLAME/C implementations with calls to the multithreaded
BLAS that are part of IBM’s ESSL library as well as the GotoBLAS [Goto and
van de Geijn 2008].

Distributed Memory. Cray-Dell Linux Cluster. This system consists of an
array of Intel PowerEdge 1750 Xeon processors operating at 3.06 GHz. Each
compute node contains two processors and has 2 GB of total shared memory (1
Gb/proc). The theoretical peak for each processor is 6.12 GFLOPS (2 floating
point operations per clock cycle), with the sequential DGEMM, as part of Intel’s
MKL 7.2.1 library, benchmarked by the authors at roughly 4.8 GFLOPS.

On this system we measured the performance of PLAPACK-based imple-
mentations, linked to the MPICH MPI implementation [Gropp and Lusk 1994]
and Intel’s MKL library as well as to the GotoBLAS. The system was also used
to do the performance comparison with ScaLAPACK reported in Figure 1 and
Section 5.9.

5.3 Data Distribution

ScaLAPACK uses the two-dimensional block cyclic data distribution [Black-
ford et al. 1997]. PLAPACK uses the Physically Based Matrix Distribution,
which is a variation of the block cyclic distribution. The primary difference is
that ScaLAPACK ties the algorithmic block size to the distribution block size,
whereas PLAPACK does not. Because of this, PLAPACK may use a smaller
distribution block size to improve load balance.
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Fig. 10. Sequential performance on the IBM Power4 system.

5.4 Reading the Graphs

The performance attained by the different implementations is given in
Figures 10–14. The top line of most of the graphs represents the asymp-
totic performance attained on the architecture by matrix-matrix multiplication
(DGEMM). Since all the algorithms cast most computation in terms of this oper-
ation, its performance is the limiting factor. In the case where different BLAS
implementations were employed, the theoretical peak of the machine was used
as the top line of the graph. The following operation counts were used for each of
the algorithms: 1

3 n3 for each of CHOL(A), R−1, and UU T , and n3 for the inversion
of a SPD matrix. In the legends, the variant numbers correspond to those used
earlier in the paper and the operations within parentheses indicate the matrix-
matrix operation in which the bulk of the computation for that variant is cast
(See Figure 2 for details).

5.5 Sequential Performance

In Figure 10 we show performance on a single CPU of the IBM Power 4 system.
In these experiments, a block size of 96 was used for all algorithms. From the
graphs, it is obvious which algorithmic variant was incorporated in LAPACK.
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Fig. 11. Parallel performance on the 16 CPU IBM Power 4 SMP system.

5.6 Parallel performance

In Figures 11 and 12 we report performance results from experiments on a
sixteen CPU IBM Power 4 SMP system and on 16 processors (eight nodes with
two processors each) of the Cray-Dell cluster. Since the two systems attain
different peak rates of computation, the fraction of DGEMM performance that is
attained by the implementations is reported.

On the IBM system, we used an algorithmic block size of 96 for the FLAME/C
experiments, while we used a distribution block size of 32 and an algorithmic
block size of 96 for the PLAPACK experiments. The results on the IBM system
show that linking to multithreaded BLAS yields better performance than the
PLAPACK implementations. One reason is that exploiting the SMP features of
the system avoids much of the overhead of communication and load-balancing.

For the Cholesky factorization, the PLAPACK Variant 1 performs substan-
tially worse than the other variants. This is due to the fact that this variant is
rich in triangular solves with a limited number of right-hand sides. This oper-
ation inherently does not parallelize well on distributed memory architectures
due to dependencies. Interestingly, Variant 1 for the Cholesky factorization at-
tains the best performance in the sequential experiment on the same machine.
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Fig. 12. Parallel performance for PLAPACK-based implementations (C interfaced with MPI).

The PLAPACK implementations of Variants 1 and 2 for computing R−1 do
not perform well. Variant 1 is rich in triangular matrix times panel-of-columns
multiply where the matrix being multiplied has a limited number of columns.
It is not inherent that this operation does not parallelize well. Rather, it is
the PLAPACK implementation for that BLAS operation that is not completely
optimized. Similar comments apply to PLAPACK Variant 3 for computing UU T

and PLAPACK Variant 1 for computing the inversion of a SPD matrix. This
shows that a deficiency in the performance of a specific routine in a parallel
BLAS library (provided by PLAPACK in this case) can be overcome by selecting
an algorithmic variant that casts most computation in terms of a BLAS opera-
tion that does attain high performance.7 Note the cross-over between the curves
for the SMP Variants 2 and 3 for the parallel triangular inverse operation. This
shows that different algorithmic variants may be appropriate for different prob-
lem sizes.

It is again obvious from the graphs which algorithmic variant is used for each
of the three sweeps as part of LAPACK. The LAPACK curve does not match

7The techniques described in this paper still need to be applied to yield parallel BLAS libraries
that attain high performance under all circumstances.
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Fig. 13. Scalability on the Dell Cluster. Here the matrix size is scaled to equal 5000 × √
p so that

memory use per processor is held constant. Left: when linked to MKL 7.X. Right: when linked to
GotoBLAS 0.97.

either of the FLAME variants in the SPD inversion graph since LAPACK uses
a three-sweep algorithm.

5.7 Scalability

In Figure 13 we report the scalability of the best algorithmic variants for
each of the four operations when executed on the Cray-Dell cluster. It is well-
known that for these types of distributed memory algorithms it is necessary
to scale the problem size with the square root of the number of processors,
so that memory-use per processor is kept constant [Hendrickson and Womble
1994; Stewart 1990]. Notice that as the number of processors is increased, the
performance per node that is attained eventually decreases very slowly, indi-
cating that the implementations are essentially scalable.

5.8 Comparison of the Three-Sweep and Single-Sweep Algorithms

We examined the benefits of consolidating the collective communications and
improving the load balancing in the single-sweep algorithm. In Figure 14(left)
we show improvements in raw performance on the Cray-Dell system. The im-
provement over three-sweep algorithm is quite substantial, in the 15–30%
range. Figure 14(right) shows the time savings gained for the PLAPACK im-
plementations of the SPD inverse algorithms.

On serial and SMP architectures, essentially no performance improvements
were observed by using the single-sweep algorithms over the best three-sweep
algorithm. This is to be expected, since for these architectures the communica-
tions and load balancing are not an issue.

5.9 Comparison with ScaLAPACK

In Figure 1 we had already shown a performance comparison with ScaLA-
PACK on the Dell-Cray cluster. It verifies that our implementations rival and
even surpass those of a library that is generally considered to be of high quality
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Fig. 14. Comparison of the Three-Sweep and Single-Sweep SPD inverse algorithms. The left panel
shows the performance difference for the case run on the Cray-Dell system linked to the GotoBLAS.
The right panel shows the wall-clock savings for all PLAPACK cases.

and scalable. ScaLAPACK requires the nodes to be logically viewed as an r × c
mesh and uses a block-cyclic distribution of matrices to the nodes. For the
ScaLAPACK experiments we determined that r = c attained the best perfor-
mance and a block size of 32 or 64 was used depending on which achieved better
performance. (A block size of 128 achieved inferior performance since it affected
load balance.) For the PLAPACK experiments r = c, a distribution block size
of 32 and an algorithmic block size of 96 was used.

6. CONCLUSION

In this article, we have shown the benefit of including a multitude of different
algorithmic variants for dense linear algebra operations in libraries, such as
LAPACK/ScaLAPACK and FLAME/PLAPACK, that attempt to span a broad
range of architectures. The best algorithm can then be chosen, as a function
of the architecture, the problem size, and the optimized libraries to which the
implementations are linked. The FLAME approach to deriving algorithms, dis-
cussed in a number of other papers, enables a systematic generation of such
families of algorithms.

Another contribution of the article lies with the link it establishes between
the three-sweep and one-sweep approach to computing the inverse of a SPD
matrix. The observation that the traditional three-sweep algorithm can be fused
together so that only a single pass through the matrix is required has a number
of advantages. The single-sweep method provides for greater flexibility because
the sequence of operations can be arranged differently than they would be if
done as three separate sweeps. This allows the operations of the SPD inverse to
be organized to optimize load balance and communication. The resulting single-
sweep algorithm outperforms the three-sweep method on distributed memory
architectures.

The article raises many new questions. In particular, the availability of many
algorithms and implementations means that a decision must be made as to
when to use what algorithm. One approach is to use empirical data from per-
formance experiments to tune the decision process. This is an approach that
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has been applied in the simpler arena of matrix-matrix multiplication (DGEMM)
by the PHiPAC and ATLAS projects [Bilmes et al. 1997; Whaley and Don-
garra 1998]. An alternative approach would be to carefully design every layer
of a library so that its performance can be accurately modeled [Dackland and
Kågström 1996]. We intend to pursue a combination of these two approaches.
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1. INTRODUCTION

In this article we consider the LU factorization of a nonsymmetric matrix A,
partitioned as

A →

(

B C

D E

)

(1)

when a factorization of B is to be reused as the other parts of the matrix
change. This is known as the updating of an LU factorization.

Applications arising in boundary element methods (BEMs) often lead to very
large, dense linear systems [Cwik et al. 1994; Geng et al. 1996]. For many of
these applications the goal is to optimize a feature of an object. For example,
BEMs may be used to model the radar signature of an airplane. In an effort
to minimize this signature, it may be necessary to optimize the shape of a cer-
tain component of the airplane. If the degrees of freedom associated with this
component are ordered last among all degrees of freedom, the matrix presents
the structure given in Eq. (1). Now, as the shape of the component is modified,
it is only the matrices C, D, and E that change together with the right-hand
side vector of the corresponding linear system. Since the dimension of B is
frequently much larger than those of the remaining three matrices, it is desir-
able to factorize B only once and to update the factorization as C, D, and E

change. A standard LU factorization with partial pivoting does not provide a
convenient solution to this problem, since the rows to be swapped during the
application of the permutations may not lie only within B.

Little literature exists on this important topic. We have been made aware
that an unblocked out-of-core (OOC) algorithm similar to our algorithm was re-
ported in Yip [1979], but we have not been able to locate a copy of that report.
The proposed addition of this functionality to LAPACK is discussed in Demmel
and Dongarra [2005]. We already discussed preliminary results regarding the
algorithm proposed in the current article in a conference paper [Joffrain et al.
2005], in which its application to OOC LU factorization with pivoting is the
main focus.1 In Gunter and van de Geijn [2005] the updating of a QR factor-
ization via techniques, that are closely related to those proposed for the LU
factorization in the current article, is reported.

The article is organized as follows: In Section 2 we review algorithms for
computing the LU factorization with partial pivoting. In Section 3, we discuss
how to update an LU factorization by considering the factorization of a 2 × 2
blocked matrix. The key insight of the work is found in this section: High-
performance blocked algorithms can be synthesized by combining the pivot-
ing strategies of LINPACK and LAPACK. Numerical stability is discussed in
Section 4 and performance is reported in Section 5. Concluding remarks are
given in the final section.

1More practical approaches to OOC LU factorization with partial pivoting exist [Toledo 1999; 1997;
Toledo and Gustavson 1996; Klimkowski and van de Geijn 1995]. Therefore, OOC application of
the approach is not further mentioned so as not to distract from the central message of this
article.
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We hereafter assume that the reader is familiar with Gauss transforms,
their properties, and how they are used to factor a matrix. We start indexing
elements of vectors and matrices at 0. Capital letters, lower-case letters, and
lower-case Greek letters will be used to denote matrices, vectors, and scalars,
respectively. The identity matrix of order n is denoted by In.

2. THE LU FACTORIZATION WITH PARTIAL PIVOTING

Given an n × n matrix A, its LU factorization with partial pivoting is given by
PA = LU. Here P is a permutation matrix of order n, L is n × n unit lower
triangular, and U is n × n upper triangular. We will denote the computation of
P, L, and U by

[A , p] := [{L\U}, p] = LU(A), (2)

where {L\U} is the matrix whose strictly lower triangular part equals L and
whose upper triangular part equals U. Matrix L has ones on the diagonal,
which need not be stored, and the factors L and U overwrite the original
contents of A. The permutation matrix is generally stored in a vector p of n

integers.
Solving the linear system Ax = b now becomes a matter of solving Ly = Pb

followed by Ux = y. These two stages are referred to as forward substitution

and backward substitution, respectively.

2.1 Unblocked Right-Looking LU Factorization

Two unblocked algorithms for computing the LU factorization with partial piv-
oting are given in Figure 1. There, n(·) stands for the number of columns of a
matrix; the thick lines in the matrices/vectors denote how far computation
has progressed; PIVOT(x) determines the element in x with largest magnitude,
swaps this element with the top element, and returns the index of the ele-
ment that was swapped; and P(π1) is the permutation matrix constructed by
interchanging row 0 and row π1 of the identity matrix. The dimension of a
permutation matrix will not be specified since it is obvious from the context in
which it is used. We believe the rest of the notation to be intuitive [Bientinesi
and van de Geijn 2006; Bientinesi et al. 2005]. Both algorithms correspond to
what is usually known as the right-looking variant. Upon completion, matri-
ces L and U overwrite A. These algorithms also yield the LU factorization of
a matrix with more rows than columns.

The LINPACK variant, LULIN

UNB hereafter, computes the LU factorization as
a sequence of Gauss transforms interleaved with permutation matrices.

Ln−1

(

In−1 0
0 P(πn−1)

)

· · · L1

(

1 0
0 P(π1)

)

L0 P(π0)A = U

For the LAPACK variant LULAP

UNB , it is recognized that by swapping those rows
of matrix L that were already computed and stored to the left of the column
that is currently being eliminated, the order of the Gauss transforms and
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Fig. 1. LINPACK and LAPACK unblocked algorithms for the LU factorization.

permutation matrices can be rearranged so that P(p)A = LU. Here P(p),
with p = ( π0 · · · πn−1 )T , denotes the n × n permutation

(

In−1 0
0 P(πn−1)

)

· · ·

(

1 0
0 P(π1)

)

P(π0).

Both algorithms will execute to completion, even if an exact zero is encountered
on the diagonal of U. This is important since it is possible that matrix B in (1)
is singular even if A is not.

The difference between the two algorithms becomes most obvious when
forward substitution is performed. For the LINPACK variant, forward sub-
stitution requires the application of permutations and Gauss transforms to
be interleaved. For the LAPACK algorithm, the permutations are applied
first on the right-hand side vector, after which a clean lower triangular solve
yields the desired (intermediate) result: Ly = P(p)b . Depending on whether
the LINPACK or LAPACK variant was used for LU factorization, we de-
note the forward-substitution stage, respectively, by y := FSLIN(A , p, b ) or
y := FSLAP(A , p, b ), where A and p are assumed to contain the outputs of the
corresponding factorization.
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Fig. 2. LINPACK and LAPACK blocked algorithms for the LU factorization built upon an
LAPACK unblocked factorization.

