Advanced Linear Algebra
Foundations to Frontiers

Robert A. van de Geijn
Margaret E. Myers

Advanced Linear Algebra

Foundations to Frontiers

Advanced Linear Algebra

Foundations to Frontiers

Robert van de Geijn
The University of Texas at Austin

Margaret Myers
The University of Texas at Austin

August 21, 2020

Edition: Draft Edition 2019-2020
Website: ulaff.net
©2019-2020 Robert van de Geijn and Margaret Myers

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the appendix entitled “GNU Free Documentation License.” All trademarks™ are the registered® marks of
their respective owners.

http:/\penalty \exhyphenpenalty {}/\penalty \exhyphenpenalty {}ulaff.net

Acknowledgements

We would like to thank the people who created PreTeXt, the authoring system used to typeset these materials.
We applaud you!

vii

Preface

"Advanced Linear Algebra: Foundations to Frontiers' (ALAFF) is an alternative to a traditional text for
a graduate course on numerical linear algebra. It intertwines text, videos, exercises, and programming
activities in consumable chunks in an effort to keep the learner engaged.

We have used these materials in different settings. It is the primary resource for our course at UT-
Austin titled "Numerical Analysis: Linear Algebra" offered through the departments of Computer Science,
Mathematics, Statistics and Data Sciences, and Mechanical Engineering, as well as the Computational
Science, Engineering, and Mathematics graduate program. This course is also offered as "Advanced Linear
Algebra for Computing" through the UT-Austin Masters in Computer Science Online program. Finally, it
is the basis for the Massive Open Onine Course (MOOC) titled "Advanced Linear Algebra: Foundations to
Frontiers" on the edX platform. It is our hope that others will repurpose ALAFF for other learning settings,
either in its entirety or in part.

So as not to overwhelm learners, we have taken the traditional topics of a numerical linear algebra course
and organized these into three parts. Orthogonality, Solving Linear Systems, and the Algebraic Eigenvalue
Problem.

o Part I: Orthogonality explores orthogonality (which includes a treatment of norms, orthogonal spaces,
the Singular Value Decomposition (SVD), and solving linear least squares problems). We start with
with these topics since they are prerequisite knowledge for other courses that students often pursue in
parallel with (or even before) advanced linear algebra.

e Part II: Solving Linear Systems focuses on so-called direct and iterative methods while also introducing
the notion of numerical stability, which quantifies and qualifies how error that is introduced in the
original statement of the problem and/or roundoff that occurs in computer arithmetic impacts the
correctness of a computation.

e Part III: The Algebraic Eigenvalue Problem focuses on the theory and practice of computing the
eigenvalues and eigenvectors of a matrix. This is closely related to the diagonazing a matrix. Practical
algorithms for solving the eigenvalue problem are extended so they can be used to compute the SVD.
This part, and the course, ends with a discussion of how to achieve high performance on modern
computers when performing matrix computations.

While this represents only a selection of advanced topics in linear algebra, we believe that this course leaves
you equipped to pursue further related subjects.
ALAFTF is part of a collection of learning artifacts that we have developed over the years.

o Linear Algebra: Foundations to Frontiers (LAFF) [26] [27] a full semester undergraduate introduction
to linear algebra. For those whose linear algebra fluency is a bit rusty, this is a good resource for
brushing up.

o LAFF-On Programming for Correctness [28] [29] is a six-week course that shares our techniques for
systematic discovery of families of algorithms for matrix operations from which the best (e.g., highest
performing) can be chosen in a context.

viii

ix

o LAFF-On Programming for High Performance [40] (((Unresolved xref, reference "biblio-pthp-edX";
check spelling or use "provisional" attribute))) is a four-week course in which matrix-matrix multipli-
cation is used to illustrate fundamental techniques for achieving high performance on modern CPUs.
In Week 12 of ALAFF, we give you a flavor of how high performance can be achieved for matrix
computations.

There is a MOOC on edX associated with each of these materials. Together, they form a loosely-coupled
learning experience.

You should use the pretest we have created, "Advanced Linear Algebra: Are You Ready?", [39] to self-
assess whether you are ready for ALAFF. It consists of about a dozen questions. When taking it, realize
that it is not about whether you can answer those questions. Rather, you should look carefully look at the
solutions to the questions, which discuss how some of the more concrete exercises translate to more abstract
insights. How the topic of the question fits into ALAFF is discussed as is where to go to review related
knowledge.

Robert van de Geijn
Maggie Myers
Austin, 2020

http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html

Contents

Acknowledgements vii
Preface viii
0 Getting Started 1

I Orthogonality

1 Norms 10
2 The Singular Value Decomposition 74
3 The QR Decomposition 127
4 Linear Least Squares 175

IT Solving Linear Systems

5 The LU and Cholesky Factorizations 210
6 Numerical Stability 273
7 Solving Sparse Linear Systems 315

8 Descent Methods 343

CONTENTS

IIT The Algebraic Eigenvalue Problem

9 Eigenvalues and Eigenvectors

10 Practical Solution of the Hermitian Eigenvalue Problem
11 The QR Algorithm: Computing the SVD

12 Attaining High Performance

A Are you ready?

B Notation

C Knowledge from Numerical Analysis
D GNU Free Documentation License
References

Index

Xi

379

380

381

382

383

384

385

387

393

396

Week 0

Getting Started

0.1 Opening Remarks

0.1.1 Welcome

Akrid ik Rl AR FEtal el K- b

ol

W e
o
]|

YouTube: https://www.youtube.com/watch?v=KzCTMLlvxtQA

Linear algebra is one of the fundamental tools for computational and data scientists. In Advanced Linear
Algebra: Foundations to Frontiers (ALAFF), you build your knowledge, understanding, and skills in linear
algebra, practical algorithms for matrix computations, and how floating-point arithmetic, as performed by
computers, affects correctness.

The materials are organized into Weeks that correspond to a chunk of information that is covered in a
typical on-campus week. These weeks are arranged into three parts:

cn A cm Part I Orthogonality N . .
dim=r The Singular Value Decomposition (SVD) is possibly
the most important result in linear algebra, yet too
advanced to cover in an introductory undergraduate
course. To be able to get to this topic as quickly as pos-
sible, we start by focusing on orthogonality, which is
at the heart of image compression, Google’s page rank
algorithm, and linear least-squares approximation.

dim=n-r

R=V,Z U b+Vez,

https://www.youtube.com/watch?v=KzCTMlvxtQA

WEEK 0. GETTING STARTED

Part 1I: Solving Linear Systems

Solving linear systems, via direct or iterative methods,
is at the core of applications in computational science
and machine learning. We also leverage these topics to
introduce numerical stability of algorithms: the clas-
sical study that qualifies and quantifies the "correct-
ness' of an algorithm in the presence of floating point
computation and approximation. Along the way, we
discuss how to restructure algorithms so that they can
attain high performance on modern CPUs.

o
o

0O,
o,
o
©ogp,

In this week (Week 0), we walk you through some of the basic course information and help you set up for
learning. The week itself is structured like future weeks, so that you become familiar with that structure.

0.1.2 Outline Week 0

Algorithm: Compute LU factorization with partial pivoting of A,
overwriting A with factors L and U. The pivot vector
is returned in p.

A A;
Partition A — TLY TR P p_r .
ApL | Agr ps
whereA;; isOx0and prisOx1
while n(Arp) <n(A) do
Repartition
Aw | ao | Aoz po
Arp | Arg Pr -
yom ol B I 0 Y P B et Bl IR
BL BR Py -
Aw | @ | Az
whereo,;, Ay, T are 1 x 1

L o
Ty = maxi

azi

afy | o1 | af; = P(m) aly | o | afy
A | an |An Ay | @z | Az

agy ==ay /@

. T
Ay i=Ap —ayiajy

Continue with

Aoo | a0t | Ao Po

Are | Are T T pPr o
— ap (e |ap |1 — |« A

AsL | Asr P8 i

Ay | a4 | Az

endwhile

Part III: Figenvalues and Figenvectors
Many problems in science have the property that if one

o, $ looks at them in just the right way (in the right basis),

“%q ou°° they greatly simplify and/or decouple into simpler sub-

‘<’> o’ problems. Eigenvalue and eigenvectors are the key to
o3

discovering how to view a linear transformation, rep-
resented by a matrix, in that special way. Algorithms

for computing them also are the key to practical algo-
: rithms for computing the SVD

Each week is structured so that we give the outline for the week immediately after the "launch:"

¢ 0.1 Opening Remarks

o 0.1.1 Welcome
o 0.1.2 Outline Week 0
o 0.1.3 What you will learn

e 0.2 Setting Up For ALAFF

o 0.2.1 Accessing these notes

o 0.2.2 Cloning the ALAFF repository
o 0.2.3 MATLAB

WEEK 0. GETTING STARTED 3

o 0.2.4 Setting up to implement in C (optional)
e 0.3 Enrichments

o 0.3.1 Ten surprises from numerical linear algebra

o 0.3.2 Best algorithms of the 20th century
e 0.4 Wrap Up

o 0.4.1 Additional Homework
o 0.4.2 Summary

0.1.3 What you will learn

The third unit of each week informs you of what you will learn. This describes the knowledge and skills that
you can expect to acquire. If you return to this unit after you complete the week, you will be able to use
the below to self-assess.

Upon completion of this week, you should be able to

o Navigate the materials.

e Access additional materials from GitHub.
e Track your homework and progress.

o Register for MATLAB online.

¢ Recognize the structure of a typical week.

0.2 Setting Up For ALAFF

0.2.1 Accessing these notes

For information regarding these and our other materials, visit ulaff.net.
These notes are available in a number of formats:

o As an online book authored with PreTeXt at http://www.cs.utexas.edu/users/flame/laff /alaff/.

o As a PDF at http://www.cs.utexas.edu/users/flame/laff/alaff/ ALAFF.pdf.

If you download this PDF and place it in just the right folder of the materials you will clone from
GitHub (see next unit), the links in the PDF to the downloaded material will work.

We will be updating the materals frequently as people report typos and we receive feedback from
learners. Please consider the environment before you print a copy...

o Eventually, if we perceive there is demand, we may offer a printed copy of these notes from Lulu.com,
a self-publishing service. This will not happen until Summer 2020, at the earliest.