2.2 Blocked Right-Looking LU Factorization

It is well known that high performance can be achieved in a portable fash-
ion by casting algorithms in terms of matrix-matrix multiplication [Kågström
et al. 1998; 1995; Gustavson et al. 1998; Gunnels et al. 2001]. In Figure 2
we show LINPACK(-like) and LAPACK blocked algorithms LULIN

BLK and LULAP

BLK ,
respectively, both built upon an LAPACK unblocked algorithm. The former
algorithm really combines the LAPACK style of pivoting, within the factor-
ization of a panel of width b , with the LINPACK style of pivoting. The two
algorithms attain high performance on modern architectures with (multiple
levels of) cache memory by casting the bulk of the computation in terms of the
matrix-matrix multiplication A22 := A22 − L21U12, also called a rank-k update,
which is known to achieve high performance [Goto and van de Geijn 2008].
The algorithms also apply to matrices with more rows than columns.

As both LINPACK and LAPACK blocked algorithms are based on the
LAPACK unblocked algorithm (which completes even if the current panel is
singular), both will complete even for a singular matrix. If matrix A in Eq. (1)
is nonsingular, then the upper triangular factor will also be nonsingular; this
is what we need in order to use the factored matrix to solve a linear system.
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3. UPDATING AN LU FACTORIZATION

In this section we discuss how to compute the LU factorization of the matrix
in (1) in such a way that the LU factorization with partial pivoting of B can
be reused if C, D, and E change. We consider A in Eq. (1) to be of dimension
n×n, with square B and E of orders nB and nE, respectively. For reference, fac-
toring the matrix in (1) using standard LU factorization with partial pivoting
costs 2

3n3 flops (floating-point arithmetic operations). In this expression (and
future computational cost estimates) we neglect insignificant terms of lower-
order complexity, including the cost of pivoting the rows.

3.1 Basic Procedure

We propose employing the following procedure, consisting of five steps, which
computes an LU factorization with incremental pivoting of the matrix in
Eq. (1).

Step 1: Factor B. Compute the LU factorization with partial pivoting

[B, p] := [{L\U}, p] = LULAP

BLK(B).

This step is skipped if B has already been factored. If the factors are to be
used for future updates to C, D, and E, then a copy of U is needed since it is
overwritten by subsequent steps.

Step 2: Update C. This is consistent with the factorization of B. This is

C := FSLAP(B, p, C)

Step 3: Factor

(

U

D

)

. Compute the LU factorization with partial pivoting








U

D



 , L̄, r



 :=








{L̄\Ū}

Ľ



 , r



 = LULIN

BLK




U

D



 .

Here, Ū overwrites the upper triangular part of B (where U was stored before
this operation). The lower triangular matrix L̄ that results needs to be stored
separately, since both L, computed in step 1 and used at step 2, and L̄ are
needed during the forward-substitution stage when solving a linear system.

Step 4: Update

(

C

E

)

. This is consistent with the factorization of

(

U

D

)

.

(

C

E

)

:= FSLIN

((

L̄

D

)

, r,

(

C

E

))

Step 5: Factor E. Finally, compute the LU factorization with partial pivoting

[E, s] :=
[

{L̃\Ũ}, s
]

= LULAP

BLK(E).
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Overall, the five steps of the procedure apply Gauss transforms and permuta-
tions to reduce A to an upper triangular matrix, as




I 0

0 L̃−1 P(s)








L̄ 0

Ľ I





−1

P(r)




L−1 P(p) 0

0 I








B C

D E





︸ ︷︷ ︸

steps 1 and 2

=




I 0

0 L̃−1 P(s)








L̄ 0

Ľ I





−1

P(r)




U Ĉ

D E





︸ ︷︷ ︸

steps 3 and 4

=




I 0

0 L̃−1 P(s)








Ū Č

0 Ě





︸ ︷︷ ︸

step 5

=




Ū Č

0 Ũ



 ,

where {L\U},










L̄ 0

Ľ I



 \




Ū

0










, and {L̃\Ũ} are the triangular factors com-

puted, respectively, in the LU factorizations in steps 1, 3, and 5; p, r, and
s are the corresponding permutation vectors; Ĉ is the matrix that results

from overwriting C with L−1 P(p)C; and




Č

Ě



 are the blocks that result from



I 0

0 L̃−1 P(s)








Ĉ

E



.

3.2 Analysis of the Basic Procedure

For now, the factorization in step 3 does not take advantage of any zeroes below
the diagonal of U: After matrix B is factored and C is updated, the matrix
(

U C

D E

)

is factored as if it is a matrix without special structure. Its cost is

stated in the column labeled “Basic procedure” in Table I. There we only report
significant terms: We assume that b ≪ nE, nB and report only those costs that
equal at least O(bnEnB), O(bn2

E), or O(bn2
B). If nE is small (i.e., nB ≈ n), the

procedure clearly does not benefit from the existence of an already factored B.
Also, the procedure requires additional storage for the nB ×nB lower triangular
matrix L̄ computed in step 3.
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Table I. Computational Cost (in flops) of Different Approaches to Compute LU
Factorization of the Matrix in Eq. (1).

Approximate cost (in flops)

Operation Basic Structure-Aware Structure-Aware
procedure LAPACK LINPACK

procedure procedure

1: Factor B 2
3 n3

B
2
3 n3

B
2
3 n3

B

2: Update C n2
BnE n2

BnE n2
BnE

3: Factor

(

U

D

)

n2
BnE + 2

3 n3
B n2

BnE + 1
2 bn2

B n2
BnE + 1

2 bn2
B

4: Update

(

C

E

)

2nBn2
E +n2

BnE 2nBn2
E +n2

BnE 2nBn2
E +bnBnE

5: Factor E 2
3 n3

E
2
3 n3

E
2
3 n3

E

Total 2
3 n3 + 2

3 n3
B + n2

BnE
2
3 n3 +n2

B

(
1
2 b + nE

)
2
3 n3 +bnB

( nB
2 + nE

)

The highlighted costs are those incurred in excess of the cost of a standard LU factorization.

We describe next how to reduce both the computational and storage require-
ments by exploiting the upper triangular structure of U during steps 3 and 4.

3.3 Exploiting the Structure in Step 3

A blocked algorithm that exploits the upper triangular structure of U is given
in Figure 3 and illustrated in Figure 4. We name this algorithm LUSA−LIN

BLK to
reflect that it computes a “structure-aware” (SA) LU factorization. At each

iteration of the algorithm, the panel of b columns consisting of

(

U11

D1

)

is fac-

tored using the LAPACK unblocked algorithm LULAP

UNB . (In our implementation
this algorithm is modified to also take advantage of the zeroes below the di-
agonal of U11.) As part of the factorization, U11 is overwritten by {L̄1\Ū11}.
However, in order to preserve the strictly lower triangular part of U11 (where
part of the matrix L, that was computed in step 1, is stored), we employ the
b × b submatrix L̄1 of the nB × b array L̄ (see Figure 3). As in the LINPACK
blocked algorithm in Figure 2, the LAPACK and LINPACK styles of pivot-
ing are combined: The columns of the current panel are pivoted using the
LAPACK approach, but the permutations from this factorization are only

applied to

(

U12

D2

)

.

The cost of this approach is given in step 3 of the column labeled “Structure-
Aware LINPACK procedure” in Table I. The cost difference comes from the
updates of U12 shown in Figure 3, and provided b ≪ nB, is insignificant com-
pared to 2

3
n3.

An SA LAPACK blocked algorithm for step 3 only differs from that in
Figure 3 in that, at a certain iteration after the LU factorization of the cur-

rent panel is computed, these permutations have to be applied to

(

U10

D0

)

as

well. As indicated in step 3 of the column labeled “Structure-Aware LAPACK
procedure,” this does not incur extra cost for this step. However, it does require
an nB × nB array for storing L̄ (see Figure 4) and, as we will see next, makes
step 4 more expensive. On the other hand, the SA LINPACK algorithm only
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Fig. 3. SA-LINPACK blocked algorithm for the LU factorization of
(

UT , DT
)T

built upon an
LAPACK blocked factorization.

requires an nB × b additional work space for storing the factors, as indicated
in Figure 4.

3.4 Revisiting the Update in Step 4

The same optimizations made in step 3 must now be carried over to the up-

date of

(

C

E

)

. The algorithm for this is given in Figure 5. Computation cor-

responding to zeroes is avoided so that the cost of performing the update is

2nBn2
E + bnBnE flops, as indicated in step 4 of Table I.

Applying the SA LAPACK blocked algorithm in step 3 destroys the structure
of the lower triangular matrix, which cannot be recovered during the forward
substitution stage in step 4. This explains the additional cost reported for this
variant in Table I.
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Fig. 4. Illustration of an iteration of the SA LINPACK blocked algorithm used in step 3 and how
it preserves most of the zeroes in U. The zeroes below the diagonal are preserved, except within
the b × b diagonal blocks, where pivoting will fill below the diagonal. The shaded areas are the
ones updated as part of the current iteration. The fact that U22 is not updated demonstrates
how computation can be reduced. If the SA LAPACK blocked algorithm was used, then nonzeroes
would appear during this iteration in the block marked as 0⋆, due to pivoting; as a result, upon
completion, zeros would be lost in the full strictly lower triangular part of U.

3.5 Key Contribution

The difference in cost of the three different approaches analyzed in Table I is
illustrated in Figure 6. It reports the ratios in cost of the aforesaid different
procedures and that of the LU factorization with partial pivoting for a matrix
with nB = 1000 and different values of nE, using b = 32. The analysis shows
that the overhead of the SA LINPACK procedure is consistently low. On the
other hand, as nE/n → 1 the cost of the basic procedure, which is initially twice
as expensive as that of the LU factorization with partial pivoting, is decreased.
The SA LAPACK procedure only presents a negligible overhead when nE → 0,
that is, when the dimension of the update is very small.

The key insight of the proposed approach is the recognition that combining
LINPACK- and LAPACK-style pivoting allows one to use a blocked algorithm
while avoiding filling most of the zeroes in the lower triangular part of U.
This, in turn, makes the extra cost of step 4 acceptable. In other words, for
the SA LINPACK procedure, the benefit of higher performance of the blocked
algorithm comes at the expense of a lower-order amount of extra computation.
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Fig. 5. SA-LINPACK blocked algorithm for the update of
(

CT , ET
)T

, consistent with the SA-

LINPACK blocked LU factorization of
(

UT , DT
)T

.

The extra memory for the SA LINPACK procedure consists of an nB ×nB upper
triangular matrix and an nB × b array.

4. REMARKS ON NUMERICAL STABILITY

The algorithm for the LU factorization with incremental pivoting carries out
a sequence of row permutations (corresponding to the application of permu-
tations) which are different from those that would be performed in an LU
factorization with partial pivoting. Therefore, the numerical stability of this
algorithm is also different. In this section we provide some remarks on the
stability of the new algorithm. We note that all three procedures described in
the previous section (basic, SA LINPACK, and SA LAPACK) perform the same
sequence of row permutations.

The numerical (backward) stability of an algorithm that computes the LU
factorization of a matrix A depends on the growth factor [Stewart 1998]

ρ =
‖L‖‖U‖

‖A‖
, (3)
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Fig. 6. Overhead cost of the different approaches to compute the LU factorization in Eq. (1) with
respect to the cost of the LU factorization with partial pivoting.

which is basically determined by problem size and pivoting strategy. For ex-
ample, the growth factors of complete, partial, and pairwise [Wilkinson 1965,
p. 236] pivoting have been demonstrated bounded as ρc ≤ n1/2(2·31/2 · · · n1/n−1),
ρp ≤ 2n−1, and ρw ≤ 4n−1, respectively [Sorensen 1985; Stewart 1998]. Statisti-
cal models and extensive experimentations in Trefethen and Schreiber [1990]
showed that, on average, ρc ≈ n1/2, ρp ≈ n2/3, and ρw ≈ n, inferring that in
practice both partial and pairwise pivoting are numerically stable, and pair-
wise pivoting can be expected to numerically behave only slightly worse than
partial pivoting.

The new algorithm applies partial pivoting during the factorization of B and

then again in the factorization of

(

U

D

)

. This can be considered as a blocked

variant of pairwise pivoting. Thus, we can expect an element growth for the
algorithm that is between those of partial and pairwise pivoting. Next we
elaborate an experiment that provides evidence in support of this observation.

In Figure 7 we report the element growths observed during computation of
the LU factorization of matrices as in Eq. (1), with nB = 100 and dimensions for
E ranging from nE = 5 to 100 using partial, incremental, and pairwise pivoting.
The entries of the matrices are generated randomly, chosen from a uniform dis-
tribution in the interval (0.0, 1.0). The experiment was carried out on an Intel
Xeon processor using Matlab R© 7.0.4 (IEEE double-precision arithmetic). The
results report the average element growth for 100 different matrices for each
matrix dimension. The figure shows the growth factor of incremental pivoting
to be smaller than that of pairwise pivoting and to approximate that of par-
tial pivoting. A similar behavior was obtained for other matrix types: uniform
distribution in (−1.0, 1.0), normal distribution with mean 0.0 and deviation
1.0 (N[0.0, 1.0]), symmetric matrices with elements in N[0.0, 1.0], and Toeplitz
matrices with elements in N[0.0, 1.0]. Only for orthogonal matrices with
Haar distribution [Trefethen and Schreiber 1990] did we obtain significantly
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Fig. 7. Element growth in LU factorization using different pivoting techniques.

different results. In that case, incremental pivoting attained a smaller element
growth than pairwise pivoting, and both outperformed the element growth of
partial pivoting. Explaining the behavior of this case is beyond the scope of
this work.

For those who are not sufficiently satisfied with the element growth of in-
cremental pivoting, we propose to perform a few refinement iterations of the
solution to Ax = b at a cost of O(n2) flops per step, as this guarantees stability
at a low computational cost [Higham 2002].

5. PERFORMANCE

In this section we report results for a high-performance implementation of the
SA LINPACK procedure.

5.1 Implementation

The FLAME library (version 0.9) was used to implement a high-performance
LU factorization with partial pivoting and the SA LINPACK procedure. The
benefit of this API is that the code closely resembles the algorithms as they
are presented in Figures 1 through 3 and 5. The performance of the FLAME
LU factorization with partial pivoting is highly competitive with LAPACK and
vendor implementations of this operation.

The implementations can be examined by visiting http://www.cs.utexas.
edu/users/flame/Publications/. For further information on FLAME, visit
www.cs.utexas.edu/users/flame.

5.2 Platform

Performance experiments were performed in double-precision arithmetic on
an Intel Itanium2 (1.5 GHz) processor-based workstation capable of attaining
6 GFLOPS (109 flops per second). For reference, the algorithm for the FLAME
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Fig. 8. Top: speedup attained when B is not refactored, over LU factorization with partial pivoting
of the entire matrix; bottom: slowdown for the first factorization (when B must also be factored).

LU factorization with partial pivoting delivered 4.8 GFLOPS for a 2000×2000
matrix. A block size b = 128 was employed in this procedure for all experi-
ments reported next. The implementation was linked to the GotoBLAS R1.6
basic linear algebra subprograms (BLAS) library [Goto 2004]. The BLAS rou-
tine DGEMM which is used to compute C := C − A B (C ∈ R

m×n, A ∈ R
m×k,

and B ∈ R
k×n) attains the best performance when the common dimension of

A and B, namely k, is equal to 128. Notice that most computation in the SA
LINPACK procedure is cast in terms of this operation, with k = b .

The performance benefits reported on this platform are representative of
those that can be expected on other current architectures.

5.3 Results

In Figure 8 (top) we show the speedup attained when an existing factoriza-
tion of B is reused, by reporting the time required to factor Eq. (1) with
high-performance LU factorization with partial pivoting divided by the time
required to update an existing factorization of B via the SA LINPACK proce-
dure (steps 2 through 5). In that figure, nB = 1000 and nE is varied from 0 to
1000. The results are reported when different block size b ’s are chosen. The
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DGEMM operation, in terms of which most computation is cast, attains the
best performance when b = 128 is chosen. However, this generates enough
additional flops that the speedup is higher when b is chosen smaller. When nE

is very small, b = 8 (for steps 2 through 5) yields the best performance. As nE

increases, performance improves by choosing b = 32 (for steps 2 through 5).
The effect of the overhead of the extra computations is demonstrated in

Figure 8 (bottom). There, we report the ratio of the time required by steps 1
through 5 of the SA LINPACK procedure divided by the time required by LU
factorization with partial pivoting of Eq. (1). The results in the figure may be
somewhat disturbing: The algorithm that views the matrix as four quadrants
attains as good or even better performance than the algorithm that views the
matrix as a single unit and performs less computation. The likely explanation
is that the standard LU factorization would also benefit from a variable block
size as the problem size changes, rather than fixing it at b = 128. We did not
further investigate this issue, since we did not want to make raw performance
the primary focus of the article.

6. CONCLUSIONS

We have proposed blocked algorithms for updating an LU factorization. They
have been shown to attain high performance and to greatly reduce the cost
of an update to a matrix for which a partial factorization already exists. The
key insight is the synthesis of LINPACK- and LAPACK-style pivoting. While
some additional computation is required, this is more than offset by the im-
provement in performance that comes from casting computation in terms of
matrix-matrix multiplication.

We acknowledge that the question of the numerical stability of the new
algorithm relative to that of LU factorization with partial pivoting remains
open. Strictly speaking, LU factorization with partial pivoting is itself not
numerically stable, but practical experience has shown be effective in practice.
Theoretical results that rigorously bound the additional element growth are in
order, but are beyond the scope of the present article.
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1. INTRODUCTION

FLAME. The Formal Linear Algebra Methods Environment (FLAME) project
pursues a systematic methodology for deriving and implementing linear alge-
bra libraries.The methodology is goal-oriented: given a mathematical specifi-
cation of the operation to be implemented, prescribed steps yield a family of
algorithms for computing the operation. A proof of correctness is also given
as part of the derivation. The resulting algorithms are expressed at a high
level of abstraction, much like one would present algorithms with pseudo-
code in a classroom setting [Bientinesi et al. 2005; Bientinesi 2006]. Appli-
cation Programming Interfaces (APIs) allow the code to closely resemble the
formal algorithm structure, thereby reducing the opportunity for the introduc-
tion of bugs in the translation from algorithm to implementation. APIs have
been defined for the Matlab M-script language, for the C and Fortran pro-
gramming languages, and even as an extension to the Parallel Linear Algebra
Package (PLAPACK) [van de Geijn 1997; Bientinesi et al. 2005]. The scope of
FLAME includes the Basic Linear Algebra Subprograms (BLAS) [Lawson et al.
1979; Dongarra et al. 1988, 1990], many operations from LAPACK [Ander-
son et al. 1992], and a large number of operations encountered in Control
Theory [Quintana-Ortí and van de Geijn 2003; Bientinesi 2006].

The workqueuing model. Shah et al. [1999] proposed the workqueuing
model specifically to overcome the limitations of the OpenMP for and sections
constructs. In OpenMP, workqueuing parallelism would be derived through
the use of two new directives: taskq and task. The workqueuing model offers
distinct advantages over conventional parallel OpenMP constructs. Namely,
workqueuing provides a method of parallelizing loops that abstracts completely
from array and loop indexing; instead, the model is work-oriented, allowing the
programmer to parallelize independent units of computation created within for
and while statements. The virtues of workqueuing and the clean abstraction
of FLAME allow the programmer to quickly parallelize any FLAME algorithm
whose subproblems exhibit no interdependencies.

High performance. Contrary to conventional wisdom, elegant algorithms
need not compromise on performance. Figure 1 gives the reader a general idea
of the performance that we can attain in our algorithms with minimal effort.
It is worth noting that while FLAME well outperforms the Intel Math Ker-
nel Library (MKL), it is edged out by GotoBLAS for smaller problem sizes.
However, this is not surprising. Kazushige Goto, author of GotoBLAS [Goto
2006], frequently collaborates with the FLAME project. Our open exchange of
ideas allows him to combine our best findings with his own at a lower, more
architecture-aware level.
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Fig. 1. Performance of parallel SYRK implementations (12 threads on 12 Itanium2 CPUs) using
GotoBLAS 1.07, Intel MKL 8.1, and FLAME Variant 2 (parallelized with FLAME workqueuing)
when m equals the problem size and k = 200. Further details of these experiments may be found
in Section 6. Bottom line: An elegantly coded FLAME algorithm delivers impressive performance
gains over a major vendor math library and quickly converges to perform on par with the cutting-
edge GotoBLAS implementation.

Contributions. This article makes the following contributions:

—We show how algorithms written with the FLAME/C API can be naturally
parallelized for Symmetric Multi-Processor (SMP) systems by employing the
workqueuing model.

—We demonstrate the general applicability of the approach with a concrete
example: the computation of the symmetric rank-k update (SYRK) operation.
This operation is supported by the BLAS and is important in higher-level
operations such as the Cholesky factorization.

—Implementations are given as a case study for the experimental OpenMP
taskq pragma and for workqueuing as a method of obtaining parallelism in
general.

—A custom workqueuing mechanism is described that allows algorithms en-
coded with the FLAME/C API to be parallelized via the workqueuing model
without relying on the taskq pragma, which is currently only implemented
within the Intel compilers.

—A compelling argument is made for the need to provide the programmer
with more control over task scheduling within the OpenMP workqueuing
interface.

—Load-balancing issues are discussed that provide insight into the interplay
between different algorithmic variants for computing the same linear algebra
operations and the order in which tasks are enqueued.

—A case is made that a 2D work distribution is required for scala-
bility on SMP systems with large numbers of processors, much like
a 2D data and work distribution is required on distributed memory
architectures.
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Fig. 2. Loop-invariants for computing SYRK.

—Performance results are given for an SMP system based on the Intel Itanium2
architecture.

Together, these insights further the state-of-the-art in this area.

Overview. The article is organized as follows: In Section 2 we discuss the
SYRK operation, four algorithmic variants for computing it, and the implemen-
tation of those algorithms using FLAME/C. The parallelization of the resulting
implementations using OpenMP task queues and a custom workqueuing solu-
tion (referred to as “FLAME workqueuing”) is discussed in Sections 3 and 4.
Various issues related to load-balancing and 1D/2D partitioning are discussed
in Section 5. Performance experiments are discussed and analyzed in Section 6.
Concluding remarks are given in the final section.

2. A CONCRETE EXAMPLE

Consider the computation C := AAT + C where C is symmetric and only the
lower triangular part of C is stored and updated. This operation is known as a
symmetric rank-k update (SYRK).

The FLAME methodology describes how to derive linear algebra algorithms
from predicates called loop-invariants, which describe intermediate states of
the operation [Bientinesi et al. 2005]. Low et al. [2005] discuss how to arrive at
four loop-invariants for the SYRK operation. These loop-invariants are given in
Figure 2.1

For each loop-invariant, the FLAME methodology yields a corresponding al-
gorithmic variant. Specifically, Loop-invariant i in Figure 2 yields algorithmic
Variant i in Figure 3.2 The loop-body of each algorithm contains two subprob-
lems: a SYRK operation and a GEMM operation, each of which operates on smaller
submatrices of A and C.

Having the ability to derive correct algorithms solves only part of the problem
since translating those algorithms to code ordinarily requires delicate indexing
into arrays, which exposes opportunities for the introduction of errors. We now
illustrate how appropriately defined APIs overcome this problem [Bientinesi
et al. 2005]. In Figure 4, we show an example of FLAME/C code corresponding

1The subscript notation used in Figure 2 simply identifies subpartitions of the matrices. This
notation is shown in fuller context in Figure 3 and is further described in Bientinesi et al. [2005].
2A fifth loop-invariant and corresponding algorithmic variant exist for computing SYRK. Early work
in this area found that the parallelization of this variant inherently requires heavy synchronization,
which significantly limits speedup [Low et al. 2004]. We omit this variant from our discussion due
to space constraints.
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Fig. 3. Blocked algorithms for computing C := AAT + C. The top algorithm implements Variants
1 and 2, corresponding to Loop-Invariants 1 and 2 in Figure 2. The bottom algorithm implements
Variants 3 and 4, corresponding to Loop-Invariants 3 and 4 in Figure 2. Variants 1 and 2 share
the same loop-body updates as Variants 4 and 3, respectively. Variants 1 and 2 sweep through C
from the top-left to the bottom-right, and A from top to bottom, while Variants 3 and 4 traverse the
matrices in the opposite directions.
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Fig. 4. FLAME/C code for a blocked implementation of Variant 1.

to Variant 1 in Figure 3. To understand the code, it suffices to know that A and
C are descriptors for the matrices A and C, respectively. The various routines
facilitate the creation of views into the data described by A and C. Think of a
variable like CTL as a fancy pointer into the array corresponding to matrix C.
Furthermore, the calls to FLA Gemm and FLA Syrk perform the same operations
as the BLAS calls dgemm (matrix-matrix multiplication) and dsyrk (symmetric
rank-k update). The most attractive feature of this code is the complete absence
of loop and array indexing.
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3. WORKQUEUING VIA PROPOSED OPENMP TASKQ AND TASK DIRECTIVES

OpenMP is a set of compiler directives and library routines that facilitate par-
allel programming on shared memory systems by allowing a programmer to
explicitly specify regions of code that can be executed by simultaneous threads
of execution [OpenMP Architecture Review Board 2006].

Shah et al. [1999] point out limitations of the primary constructs for creating
OpenMP parallelism: the parallel for and sections directives. They note that
the number of iterations in OpenMP for loops must be computable upon first
entering the loop, precluding its use in many applications, such as traversing
a linked-list of unknown length. Similarly, a sections construct containing n
independent regions of computation, each marked by a section directive, is
limited to achieving n-way parallelism [Shah et al. 1999]. The workqueuing
model was proposed specifically to overcome these limitations.

3.1 The taskq and task Pragmas

A proposed OpenMP instantiation of the workqueuing model consists of two
new directives: taskq and task. Conceptually, encountering a taskq directive
causes the main thread to create an empty workqueue (or task queue). The
code within the taskq scope is executed sequentially. As task directives are
encountered, the code associated with the task block is encapsulated and en-
queued as a unit of work onto the task queue. A number of other threads begin
dequeuing and executing tasks from the queue according to a first-in/first-out
(FIFO) scheduling policy. The main thread joins the others in processing tasks
as soon as enqueuing is complete. When all tasks have been completed, the
threads synchronize at the end of the taskq scope and continue through the
program.

This OpenMP instantiation of the workqueuing model features two notewor-
thy properties:

—Workqueuing is dynamic, unlike the sections directive, which lexically en-
codes the degree of parallelism into the source code at compile time.

—Workqueuing is flexible, unlike the parallel for directive, which provides
parallelism only for indexed for loops and also requires the number of in-
stantiated work-shared task units to be computable at runtime.

These two properties of OpenMP workqueuing enable an attractive new
mechanism for expressing parallelism within FLAME/C algorithm implemen-
tations.

3.2 Parallelization of SYRK

In Figure 5 we show how the while loop in Figure 4 can be annotated with
OpenMP directives to create parallel tasks via the task queue mechanism. In
Figure 5:

—Line 13 establishes the taskq block.
—Line 28 starts a section of code that defines a task to be added to the task

queue. A single thread executes the while loop, enqueuing tasks as they are
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Fig. 5. FLAME/C code from Figure 4 parallelized using OpenMP task queue directives.

encountered. The descriptors A0, A1, C10, and C11 change with each iteration
of the loop. The values of these descriptors must be captured at the time
each task is enqueued so that the thread that dequeues the task will have
the correct values to pass along to FLA Gemm and FLA Syrk.

—Line 34 ends the scope of the task being added to the queue.
—Line 46 ends the scope of the taskq block. Here, all threads are synchronized.

Clearly, task queues provide a simple mechanism for directing the parallel
execution in this code.

3.3 Options

In Figure 5 the subproblems corresponding to the calls to FLA Gemm and FLA Syrk
are independent and therefore can be executed in any order and/or queued as
separate tasks. This is apparent by inspecting the algorithm itself. However,
Low et al. [2005] discuss how to systematically detect the presence of indepen-
dent loop iterations by inspecting the loop-invariants of the SYRK operation.
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Furthermore, we may observe that the two updates within the loop-body
are independent of one another within a single iteration. Given these two
observations, we may modify our original parallelization shown in Figure 5
as follows.

One option is to split the single task in the loop-body of Figure 5 into two
tasks:

#pragma intel omp task captureprivate( A0, A1, C10 )

{

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

ONE, A1, A0, ONE, C10 );

}

#pragma intel omp task captureprivate( A1, C11 )

{

FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

ONE, A1, ONE, C11 );

}

A further observation is that the computations C10 := A1 AT
0 + C10 and

C11 := A1 AT
1 + C11 (updating the lower triangle only) cost about 2bn(C10)n(A)

and b2n(A) floating-point arithmetic operations (FLOPs), respectively. Here
n(X ) indicates the column dimension of matrix X . Notice that n(C11) remains
constant across iterations. Thus, the number of FLOPs required to compute the
update to C11 is fixed. In contrast, n(C10) grows linearly with each iteration of
the loop and therefore the number of FLOPs required to update C10 increases
proportionally as the algorithm iterates. This is unfortunate since costly tasks
at the end of a scheduling queue can create a large load imbalance, as we will
show later in Figure 7.

One way to overcome this problem is to execute the loop in reverse order (in
compiler terms: apply a loop reversal transformation), since this would create
the more costly tasks first. Variants 4 and 3 in Figure 3 execute the loops in
Variants 1 and 2 in reverse, respectively.3 In fact, Variants 1 and 3 have the
property that tasks become more costly as the loop proceeds, while Variants 2
and 4 generate progressively less costly tasks. We will later show that differ-
ences in performance can be observed for different variants.

An alternative option replaces the single loop Figure 5 with two loops (in
compiler terms: apply a loop fission transformation): the first loop for enqueuing
the tasks that update C10, and the second for enqueuing tasks that update
C11, as illustrated in Figure 6. The updates to C11 incur a smaller cost and
result in fixed-sized tasks, compared to the updates of C10, which result in
larger, variable-sized tasks to be enqueued. These smaller tasks help balance
the workload among threads before the threads synchronize at the end of the
taskq block.