0.2.2 Cloning the ALAFF repository

We have placed all materials on GitHub, a development environment for software projects. In our case, we
use it to disseminate the various activities associated with this course.
On the computer on which you have chosen to work, "clone" the GitHub repository for this course:

e Visit https://github.com/ULAFF/ALAFF

http://ulaff.net
https://pretextbook.org
http://www.cs.utexas.edu/users/flame/laff/alaff/
http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF.pdf
http://www.lulu.com
https://github.com/ULAFF/ALAFF

WEEK 0. GETTING STARTED 4

¢ Click on

" Claneardownoad + |

and copy https://github.com/ULAFF/ALAFF git.

e On the computer where you intend to work, in a terminal session on the command line in the directory
where you would like to place the materials, execute

git clone https://github.com/ULAFF/ALAFF.git
This will create a local copy (clone) of the materials.

e Sometimes we will update some of the files from the repository. When this happens you will want to
execute, in the cloned directory,

git stash save

which saves any local changes you have made, followed by
git pull

which updates your local copy of the repository, followed by
git stash pop

which restores local changes you made. This last step may require you to "merge" files that were
changed in the repository that conflict with local changes.

Upon completion of the cloning, you will have a directory structure similar to that given in Figure 0.2.2.1.

Users
L_rvdg
| ALAFF
ALAFF.pdf PDF of notes (with solutions).
Assignments
. Week00 Assignments for Week 01.
Lmatlab Programming assignments.
L _WeekO1 Assignments for Week 1.
|, _matlab Programming assignments.

"~ .5 Weekl?2
. C
| matlab

Figure 0.2.2.1 Directory structure for your ALAFF materials. In this example, we cloned the repository
in Robert’s home directory, rvdg.

WEEK 0. GETTING STARTED)

0.2.3 MATLAB

We will use Matlab to translate algorithms into code and to experiment with linear algebra.
There are a number of ways in which you can use Matlab:

e Via MATLARB that is installed on the same computer as you will execute your performance experiments.
This is usually called a "desktop installation of Matlab."

e Via MATLAB Online. You will have to transfer files from the computer where you are performing
your experiments to MATLAB Online. You could try to set up MATLAB Drive, which allows you to
share files easily between computers and with MATLAB Online. Be warned that there may be a delay
in when files show up, and as a result you may be using old data to plot if you aren’t careful!

If you are using these materials as part of an offering of the Massive Open Online Course (MOOC) titled
"Advanced Linear Algebra: Foundations to Frontiers," you will be given a temporary license to Matlab,
courtesy of MathWorks. In this case, there will be additional instructions on how to set up MATLAB
Online, in the Unit on edX that corresponds to this section.

You need relatively little familiarity with MATLAB in order to learn what we want you to learn in this
course. So, you could just skip these tutorials altogether, and come back to them if you find you want to
know more about MATLAB and its programming language (M-script).

Below you find a few short videos that introduce you to MATLAB. For a more comprehensive tutorial,
you may want to visit MATLAB Tutorials at MathWorks and click "Launch Tutorial".

What is MATLAB?

https://www.youtube.com/watch?v=2sB-NMD9Qhk

Getting Started with MATLAB On-
line

https://www.youtube.com/watch?v=4shp284pGc8

MATLAB Variables

| ! |

https://www.youtube.com/watch?v=gPIsIzHJA9I

MATLAB as a Calculator

| ‘ |

https://www.youtube.com/watch?v=K9xy5kQHDBo

Managing Files with MATLAB Online

|

https://www.youtube.com/watch?v=mgYwMnM-x5Q

https://matlab.mathworks.com/
https://www.mathworks.com/products/matlab-drive.html
https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html?confirmation_page
https://www.youtube.com/watch?v=2sB-NMD9Qhk
https://www.youtube.com/watch?v=4shp284pGc8
https://www.youtube.com/watch?v=gPIsIzHJA9I
https://www.youtube.com/watch?v=K9xy5kQHDBo
https://www.youtube.com/watch?v=mqYwMnM-x5Q

WEEK 0. GETTING STARTED 6

Remark 0.2.3.1 Some of you may choose to use MATLAB on your personal computer while others may
choose to use MATLAB Online. Those who use MATLAB Online will need to transfer some of the downloaded
materials to that platform.

0.2.4 Setting up to implement in C (optional)

You may want to return to this unit later in the course. We are still working on adding programming
exercises that require C implementation.

In some of the enrichments in these notes and the final week on how to attain performance, we suggest
implementing algorithms that are encounted in C. Those who intend to pursue these activities will want
to install a Basic Linear Algebra Subprograms (BLAS) library and our libflame library (which not only
provides higher level linear algebra functionality, but also allows one to program in a manner that mirrors
how we present algorithms.)

0.2.4.1 Installing the BLAS

The Basic Linear Algebra Subprograms (BLAS) are an interface to fundamental linear algebra operations.
The idea is that if we write our software in terms of calls to these routines and vendors optimize an imple-
mentation of the BLAS, then our software can be easily ported to different computer architectures while
achieving reasonable performance.

A popular and high-performing open source implementation of the BLAS is provided by our BLAS-like
Library Instantiation Software (BLIS). The following steps will install BLIS if you are using the Linux OS
(on a Mac, there may be a few more steps, which are discussed later in this unit.)

e Visit the BLIS Github repository.
e Click on

W—

and copy https://github.com/flame/blis.git.
e In a terminal session, in your home directory, enter
git clone https://github.com/flame/blis.git
(to make sure you get the address right, you will want to paste the address you copied in the last step.)
o Change directory to blis:
cd blis
e Indicate a specific version of BLIS so that we all are using the same release:
git checkout pfhp
e Configure, build, and install with OpenMP turned on.
./configure -p ~/blis auto
make -3j8
make check -j8

make install

The -p ~/blis installs the library in the subdirectory ~/blis of your home directory, which is where the
various exercises in the course expect it to reside.

https://github.com/flame/blis

WEEK 0. GETTING STARTED 7
e If you run into a problem while installing BLIS, you may want to consult https://github.com/flame/
blis/blob/master/docs/BuildSystem.md.

On Mac OS-X

e You may need to install Homebrew, a program that helps you install various software on you mac.
Warning: you may need "root" privileges to do so.

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Keep an eye on the output to see if the “Command Line Tools” get installed. This may not be installed
if you already have Xcode Command line tools installed. If this happens, post in the "Discussion" for
this unit, and see if someone can help you out.

e Use Homebrew to install the gcc compiler:
$ brew install gcc

Check if gce installation overrides clang:
$ which gcc

The output should be /usr/local/bin. If it isn’t, you may want to add /usr/local/bin to "the path." I
did so by inserting

export PATH="/usr/local/bin:$PATH"
into the file .bash_ profile in my home directory. (Notice the "period" before "bash_ profile"

e Now you can go back to the beginning of this unit, and follow the instructions to install BLIS.

0.2.4.2 Installing libflame

Higher level linear algebra functionality, such as the various decompositions we will discuss in this course,
are supported by the LAPACK library [1]. Our libflame library is an implementation of LAPACK that also
exports an API for representing algorithms in code in a way that closely reflects the FLAME notation to
which you will be introduced in the course.

The libflame library can be cloned from

o https://github.com/flame/libflame.
by executing
git clone https://github.com/flame/libflame.git

in the command window.
Instructions on how to install it are at

o https://github.com/flame/libflame /blob/master /INSTALL.
Here is what I had to do on my MacBook Pro (OSX Catalina):
./configure --disable-autodetect-f77-1dflags --disable-autodetect-f77-name-mangling --prefix=$HOME/libflame
make -j8
make install

This will take a while!

https://github.com/flame/blis/blob/master/docs/BuildSystem.md
https://github.com/flame/blis/blob/master/docs/BuildSystem.md
https://github.com/flame/libflame
https://github.com/flame/libflame/blob/master/INSTALL

GETTING STARTED 8

0.3 Enrichments

In each week, we include "enrichments" that allow the participant to go beyond.

0.3.1 Ten surprises from numerical linear algebra

You may find the following list of insights regarding numerical linear algebra, compiled by John D. Cook,
interesting:

John D. Cook. Ten surprises from numerical linear algebra. 2010.

0.3.2 Best algorithms of the 20th century

An article published in STAM News, a publication of the Society for Industrial and Applied Mathermatics,
lists the ten most important algorithms of the 20th century [10]:

1.

10.

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory,
cook up the Metropolis algorithm, also known as the Monte Carlo method.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.

1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical
Analysisat the National Bureau of Standards, initiate the development of Krylov subspace iteration
methods.

1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach
to matriz computations.

1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.

1959-61: J.G.F. Francis of Ferranti Ltd., London, finds a stable method for computing eigenvalues,
known as the QR algorithm.

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of PrincetonUniversity
and AT&T Bell Laboratories unveil the fast Fourier transform.

1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integer relation
detection algorithm.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

Of these, we will explicitly cover three: the decomposition method to matrix computations, Krylov subspace
methods, and the QR algorithm. Although not explicitly covered, your understanding of numerical linear
algebra will also be a first step towards understanding some of the other numerical algorithms listed.

0.4 Wrap Up

0.4.1 Additional Homework

For a typical week, additional assignments may be given in this unit.

0.4.2 Summary

In a typical week, we provide a quick summary of the highlights in this unit.

https://www.johndcook.com/blog/2010/01/20/ten-surprises-from-numerical-linear-algebra/

Part 1

Orthogonality

Week 1

Norms

1.1 Opening

1.1.1 Why norms?

1.1.1

Why foring? Pasl |

YouTube: https://www.youtube.com/watch?v=DKX3TdQWQ90

The following exercises expose some of the issues that we encounter when computing.
We start by computing b = Uz, where U is upper triangular.

Homework 1.1.1.1 Compute

1 -2 1 -1
0o -1 -1 2 =
0 0 2 1
Solution.
1 -2 1 -1 —4
0 -1 -1 2 = -3
0 0 2 1 2

Next, let’s examine the slightly more difficult problem of finding a vector x that satisfies Uz = b.
Homework 1.1.1.2 Solve

1 -2 1 Yo —4
0 -1 -1 xi | =1 -3
0 0 2 Y2 2

Solution. We can recognize the relation between this problem and Homework 1.1.1.1 and hence deduce
the answer without computation:

X0 -1
X1 | = 2
X2 1

The point of these two homework exercises is that if one creates a (nonsingular) n x n matrix U and
vector z of size n, then computing b = Uz followed by solving UZ = b should leave us with a vector Z such

10

https://www.youtube.com/watch?v=DKX3TdQWQ90

WEEK 1. NORMS 11

that z = 7.

Remark 1.1.1.1 We don’t "teach" Matlab in this course. Instead, we think that Matlab is intuitive enough
that we can figure out what the various commands mean. We can always investigate them by typing
help <command>

in the command window. For example, for this unit you may want to execute

help format
help rng
help rand
help triu
help *

help \

help diag
help abs
help min
help max

If you want to learn more about Matlab, you may want to take some of the tutorials offered by Mathworks
at https://www.mathworks.com/support/learn-with-matlab-tutorials.html.
Let us see if Matlab can compute the solution of a triangular matrix correctly.

Homework 1.1.1.3 In Matlab’s command window, create a random upper trian%ular matrix U:

format long Report results in long format. Seed the random num-
ber generator so that we all create the same random

rng(@); matrix U and vector x.

n=3

U = triu(rand(n,n))

x = rand(n,1)

b=Ux*x; Compute right-hand side b from known solution zx.

xhat = U \ b; Solve UZ = b.

xhat - x Report the difference between T and .

What do we notice?
Next, check how close UZ is to b = Uxz:

b - U * xhat
This is known as the residual.
What do we notice?

Solution. A script with the described commands can be found in Assignments/Week01/matlab/Test_ Upper_ triangular so
Some things we observe:

e T — x does not equal zero. This is due to the fact that the computer stores floating point numbers and
computes with floating point arithmetic, and as a result roundoff error happens.

o The difference is small (notice the 1.0e-15% before the vector, which shows that each entry in ¥ — x is
around 1071°.

e The residual b — U7 is small.

e Repeating this with a much larger n make things cumbersome since very long vectors are then printed.

To be able to compare more easily, we will compute the Euclidean length of Z — z instead using the
Matlab command norm(xhat - x). By adding a semicolon at the end of Matlab commands, we suppress
output.

https://www.mathworks.com/support/learn-with-matlab-tutorials.html
Assignments/Week00/matlab/Test_upper_triangular_solve_3.m

WEEK 1. NORMS 12

Hoflglewor 1g1.1.4 Execute

rmat lon Report results in long format.

Seed the random number generator so that we all cre-

rng(@); ate the same random matrix U and vector x.

n = 100;

U = triu(rand(n,n));

X = rand(n,1);

b=U=+ x; Compute right-hand side b from known solution x.

xhat = U \ b; Solve Uz = b

norm(xhat - x) Report the Euclidean length of the difference between
Z and z.

What do we notice?
Next, check how close U7 is to b = Uz, again using the Euclidean length:

norm(b - U * xhat)
What do we notice?

Solution. A script with the described commands can be found in Assignments/Week01/matlab/Test_ Upper__triangular_so
Some things we observe:

o norm(Z — x), the Euclidean length of ¥ — x, is huge. Matlab computed the wrong answer!

o However, the computed Z solves a problem that corresponds to a slightly different right-hand side.
Thus, appears to be the solution to an only slightly changed problem.

The next exercise helps us gain insight into what is going on.
Homework 1.1.1.5 Continuing with the U, x, b, and xhat from Homework 1.1.1.4, consider

e When is an upper triangular matrix singular?

o How large is the smallest element on the diagonal of the U from Homework 1.1.1.47 (min(abs(diag(
U))) returns it!)

o If U were singular, how many solutions to UZ = b would there be? How can we characterize them?
o What is the relationship between T — x and U?

‘What have we learned?

Solution.

e When is an upper triangular matrix singular?
Answer:
If and only if there is a zero on its diagonal.

o How large is the smallest element on the diagonal of the U from Homework 1.1.1.47 (min(abs(diag(
U))) returns it!)
Answer:
It is small in magnitude. This is not surprising, since it is a random number and hence as the matrix
size increases, the chance of placing a small entry (in magnitude) on the diagonal increases.

e If U were singular, how many solutions to UZ = b would there be? How can we characterize them?
Answer:

An infinite number. Any vector in the null space can be added to a specific solution to create another
solution.

Assignments/Week00/matlab/Test_Upper_triangular_solve_100.m

WEEK 1. NORMS 13

e What is the relationship between & — x and U?
Answer:

It maps almost to the zero vector. In other words, it is close to a vector in the null space of the matrix
U that has its smallest entry (in magnitude) on the diagonal changed to a zero.

What have we learned? The :"wrong" answer that Matlab computed was due to the fact that matrix U was
almost singular.

To mathematically qualify and quantify all this, we need to be able to talk about "small" and "large"
vectors, and "small" and "large" matrices. For that, we need to generalize the notion of length. By the end
of this week, this will give us some of the tools to more fully understand what we have observed.

1.1.1

‘Why norimg? Pasd 2

YouTube: https://www.youtube.com/watch?v=2ZEtcnaynnM

1.1.2 Overview
e 1.1 Opening
o 1.1.1 Why norms?

o 1.1.2 Overview

o 1.1.3 What you will learn
e 1.2 Vector Norms

o 1.2.1 Absolute value

o 1.2.2 What is a vector norm?

o 1.2.3 The vector 2-norm (Euclidean length)
o 1.2.4 The vector p-norms

o 1.2.5 Unit ball

o 1.2.6 Equivalence of vector norms
e 1.3 Matrix Norms

o 1.3.1 Of linear transformations and matrices
o 1.3.2 What is a matrix norm?

o 1.3.3 The Frobenius norm

o 1.3.4 Induced matrix norms

1.3.5 The matrix 2-norm

[¢]

o 1.3.6 Computing the matrix 1-norm and oco-norm

[¢]

1.3.7 Equivalence of matrix norms

o

1.3.8 Submultiplicative norms

o 1.3.9 Summary

e 1.4 Condition Number of a Matrix

https://www.youtube.com/watch?v=2ZEtcnaynnM

WEEK 1. NORMS 14

o 1.4.1 Conditioning of a linear system
o 1.4.2 Loss of digits of accuracy

o 1.4.3 The conditioning of an upper triangular matrix
e 1.5 Enrichments

o 1.5.1 Condition number estimation
e 1.6 Wrap Up

o 1.6.1 Additional homework

o 1.6.2 Summary

1.1.3 What you will learn

Numerical analysis is the study of how the perturbation of a problem or data affects the accuracy of com-
putation. This inherently means that you have to be able to measure whether changes are large or small.
That, in turn, means we need to be able to quantify whether vectors or matrices are large or small. Norms
are a tool for measuring magnitude.

Upon completion of this week, you should be able to

e Prove or disprove that a function is a norm.

e Connect linear transformations to matrices.

e Recognize, compute, and employ different measures of length, which differ and yet are equivalent.
o Exploit the benefits of examining vectors on the unit ball.

o C(Categorize different matrix norms based on their properties.

e Describe, in words and mathematically, how the condition number of a matrix affects how a relative
change in the right-hand side can amplify into relative change in the solution of a linear system.

e Use norms to quantify the conditioning of solving linear systems.

1.2 Vector Norms

1.2.1 Absolute value

Remark 1.2.1.1 Don’t Panic!

In this course, we mostly allow scalars, vectors, and matrices to be complex-valued. This means we will
use terms like "conjugate" and "Hermitian" quite liberally. You will think this is a big deal, but actually, if
you just focus on the real case, you will notice that the complex case is just a natural extension of the real
case.

ek pich i Sardve Peadaly=i k- by

YouTube: https://www.youtube.com/watch?v=V5ZQmR4zTelU

https://www.youtube.com/watch?v=V5ZQmR4zTeU

WEEK 1. NORMS 15

Recall that |- | : C — R is the function that returns the absolute value of the input. In other words, if
o = a, + a.i, where ;. and «a, are the real and imaginary parts of «, respectively, then

lal = /a2 + a2

The absolute value (magnitude) of a complex number can also be thought of as the (Euclidean) distance
from the point in the complex plane to the origin of that plane, as illustrated below for the number 3 4 2i.

I.
A
.3+2i
3+2i]=V3"+2 = V13
A >

Alternatively, we can compute the absolute value as

|

/2 2
on + of

\/ozg — Qi+ ot + o2

V(= aci)(ar + i)
Vaa
where @ denotes the complex conjugate of a:

qA =0y + 0l = 0 — Ol

The absolute value function has the following properties:

o a#0=|a| >0 (]-|is positive definite),

o |af| = |af|B] (] -] is homogeneous), and

o |la+ 8] <|a|+|B] (]| obeys the triangle inequality).

Norms are functions from a domain to the real numbers that are positive definite, homogeneous, and obey
the triangle inequality. This makes the absolute value function an example of a norm.
The below exercises help refresh your fluency with complex arithmetic.

Homework 1.2.1.1
1. 1+4)(2—14) =
2. 2—-9)(1+14) =

3. T—0)@2—1) =

WEEK 1. NORMS

4. 1-i)(2—1) =
5 (2—4)(1—1i)=
6. (1—1i)(2—1)=
Solution.
L 14+49)(2-i)=2+2i—i—i?=2+i+1=3+i
2. 2—-i)(1+i)=2—-i+2i—i2=2+i+1=3+i
3.(1-)2-i)=(1+)2—-49)=2—-i+2i—i2=3+i
4. 0-)2-i)=(1+1)(2—i)=2—i+2i—2=2+i+1=3+i=3—1i

5. 2—-i)(1—-i)=024+9)(1—-i)=2-2i+i—i*=2—i+1=3—1i

6. 1—)2—i)=(1—i)2+i)=2+i—-2i—2=2—i+1=3—1i
Homework 1.2.1.2 Let o, 8 € C.
1. ALWAYS/SOMETIMES/NEVER: a8 = fBa.

2. ALWAYS/SOMETIMES/NEVER: a3 = Ba.

Hint. Let a = o, + a¢i and 8 = 8, + i, where a,., ae, By, Bc € R.

Answer.
1. ALWAYS: af = Sa.
2. SOMETIMES: @f = fa.

Solution.

1. ALWAYS: aff = Ba.

Proof:
af

= < substitute >

(o + aci)(Br + Bei)
= < multiply out >

arﬂr + arﬁci + acﬁ'ri - acﬁc
= < commutativity of real multiplication >

Bray + Broct 4 Beayi — Bea
= < factor >

(Br + Bei) (o + act)
= < substitute >

Ba.

2. SOMETIMES: af = fa.
An example where it is true: « = g = 0.
An example where it is false: a =1 and 8 =i. Then@f =1xi =14 and Ba = —i x 1 = —i.

Homework 1.2.1.3 Let «, 8 € C. L
ALWAYS/SOMETIMES/NEVER: af = Sa.

Hint. Let a = o, + a.i and 8 = 8, + B.i, where a,., ag, By, Bc € R.

Answer. ALWAYS

WEEK 1. NORMS 17

Now prove it!