3.4 An Illustration of the Benefits of Different Options

The expected differences in performance are illustrated for Variants 2 and 3
in Figure 7. (Recall that Variants 2 and 3 are identical except that their loops

3This illustrates the value of the FLAME methodology, which can systematically find algorithmic
variants that have different strengths and weaknesses.
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Fig. 6. Outline of how the loop in Figure 5 can be implemented as two loops.

iterate in opposite directions.) In this figure, we simulate the scheduling of tasks
to four threads for the different options described previously, where matrix C is
2400×2400, A is 2400×200, and the algorithmic blocksize b in Figure 3 equals
200 (except possibly during the last iteration). Each of the tasks is represented
by a box that has a height proportional to the number of FLOPs required to
complete the task. The y-axis itself is represented in units of millions of FLOPs.
The integers in the boxes indicate the order in which the tasks are enqueued
in the task queue.

The simulation results shown in Figure 7 were built upon a simplified
workqueuing model that makes the following assumptions:

—Threads are idle when the computation begins.
—Enqueuing is instantaneous.
—When processing tasks, each thread computes at the same rate.
—Upon completing a task, the thread in question will dequeue a new task

instantaneously. If the queue is empty, the thread becomes idle.
—The computation completes when the queue is empty and all threads are idle.

We see that Variant 2 in general performs better than Variant 3 since the cost
of each variable-sized task decreases towards later iterations,allowing work to
be more easily balanced among the threads before synchronization.Splitting the
task in the loop-body into two tasks improves the load-balance for Variant 2,
but not for Variant 3. Variant 2 achieves near-perfect load-balance by splitting
the loop into two loops, with variable-sized tasks enqueued in the first loop
while the smaller fixed-sized tasks are enqueued by the second. This change
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Fig. 7. Simulated OpenMP task queues scheduling of tasks to four threads for Variants 2 and 3
when m = 2400, k = 200, and the blocksize equals 200. The sum of the heights of the rectangles in
each x-axis column correspond to the total amount of work assigned to each thread. The y-axis is
in units of FLOPs ×106 (millions of FLOPs). Load balance is ideal when all threads receive equal
work. Bottom line: Load balance is determined by the number of tasks created, the cost of each
task, and the order in which tasks are enqueued.
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provides only a modest improvement to Variant 3; the imbalance created by
the increasing cost of variable-sized tasks is simply too large to erase with the
smaller subproblems.

4. AN ALTERNATE IMPLEMENTATION: FLAME WORKQUEUING

As of this writing, the proposed OpenMP task queuing mechanism has two
short comings. First, task queues are an experimental implementation: to our
knowledge it is currently only supported by the Intel compiler [Su et al. 2002].
The current official OpenMP specification (version 2.5) does not provide any
workqueuing constructs.4 Second, our discussion in Section 3.4 suggests that
the OpenMP task scheduling does not always result in good load-balance among
threads. Later in this section, we discuss a custom implementation for FLAME
that addresses these shortcomings.

4.1 Theoretical Basis for Dequeuing Tasks Largest to Smallest

The problem of scheduling tasks among a set of threads is a variation of the
Bin-Packing Problem in which a collection of objects are packed into a set of bins
such that the total weight or volume of each bin does not exceed a given thresh-
old [Weisstein 2006]. In our case of workqueuing, the computational tasks corre-
spond to objects being packed (or scheduled) while the task volumes correspond
to their computational costs, which can be approximated by counting FLOPs.
Threads correspond to the bins into which the objects are packed. The target
bin capacity corresponds to the sum of the tasks to be executed divided by the
number of threads—that is, the ideal amount of computation per thread. J. D.
Ullman [Garey et al. 1973] proves that a naive algorithm, one that packs objects
into the first available bin with space, is suboptimal by as much as 70% [Weis-
stein 2006]. Johnson [1973] shows that an algorithm that first sorts the ob-
jects from largest to smallest will be at most 22% suboptimal [Weisstein 2006].
This suggests that, in general, an execution of tasks scheduled from largest
to smallest with respect to computational cost will always perform reasonably
well compared to executions based upon other task schedulings.

4.2 Motivation for Sorting Tasks Over Changing the Algorithm

Ideally, an application loop will create independent subproblems of equal cost.
Such cases usually parallelize well with minimal effort. Other loops may nat-
urally create subproblems that decrease monotonically in cost. Given the dis-
cussion in the previous section, this is the next best scenario if subproblems
of equal cost are not possible. If the loop creates subproblems that increase
monotonically in cost, then a simple loop reversal will cause the tasks to be
enqueued in the desired order. As we saw in Figure 7, sometimes even more
changes are needed, as the best scheduling also required splitting the main
algorithm loop into two separate loops to enqueue variable-sized tasks first,
followed by smaller fixed-sized tasks. But this method of changing the algo-
rithm to induce a desirable scheduling is suboptimal for two reasons. First,

4It is possible that workqueuing support will be added to version 3.0 of the OpenMP specification.
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it requires nontrivial changes to the algorithm code. Uniquely, FLAME codes
resemble the underlying algorithm so closely that changing the source code
will tend to also obscure the algorithm itself. More generally, changing the al-
gorithm code is also less than desirable from a code maintenance perspective.
Second, it is possible that there does not exist a reasonable loop or code trans-
formation for a given algorithm that enqueues tasks from largest to smallest.
For example, it is conceivable that some loops may create subproblems whose
cost neither increases nor decreases monotonically.

An alternate way to ensure a desirable ordering of tasks within the queue,
one that is less disruptive to the algorithm and therefore more portable, is to
allow the application loop to enqueue tasks normally and then sort the queue
before parallel execution. This solution is quite flexible and its disadvantages
are minor.5

Unfortunately, the OpenMP taskq construct as specified provides no such
sorting mechanism [Shah et al. 1999; Su et al. 2002]. The responsibility for en-
suring load-balancing through a desirable task ordering is left to the program-
mer. Furthermore, experience, as well as results discussed later in this article,
show that the performance penalty for executing tasks from an unsorted queue
can be quite severe.

4.3 FLAME Workqueuing

To circumvent the shortcomings of OpenMP task queues, we have implemented
a custom workqueuing solution that behaves much like task queues, although
domain-specific to FLAME, featuring the following enhancements:

—Portability. Our implementation does not use the taskq or task constructs
and thus works on any conventional implementation of OpenMP. In fact,
FLAME workqueuing abstracts all implementation details from the API,
potentially allowing us to replace OpenMP altogether with a more portable
threading mechanism such as POSIX threads.

—Task sorting. FLAME workqueuing automatically sorts the task queue ac-
cording to each task’s estimated cost (FLOP count) before parallel execution
begins.

A programmer enqueues a routine by replacing it with a corresponding pre-
processor macro. The macro inserts an invocation to FLA Queue push(), which
uses the data associated with the original function call to create a task struc-
ture. This structure is added to the queue, which is implemented as a linked
list. After enqueuing is complete, the programmer signals that execution may
begin by calling FLA Queue exec(), the definition of which is shown in Figure 8.
The linked list of tasks is indexed and then sorted according to approximate
FLOP cost using Quicksort. Finally, the sorted queue’s tasks are executed in
parallel using a parallel for directive with dynamic scheduling.

5Threads must wait for sorting to finish before parallel execution of the queue can begin. The
sorting itself is an O(nlog(n)) operation that will most likely not adversely affect performance for
our applications.
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Fig. 8. Code fragment from the FLAME workqueuing implementation: definition of
FLA Queue exec().

The reader should note that FLAME workqueuing was not intended to re-
place the functionality of OpenMP task queues. Clearly the implementors of
task queues are providing a generalized solution that leverages the privileged
access that the compiler has to the code before compilation. Our workqueu-
ing implementation was designed primarily to minimize disturbance to con-
ventional algorithms implemented with the FLAME/C API while providing a
mechanism to sort the contents of the queue prior to execution.

Though they are motivated by the same conceptual model, the FLAME
workqueuing API uses a different syntax than the task queue constructs.
Figure 9 shows how subproblems are enqueued as tasks under the FLAME
workqueuing API. The programmer must initialize the workqueuing environ-
ment by invoking FLA Queue init and calling FLA Queue finalize to free in-
ternal resources when workqueuing is no longer needed. The API contains
no direct analog to the taskq directive. Consequently, nested queuing is not
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Fig. 9. FLAME/C code from Figure 4 parallelized using FLAME workqueuing.

supported and all tasks are implicitly enqueued onto the same global queue.
Also, whereas OpenMP task queues automatically dispatch threads as soon as
the first task is enqueued, the programmer of the FLAME workqueuing API
must explicitly invoke parallel execution after enqueuing is complete, by calling
FLA Queue exec.6 Presumably, this may cause FLAME workqueuing to slightly
underperform a similar code that uses OpenMP task queues when the algorithm
happens to enqueue tasks in the desired sorted order. However, performance
results in Section 6.1 show that this penalty is negligible given the relatively
small number of tasks enqueued when executing a parallel SYRK operation.

6In order to guarantee a fully sorted queue, the programmer must allow enqueuing to finish. While
dispatching threads immediately may sound desirable, it denies the workqueuing implementation
the opportunity to sort the queue before execution. Figure 13 confirms that the benefits of deferring
execution to allow sorting to take place dwarf the added serialization costs. Conceivably, there exist
applications that create many small tasks for which this assertion may not hold. In that case, sorting
is probably not necessary anyway due to the fact that many small tasks tend to inherently yield
good load-balancing under a FIFO scheduling policy.
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5. BLOCKING AND PARTITIONING

In our previous discussions of the parallel workqueuing codes shown in
Figures 5 and 9 we did not mention a subtle but important detail: How does
one determine the algorithmic blocksize b? In the workqueuing-enabled SYRK

implementations, this blocksize determines the dimensions of the subproblems
created, which corresponds directly to the cost of the tasks placed onto the
queue. Determining an appropriate blocksize leads us to a somewhat more
general discussion of how best to partition the computation into tasks. In this
section we describe some methods of partitioning submatrices that may help
us attain better load-balancing among the threads.

5.1 Proportional Blocking

Notice that for Variant 2 in Figure 3, the cost in FLOPs of the variable-sized
FLA Gemm task created in the ith iteration decreases linearly with i while the
cost of the FLA Syrk task remains constant and relatively small across all itera-
tions. Furthermore, the number of tasks generated varies with the m dimension.
Naively, we may choose a blocksize a priori without regard to the problem size.
We refer to this method of choosing b as an arbitrary fixed value as constant
blocking. However, the simulation in Figure 10 reveals that this method results
in load-imbalance and diminished parallel performance for certain smaller ma-
trix dimensions.

In order to circumvent this problem, let us chose the algorithmic blocksize
b so that the algorithm cycles through 2t iterations, regardless of the problem
size determined by the m dimension. Under this scenario, the algorithm creates
2t − 1 variable-sized tasks and 2t fixed-sized tasks, where t equals the number
of processor-bound7 threads participating in the computation. Under our sim-
plified task scheduling model, this careful choice of blocksize always yields an
ideal load balance similar to the scheduling shown in the bottom-left graph of
Figure 10. Therefore, a good value for b may be chosen to equal m

2t . We refer
to this method of choosing b as a function of the partitioned dimension m and
number of threads t as proportional blocking.8

Notice, however, that dgemm executes more efficiently the larger b is chosen.
Thus, for SYRK problems with small dimensions, we expect proportional blocking
will yield better load-balance but possibly at the expense of worse performance
by each thread.

7The operating system should, either by default or at the behest of the programmer, “bind” each
thread to a single unique processor to ensure optimal performance. Under version 2.6 of the Linux
kernel, programmers may explicitly request this behavior by setting the thread’s CPU affinity via
the sched setaffinity function [Dow 2005]. Experience suggests that setting the CPU affinity of
threads in a parallel computation is typically desirable. Otherwise, the scheduler may direct threads
to migrate between processors. This situation may lead to significant performance degradation as
a recently migrated thread may experience a higher latency while accessing data resident on the
cache or local memory associated with its previous CPU.
8Given that b = m

2t , it follows that m = 2bt. The former equation suggests how to choose, as a
function of the problem size, the largest possible b that still induces ideal load-balance. The latter
equation reveals the smallest problem size m for which constant blocking will yield peak load-
balance. The bottom-left graph in Figure 10 illustrates both of these scenarios.
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Fig. 10. Simulated OpenMP task queues scheduling of tasks to four threads for Variant 2 shown
for select values of m when k = 200. The two-loop parallelization for Variant 2 was used, which
enqueues tasks in sorted order. Also, the blocksize used was 200. The axes’ units of the three
task scheduling graphs is similar to that of Figure 7. The corresponding speedup of each task
scheduling is marked on the curve shown in the lower-right graph, in which we assume dgemm and
dsyrk consistently perform at 90% of peak efficiency. Bottom line: Given a one-dimensional constant
blocking, some threads fall idle before others due to poor distribution of work, where the largest
variable-sized GEMM tasks become bottlenecks. This load-imbalance hinders parallel speedup and
thus results in limited performance for many smaller problem sizes.

5.2 Partitioning in Two Dimensions

So far, we have only considered a single blocksize b in the SYRK algorithms shown
in Figure 3. Recall that this blocksize determines two properties of the tasks
enqueued during each iteration. For Variant 2, these two properties are the
dimension (order) of C11, which is updated in the FLA Syrk subproblem, and
the dimensions of the C21 panel that is updated by the FLA Gemm subproblem.
The C11 submatrix is already small and creates a task of constant cost. How-
ever, the C21 submatrix varies in size and provides us with the opportunity
to further partition along its m (row) dimension. Let us consider an alternate
version of Variant 2 in which we replace the call to FLA Gemm with a GEMM vari-
ant that partitions A2 and C21 along the m dimension with a blocksize that is
independent of the value of b used thus far. Partitioning A2 and C21 causes the
the parallelized algorithm to enqueue a larger number of somewhat smaller
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Fig. 11. FLAME/C code, ready for use with FLAME workqueuing, implementing a variant of GEMM

that transposes B and partitions A and C along the m dimension. This code may be called in our
FLAME/C variant 2 of SYRK instead of calling FLA Gemm directly.

variable-sized tasks for each iteration of the Variant 2 while loop. Figure 11
shows the FLAME/C code that implements this variant of GEMM. This effectively
allows the workqueuing analog of a two-dimensional data decomposition. The
advantages of this approach are twofold:

—First, attaining good load-balance is easier when enqueuing smaller par-
titioned FLA Gemm tasks than when the subproblems are enqueued un-
partitioned. This is simply a consequence of the fact that smaller tasks
more easily allow a scheduling that distributes work equally across all
threads. This behavior holds regardless of whether the task queue is
sorted.
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—Second, we may leverage proportional blocking so that the load-balance of a
2D partitioning remains ideal under our model. By using proportional block-
ing to partition A2 and C21 along their m dimensions into q subpartitions
of roughly equal size, we may choose the SYRK blocksize b to equal mq

2t (re-
sulting in m

b = m
( mq

2t ) = 2t
q iterations in the SYRK algorithm). This blocksize is

larger than the value proposed in Section 5.1 and thus should allow the dgemm
implementation to perform more efficiently, especially for smaller problems.
However, this will also proportionally reduce the number of SYRK subproblem
tasks from 2t to 2t

q and similarly increase their costs. This smaller number of
more costly fixed-sized tasks may be more difficult to divide equally among t
threads for q > 2.

We show later in Section 6.1 that a two-dimensional partitioning with propor-
tional blocking allows us to sustain good performance per thread as well as good
load-balance across threads for smaller problem sizes than would be possible
with a one-dimensional partitioning.

6. EXPERIMENTS

Workqueuing comparison. To demonstrate the effect of algorithmic variants
and task partitioning methods on performance, we parallelized each of the four
variants using OpenMP task queues and FLAME workqueuing. In the case of
the variants using OpenMP task queues, we applied the code transformation
options described in Section 3.3 to arrive at three parallelized configurations:
a simple insertion of the task queue directives with one task in the loop-body;
the separation of the two updates to create two tasks in the loop-body; and the
separation of the fixed- and variable-sized tasks into two separate loops. For
FLAME workqueuing, we implemented Variants 1 through 4 and replaced the
invocation of FLA Gemm with a call to a suitable GEMM variant to enable further
partitioning of the variable-sized tasks.

Blocking and Partitioning. Experiments were set up to accept constant or
proportional algorithmic blocksizes in both one- and two-dimensional parti-
tionings. Blocksizes are presented as follows: a blocksize pair b = (x, y) indi-
cates that a blocksize x is used in the overall SYRK algorithm while a block-
size y is used to further partition the GEMM subproblem. We denote constant
blocksizes with positive numbers while proportional blocksizes are encoded
as negative values. For negative x (or y), the algorithm completes |x| (or | y |)
iterations along the partitioned dimension where the actual blocksize value
used is approximately equal for all iterations. If y = −1, then the algorithm
does not partition the GEMM subproblem, which corresponds to an overall one-
dimensional partitioning for the SYRK algorithm. Figure 12 illustrates the poten-
tial variations in task scheduling induced by one- and two-dimensional parti-
tionings when combined with constant and proportional blockings. Also, we
have extended the FLAME/C programming interface to include a function,
FLA Task compute blocksize, which computes the value of b for each iteration
based on the blocksize pair values provided as input. This routine is used to
compute blocksizes in all experiments. Its use is demonstrated in Figure 11.
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Fig. 12. Simulated scheduling of tasks to four threads for Variant 2 when m = 600 and k = 200
for various blocksize and partitioning schemes. The axes’ units are similar to those of Figures 7 and
10. Bottom line: Depending on the problem size, tasks created with constant blocking sometimes
fail to distribute well among threads. Moving to a constant 2D partitioning helps, but remains
suboptimal. In constrast, both 1D and 2D proportional blocking create the opportunity for ideal
load-balance regardless of problem size.

Software. The Intel C compiler, version 9.0, was used to compile source
code, since it is the only major compiler to support the proposed OpenMP
task queue extensions. Calls to FLA Gemm and FLA Syrk in the loop-body were
defined as wrappers to implementations of the BLAS routines dgemm and
dsyrk, respectively. The code was linked to a sequential build of the GotoBLAS
library, version 1.07, by Kazushige Goto [Goto 2006]. Also, threads were bound
to unique processors using the SGI dplace utility. This method is easier and
less intrusive, though less portable, than using the sched setaffinity routine
present in the Linux kernel.

Hardware. Performance was measured on an SGI Altix ccNUMA server
consisting of seven dual-processor Itanium2 compute nodes, or bricks. Each
brick contains approximately 2GB of local physical memory, but logically
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OpenMP with constant blocksize (200,-1) OpenMP with proportional blocksize (-24,-1)
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Fig. 13. Performance of OpenMP task queue parallelizations (12 threads) of SYRK Variants 1
through 4 where m equals the problem size and k = 200. The experiments on the left were per-
formed with a constant blocksize of 200 while those on the right were performed with a proportional
blocksize that partitioned the matrix equally through 24 iterations. Only results for the two-loop
task partitioning option are shown. Bottom line: Proportional blocking enables superior load bal-
ancing for small to medium-sized problems, allowing performance to ramp up quickly. Variant 2
outperforms all other variants due to a combination of enqueuing variable-sized tasks in descend-
ing order of cost and properties inherent in the dgemm implementation used to compute the matrix
products associated with these tasks.

shares its memory with all other nodes via SGI’s NUMAflex shared-memory
architecture. Each CPU is clocked at 1.5GHz and may execute up to four double
precision floating-point operations per clock cycle, yielding a peak performance
of 6 GFLOPS (109 FLOPs/sec.) per processor. Thus, the total peak performance
of the system is 84 GFLOPS. However, while 14 processors were available, we
limited our tests to using 12 threads. Therefore, the maximum attainable peak
of our experiments is 72 GFLOPS.

Computations. All computations were performed in double precision
(64 bit) floating-point arithmetic. For the purposes of computing the rate of com-
putation, the SYRK operation count is m2k FLOPs for C ∈ R

m×m and A ∈ R
m×k .

The GFLOPS rate reported in the graphs was computed by the formula

GFLOPS attained = m2k
time (in sec.)

× 10−9.

6.1 Results

The resulting performance is reported in Figures 13–17. For graphs reporting
absolute performance, the maximum of the y-axis is set to 72 GFLOPS to allow
the reader to visually evaluate the results relative to the theoretical peak of
the experiments.

OpenMP task queues with 1D partitioning. Figure 13 shows two graphs
containing results for OpenMP task queue parallelizations of Variants 1
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Absolute performance Speedup relative to OpenMP task queues
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Fig. 14. Performance of OpenMP and FLAME workqueuing parallelizations (12 threads) of SYRK

Variant 2 when m equals the problem size and k = 200. Absolute performance is shown in the
left column for two one-dimensional partitionings while corresponding FLAME speedup relative
to OpenMP is shown on the right. Bottom line: When compared to OpenMP task queues, FLAME
workqueueing overhead is negligible if not nonexistent.

through 4. Results are shown for only the two loop task partitioning option.9

The left and right graphs use a constant blocksize of 200 (ie: b = (200, −1))
and a proportional blocking of −24 (ie: b = (−2t, −1) = (−24, −1)), respectively.
Both graphs show results from one-dimensional partitionings, as indicated by
the GEMM blocksize of −1 in the blocksize pairs. These results clearly show that
a constant blocksize of 200 is suboptimal for most problem sizes tested. Perfor-
mance is greatly improved by partitioning with a proportional blocksize of −24.
This observation holds regardless of how tasks are enqueued. Also of interest
are the best and worst performing variants. Variants 2 and 4 both enqueue
variable-sized tasks in descending (naturally sorted) order of cost. However,
Variant 2 consistently outperforms Variant 4. This is likely due to the fact that
the variable-sized GEMM tasks enqueued by Variant 2 update C21 with A2 AT

1 ,

9We have omitted graphs for the other two options discussed in Section 3.3, as they exhibited
performance signatures similar to those shown. The curious reader may find further discussion of
all three task partitioning options in an earlier study of the topic presented in Low et al. [2004].
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FLAME with constant blocking FLAME with proportional blocking
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Fig. 15. Performance of FLAME workqueuing parallelizations (12 threads) of SYRK Variants 1
through 4 when m equals the problem size and k = 200. Bottom line: Sorting the workqueue
renders Variants 1 and 2 computationally indistinguishable from Variants 4 and 3, respectively.
Constant 2D partitioning performs better for many midsized problems but falls short of constant
1D performance for large problems due to limited dgemm efficiency on small 200 × 200 blocks.
Proportional 2D partitioning performs similarly to that of proportional 1D for Variants 2 and 3;
benefits appear mostly limited to improving lackluster Variants 1 and 4.

where C21 and A2 are column-panel matrices. As of this writing, the sequen-
tial dgemm routine in GotoBLAS is more optimized for matrix multiplication on
operands of this shape than the shape of operands in Variant 4, which updates
C10 with A1 AT

0 , where C10 and AT
0 are row-panel matrices.

OpenMP task queues v. FLAME workqueuing. Figure 14 shows the per-
formance of SYRK Variant 2 using FLAME workqueuing and OpenMP task
queues. The two graphs on the left show absolute performance while the graphs
on the right show the speedup of FLAME workqueuing relative to OpenMP
task queues. One set of graphs is given for each of the two blocksize pairs,
b = (200, −1) and b = (−24, −1), used in Figure 13. These results demonstrate
that FLAME workqueuing does not incur significant overhead compared to
the OpenMP task queue implementation in the Intel compiler. In fact, for a

ACM Transactions on Mathematical Software, Vol. 34, No. 2, Article 10, Publication date: March 2008.

269



10:24 • F. G. Van Zee et al.

Absolute performance Speedup relative to b = (−24,−1)
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Fig. 16. Performance of FLAME workqueuing parallelization (12 threads) of SYRK Variant 2 when
m equals the problem size and k = 200. The problem size range and increments have been re-
duced from Figure 13 to show more detail for small problems. Bottom line: A proportional 2D
partitioning performs noticably better for certain smaller problems and on par with a proportional
1D partitioning for larger problems.

narrow range of small problems, FLAME workqueuing outperforms OpenMP
task queues more often than not. Because the two implementations perform
so similarly, we feel justified in limiting the remaining experiments to FLAME
workqueuing.

Constant v. proportional blocking/1D v. 2D partitioning. In Figure 15, we
highlight the differences among the four variants when constant and propor-
tional blocksizes are used in one- and two-dimensional partitionings. For con-
stant blocking, a blocksize of 200 is used. (We will see the effect of reducing
this blocksize later.) For proportional two-dimensional partitioning, we chose
b = (−t, −2) = (−12, −2). This blocksize pair has the special property that it
partitions the SYRK algorithm into a minimal number of iterations such that
enough variable-sized tasks are produced to distribute well when t = 12, while
still creating an equal number of fixed-sized tasks for all threads. The results
in Figure 15 lead us to three interesting observations:

—Variants 1 and 4 perform nearly identically—likewise for Variants 2 and 3.
The explanation is straightforward. Variants 1 and 2 share the same loop-
body updates with Variants 4 and 3, respectively; the only difference within
the algorithm pairs is the order in which subproblems are enqueued as tasks.
FLAME workqueuing sorts the task queue automatically before threads be-
gin dequeuing work, rendering Variants 1 and 2 equivalent to, and compu-
tationally indistinguishable from, Variants 4 and 3 respectively. In addition,
constant 2D partitionings cause variable-sized GEMM subproblems to be bro-
ken almost entirely into homogeneous 200×200 tasks, rendering the perfor-
mance signatures of all four variants identical.

—The results show an overall performance advantage for 2D partitionings
when a constant blocksize is used. Similarly, moving from a constant 1D
partitioning to one that uses proportional blocking is sufficient to see a large
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Absolute performance Speedup relative to 1D partitioning
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Fig. 17. Performance of FLAME workqueuing parallelizations (12 threads) of SYRK Variant 2 when
m equals the problem size and k = 200. Bottom line: Two-dimensional partitioning is beneficial
for smaller problems when compared to a similar 1D partitioning. A smaller constant blocksize
generates parallelism more quickly, but at the expense of lower dgemm efficiency.

jump in performance for a wide range of problems. In fact, the graphs sug-
gest that Variants 2 and 3 need not partition both proportionally and in two
dimensions, but rather only proportionally, in order to attain high perfor-
mance for a wide range of problem sizes. This observation is predicted by the
simulation of proportional 1D and 2D partitionings reported in Figure 12.

—Last, it is interesting to note that a two-dimensional partitioning notice-
ably improves the performance of the otherwise mediocre Variants 1 and 4.
This is likely a manifestation of the efficiency of the underlying sequential
GotoBLAS dgemm in performing matrix-multiply on operands with certain
shapes. As mentioned previously, the dgemm used tends to perform worse on
the row-panel matrix multiply found in the GEMM subproblems of Variants 1
and 4.

Benefits of 2D partitioning for small problems. Figure 16 organizes the data
for Variant 2 present in Figure 15 in order to better contrast the four methods
of task partitioning for small problems. In addition to showing absolute per-
formance for each of the four task partitionings, the figure includes a graph
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showing speedup relative to the proportional one-dimensional partitioning
given by b = (−24, −1). The x-axis range and data point increments have been
decreased in order to show more detail. The figure’s right-hand graph reveals
that a two-dimensional partitioning with proportional blocking (b = (−12, −2))
outperforms a similar one-dimensional partitioning (b = (−24, −1)) for small
problems.

More on constant blocking/2D partitioning. Finally, Figure 17 shows the
effect of moving from a one-dimensional to a two-dimensional partitioning, for
both constant and proportional blocking. The following observations may be
made:

—In the case of moving from b = (200, −1) to b = (200, 200), we see that
the performance for the two-dimensional partitioning rises more sharply
for smaller problems but levels off lower than that of the 1D partitioning.
This most likely is due to the reduced dgemm efficiency that comes with
casting most of the computations in terms of small 200 × 200 problems.
By contrast, the 1D partitioning, while suffering from poor load-balance
early on, maintains higher efficiency due to the variable-sized tasks cre-
ating GEMM operations where one dimension is, on average, still relatively
large.

—Figure 17 also shows the effects of using a smaller constant blocksize. This is
shown for blocksize pairs b = (100, −1) and b = (100, 100). Not surprisingly,
both outperform their larger counterparts for certain small problems. As
the problem size increases, the blocksize pairs with smaller blocksize values
create tasks more quickly, allowing more parallelism for smaller problems.
However, these smaller blockings achieve a lower peak performance due to
reduced dgemm efficiency.

—For proportional blocking, we see once again that a two-dimensional parti-
tioning is beneficial for small problems. Also included in these two graphs
are data for b = (−8, −3) and b = (−6, −4). The performance of these parti-
tionings roughly matches that of b = (−24, −1) and b = (−12, −2) for small
problems but suffers slightly for large matrices. We suspect that this effect
is not due to a loss of dgemm efficiency but rather suboptimal load-balancing.
In our discussion of Figure 14, we pointed out that the partitioning given
by b = (−12, −2) was more desirable than other proportional 2D partition-
ings. In this case, neither b = (−8, −3) nor b = (−6, −4) load-balances as well
across 12 threads due to the fact that fewer fixed-sized SYRK subproblem tasks
(8 and 6, respectively) are created than threads used in the computation. Fur-
thermore, each of these SYRK tasks is rather large, raising the potential for
threads to become idle while some remaining portion of the SYRK computation
is still in progress. Presumably, these factors conspire to prevent a favorable
scheduling for most larger problems.

7. CONCLUSION AND FUTURE DIRECTIONS

In this article, we discussed the high-performance parallel implementation of
the symmetric rank-k update operation, targeting SMP and future multi-core
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architectures. This operation is representative of how many level-3 BLAS and
LAPACK-like operations are implemented with the FLAME/C API. Several
contributions were reported that improve ease of implementation as well as
performance.

We demonstrated how task queues, a proposed feature for OpenMP 3.0, allow
code that is devoid of indexing to be elegantly and effectively parallelized. We
identified and overcame two shortcomings present in the current Intel imple-
mentation of OpenMP task queues. First, we implemented a more portable
domain-specific workqueuing solution for FLAME/C that uses only conven-
tional OpenMP constructs. Second, we demonstrated the benefits of scheduling
tasks in descending order of cost in the context of the SYRK operation. In ad-
dition, we demonstrated the merit in proportional blocking and found that a
two-dimensional data partitioning gives way to better performance for smaller
problems.