Solution 1.

af
= <a=oF+ai;f=p0+pi>

(o + i) (Br + Bei)
= < conjugate o >

(ar - aci) (ﬁr + BCZ)
= < multiply out >

(arﬂr - acﬂri + arﬁci + acﬁc)
= < conjugate >

arﬁr + acﬁri - arﬁci + acﬁc
= < rearrange >

ﬂrar + ﬂraci - Bcari + ﬂcac
= < factor >

(B’r‘ - Bci)(ar + aci)

= < definition of conjugation >

(Br + Bei) (o + i)
= <a=otadf=p0+pi>
Ba

Solution 2. Proofs in mathematical textbooks seem to always be wonderfully smooth arguments that lead
from the left-hand side of an equivalence to the right-hand side. In practice, you may want to start on the
left-hand side, and apply a few rules:

ap
= <a=a,+af =5+ B.i>
(ar + aci)(Br + Bei)
= < conjugate o >
(ar - aci) (/67" + BCZ)
= < multiply out >
(047‘/87‘ - acﬁri + arﬂci + acﬁc)
= < conjugate >
0y Br + aefBri — o Bel + e

and then move on to the right-hand side, applying a few rules:

Ba
;<a:O‘T+Oéci§ﬂ:ﬂr+5ci >
(Br + Bei) (o + o)

= < conjugate >
(Br = Bei)(ar + aci)

= < multiply out >

ﬂrar + 6rac7; - ﬁcari + Bcao
At that point, you recognize that
B+ aefri — o Bei + e = Broy 4 Broet — Beai 4 Beae

since the second is a rearrangement of the terms of the first. Optionally, you then go back and presents
these insights as a smooth argument that leads from the expression on the left-hand side to the one on the

WEEK 1. NORMS

right-hand side:

ap
= <a=a;+adi B =B+ Bei >
(o + aci)(Br + Bei)
= < conjugate o >
(ar - aci) (/67" + BCZ)
= < multiply out >
(047‘/87‘ - acﬁri + arﬂci + acﬁc)
= < conjugate >
apfr + acBri — o fei 4 acfe
= < rearrange >
Brar + ﬁraci - ﬁcari + 5cac
= < factor >
(/87‘ - Bci)(ar + aci)

= < definition of conjugation >

(Br + Bei) (ar +)
= <a=apt+ad; =B+ Bei >
Ba.

18

Solution 3. Yet another way of presenting the proof uses an "equivalence style proof." The idea is to start
with the equivalence you wish to prove correct:

and through a sequence of equivalent statements argue that this evaluates to TRUE:

ap = pa

ap = pa

a4 <a=a+af =3+ Bi>

(ar + aci)(ﬁ'r‘ + ﬂcz) = (57‘ + ﬁci)(ar + aci)
= < conjugate x 2 >

(047’ - aci) (57” + BCZ) = (ﬂr - ﬁci)(ar + Oéci)

& < multiply out x 2 >

By + arfei — acfri + acfe = Broay + Braci — Beari + Bea
& < conjugate >

047‘67‘ - arﬁci + acﬁri + acﬁc = ﬁrar + Braci - ﬁcari + ﬁcac

& < subtract equivalent terms from left-hand side and right-hand side >

0=0

& < algebra >

TRUE.

By transitivity of equivalence, we conclude that @3 = Ba is TRUE.

Homework 1.2.1.4 Let o € C.

ALWAYS/SOMETIMES/NEVER: aa € R

Answer. ALWAYS.
Now prove it!

WEEK 1. NORMS 19
Solution. Let o = o, + ai. Then
aQ
= < instantiate >
(ar + act) (e + i)
= < conjugate >
(ar — aet)(ay + et)
= < multiply out >
a7 +aZ,
which is a real number.
Homework 1.2.1.5 Prove that the absolute value function is homogeneous: |af| = |a|8] for all «, 8 € C.
Solution.
lap| = |al|f]
& < squaring both sides simplifies >
|f? = |of?|]?

& < instantiate >
(o 4 i) (Br + Bed)|* = | + ail?| By + Beil?
& < algebra >
[(arBr — efe) + (arfe + acfBy)il* = (a2 + a2) (B} + B2)
& < algebra >
(Oérﬁr - acﬁc)2 + (arﬁc + O‘cﬁr)Q = (Oé% + 042)(53 + 52)
=4 < algebra >
O‘%ﬁ? — 200-Qc e + 0353 + 047%52 + 20003, B + 0[353
=Bl +alptalfl +alpl
& < subtract equivalent terms from both sides >
0=0
& < algebra >
T

Homework 1.2.1.6 Let o € C.
ALWAYS/SOMETIMES/NEVER: |[a| = |«|.

Answer. ALWAYS
Now prove it!

Solution. Let a = o, + agi.

[l

= < instantiate >
| + et

= < conjugate >
|y — aet]

= < definition of |- | >
= < definition of | - | >

= < instantiate >

WEEK 1. NORMS 20

1.2.2 What is a vector norm?

1.2.2
‘Whatl & a wacks nsem?

YouTube: https://www.youtube.com/watch?v=CTrUVfLGcNM
A vector norm extends the notion of an absolute value to vectors. It allows us to measure the magnitude
(or length) of a vector. In different situations, a different measure may be more appropriate.
Definition 1.2.2.1 Vector norm. Let v : C™ — R. Then v is a (vector) norm if for all z,y € C™ and
alla e C

o 2 #0=v(x)>0 (v is positive definite),
o v(az) = |ajv(z) (v is homogeneous), and

o v(z+y) <v(z)+v(y) (v obeys the triangle inequality).

Homework 1.2.2.1 TRUE/FALSE: If v : C™ — R is a norm, then v(0) = 0.

Hint. From context, you should be able to tell which of these 0’s denotes the zero vector of a given size
and which is the scalar 0.
0z = 0 (multiplying any vector x by the scalar 0 results in a vector of zeroes).

Answer. TRUE.
Now prove it.

Solution. Let 2 € C™ and, just for clarity this first time, 0 be the zero vector of size m so that 0 is the
scalar zero. Then

v(0)
= <0-2=0>
v(0-x)
= < v(---) is homogeneous >
Ov(x)
= < algebra >
0
Remark 1.2.2.2 We typically use || - || instead of v(-) for a function that is a norm.

1.2.3 The vector 2-norm (Euclidean length)

1.2.3

The 2-mers

YouTube: https://www.youtube.com/watch?v=bxDDpUZEqBs
The length of a vector is most commonly measured by the "square root of the sum of the squares of the

https://www.youtube.com/watch?v=CTrUVfLGcNM
https://www.youtube.com/watch?v=bxDDpUZEqBs

WEEK 1. NORMS 21

elements," also known as the Euclidean norm. It is called the 2-norm because it is a member of a class of
norms known as p-norms, discussed in the next unit.

Definition 1.2.3.1 Vector 2-norm. The vector 2-norm || - ||z : C™ — R is defined for z € C™ by

lzllz = V/Ixol? + -+ + Ixm-1? =

m—1
> bl
i=0

Equivalently, it can be defined by
[zlls = Vafz

or

lzll2 = v/XoXo +* + Xm_1Xm—1 =

O
Remark 1.2.3.2 The notation ¥ requires a bit of explanation. If
X0
xr =
Xm
then the row vector
ot = (Xo "= Xm)

is the Hermitian transpose of x (or, equivalently, the Hermitian transpose of the vector x that is viewed as
a matrix) and 2y can be thought of as the dot product of z and y or, equivalently, as the matrix-vector
multiplication of the matrix ¥ times the vector y.

To prove that the 2-norm is a norm (just calling it a norm doesn’t mean it is, after all), we need a result
known as the Cauchy-Schwarz inequality. This inequality relates the magnitude of the dot product of two
vectors to the product of their 2-norms: if z,y € R™, then |z7y| < ||z||2]|y||2. To motivate this result before
we rigorously prove it, recall from your undergraduate studies that the component of z in the direction of a
vector y of unit length is given by (y?x)y, as illustrated by

WEEK 1. NORMS 22

The length of the component of x in the direction of y then equals

1(y")yl

= < definition >
VyT2)TyT (yTz)y

= <za=az>

(xTy)?yly

= < y has unit length >
lyT]

= < definition >
2Tyl

Thus |z7y| < ||z||2 (since a component should be shorter than the whole). If y is not of unit length (but a
nonzero vector), then |me| < ||z||2 or, equivalently, |2Ty| < ||z]2]/y||2-
We now state this result as a theorem, generalized to complex valued vectors:

Theorem 1.2.3.3 Cauchy-Schwarz inequality. Let z,y € C™. Then |z y| < ||z|2||y]|2-
Proof. Assume that x # 0 and y # 0, since otherwise the inequality is trivially true. We can then choose

T =ux/|z|2 and § = y/||y|l2. This leaves us to prove that |777] < 1 since ||Z]|2 = ||7]]2 = 1.
Pick
o — 1 if 2y =0
— | vHz/|zHy| otherwise.

so that |a| = 1 and a7 is real and nonnegative. Note that since it is real we also know that
azty
= < p=pif §isreal >

= < property of complex conjugation >

Now,
0
< < |2 is nonnegative definite >
|1z — agll3
<23 =22 >
(@—af)"! (@ — af)
= < multiplying out >
7 —ayfz — azfy + aayfy
= < above assumptions and observations >
12227 + |a?
= <azfy=2"glal=1>
2 — 2|zH7y|.

Thus |279] < 1 and therefore |2 y| < ||z]|2]|y]|2- [|

The proof of Theorem 1.2.3.3 does not employ any of the intuition we used to motivate it in the real
valued case just before its statement. We leave it to the reader to prove the Cauchy-Schartz inequality for
real-valued vectors by modifying (simplifying) the proof of Theorem 1.2.3.3.

Ponder This 1.2.3.1 Let z,y € R™. Prove that |27y| < |z|2|lyll2 by specializing the proof of Theo-
rem 1.2.3.3.
The following theorem states that the 2-norm is indeed a norm:

Theorem 1.2.3.4 The vector 2-norm is a norm.
We leave its proof as an exercise.

WEEK 1. NORMS 23

Homework 1.2.3.2 Prove Theorem 1.2.3.4.

Solution. To prove this, we merely check whether the three conditions are met:
Let x,y € C™ and « € C be arbitrarily chosen. Then
o £ #0=|lz|l2 >0 (]| - |2 is positive definite):

Notice that x # 0 means that at least one of its components is nonzero. Let’s assume that x; # 0.
Then

lellz = Vol + -+ pmtP = /112 = bl > 0.
« Jlaz]lz = [allle]l2 (] - [l2 is homogeneous):

[l]2
= < scaling a vector scales its components; definition >
Viaxol? + - + Jaxm—1]?

= < algebra >
VIePxol? + -+ + o xm—1?
= < algebra >
V9aP(xol? + -+ [xm-1]?)
= < algebra >

lalv/ X0l + -+ + [xm—1?
= < definition >
o[]]2-

o llz+yll2 < |zl + llyll2 (|| - ||2 obeys the triangle inequality):

o+ yl3

S P I
(z+y)"(x+y)

= < distribute >
xHx+ny+xHy—|—yHy

= < B+ 8 =2Real(B) >
xfz + 2Real(xfy) + yHy

< < algebra >
2z + 2|Real(zfy)| + yfy

< < algebra >
o+ 2)xfy| + yfly

< < algebra; Cauchy-Schwarz >
2113 + 2llzll2llyll2 + lly1I3

= < algebra >

(lll2 + llyll2)*-

Taking the square root (an increasing function that hence maintains the inequality) of both sides yields
the desired result.

Throughout this course, we will reason about subvectors and submatrices. Let’s get some practice:

Homework 1.2.3.3 Partition x € C™ into subvectors:
o
Z1

TM—-1

ALWAYS/SOMETIMES/NEVER: ||2;]|2 < ||2-

WEEK 1. NORMS 24

Answer. ALWAYS
Now prove it!
Solution.)
[E415

= < partition vector >

2
Zo

L1

TM-1 9
= < equivalent definition >

H
Lo Lo

T X1

TM-1 TM-1
= < dot product of partitioned vectors >
oflzg +aflay+ -+ 2l zy
= < equivalent definition >
lwoll3 + llzall3 + - - + lwar—113
> < algebra >
i3

so that ||z;||2 < ||x||3. Taking the square root of both sides shows that ||z;||2 < ||z|2.

1.2.4 The vector p-norms

b ik i SR PEatal bl K S

1.2.%
p-narm

YouTube: https://www.youtube.com/watch?v=WGBMnmgJek8

A vector norm is a measure of the magnitude of a vector. The Euclidean norm (length) is merely the
best known such measure. There are others. A simple alternative is the 1-norm.

Definition 1.2.4.1 Vector 1-norm. The vector 1-norm, || - ||; : C™ — R, is defined for 2 € C™ by

m—1
2l = xol + [xal + -+ [xm—1l = > hl-
=0

Homework 1.2.4.1 Prove that the vector 1-norm is a norm.

Solution. We show that the three conditions are met:
Let x,y € C™ and « € C be arbitrarily chosen. Then

o #0=|lz|l1 >0 (]| - |1 is positive definite):
Notice that x # 0 means that at least one of its components is nonzero. Let’s assume that x; # 0.

Then
[zll1 = Ixol + -+ + [Xm-1] = [x;] > 0.

https://www.youtube.com/watch?v=WGBMnmgJek8

WEEK 1. NORMS 25
 Jlaz|y = lallle]y (|- [l is homogeneous):

lazly = < scaling a vector-scales-its-components; definition >
laxo| + -+ + [axXm—1]
= < algebra >
la[xol + -+ + [[Xm—1]
= < algebra >
d(xol + -+ + [xm—1l)
= < definition >
|l

 llz+ylli <[zl + [yl (I - [l obeys the triangle inequality):

Iz +yll
= < vector addition; definition of 1-norm >
Ixo + %ol + Ix1 + 1|+ + [Xm—1 + Vm_1]
< < algebra >
IXol + [Yo| + [xal + [¥1] + -+ + [Xmn—1| + [m—1]
= < commutivity >
IXol + [xal =+ + xm—1l + [Yo| + |1+ + [¥n—1]
= < associativity; definition >
I/l + Nyl
The vector 1-norm is sometimes referred to as the "taxi-cab norm". It is the distance that a taxi travels,
from one point on a street to another such point, along the streets of a city that has square city blocks.
Another alternative is the infinity norm.

Definition 1.2.4.2 Vector co-norm. The vector co-norm, || - ||s : C™ — R, is defined for 2z € C™ by
m—1
[l = max(|xol;- - [Xm-1) = max |x,|.

The infinity norm simply measures how large the vector is by the magnitude of its largest entry.
Homework 1.2.4.2 Prove that the vector co-norm is a norm.
Solution. We show that the three conditions are met:

Let z,y € C™ and a € C be arbitrarily chosen. Then

o 2#0=||z]loc >0 (]| - ||oo is positive definite):

Notice that x # 0 means that at least one of its components is nonzero. Let’s assume that x; # 0.
Then
m—1
l#llo0 = X bl > x| > 0.

o |az]|oo = |a||Z|loo (|| - [loo is homogeneous):

ozl = maxiis! foxs
max(y! o]
o] max5* |

= [eflz]loo-

o |24+ ylloo < |Zlloo + [|¥lloo (|| - [loo Obeys the triangle inequality):

WEEK 1. NORMS 26

max;¥o ! X + il
max; ot (x| + [4i])
max (" x| + max(! (1]
2]l oc 4+ llylloo-
In this course, we will primarily use the vector 1-norm, 2-norm, and oco-norms. For completeness, we
briefly discuss their generalization: the vector p-norm.

1+ ylloo

A IA

Definition 1.2.4.3 Vector p-norm. Given p > 1, the vector p-norm || - ||, : C™ — R is defined for z € C™
by

m—1 1/p
lzllp = /X0l + - + Ixm—1lP = (Z |Xi|p> '
=0
¢

Theorem 1.2.4.4 The vector p-norm is a norm.

The proof of this result is very similar to the proof of the fact that the 2-norm is a norm. It depends on
Holder’s inequality, which is a generalization of the Cauchy-Schwarz inequality:

Theorem 1.2.4.5 Holder’s inequality. Let 1 < p,q < oo with 1% —|—% =1. If v,y € C™ then |xfy| <

I llpllyllq-
We skip the proof of Holder’s inequality and Theorem 1.2.4.4. You can easily find proofs for these results,
should you be interested.

Remark 1.2.4.6 The vector 1-norm and 2-norm are obviously special cases of the vector p-norm. It can be
easily shown that the vector co-norm is also related:

li = .

Tim [zl = 1ol
Ponder This 1.2.4.3 Consider Homework 1.2.3.3. Try to elegantly formulate this question in the most
general way you can think of. How do you prove the result?

Ponder This 1.2.4.4 Consider the vector norm || - || : C™ — R, the matrix A € C™*" and the function
f:C™ = R defined by f(x) = ||Az||. For what matrices A is the function f a norm?

1.2.5 Unit ball

Uil kall Park |

YouTube: https://www.youtube.com/watch?v=aJgrpp7uscw
In 3-dimensional space, the notion of the unit ball is intuitive: the set of all points that are a (Euclidean)
distance of one from the origin. Vectors have no position and can have more than three components. Still
the unit ball for the 2-norm is a straight forward extension to the set of all vectors with length (2-norm)
one. More generally, the unit ball for any norm can be defined:

Definition 1.2.5.1 Unit ball. Given norm || - || : C™ — R, the unit ball with respect to || - || is the
set {z | ||z|| = 1} (the set of all vectors with norm equal to one). We will use ||z|| = 1 as shorthand for

{z | fl=ll = 1} 0

https://www.youtube.com/watch?v=aJgrpp7uscw

WEEK 1. NORMS 27

Homework 1.2.5.1 Although vectors have no position, it is convenient to visualize a vector € R? by the
point in the plane to which it extends when rooted at the origin. For example, the vector x = (? > can

be so visualized with the point (2,1). With this in mind, match the pictures on the right corresponding to

e PR 1 1)
) flefy = 1. @
(©) lalloo = 1. 3)
\
7
Solution.
(@) llols = 1. 3
\
o

(b) |lz|ly = 1. (1)

WEEK 1. NORMS

(©) f[#lloo = 1. (2)

Unil kall Park

YouTube: https://www.youtube.com/watch?v=0v77sE90P58

1.2.6 Equivalence of vector norms

1.2.&

Eqavalence of normi Part 1

YouTube: https://www.youtube.com/watch?v=qjZyKHvL13E
Homework 1.2.6.1 Fill out the following table:

28

x lzllx | lzlloo | llzll2
1
0
0
1
1
1
1
-2
-1
Solution.
T [zl | ll2]ls [EIPY
1
0 1 1 1
0
1
1 3 1 V3
1
1
—2 4 2 | V124 (=224 (-1)2=6
-1

https://www.youtube.com/watch?v=Ov77sE90P58
https://www.youtube.com/watch?v=qjZyKHvL13E

WEEK 1. NORMS 29

In this course, norms are going to be used to reason that vectors are "small' or "large". It would be
unfortunate if a vector were small in one norm yet large in another norm. Fortunately, the following theorem
excludes this possibility:

Theorem 1.2.6.1 Equivalence of vector norms. Let ||-|| : C™ — R and ||| - ||| : C"™ — R both be vector
norms. Then there exist positive scalars o and T such that for all z € C™

ollz]l < [zl < 7lj=]].

Proof. The proof depends on a result from real analysis (sometimes called "advanced calculus") that states
that sup,cg f(x) is attained for some vector € S as long as f is continuous and S is a compact (closed and
bounded) set. For any norm || - ||, the unit ball ||z|| = 1 is a compact set. When a supremum is an element
in 5, it is called the maximum instead and sup,cg f(z) can be restated as maxgcg f(z).

Those who have not studied real analysis (which is not a prerequisite for this course) have to take this
on faith. It is a result that we will use a few times in our discussion.

We prove that there exists a 7 such that for all z € C™

[l < 7|,

leaving the rest of the proof as an exercise.
Let x € C™ be an arbitary vector. W.l.o.g. assume that « # 0. Then

[l

= < algebra >
[/l

[E]

< < algebra >

HIE
(SuPz;éO IE) Ea
= < change of variables: y = z/||z|| >
(supyyp—a 1lyll1) 1o
= < the set |ly|| =1 is compact >
(maxy g1 [[lyll1) [l

[l

The desired 7 can now be chosen to equal maxj, 1 |||y]]- |

1.2.&

Egqavalence of normsgPart 2

YouTube: https://www.youtube.com/watch?v=I1W6ErdEyoc

Homework 1.2.6.2 Complete the proof of Theorem 1.2.6.1.
Solution. We need to prove that

ollzl| < [|lzl]l-

From the first part of the proof of Theorem 1.2.6.1, we know that there exists a p > 0 such that
[zl < plllz]l|

and hence

1
=zl < [lf]]-
p

We conclude that
oflzll < [l

https://www.youtube.com/watch?v=I1W6ErdEyoc

WEEK 1. NORMS 30

where 0 = 1/p.
Example 1.2.6.2
o Let 2 € R2. Use the picture

to determine the constant C' such that ||z||1 < C||z||c. Give a vector x for which ||z||; = C||z| -
o For z € R? and the C you determined in the first part of this problem, prove that ||z||; < C||z||oc-

o Let z € C™. Extrapolate from the last part the constant C such that ||z||; < C||z||s and then prove
the inequality. Give a vector z for which ||z||; = C||z]|co-

Solution.

o Consider the picture

o The red square represents all vectors such that [|z]l = 1 and the white square represents all
vectors such that ||z||; = 2.

o All points on or outside the red square represent vectors y such that ||yl > 1. Hence if ||y||; = 2
then ||ylleo > 1.

o Now, pick any z # 0. Then |2z/|/z]]1]|; = 2). Hence
122/]|2ll1]loe = 1

which can be rewritten as
[2]l1 < 2[[2]oo-

Thus, C' = 2 works.