Both OpenMP and FLAME workqueuing implementations allow algorithms
to be coded and parallelized at a much higher level of abstraction and, in our
experience, improves almost all stages of library development. The resulting
parallelized code was shown to require only minor modifications to the cor-
responding sequential FLAME/C implementation. Very good speedup was re-
ported on a medium sized SMP system.

We believe this work provides the architects of OpenMP workqueuing with
preliminary evidence that more control over task scheduling would benefit end-
user performance. Specifically, these findings suggest that the workqueuing
mechanism should allow the queue to be filled and sorted according to task cost
before execution takes place. By including an optional cost clause in the task
directive specification, a programmer could provide the implementation with
an estimate for the cost of each task. This information would allow threads
to dequeue tasks from largest to smallest, thereby potentially improving load-
balance when tasks naturally vary in cost.

Future Work. After inspecting the GotoBLAS implementation of matrix-
matrix multiplication [Goto and van de Geijn 2008], we have concluded that
the proposed parallelization based on local GEMM operations causes threads to
duplicate internal copying and packing of data. By exposing low-level interfaces
to these underlying operations, it should be possible to schedule data move-
ments so that duplication and/or memory contention can be reduced, yielding
still better performance. It should be feasible to incorporate these insights into
the methodologies discussed in the present article.

Further Information

For additional information regarding the FLAME project, visit
http://www.cs.utexas.edu/users/flame/.
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1. INTRODUCTION

For the first time in history, computer architectures are approaching physical
and technological barriers which make increasing the speed of a single core
exceedingly difficult and economically infeasible. As a result, hardware archi-
tects have begun to design microprocessors with multiple processing cores that
operate independently and share the same address space. It appears that the
advent of these multicore architectures will finally force a radical change in
how applications are programmed. Specifically, developers must consider how
to direct the collaboration of many concurrent threads of execution to solve
a single problem. In this article, we present what we believe is a promising
solution to what is widely perceived to be a very difficult problem, targeting
the domain of dense and banded linear algebra libraries. The approach views
submatrices (blocks) as units of data, algorithms as operating on these blocks
(algorithms-by-blocks), and schedules the operations on blocks using out-of-
order techniques similar to how superscalar processors schedule instructions
and resolve dependencies on individual data.

Experience gained from parallel computing architectures with complex hi-
erarchical memories has shown that an intricate and interdependent set of
requirements must be met in order to achieve the level of performance that
scientific applications demand of linear algebra libraries. These requirements
include data locality, load balance, and careful attention to the critical path
of computation, to name a few. While it may be possible to satisfy this set of
constraints when implementing a single operation on a single architecture, ad-
dressing them for an entire library of commonly used operations requires one
to face the additional challenge of programmability.

We propose abandoning essentially all programming conventions that were
adopted when widely used libraries like LINPACK [Dongarra et al. 1979],
LAPACK [Anderson et al. 1999], and ScaLAPACK [Choi et al. 1992], denoted
by LIN(Sca)LAPACK hereafter, were designed in the last quarter of the 20th
century.1 To us, nothing associated with programming these libraries is sacred:
not the algorithms, not the notation used to express algorithms, not the data
structures used to store matrices, not the APIs used to code the algorithms,

1We do not mean to deminish the contributions of the LINPACK and LAPACK projects. We merely
suggest that the programming styles used by those packages, while cutting-edge at the time they
were developed, need to be reconsidered. We fully recognize that these projects made tremendous
contributions to the field of numerical linear algebra beyond the packages that they delivered.
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and not the runtime system that executes the implementations (if one ever ex-
isted). Instead we build on the notation, APIs, and tools developed as part of
the FLAME project [van de Geijn and Quintana-Ortı́ 2008], which provide mod-
ern object-oriented abstractions to increase developer productivity and user
friendliness alike. Perhaps the most influential of these abstractions is one
that provides advanced shared-memory parallelism by borrowing out-of-order
scheduling techniques from sequential superscalar architectures.

From the outset, we have been focused on developing a prototype library that
encompasses much of the functionality of the core of LAPACK, including LU,
QR and Cholesky factorizations, and related solvers. The LU factorization with
pivoting and Householder QR factorizations are key since algorithms-by-blocks
for these operations require new algorithms. This is due to the fact that when
traditional partial pivoting or traditional Householder transformations are em-
ployed, entire columns have to be examined and/or updated, which becomes a
synchronization point in the computation [Quintana-Ortı́ et al. 2008a, 2008b].
Fortunately, we had already developed high-performance algorithms for out-
of-core computation that were algorithm-by-blocks, except that the block size
targeted the movement of data from disk to main memory rather than thread-
level parallelism [Gunter and van de Geijn 2005; Joffrain et al. 2004]. Thus, we
knew from the start that algorithms-by-blocks were achievable for all of these
important operations.

We focus on the programmability issue that developers face given that paral-
lelism will be required in order to exploit the performance potential of multicore
and many-core systems. We point to the fact that the parallelization effort de-
scribed in this article was conceived in early September 2006. Remarkably, all
results presented in this article were already achieved by September 2007. The
key has been a clear separation of concerns between the code that implements
the algorithms and the runtime system that schedules tasks.

We are not alone in recognizing the utility of a runtime system that dy-
namically schedules subproblems for parallel execution. The PLASMA project
[Buttari et al. 2007, 2008], independent of our efforts but with LU and QR
factorization algorithms that are similarly based on our earlier work on out-of-
core algorithms, has developed a similar mechanism in the context of the QR
factorization. Like the SuperMatrix system described here and in Chan et al.
[2007a, 2007b, 2008], the PLASMA system enqueues operation subproblems as
“tasks” on a queue, builds a directed acyclic graph (DAG) to encode dependen-
cies, and then executes the subproblems as task dependencies become satisfied
[Buttari et al. 2008]. However, as part of Buttari et al. [2008] they did not pro-
vide any source code—neither example code implementing the runtime-aware
algorithm nor code implementing the runtime system itself. The same authors
expanded on their work in Buttari et al. [2007] to include remarks and results
for the Cholesky factorization and LU factorization with incremental pivoting
based on our out-of-core algorithm [Joffrain et al. 2004], which we encourage
the reader to study. In contrast to the PLASMA project, we directly address the
programmability issue.

The primary contribution of the present article lies with the more com-
prehensive description of how abstraction can be exploited to solve the
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programmability problem that faces linear algebra library development with
the advent of multicore architectures. In doing so, this article references a num-
ber of conference publications [Chan et al. 2007a, 2007b, 2008; Quintana-Ortı́
et al. 2008a, 2008b, 2008c] that provide evidence in support of claims that we
make. As such, this is also a survey article.

The article can be viewed as consisting of two parts. The first part describes
the methodology. Section 2 provides a motivating example in the form of the LU
factorization (without pivoting) and makes the case that the LIN(Sca)LAPACK
design philosophies are conducive neither to ease of programming nor efficient
parallelism. Section 3 discusses algorithms-by-blocks and the challenges they
present and provides an overview of the FLASH API, including an interface
for filling matrices that uses storage-by-blocks. Section 4 gives an overview of
the SuperMatrix runtime parallel execution mechanism in the context of the
LU factorization. Upon finishing this first part, the reader will understand the
general approach and, hopefully, the opportunities that it enables. The second
part of the article argues that the methodology has the potential of solving the
programmability problem in the domain of dense and banded linear algebra
libraries. It does so primarily by expanding upon results from our other recent
conference publications related to the FLAME project, thereby providing bet-
ter perspective on the new techniques. Section 5 recounts the authors’ work in
parallelizing the level-3 basic linear algebra subprograms (BLAS) operations
using SuperMatrix. Section 6 expands the discussion of operations to the LU
factorization with partial and incremental pivoting. This section goes into quite
a bit more detail because it is important to show how new algorithms can be for-
mulated so that the methodology can be exploited. Section 7 briefly summarizes
how these results extend to advanced linear algebra operations. Performance
results are reported in Section 8. Finally, Section 9 contains concluding remarks
including a discussion of possible future extensions.

2. A MOTIVATING EXAMPLE: THE LU FACTORIZATION WITHOUT PIVOTING

The LU factorization (without pivoting) of an n×n matrix A is given by A = LU ,
where L is n × n unit lower triangular and U is n × n upper triangular. In
traditional algorithms for this factorization, the triangular factors overwrite A,
with the strictly lower triangular part of L stored on the subdiagonal elements
of A and the upper triangular part of U stored on those elements of A on and
above the diagonal. We denote this as A := {L\U }.

2.1 A Typical Algorithm

In Figure 1 we give unblocked and blocked algorithms, in FLAME notation
[Gunnels et al. 2001], for overwriting a matrix A with the triangular fac-
tors L and U . The unblocked algorithm on the left involves vector-vector and
matrix-vector operations, which perform O(1) floating-point arithmetic opera-
tions (flops) for every memory operation (memop). This ratio renders low perfor-
mance on current cache-based processors as memops are considerably slower
than flops on these architectures. The blocked algorithm on the right of that
figure is likely to attain high performance since most computation is cast in

ACM Transactions on Mathematical Software, Vol. 36, No. 3, Article 14, Publication date: July 2009.

280



Programming Matrix Algorithms-by-Blocks for Thread-Level Parallelism • 14:5

Fig. 1. Unblocked and blocked algorithms (left and right, respectively) for computing the LU
factorization (without pivoting). Here, n(B) stands for the number of columns of B.

terms of the matrix-matrix product (GEMM) A22 := A22 − A21 A12, which performs
O(b) flops for every memop. In Gunnels et al. [2001], five algorithmic variants
for computing the LU factorization were identified. The VAR5 that was part of
the algorithm name indicated the given algorithm corresponded to Variant 5 in
that article.

Using the FLAME/C API [Bientinesi et al. 2005], an equivalent blocked algo-
rithm can be represented in code as presented in Figure 2 (left). Comparing and
contrasting Figures 1 and 2 (left) shows how the FLAME notation, which de-
parts from the commonly encountered loop-based algorithms, translates more
naturally into code when an appropriate API is defined for the target program-
ming language. And thus we abandon conventional algorithm notation and the
LIN(Sca)LAPACK style of programming.

2.2 The Trouble with Evolving Legacy Code to Multithreaded Architectures

A commonly employed approach to parallelizing dense linear algebra opera-
tions on multithreaded architectures has been to push parallelism into multi-
threaded versions of the BLAS [Dongarra et al. 1988, 1990; Lawson et al. 1979].
The rationale behind this is to make minimal changes to existing codes.

In the case of the LU factorization, this means parallelism is attained only
within the two TRSM and the GEMM operations:

A12 := L−1
11 A12,

A21 := A21U−1
11 ,

A22 := A22 − A21 A12.
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Fig. 2. Left: FLAME/C implementation of the blocked algorithm in Figure 1 (right). Right: FLASH
implementation of the algorithm-by-blocks, which is described in Section 3.3.

While we will see that this works well when the matrix is large and there
are relatively few processors, a bottleneck forms when the ratio of the matrix
dimension to the number of processors is low. In particular, the block size (vari-
able b in Figures 1 (right) and 2 (left), respectively) must be relatively large (in
practice, in the 128–256 range) so that the GEMM subproblems, which form the
bulk of the LU computation, deliver high performance [Goto and van de Geijn
2008]. As a result, the LU factorization of A11, typically computed by only a sin-
gle processor, leaves other threads idle and therefore hinders parallel efficiency.
Thus, this approach to extracting parallelism is inherently limited.

One technique that attempts to overcome such a bottleneck is to “compute
ahead.” Consider the illustration in Figure 3 of the partitionings of A at the
beginning of the first two iterations of the blocked algorithm for the LU factor-
ization. In this technique, the update of A22 during the first iteration is broken
down into the update of the part of A22 that will become A11 in the next iteration
(see Figure 3), followed by the update of the rest of A22. This then allows the
factorization of the next A11 to be scheduled before the update of the remaining
parts of the current A22, thus overcoming the bottleneck. Extensions of this
idea compute ahead several iterations in a similar manner.

The problem with this idea is that it greatly complicates the code that imple-
ments the algorithm if coded in a traditional style [Addison et al. 2003; Kurzak
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Fig. 3. First two iterations of the blocked algorithm in Figure 1 (right).

and Dongarra 2006; Strazdins 2001]. While feasible for a single, relatively sim-
ple algorithm like the LU factorization without pivoting or the Cholesky factor-
ization, reimplementing a linear algebra library like LAPACK would become a
daunting task if this strategy were employed.

3. ALGORITHMS-BY-BLOCKS

Fred Gustavson (IBM) has long advocated an alternative to the blocked al-
gorithms in LAPACK [Agarwal and Gustavson 1989; Elmroth et al. 2004;
Gustavson et al. 2007]. The solution, algorithms-by-blocks, proposes algorithms
that view matrices as collections of submatrices and express their computation
in terms of these submatrix blocks.

3.1 Basic Idea

The idea is simple. When moving from algorithms that cast most computation
in terms of matrix-vector operations to algorithms that mainly operate in terms
of matrix-matrix computations, rather than improving performance by aggre-
gating the computation into matrix-matrix computations, the developer should
raise the granularity of the data by replacing each element in the matrix by
a submatrix (block). Algorithms are then written as before, except with scalar
operations replaced by operations on the blocks.

For example, consider the LU factorization of the partitioned matrix:

A →

⎛
⎜⎝

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ᾱ00 . . . ᾱ0k . . . ᾱ0,n−1
...

. . .
...

. . .
...

ᾱk0 . . . ᾱkk . . . ᾱk,n−1
...

. . .
...

. . .
...

ᾱn−1,0 . . . ᾱn−1,k . . . ᾱn−1,n−1

⎞
⎟⎟⎟⎟⎟⎠,

where α11 and ᾱi j , 0 ≤ i, j < n, are all scalars. The unblocked algorithm in
Figure 1 (left) can be turned into an algorithm-by-blocks by recognizing that, if
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each element in the matrix is itself a matrix, as in

A →

⎛
⎜⎝

A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ā00 . . . Ā0K . . . Ā0,N−1

...
. . .

...
. . .

...

ĀK 0 . . . ĀK K . . . ĀK ,N−1

...
. . .

...
. . .

...

ĀN−1,0 . . . ĀN−1,K . . . ĀN−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where A11 and Āi j , 0 ≤ i, j < N , are all b × b blocks, then the following occurs:

(1) α11 := α11(no-op) becomes the LU factorization of the matrix element A11:

A11 := {L\U }11 = {L̄\Ū }K K .

(2) a21 becomes the column vector of blocks A21 so that a21 := a21/α11 is replaced
by a triangular solve with multiple right-hand sides with the updated upper
triangular matrix in A11 and each of the blocks in A21:

A21 := A21U−1
11 =

⎛
⎝ ĀK +1,K

...
ĀN−1,K

⎞
⎠ Ū−1

K K =
⎛
⎝ ĀK +1,K Ū−1

K K
...