1
o Now, from the picture it is clear that x = (1) has the property that ||z||; = 2||z||cc. Thus, the
inequality is "tight."

WEEK 1. NORMS 31
o We now prove that ||z]|; < 2[|z|« for z € R?:

]2
= < definition >
IXol + [x1]
< < algebra >
max(|xol, [x1[) +max(|xol, [x1])
= < algebra >

2max(|xol, [x1/)
= < definition >

2 |oo-

o From the last part we extrapolate that ||z]|1 < m||%||oo-

[[[]1
= < definition >
-1
iz Ixil
< < algebra >
-1 _
PO (maxz‘n:ol |Xj|)
= < algebra >
m maX;”;Ol Ix;]
= < definition >

|z
1
1
Equality holds (i.e., ||z]l1 = m||z|o) for z =
1

Some will be able to go straight for the general result, while others will want to seek inspiration from the
picture and/or the specialized case where x € R2. (Il

Homework 1.2.6.3 Let x € C™. The following table organizes the various bounds:

[zlls < Ciaflz]2

]l < 01700H$||oo

[]lz < Coallz]

]2 < Co,00 [0

[2]loe < COO,1||$H1

[2]loe < COO,2||$H2

For each, determine the constant C; , and prove the inequality, including that it is a tight inequality.
Hint: look at the hint!

Hint. |[z[l; < v/mlz|l2:
This is the hardest one to prove. Do it last and use the following hint:
Xo/|Xo
Consider y = and employ the Cauchy-Schwarz inequality.
Xm—1/|Xm—1|
Solution 1 ([lz]l1 < Callel2). ol < vlel:
xo/|xol
Consider y = : . Then
Xm—1/]Xm—1]
m—1 m—1 m—1
eyl = 1> %/l = | D P/l = 1D bl = el
i=0 i=0 i=0

WEEK 1. NORMS 32

We also notice that ||y|lz = v/m.
From the Cauchy-Swartz inequality we know that

lzlls = |2"y| < ll2llzllyllz = Vmllz]l2.

If we now choose

1
then ||z||; = m and |2}z = /m so that ||z]1 = vm||z|2.

Solution 2 (||z([y < C1 col[@lloc). [lz]l1 < Ml
See Example 1.2.6.2.

Solution 3 ([lz]2 < Coallef1:). [lzfl2 < [l]:

[e3lE:
= < definition >
—1
Z;io |Xi|2
< < algebra >
2
-1
(ZZO ‘X:|>
= < definition >
13-

Taking the square root of both sides yields ||z||2 < ||z||;.

If we now choose
0

then [|z[|5 = [|z[]1.
Solution 4 ([lz]2 < Coecllloc). [l2ll2 < v/mllz[loo:

[Ed[5
= < definition >
—1
Z:'io xil®
< < algebra >
-1 _ 2
ZZZO (maX}”:ol ‘Xj‘)
= < definition >
Yo el
= < algebra >
m||z||3,.
Taking the square root of both sides yields ||x]|2 < v/m||z|oo-

Consider
1

1
then ||z|l2 = v/m and ||z]|c = 1 so that [|z|2 = vm||Z] -

WEEK 1. NORMS 33

Solution 5 ([|z[o < Csonllz12). lzflec < [zl
[Fa|e
= < definition >
Inaxf;_01|xi|
< < algebra >
—1
Z:'n:o |Xz|
= < definition >
[E41E®

Consider
0

Then ||z]|ec = 1 = ||z]|1.
Solution 6 ([|z([oc < Cosollzll2). [zflec < [|]]2:
(e[S
= < definition >
m—1 2
(maXi:o |Xz|)
= < algebra >
max;” " xal?
< < algebra >
—1
Yo Il
= < definition >
13-

Taking the square root of both sides yields ||z]|oo < ||Z||2-
Consider
0

Then ||z]|co = 1 = ||z]2.

Solution 7 (Table of constants).
lzlls < Vmllzllz | 2]l < milzflo
2 < ||zl []l2 < v'ml|z]loo
[2lloo <zl | [lfloo < ll2ll2

Remark 1.2.6.3 The bottom line is that, modulo a constant factor, if a vector is "small" in one norm, it is
"small" in all other norms. If it is "large" in one norm, it is "large" in all other norms.

WEEK 1. NORMS 34

1.3 Matrix Norms

1.3.1 Of linear transformations and matrices

1.3.1
Lingar Frangfermsliong

YouTube: https://www.youtube.com/watch?v=xlkiZEbYh38

We briefly review the relationship between linear transformations and matrices, which is key to under-
standing why linear algebra is all about matrices and vectors.

Definition 1.3.1.1 Linear transformations and matrices. Let L : C* — C™. Then L is said to be a
linear transformation if for all & € C and z,y € C"

o L(ax) = aL(x). That is, scaling first and then transforming yields the same result as transforming
first and then scaling.

o L(x+y) = L(z)+ L(y). That is, adding first and then transforming yields the same result as trans-
forming first and then adding.

O
The importance of linear transformations comes in part from the fact that many problems in science boil
down to, given a function F': C* — C™ and vector y € C™, find « such that F'(z) = y. This is known as an
inverse problem. Under mild conditions, F' can be locally approximated with a linear transformation L and
then, as part of a solution method, one would want to solve Lz = y.
The following theorem provides the link between linear transformations and matrices:

Theorem 1.3.1.2 Let L : C* — C™ be a linear transformation, vg,vy,--- ,vs—1 € C*, and x € C*. Then

L(xovo + x1v1 + - - + Xe—1Vk—1) = XoL(vo) + x1L(v1) + - - - + xe—1L(vk—-1),

where
X0
T = :
Xk—1
Proof. A simple inductive proof yields the result. For details, see Week 2 of Linear Algebra: Foundations to
Frontiers (LAFF) [26]. |

The following set of vectors ends up playing a crucial role throughout this course:

Definition 1.3.1.3 Standard basis vector. In this course, we will use e; € C" to denote the standard
basis vector with a "1" in the position indexed with j. So,

0

—_

e; = (—]

https://www.youtube.com/watch?v=xlkiZEbYh38

WEEK 1. NORMS 35

¢

Key is the fact that any vector x € C™ can be written as a linear combination of the standard basis
vectors of C™:

X0 1 0 0
X1 0 1 0

T = =Xo| . |+tx: ++ Xn-1
Xn—1 0 0 1

= Xoeot+xie1+ -+ Xn—1€n—1-
Hence, if L is a linear transformation,
L(z) = L(xoeo+x1€1+ "+ Xn—1€n-1)
= xo L(eo) +x1 L(er) +---+xn-1 Llen—1) -
—— —— ——
ag aq ap—1

If we now let a; = L(e;) (the vector a; is the transformation of the standard basis vector e; and collect these
vectors into a two-dimensional array of numbers:

A:(ao‘a1‘~--‘an,1) (131)

then we notice that information for evaluating L(z) can be found in this array, since L can then alternatively
be computed by
L(x) = xoao + x101 + -+ + Xn—1an-1-

The array A in (1.3.1) we call a matrix and the operation Az = xpao + x1a1 + -+ + Xn-1an—1 we call
matrix-vector multiplication. Clearly

Az = L(x).
Remark 1.3.1.4 Notation. In these notes, as a rule,

e Roman upper case letters are used to denote matrices.
¢« Roman lower case letters are used to denote vectors.
o Greek lower case letters are used to denote scalars.

Corresponding letters from these three sets are used to refer to a matrix, the row or columns of that matrix,
and the elements of that matrix. If A € C™*"™ then

A
= < partition A by columns and rows >
~T
g
9
a
(aofar|-|an1)=
Q-1
= < expose the elements of A >
0,0 @p,1 s Qo,n—1
1,0 01,1 e O1n—1
QAm—1,0 | Om—1,1 ‘ ‘ QO —1,n—1

We now notice that the standard basis vector e; € C™ equals the column of the m x m identity matrix

WEEK 1. NORMS 36

indexed with j:

1]0 0 ey

0|1 0 el
I= .. |. [=(eleal]lema)=|"""

0[0]--|1 G

Remark 1.3.1.5 The important thing to note is that a matrix is a convenient representation of a linear
transformation and matrix-vector multiplication is an alternative way for evaluating that linear transforma-
tion.

ek pich i Marlre: Ppal =] K- -y

1.3.1

Phatrix mateix maliplicalion

YouTube: https://www.youtube.com/watch?v=cCFAnQmwwIw

Let’s investigate matrix-matrix multiplication and its relationship to linear transformations. Consider

two linear transformations
Ly:CF —C™ represented by matrix A

Lp:C" = CF represented by matrix B

and define
Le(z) = La(Lp(2)),

as the composition of L4 and Lg. Then it can be easily shown that Lo is also a linear transformation. Let
m x n matrix C represent Lo. How are A, B, and C related? If we let c¢; equal the column of C' indexed
with 7, then because of the link between matrices, linear transformations, and standard basis vectors

cj = Lc(ej) = La(Lp(e;)) = La(bj) = Ab,

where b; equals the column of B indexed with j. Now, we say that C' = AB is the product of A and B
defined by

Ceo o] fews)= ACt by |- bucy)= (Aby | Aby || Ab,y)
and define the matrix-matrix multiplication as the operation that computes
C:= AB,

which you will want to pronounce "C becomes A times B" to distinguish assignment from equality. If you
think carefully how individual elements of C' are computed, you will realize that they equal the usual "dot
product of rows of A with columns of B."