ĀN−1,K Ū−1
K K

⎞
⎠.

(3) aT
12 becomes a row vector of blocks A12 so that aT

12 := aT
12(no-op) becomes

a triangular solve with multiple right-hand sides with the updated lower
triangular matrix in A11 and each of the blocks in A12:

A12 := L−1
11 A12 = L̄−1

K K

(
ĀK ,K +1 . . . ĀK ,N−1

)
= (

L̄−1
K K ĀK ,K +1 . . . L̄−1

K K ĀK ,N−1

)
.

(4) Each element in A22 describes a block that needs to be updated via a matrix-
matrix product using blocks from the updated vectors of blocks A21 and A12:

A22 := A22 − A21 A12

=

⎛
⎜⎝

ĀK +1,K +1 . . . ĀK +1,N−1
...

. . .
...

ĀN−1,K +1 . . . ĀN−1,N−1

⎞
⎟⎠ −

⎛
⎝ ĀK +1,K

...
ĀN−1,K

⎞
⎠ (

ĀK ,K +1 . . . ĀK ,N−1

)

=
⎛
⎝ ĀK +1,K +1 − ĀK +1,K ĀK ,K +1 . . . ĀK +1,N−1 − ĀK +1,K ĀK ,N−1

...
. . .

...
ĀN−1,K +1 − ĀN−1,K ĀK ,K +1 . . . ĀN−1,N−1 − ĀN−1,K ĀK ,N−1

⎞
⎠.

Below we will show that the algorithm-by-blocks approach also facilitates the
high-performance implementation and parallel execution of matrix operations
on SMP and multicore architectures.

3.2 Obstacles

A major obstacle to algorithms-by-blocks lies with the complexity that is in-
troduced into the code when matrices are manipulated and stored by blocks.
A number of solutions have been proposed to solve this problem, ranging from
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storing the matrix in arrays with four or more dimensions and explicitly expos-
ing intricate indexing into the individual elements [Guo et al. 2008], to template
programming using C++ [Valsalam and Skjellum 2002], and to compiler-based
solutions [Wise et al. 2001]. None of these have yielded a consistent methodology
that allows the development of high-performance libraries with functionality
that rivals LAPACK or FLAME. The problem is programmability.

3.3 The FLASH API for Algorithms-by-Blocks

Several recent efforts [Elmroth et al. 2004; Herrero 2006; Low and van de Geijn
2004] have followed an approach different from those mentioned above. They
viewed the matrix as a matrix of smaller matrices, just as it is conceptually
described. Among these, the FLASH API [Low and van de Geijn 2004], which
is an extension of the FLAME API, exploits the fact that FLAME encapsulates
matrix information in objects by allowing elements of a matrix to themselves be
descriptions of matrices. This approach supports (multilevel) hierarchical stor-
age of matrices by submatrices (blocks). We note that, conceptually, these ideas
are by no means new. The notion of storing matrices hierarchically goes back to
the early 1970s [Skagestein 1972] and was rediscovered in the 1990s [Collins
and Browne 1995].

Using the FLASH API, code for an algorithm-by-blocks for the LU factor-
ization is given in Figure 2 (right). Note the similarity between that imple-
mentation and the blocked implementation for the LU factorization on the left
of the same figure. That code maintains the traditional layering of subroutine
calls that implement linear algebra operations, which illustrates that we are
willing to preserve conventions from the BLAS/LIN(Sca)LAPACK efforts that
continue to benefit programmability. However, it is worth pointing out that we
actually advocate a deeper layering, one that allows the programmer to invoke
routines that assume certain matrix shapes. This design yields potential perfor-
mance benefits when the underlying BLAS implementation provides interfaces
to low-level kernels [Goto and van de Geijn 2008; Marker et al. 2007]. Such an
extended matrix multiplication interface can be seen in our use and implemen-
tation of FLASH Gebp nn in Figure 4, which assumes a matrix-matrix product
where A is a block and B is a row panel.

It may seem that complexity is merely hidden in the routines FLASH Trsm
and FLASH Gemm. The abbreviated implementations of these operations shown
in Figure 4 demonstrate how the FLASH API is used in the implementation of
those routines as well. The reader can see here that many of the details of the
FLASH implementation have been buried within the FLASH-aware FLAME
object definition. The fact that these algorithms operate on hierarchical matri-
ces (which use storage-by-blocks) manifests itself only through the unit block
size, the use of alternative FLASH routines to further break subproblems into
tasks with block operands, and an additional FLASH MATRIX AT macro to ex-
tract the appropriate submatrix when wrappers to external level-3 BLAS are
invoked.

As a result, transforming blocked algorithms into algorithms-by-blocks
and/or developing algorithms-by-blocks from scratch using the FLASH API is
straightforward.
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Fig. 4. Code for the routines FLASH Trsm and FLASH Gemm that are needed to complete the LU
factorization algorithm-by-blocks in Figure 2 (right). Top: FLASH implementations of triangular
system solve with multiple right-hand sides. Bottom: FLASH implementations of matrix-matrix
product.
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3.4 Filling the Matrix

A nontrivial matter that has prevented acceptance of alternative data struc-
tures for storing matrices has been the interface to the application. Histori-
cally, the LIN(Sca)LAPACK approach has granted application direct access to
the data. This requires the application programmer to understand how data is
stored, which greatly increases the programming burden on the user [Edwards
and van de Geijn 2006] particularly when matrices are distributed across pro-
cessors, as is true for ScaLAPACK, or stored by blocks as discussed in the
current article.

Our approach currently supports three alternative solutions.

—Referencing conventional arrays. Recall that the FLASH API allows matrix
elements to contain submatrices. Leaf objects in this hierarchy encapsulate
the actual numerical matrix data. Given a matrix stored in conventional
column-major order, a FLASH matrix object can be constructed such that
the leaf matrices simply refer to submatrices of the user-supplied matrix.
Notice that this means the user can access the elements of the matrix as one
would when interfacing with a conventional library like LAPACK. The main
disadvantage is that the leaf matrices are not stored contiguously.

—Contributions to a matrix object. We will see that there is a distinct perfor-
mance benefit to storing leaf matrices contiguously. Also, applications often
naturally generate matrices by computing submatrices which are contributed
to a larger overall matrix, possibly by adding to a partial result [Edwards and
van de Geijn 2006].

For this scenario we provide routines for contribution to a FLASH matrix
object. For example, FLASH provides a function whose signature is given by

void FLASH_Axpy_submatrix_to_global( FLA_Obj alpha,
int m, int n,
void* B, int ldb,
int i, int j, FLA_Obj H);

This call accepts an m×nmatrix B, stored at address Bwith leading dimension
ldb, scales it by scalar α, and adds the result to the submatrix of H that has
as its top-left element the (i, j) element of H. Note that matrix descriptor H
refers to a hierarchically stored matrix object while B is a matrix created and
stored in conventional column-major order. In (MATLAB) Mscript notation,
this operation is given by

H( i:i+m-1, j:j+n-1 ) = alpha * B + H( i:i+m-1, j:j+n-1 );

A complementary routine allows submatrices to be extracted. Notice that
given such an interface the user does not need to know how matrix H is
actually stored.

This approach has been highly successful for interface applications to our
Parallel Linear Algebra Package (PLAPACK) library for distributed-memory
architectures [Edwards and van de Geijn 2006; van de Geijn 1997] where
filling distributed matrices poses a similar challenge. Analogous interfaces
are also used by the Global Array abstraction [Nieplocha et al. 1996] and
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PETSc [Balay et al. 2004]. We strongly recommend this departure from the
LIN/(Sca)LAPACK interface to applications.

—Converting whole matrices. It is also possible to allow the user to construct
whole matrices in column-major order, which then may be used to build hier-
archical matrices that contain the equivalent data. The submission process
described above can be used for this conversion.

4. SUPERMATRIX OUT-OF-ORDER SCHEDULING

In this section we discuss how techniques used in superscalar processors can be
adopted to systematically expose parallelism in algorithms-by-blocks without
obfuscating the coded algorithms with further complexity.

4.1 SuperMatrix Dynamic Scheduling and Out-of-Order Execution

In order to illustrate the scheduling mechanism during this subsection, we
consider the matrix of 3 × 3 blocks

A →

⎛
⎜⎝

Ā00 Ā01 Ā02

Ā10 Ā11 Ā12

Ā20 Ā21 Ā22

⎞
⎟⎠ ,

where all blocks are b× b. First, the code in Figure 2 (right) is linked to the Su-
perMatrix runtime library and executed sequentially. As suboperations are en-
countered, the information associated with each suboperation is encapsulated
and placed onto an internal queue. Once all operations are enqueued, the initial
analyzer stage of execution is complete. Figure 5 provides a human-readable list
corresponding to the full queue generated for a 3 × 3 matrix of blocks.

For example, during the first iteration of the code, the call

FLA LU unb var5( FLASH MATRIX AT( A11 ) );

inserts the LU factorization of block Ā00 onto the list. During the same iteration,
suboperations encountered inside FLASH Trsm or FLASH Syrk also enqueue their
corresponding task entries. The order of the operations in the list, together with
the operands that are read (input operands) and written (output operands) in
the operation, determine the dependencies among matrix operations. Thus,
the second operation in the list, which has Ā00 as an input operand and Ā01
as both an input and an output operand, requires the first operation to be
completed before it may begin. The list denotes available operands with a “

√
”

symbol; these operands are not dependent upon the completion of any other
operations. They also happen to represent the operands that are available at
the beginning of the algorithm-by-blocks since the list captures the state of the
queue before execution.

During the scheduler/dispatcher stage, operations that have all operands
available are scheduled for execution. As computation progresses, dependencies
are satisfied and new operands become available, allowing more operations to be
dequeued and executed (see Figure 6). The overhead of this runtime mechanism
is amortized over a large amount of computation, and therefore its overall cost
is minor.

ACM Transactions on Mathematical Software, Vol. 36, No. 3, Article 14, Publication date: July 2009.

288



Programming Matrix Algorithms-by-Blocks for Thread-Level Parallelism • 14:13

Fig. 5. Complete list of operations to be performed on blocks for the LU factorization (without piv-
oting) of a 3×3 matrix of blocks using algorithm-by-blocks. The “

√
”symbols denote those operands

that are available immediately at the beginning of the algorithm (i.e., those operands that are not
dependent upon other operations).

Thus, we combine two techniques from superscalar processors, dynamic
scheduling and out-of-order execution, while hiding the management of data
dependencies from both library developers and users. This approach is similar
in philosophy to the inspector–executor paradigm for parallelization [Lu et al.
1997; von Hanxleden et al. 1992], but that work solves a very different prob-
lem. This approach also reflects a shift from control-level parallelism, specified
strictly by the order in which operations appear in the code, to data-flow par-
allelism, which is restricted only by true data dependencies and availability of
compute resources.

5. AN EXPERIMENT IN PROGRAMMABILITY: THE LEVEL-3 BLAS

In Chan et al. [2007a], we reported on the implementation of the level-3 BLAS
using FLASH and SuperMatrix. In this section we briefly summarize the in-
sights from that article with a primary focus on what it tells us about how the
approach addresses the programmability issue.

When we commensed parallelizing the level-3 BLAS, we had a full set of
sequential level-3 BLAS implemented using the FLAME API. It is impor-
tant to realize that a “full set” entails all datatypes2 and all unblocked and

2This includes single precision and double precision for real and complex operations.
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Fig. 6. An illustration of the scheduling of operations for the LU factorization (without pivoting)
of a 3 × 3 matrix of blocks using algorithm-by-blocks. Here, TRIU(B) stands for the upper triangular
part of B while TRISL(B) denotes the matrix consisting of the lower triangular part of B with the
diagonal entries replaced by ones.

blocked algorithm variants3 for all operations that constitute the level-3 BLAS.
We also had an implementation of the FLASH extension to FLAME and the
SuperMatrix runtime system for scheduling the tasks used for the execution
of a SuperMatrix-enabled algorithm. This implementation had previously been
used only for the Cholesky factorization.

Two of the authors, Ernie Chan and Field Van Zee, spent a weekend im-
plementing and testing the parallelization, yielding a full set of multithreaded
level-3 BLAS using FLASH and SuperMatrix. This productivity attests to how
effectively the methodology addresses the programmability issue. Impressive
performance was reported in Chan et al. [2007b] despite the absence of depen-
dencies in many of the reported operations, the lack of which reduces much of
the SuperMatrix system to overhead.

6. LAPACK-LEVEL OPERATIONS: DENSE FACTORIZATIONS

The LAPACK library provides functionality one level above the level-3 BLAS.
The subset with which we will primarily concern ourselves in this section in-
cludes the LU with pivoting, QR, and Cholesky factorizations.

6.1 An Algorithm-by-Blocks for the LU Factorization with Pivoting

It becomes immediately obvious that algorithms-by-blocks for the LU factor-
ization with partial pivoting and the QR factorization based on Householder

3The FLAME methodology often yields half a dozen or more algorithms for each operation.
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Fig. 7. Unblocked and blocked algorithms (left and right, respectively) for computing the LU
factorization with partial pivoting. Pivot(v) refers to a function that returns the index of the entry
of largest magnitude of a vector v and interchanges that element with the first entry of v. P (π1)
and P (p1) denote permutation matrices formed from the rows interchanges registered in π1 and
p1, respectively.

transformations require us to abandon the tried-and-trusted algorithms
incorporated in LAPACK since pivoting information for the former and the
computation of Householder transformations for the latter require access to
columns that span multiple blocks. Unblocked and blocked algorithms for
the LU factorization with partial pivoting, in FLAME notation, are given in
Figure 7.

Thus, a second major obstacle to algorithms-by-blocks is that not all opera-
tions lend themselves nicely to this class of algorithms, with a clear example be-
ing the LU factorization when pivoting for stability enters the picture. We next
describe our solution to this problem, inspired by out-of-core tiled algorithms
for the QR and LU factorizations [Gunter and van de Geijn 2005; Joffrain et al.
2004; Quintana-Ortı́ and van de Geijn 2009].
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Traditional algorithms for the LU factorization with partial pivoting exhibit
the property that an updated column is required for a critical computation; in
order to compute which row to pivot during the kth iteration, the kth column
must have been updated with respect to all previous computation. This greatly
restricts the order in which the computations can be performed. The problem
is compounded by the fact that the column needed for computing which row
to pivot, as well as the row to be pivoted, likely spans multiple blocks. This
need for viewing and/or storing matrices by blocks was also observed for out-of-
core dense linear algebra computations [Toledo 1999] and the implementation
of dense linear algebra operations on distributed-memory architectures [Choi
et al. 1992; van de Geijn 1997].

We will describe how partial pivoting can be modified to facilitate an
algorithm-by-blocks. We do so by first reviewing results from Joffrain et al.
[2004] and Quintana-Ortı́ and van de Geijn [2009] that show how an LU factor-
ization can be updated while incorporating pivoting. Afterward, we generalize
the insights to the desired algorithm-by-blocks.

6.1.1 Updating an LU Factorization. We briefly review how to compute
the LU factorization of a matrix A of the form

A =
(

B C
D E

)
(1)

in such a way that the LU factorization with partial pivoting of B can be reused
if D, C, and E change. In our description, we assume that both B and E are
square matrices.

The following procedure [Joffrain et al. 2004; Quintana-Ortı́ and van de Geijn
2009], consisting of five steps, computes an LU factorization with incremental
pivoting of the matrix in (1):

Step 1: Factor B. Compute the LU factorization with partial pivoting of B:

[B, p] := [{L\U }, p] = LUPP BLK(B).
D

B

E

C
�

�
��

D

U
L

E

C

p

Step 2: Update C consistent with the factorization of B (using forward sub-
stitution):

C̄ := L−1 P (p)C = TRSM LLNU(L, P (p)C).

�
��

D

U
L

E

C

p

�
�

��
D

U
L

E

C̄

p
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Step 3: Factor
(

U
D

)
. Compute the LU factorization with partial pivoting:

[(
U
D

)
, r

]
:=

[( {L̄\Ū }
D̄

)
, r

]

= LUPP SA BLK

((
U
D

))
.

�
��

D

U
L

E

C̄

p

�
�

��

D̄

Ū
L̄

E

C̄

p
r

Here, Ū overwrites the upper triangular part of B (where U was stored before
this operation). The lower triangular matrix L̄ that results needs to be stored
separately since both L, computed in Step 1 and used at Step 2, and L̄ are
needed during the forward substitution stage when solving a linear system.

Care must be taken in this step not to completely fill the zeroes below U ,
which would greatly increase the computational cost of the next step and
the storage costs of both this and the next step. The procedure computes a
“structure-aware” (SA) LU factorization with partial pivoting, employing a
blocked algorithm that combines the LINPACK and LAPACK styles of piv-
oting. For details, see algorithm LUSA−LIN

BLK in Quintana-Ortı́ and van de Geijn
[2009].

Step 4: Update
(

C̄
E

)
consistent with the factorization of

(
U
D

)
:

( ¯̄C

Ē

)
:=

(
L̄ 0

Ľ I

)−1

P (r)

(
C̄

E

)

= TRSM SA LLNU

((
L̄ 0

Ľ I

)
, P (r)

(
C̄

E

))
.

�
��

D̄

Ū
L̄

E

C̄

p
r

�
�

��

D̄

Ū
L̄

Ē

¯̄C

p
r

Again, care must be taken in this step to exploit the zeroes below the diagonal
of the upper triangular matrix produced in the previous step. This structure-
aware procedure, though not equivalent to a clean triangular system solve (plus
the application of the corresponding permutations), can be performed in terms
of level-3 BLAS and presents essentially the same computational cost, modulo
a lower-order term. For details, see algorithm FSSA−LIN

BLK in Quintana-Ortı́ and
van de Geijn [2009].

Step 5: Factor E. Finally, compute the LU factorization with partial pivoting:

[ ¯̄E, s
]

:= [{L̃\Ũ }, s
] = LUPP BLK(Ē).

�
��

D̄

Ū
L̄

Ē

¯̄C

p
r

�
�

��
�

��
D̄

Ū
L̄

Ũ
L̃

¯̄C

p
r s
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Fig. 8. Algorithm-by-blocks for the LU factorization with incremental pivoting. Here, TRIL(B)
stands for the lower triangular part of B. The actual implementation is similar to those in Figures 2
(right) and 4, but for conciseness we present it as loops.

Overall, the five steps of the procedure apply Gauss transforms and permu-
tations to reduce A to the upper triangular matrix(

Ū C̄

0 Ũ

)
.

6.1.2 An Algorithm-by-Blocks. The insights from the previous section nat-
urally extend to an algorithm-by-blocks for the LU factorization with incre-
mental pivoting [Joffrain et al. 2004; Quintana-Ortı́ et al. 2008a]. Consider the
partitioning by blocks

A =

⎛
⎜⎜⎜⎝

A00 A01 . . . A0,N−1
A10 A11 . . . A1,N−1

...
...

. . .
...

AN−1,0 AN−1,0 . . . AN−1,N−1

⎞
⎟⎟⎟⎠ , (2)

where, for simplicity, Aij , 0 ≤ i, j < N , are considered to be of size b × b.
Then the algorithm in Figure 8 is a generalization of the algorithm described
in Section 6.1.1.

While there is some flexibility in the order in which the loops are arranged,
the SuperMatrix runtime system, described in Section 4, rearranges the oper-
ations, and therefore the exact order of the loops is not important.

6.1.3 Stability. Strictly speaking, the LU factorization with partial piv-
oting is not numerically stable; theory predicts that so-called element growth
proportional to 2n may occur. It is practice that taught us to rely on this method.
In Quintana-Ortı́ and van de Geijn [2009], we discussed how the stability of
incremental pivoting relates to that of partial pivoting and pairwise pivot-
ing [Sorensen 1985]. In summary, incremental pivoting is a blocked variant
of pairwise pivoting, being equivalent to partial pivoting when the block size
equals the matrix dimension and to pairwise pivoting when the block size is 1.
Element growth for partial pivoting is known to be bounded by 4n. Therefore,
element growth for incremental pivoting can be expected to be bounded by
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a factor proportional to 2n and 4n, depending on the block size. The results
in Quintana-Ortı́ and van de Geijn [2009] provide evidence in support of this
observation. However, as was the case for partial pivoting, further practical ex-
perience will be needed to establish incremental pivoting as being a numerically
stable method.

6.2 An Algorithm-by-Blocks for the QR Factorization

The QR factorization of an m×n matrix is given by A = Q R, where Q is an m×m
orthogonal matrix and R is an m × n upper triangular matrix. Although there
exist several approaches to compute this factorization, the algorithm based on
Householder reflectors [Golub and Loan 1996] is usually chosen when seeking
high performance.

The QR factorization based on Householder reflectors and the LU factoriza-
tion with partial pivoting share the property that an updated column is required
for a critical computation; in the case of the QR factorization, the kth column
must have been updated with respect to all previous computation before the
Householder reflectors that annihilate subdiagonal entries in this column can
be computed. This greatly restricts the order in which the computations can be
performed.

An algorithm-by-blocks for the QR factorization can be obtained following
the out-of-core algorithm in Gunter and van de Geijn [2005].

The algorithm-by-blocks for the QR factorization incurs a certain extra cost
when compared with the traditional implementation of the QR factorization via
Householder reflectors. This overhead is negligible for matrices of medium and
large size. The use of orthogonal transformations ensures that the algorithm-
by-blocks and the traditional QR factorization are numerically stable.

For details, see Quintana-Ortı́ et al. [2008b].

6.3 An Algorithm-by-Blocks for the Cholesky Factorization

Given a symmetric positive-definite (SPD) matrix A, its Cholesky factorization
is given by A = LLT (or A = U T U ), where L is lower triangular (or U is upper
triangular). The construction of an algorithm-by-blocks to obtain the Cholesky
factorization is straightforward. The algorithm is illustrated in Figure 9 for an
SPD matrix partitioned as in (2). On completion, the lower triangular part of
A is overwritten by the Cholesky factor L while the strictly upper triangular
part of the matrix is not modified.

This algorithm incurs the same flop count as the traditional implementation
for the Cholesky factorization and the two exhibit the same numerical stability
properties.

For details, see Chan et al. [2007a].

7. ADVANCED LAPACK-LEVEL OPERATIONS: BANDED FACTORIZATION AND
INVERSION OF MATRICES

In this section, we offer a few comments on the development of algorithms-by-
blocks for slightly more complex operations: factorization of a banded matrix
and matrix inversion.
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Fig. 9. Algorithm-by-blocks for the Cholesky factorization. CHOL BLK(B) refers to a blocked algo-
rithm to compute the Cholesky factorization of B. On completion, this algorithm overwrites the
lower triangular part of B with its Cholesky factor. The actual implementation is similar to those
in Figures 2 (right) and 4, but for conciseness we present it as loops.

7.1 Cholesky Factorization of Banded Matrices

Consider a banded SPD matrix with bandwidth kd , partitioned into b×b blocks
as in (2) so that nonzero entries only appear in the diagonal blocks Akk , the
subdiagonal blocks Ak+1,k , . . . , Amin(N−1,k+D),k , and, given the symmetry of the
matrix, Ak,k+1, . . . , Ak,min(N−1,k+D). (If we assume for simplicity that kd + 1 is
an exact multiple of b then D = (kd + 1)/b − 1.) An algorithm-by-blocks for the
Cholesky factorization of this matrix is easily obtained from the algorithm in
Figure 9 by changing the upper limit of the second loop to min(N − 1, k + D).

The ideas extend to provide algorithm-by-blocks for the LU factorization with
incremental pivoting and the QR factorization of a banded matrix.

One of the advantages of using FLASH in the implementation of banded
algorithm-by-blocks is that storage of a band matrix does not differ from that of
a dense matrix. We can still view the matrix as a matrix of matrices but store
only those blocks that contain nonzero entries into the structure. Thus, FLASH
easily provides compact storage schemes for banded matrices.

For further details, see Quintana-Ortı́ et al. [2008c].

7.2 Inversion of SPD Matrices

Traditionally, the inversion of an SPD matrix A is performed as a sequence
of three stages: compute the Cholesky factorization of the matrix A = LLT ;
invert the Cholesky factor L → L−1; and form A−1 := L−T L−1. An algorithm-
by-blocks has been given above for the first stage and two more algorithms-by-
blocks can be easily formulated for the second and third stages. The result is
an alternative algorithm-by-blocks that yields much higher performance than
one which synchronizes all computation after each stage. For further details,
see Chan et al. [2008].

The same approach provides an algorithm-by-blocks for the inversion of a
general matrix via the LU factorization with incremental pivoting.

Bientinesi et al. [2008] showed it is possible to compute these three stages
concurrently and that doing so enhances load-balance on distributed-memory
architectures. Since the runtime system performs the operations on blocks out-
of-order, no benefit results from a one-sweep algorithm.
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8. EXPERIMENTAL RESULTS

In this section, we examine various multithreaded codes in order to assess
the potential performance benefits offered by algorithms-by-blocks. All experi-
ments were performed using double-precision floating-point arithmetic on two
architectures:

—A ccNUMA SGI Altix 350 server consisting of eight nodes, each with two
1.5 GHz Intel Itanium2 processors, providing a total of 16 CPUs and a peak
performance of 96 GFLOPS (96 x109 floating-point operations/s). The nodes
are connected via an SGI NUMAlink connection ring and collectively access
32 GB of general-purpose physical RAM, with 2 GB local to each node. Perfor-
mance was measured by linking to the BLAS in Intel’s Math Kernel Library
(MKL) version 8.1.

—An SMP server with eight AMD Opteron processors, each one with two cores
clocked at 2.2 GHz, providing a total of 16 cores and a peak performance of
70.4 GFLOPS. The cores in this platform share 64 GB of general-purpose
physical RAM. Performance was measured by linking to the BLAS in Intel
Math Kernel Library (MKL) version 9.1.

We report the performance of the following three parallel implementations
in Figure 10:

—LAPACK: routines dpotrf (Cholesky factorization), dgeqrf (QR factoriza-
tion), dgetrf (LU factorization with partial pivoting), and dpbtrf (Cholesky
factorization of band matrices) in LAPACK 3.0 linked to multithreaded BLAS
in MKL.

—MKL: multithreaded implementation of routines dpotrf, dgeqrf, and dgetrf
in MKL.

—AB: our implementation of algorithm-by-blocks, with matrices stored hier-
archically using the FLASH API, scheduled with the SuperMatrix runtime
system and linked to serial BLAS in MKL. The OpenMP implementation pro-
vided by the Intel C compiler served as the underlying threading mechanism
used by SuperMatrix on both platforms.

We consider the usual flop counts for the factorizations: n3/3, 4n3/3, and
2n3/3, respectively, for the Cholesky, QR and LU factorizations of a square ma-
trix of order n. The cost of the Cholesky factorization of a matrix with bandwidth
kd is computed as n(k2

d + 3kd ) flops. Note that the algorithms-by-blocks for the
QR and LU factorizations actually perform a slightly higher number of flops
that represent a lower-order term in the overall cost.

When hand-tuning block sizes, an effort was made to determine the best
values for all combinations of parallel implementations and BLAS. In the eval-
uation of the band factorization case, the dimension of the matrix was set to
5000. In this case, we report those results corresponding to the most favorable
number of processors/cores for each implementation since using a lower number
of resources in some cases resulted in a lower execution time.

ACM Transactions on Mathematical Software, Vol. 36, No. 3, Article 14, Publication date: July 2009.

297



14:22 • G. Quintana-Ortı́ et al.

Fig. 10. Performance of the multithreaded factorization algorithms.

The results show that algorithms-by-blocks clearly outperform the codes in
LAPACK and are competitive with highly tuned implementations provided by
libraries such as MKL.

An interesting question is whether on multithreaded architectures it would
be appropriate to instead use libraries such as ScaLAPACK or PLAPACK, which
were designed for distributed-memory parallel architectures. In Bientinesi
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et al. [2008], we presented evidence that, on multithreaded architectures, im-
plementations that extract parallelism only within the BLAS outperform PLA-
PACK and ScaLAPACK, which use MPI [Gropp et al. 1994]. In this article, we
show that extracting parallelism only within the BLAS is inferior to the pro-
posed approach. Thus, by transitivity, the proposed approach can be expected
to outperform MPI-based libraries like PLAPACK and ScaLAPACK on multi-
threaded architectures.

9. CONCLUSION

While architectural advances promise to deliver a high level of parallelism
in the form of many-core platforms, we argue that it is programmability that
will determine the success of these architectures. In this article, we have illus-
trated how the notation, APIs, and tools that are part of the FLAME project
provide modern object-oriented abstractions to increase developer productivity
and user-friendliness alike in the context of dense and banded linear algebra li-
braries. One of these abstractions targets multicore architectures by borrowing
dynamic out-of-order scheduling techniques from sequential superscalar archi-
tectures. Results for the most significative (dense) matrix factorizations on two
shared-memory parallel platforms consisting of a relatively large number of
processors/cores illustrate the benefits of our approach.

The FLAME project strives to remain forward-looking. By maintaining a
clean API design and clear separation of concerns, we streamline the process
of taking a new algorithm from whiteboard concept to high-performance paral-
lel implementation. The base FLAME/C API, the FLASH hierarchical matrix
extension, and the SuperMatrix runtime scheduling and execution mechanism
compliment each other through friendly abstractions that facilitate a striking
increase in developer-level productivity as well as uncompromising end-user
performance.

From the beginning, we have separated the SuperMatrix heuristic used for
scheduling tasks from the library that implements the linear algebra opera-
tions. In Chan et al. [2007a], we demonstrated the benefits of using different
heuristics to schedule suboperations to threads. As part of ongoing efforts, we
continue to investigate the effects of different scheduling strategies on overall
performance. We do not discuss this topic in the present article because our
desire to focus the present article squarely on the issue of programmability.
Another topic for future research is how to take advantage of the FLASH API’s
ability to capture multiple levels of hierarchy.

9.1 Additional Information

For additional information on FLAME visit

http://www.cs.utexas.edu/users/flame/.
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