L T T T LS SR TRy R B

1.
Slieing and dizing

YouTube: https://www.youtube.com/watch?v=g_9RbA5EOIc

As already mentioned, throughout this course, it will be important that you can think about matrices
in terms of their columns and rows, and matrix-matrix multiplication (and other operations with matrices

https://www.youtube.com/watch?v=cCFAnQmwwIw
https://www.youtube.com/watch?v=g_9RbA5EOIc

WEEK 1. NORMS 37

and vectors) in terms of columns and rows. It is also important to be able to think about matrix-matrix
multiplication in three different ways. If we partition each matrix by rows and by columns:

& ag
C= (el ler)=| : Joa=Car|-fam)=| : |.
Cm—1 a/7n—1
and ~
by
B=(bo | |bwa)=| : |
bk

then C' := AB can be computed in the following ways:

1. By columns:
(ol Lear)= ACb [+ [bucr) = (b || Abuy).

In other words, c¢; := Ab; for all columns of C'.

2. By rows:
~T ~T ~T
o ag ay B
= : B = :
Cm—l am—l a’m—lB

In other words, ¢/ = al B for all rows of C.
3. One you may not have thought about much before:
b
Ci:(“O\"'\akfl) : = agbg + -+ + ar_1bj_y,

T
bkfl

which should be thought of as a sequence of rank-1 updates, since each term is an outer product and
an outer product has rank of at most one.

These three cases are special cases of the more general observation that, if we can partition C, A, and B
by blocks (submatrices),

Coo || Con- Aoo || Aok
c=| | | ' I ,
Cyv-10 || Cu-1n—1 Ay | | Av—rx
and
Boo |--| Bon-1
: b
Bx_10 |-+ | Bk—1,n-1

where the partitionings are "conformal’, then

K—-1
Cij=Y_ AipBy.
p=0

WEEK 1. NORMS 38

Remark 1.3.1.6 If the above review of linear transformations, matrices, matrix-vector multiplication, and
matrix-matrix multiplication makes you exclaim "That is all a bit too fast for me!" then it is time for you to
take a break and review Weeks 2-5 of our introductory linear algebra course "Linear Algebra: Foundations
to Frontiers." Information, including notes [26] (optionally downloadable for free) and a link to the course
on edX [27] (which can be audited for free) can be found at http://ulaff.net.

1.3.2 What is a matrix norm?

.32

Malrix norms

YouTube: https://www.youtube.com/watch?v=6DsBTz1eU7E
A matrix norm extends the notions of an absolute value and vector norm to matrices:

Definition 1.3.2.1 Matrix norm. Let v : C™*"™ — R. Then v is a (matrix) norm if for all A, B € C"™*"
and all a € C

o A#0=v(A)> 0 (v is positive definite),
o v(aA) = |a|v(A) (v is homogeneous), and

o v(A+ B) <v(A)+v(B) (v obeys the triangle inequality).

Homework 1.3.2.1 Let v : C™*"™ — R be a matrix norm.
ALWAYS/SOMETIMES/NEVER: v(0) = 0.

Hint. Review the proof on Homework 1.2.2.1.

Answer. ALWAYS.
Now prove it.

Solution. Let A € C"™*". Then
v(0)
= <0-A=0>
v(0-A)
= < |, is homogeneous >

= < algebra >

Remark 1.3.2.2 As we do with vector norms, we will typically use || - || instead of v(-) for a function that
is a matrix norm.

http://ulaff.net
https://www.youtube.com/watch?v=6DsBTz1eU7E

WEEK 1. NORMS 39

1.3.3 The Frobenius norm

] ik Rl AR Ptal el K- S

1.33

The Frebenious norm
-
N

YouTube: https://www.youtube.com/watch?v=0ZHnGgrJXa4

Definition 1.3.3.1 The Frobenius norm. The Frobenius norm | - || : C™*™ — R is defined for
A e C™*™ by
m—1n—1 |a0,0|2 + e+ |a0,n—1|2 +
Alr = | D0 a2 = : : :
o= lom-101* + -+ Jom-ra-1f?

O
One can think of the Frobenius norm as taking the columns of the matrix, stacking them on top of each
other to create a vector of size m x n, and then taking the vector 2-norm of the result.

Homework 1.3.3.1 Partition m x n matrix A by columns:

A=(ao| | an-1).
Show that -
A7 = llas3-
=0
Solution.

Al
= < definition >
-1 -1
\/Zlio Z?:o | ;]2
= < commutativity of addition >
-1 -1
\/Z;-l:o Yito ol

< definition of vector 2-norm >

—1
>ico llasll3
Homework 1.3.3.2 Prove that the Frobenius norm is a norm.

Solution. Establishing that this function is positive definite and homogeneous is straight forward. To show

https://www.youtube.com/watch?v=0ZHnGgrJXa4

WEEK 1. NORMS

40

that the triangle inequality holds it helps to realize that if A = (aop ‘ a1 ‘ e ‘ Ap—1) then

Al F
= < definition >

-1 -1
VI S el

< commutativity of addition >

-1 -1
\/Z?:o ZZO | ;]2

< definition of vector 2-norm >

-1
>5—o lla;li3

a

< definition of vector 2-norm >

In other words, it equals the vector 2-norm of the vector that is created by stacking the columns of A on top
of each other. One can then exploit the fact that the vector 2-norm obeys the triangle inequality.

Homework 1.3.3.3 Partition m x n matrix A by rows:

ag

Show that

m—1
IAIE = > llall3,
=0

~ _pT
where a; = al .

Solution.
Al F

= < definition >

-1 -1
Vo s e l?

< definition of vector 2-norm >

—1 |~
Vit a3

Let us review the definition of the transpose of a matrix (which we have already used when defining the
dot product of two real-valued vectors and when identifying a row in a matrix):

Definition 1.3.3.2 Transpose. If A € C™*™ and

0,0 0,1 Q0.n—1
1,0 g1 a1 n—1
A =
Am—1,0 | Am—1,1 ‘ T ‘ O —1,n—1

WEEK 1. NORMS

then its transpose is defined by

@0,0 1.0 Am—1,0
ap,1 a1 Qm—1,1
AT =
Qo n—1 | ¥1,n—1 ‘ T ‘ Qm—1,n—1

For complex-valued matrices, it is important to also define the Hermitian transpose of a matrix:

Definition 1.3.3.3 Hermitian transpose. If A € C"™*" and

Q0,0 0,1 Qo,n—1
1,0 g1 a1 n—1
A =
Am—1,0 | Om—1,1 ‘ ‘ O —1,n—1
then its Hermitian transpose is defined by
Q0,0 Q1,0 Qm—1,0
Q.1 1,1 Qm—1,1
—T
AT =4 ,
Qn—1 | Tip1 | | T

where A denotes the conjugate of a matrix, in which each element of the matrix is conjugated.

We note that
« AT AT,

o If Ac R™*" then AH = AT,

o If £ € C™, then z¥ is defined consistent with how we have used it before.

e If a € C, then of =a@.

41

(If you view the scalar as a matrix and then Hermitian transpose it, you get the matrix with as only

element @.)

Don’t Panic!. While working with complex-valued scalars, vectors, and matrices may appear a bit scary at
first, you will soon notice that it is not really much more complicated than working with their real-valued

counterparts.

Homework 1.3.3.4 Let A € C™** and B € C**". Using what you once learned about matrix transposition
and matrix-matrix multiplication, reason that (AB)¥ = BH AH.

WEEK 1. NORMS 42

Solution.
(AB)H -
= <XH=XT>
(AB)"
= < you once discovered that (AB)T = BT AT >
BT AT
= < you may check separately that XY = XY >
BT AT
= <XT=X">
BH AH
Definition 1.3.3.4 Hermitian. A matrix A € C™*™ is Hermitian if and only if A = A7, O

Obviously, if A € R™*™ then A is a Hermitian matrix if and only if A is a symmetric matrix.

Homework 1.3.3.5 Let A € C™*",
ALWAYS/SOMETIMES/NEVER: ||AT |z = ||Al|F.

Answer. ALWAYS

Solution.
|Allp

= < definition >
m—1 n—1
\/Zi:o Zj:O |aei ;|2
= < commutativity of addition >
n—1 m—1
\/ijo Yo levigl?
= < change of variables >
2

-1 -1
\/ Yo 2jmo |
= < algebra >
) -1
Vi S I
= < definition >
AT
Similarly, other matrix norms can be created from vector norms by viewing the matrix as a vector. It
turns out that, other than the Frobenius norm, these aren’t particularly interesting in practice. An example
can be found in Homework 1.6.1.6.

Remark 1.3.3.5 The Frobenius norm of a m xn matrix is easy to compute (requiring O(mn) computations).
The functions f(A4) = ||A||r and f(A) = ||A||% are also differentiable. However, you’d be hard-pressed to
find a meaningful way of linking the definition of the Frobenius norm to a measure of an underlying linear
transformation (other than by first transforming that linear transformation into a matrix).

1.3.4 Induced matrix norms

1.3.4
Tnducad malriz norss

YouTube: https://www.youtube.com/watch?v=M6ZVBRFnYcU

Recall from Subsection 1.3.1 that a matrix, A € C"™*" is a 2-dimensional array of numbers that represents
a linear transformation, L : C* — C™, such that for all z € C™ the matrix-vector multiplication Ax yields

https://www.youtube.com/watch?v=M6ZVBRFnYcU

WEEK 1. NORMS 43

the same result as does L(x).

The question "What is the norm of matrix A?" or, equivalently, "How ’large’ is A7" is the same as asking
the question "How ’large’ is L?" What does this mean? It suggests that what we really want is a measure of
how much linear transformation L or, equivalently, matrix A "stretches" (magnifies) the "length" of a vector.
This observation motivates a class of matrix norms known as induced matrix norms.

Definition 1.3.4.1 Induced matrix norm. Let |- ||, : C™ — R and |- ||, : C* — R be vector norms.
Define || - ||4,» : C™*™ — R by
Az
Al = sup L0zl
reCn (41
x#0

¢

Matrix norms that are defined in this way are said to be induced matrix norms.

Remark 1.3.4.2 In context, it is obvious (from the column size of the matrix) what the size of vector z is.
For this reason, we will write

[Az| [Az]]
[Allu, = sup . [Al 0,y = sup =
reCn =] a#0 [zlv
x#£0
Let us start by interpreting this. How "large" A is, as measured by ||A||, ., is defined as the most that A
magnifies the length of nonzero vectors, where the length of the vector, x, is measured with norm || - ||, and
the length of the transformed vector, Az, is measured with norm || - [,
Two comments are in order. First,
[Az|
E= sup Az,
x#£0 |l x|, =1

This follows from the following sequence of equivalences:
A
SUD 0 i
= < homogeneity >
. A
P, 0 | 2
= < norms are associative >
A xT
Sup, || WHM
= < substitute y = z/||z||, >
Sup| |y, =1 | Ayl| -

Second, the "sup" (which stands for supremum) is used because we can’t claim yet that there is a nonzero

vector x for which
|| Az||,.

o

is attained or, alternatively, a vector, x, with ||z||, = 1 for which

sup |[|Az|,
llz]l,=1

is attained. In words, it is not immediately obvious that there is a vector for which the supremum is attained.
The fact is that there is always such a vector x. The proof again depends on a result from real analysis,
also employed in Proof 1.2.6.1, that states that sup,cg f() is attained for some vector x € S as long as f
is continuous and S is a compact set. For any norm, ||z|| =1 is a compact set. Thus, we can replace sup by
max from here on in our discussion.

We conclude that the following two definitions are equivalent definitions to the one we already gave:

WEEK 1. NORMS

Definition 1.3.4.3 Let || - ||, : C™ — R and || - ||, : C" — R be vector norms. Define || ||,

||A$||u
220 ||z,

py =

1A]

or, equivalently,

[Al = max Az,
el =1

44

: Cm*™ — R by

¢

Remark 1.3.4.4 In this course, we will often encounter proofs involving norms. Such proofs are much
cleaner if one starts by strategically picking the most convenient of these two definitions. Until you gain the
intuition needed to pick which one is better, you may have to start your proof using one of them and then

switch to the other one if the proof becomes unwieldy.

Theorem 1.3.4.5 || - [[,, : C™*™ = R is a norm.

Proof. To prove this, we merely check whether the three conditions are met:
Let A, B € C"™*" and « € C be arbitrarily chosen. Then

o A#0=||Alur >0 (|| - ||uv is positive definite):

Notice that A # 0 means that at least one of its columns is not a zero vector (since at least one element
is nonzero). Let us assume it is the jth column, a;, that is nonzero. Let e; equal the column of I (the

identity matrix) indexed with j. Then

Al
= < definition >
max, 4o lAz| .
[EIP
> < e; is a specific vector >
llAe; |l
llesllv
= < Aej =a; >
llajll,
lleslly

> < we assumed that a; # 0 >
0.

o oA

pw = [f[[Alls (- [0 15 homogeneous):

HaAHu,V

= < definition >
lloAz]]
= < homogeneity >
| Az]l,,
[E3P)

= < algebra >
|| max | Azl

270],
= < definition >

AL, -

maXg—£o

maxgo |

e A+ Bl < |AlLw + 1Blluw (I - 00 obeys the triangle inequality).

WEEK 1. NORMS 45

A+ Blluw
= < definition >
A+B)z||,
max,4 IIC ‘w”l)/r‘ll
= < distribute >
A,._j’_B,.
maXg-£o I "LHIHVLHM
< < triangle inequality >
A +||B
max, o Il wuﬁxnll Edm
< < algebra >

Azl , IIBall,
ma"m(Tl T+ Tl

< < algebra >

Az B
max 0 [+ maxso (-
= < definition >
Al v+ 1Bl
|
When | - ||, and || - ||, are the same norm (but possibly for different sizes of vectors), the induced norm
becomes
Definition 1.3.4.6 Define | - ||, : C™*™ — R by
Axl],
41, = ma 1221
e
or, equivalently,
[All, = max [[Az],.
lzll,.=1
0
Homework 1.3.4.1 Consider the vector p-norm || - ||, : C* — R and let us denote the induced matrix norm
by ||| - ||| : C™*™ — R for this exercise: |||A||| = max,0 HII\‘;T\‘;LP'
ALWAYS/SOMETIMES/NEVER: |||y||| = ||y, for y € C™.
Answer. ALWAYS
Solution.
[yl
= < definition >
ma 2o
= <z isa scalar since y is a matrix with one column. Then |z|, = ||(xo)ll, = ¢/|x0” = |xo| >
ma, 20 X0/ 1A
= < algebra >
maxy,£o [|y[lp
= < algebra >
lyllp

This last exercise is important. One can view a vector z € C™ as an m X 1 matrix. What this last
exercise tells us is that regardless of whether we view x as a matrix or a vector, |z, is the same.

We already encountered the vector p-norms as an important class of vector norms. The matrix p-norm
is induced by the corresponding vector norm, as defined by

Definition 1.3.4.7 Matrix p-norm. For any vector p-norm, define the corresponding matrix p-norm

WEEK 1. NORMS 46

|- [lp s €™ — R by

A
| Azll, or, equivalently, |[|Al|, = max ||Az],.
z|[p=1

All, = max
1Al = max ", o

¢

Remark 1.3.4.8 The matrix p-norms with p € {1,2, 00} will play an important role in our course, as will
the Frobenius norm. As the course unfolds, we will realize that in practice the matrix 2-norm is of great
theoretical importance but difficult to evaluate, except for special matrices. The 1-norm, oco-norm, and
Frobenius norms are straightforward and relatively cheap to compute (for an m x n matrix, computing these
costs O(mn) computation).

1.3.5 The matrix 2-norm

ki ik Rl oA Pl 1] K P

1.35
The mdlrie 2-fofm

YouTube: https://www.youtube.com/watch?v=wZATH_K9XeI

Let us instantiate the definition of the vector p norm for the case where p = 2, giving us a matrix norm
induced by the vector 2-norm or Euclidean norm:

Definition 1.3.5.1 Matrix 2-norm. Define the matrix 2-norm || - [|2 : C™*"™ — R by

A
| All> = max 1Azl _ o | Az||>.
220 |zll2 llzla=1

¢

Remark 1.3.5.2 The problem with the matrix 2-norm is that it is hard to compute. At some point later in
this course, you will find out that if A is a Hermitian matrix (A = A®), then ||A||2 = |A\o|, where \¢ equals
the eigenvalue of A that is largest in magnitude. You may recall from your prior linear algebra experience
that computing eigenvalues involves computing the roots of polynomials, and for polynomials of degree three
or greater, this is a nontrivial task. We will see that the matrix 2-norm plays an important role in the theory
of linear algebra, but less so in practical computation.

Example 1.3.5.3 Show that
do O
0 41

= max(|do|, |01]).
2

Solution.

1.3.5

E-norm of 2432 disgona] malrix

YouTube: https://www.youtube.com/watch?v=B2rz0i5BB3A
[slides (PDF)] [LaTeX source] O

https://www.youtube.com/watch?v=wZAlH_K9XeI
https://www.youtube.com/watch?v=B2rz0i5BB3A
Handouts/Week1/1.3.5TwoNormOf2x2DiagMatrix.tex

WEEK 1. NORMS 47

Remark 1.3.5.4 The proof of the last example builds on a general principle: Showing that max,cp f(z) = «
for some function f: D — R can be broken down into showing that both

f <
max (’JJ) (6]
and

> a.
ve /2

In turn, showing that max,cp f(z) > « can often be accomplished by showing that there exists a vector
y € D such that f(y) = « since then

o = f(y) < max f(x).

xeD

We will use this technique in future proofs involving matrix norms.

Homework 1.3.5.1 Let D € C™*™ be a diagonal matrix with diagonal entries g, ..., 0p—1. Show that

m—1
1Dll2 = max |5;].

Solution. First, we show that || D||s = max,(,=; [|[Dz|2 < max}*;"[5;:

D3
= < definition >
max |z ,=1 | D3
= < diagonal vector multiplication >
doX0
MaAX||g 2 =1 :
6m71Xm71 P
= < definition >
-1
maxXe|l,=1 2o 19X
= < homogeneity >
-1
max|jp =1 2o |0 [xil?
< < algebra >
—1 _ 2
max|g =1 iy [maxily 8] [xil?
= < algebra >
[masigt 051] " maxap,—1 3% [l
= <lzf2=1>
_ 2
[maxgnzol |5j|] .
Next, we show that there is a vector y with ||y|ls = 1 such that || Dyl|> = max";"|6;|:
Let j be such that |§,| = max]"," |§;| and choose y = e;. Then

| Dyll2
= <y=e; >
[De;ll2
= < D:diag(éo,...,ém,l) >
16;€;1l2
= < homogeneity >
19;11lell2

|51
= < choice of j >
max; " |4

<flesle=1>

Hence || D||2 = maxg’:ol 1.

WEEK 1. NORMS 48

Homework 1.3.5.2 Let y € C™ and =z € C™.
ALWAYS/SOMETIMES/NEVER: |jyz" |2 = ||yll2]|z]|2.

llyz" =
lI=1l2

Hint. Prove that ||yzf ||z < ||y|l2]|z||2 and that there exists a vector z so that l2

Answer. ALWAYS
Now prove it!

= [lyll2llzl2.

Solution. W.l.o.g. assume that z = 0.
We know by the Cauchy-Schwarz inequality that |z 2| < ||z||2]|2||2. Hence

ly=]l

= < definition >
max||.|,=1 [lyz" 2|2
= < ||]l2 is homogenius >
max| s =1 |27 2| [yll2
< < Cauchy-Schwarz inequality >
max ||, =1 [|%l2]|z[l2[|y[l2
= <|zl2=1>
[2l2[|yll2-
But also

ly2 ™2

= < definition >

max.o ||nyHZ||2/HZ||2
> < specific z >

lyz a2/l
= < ofx =|z||3; homogeneity >

13 lyll2/]2
= < algebra >

[yll2]lz[l2-
Hence
lyz™ll2 = [lyll2llz|l2-

Homework 1.3.5.3 Let A € C™*" and qa; its column indexed with j. ALWAYS/SOMETIMES/NEVER:
lajllz < | A]l2.

Hint. What vector has the property that a; = Az?

Answer. ALWAYS.
Now prove it!

Solution.
llajll2

| Ae;ll2
<
maXHzH,L,:l ||A(EH2

1|2
Homework 1.3.5.4 Let A € C™*™. Prove that
o [[All2 = max; =y, =1 ly" Ax|.
o [[AT]2 = [A]2.
o [[AT Al = A3

Hint. Proving ||A|l2 = max|,—|y|.=1 |y* Az| requires you to invoke the Cauchy-Schwarz inequality from

WEEK 1. NORMS

Theorem 1.2.3.3.

Solution.

o [[All2 = max|g,= |y =1 |y Az]:

MAX]|, =y, =1 [y Az|

< < Cauchy-Schwarz >
Max||z|,=y[=1 [¥/[2[| Az]]2

= <|[ylla=1>
maX”w”2:1 ||AJJ||2

= < definition >
| All2.

Also, we know there exists « with ||z|2 = 1 such that ||A||s = ||Az||2. Let y = Az/||Ax|2. Then

|y Azl

= < instantiate >
‘(A@H(Ax)

[Az]|2

= <M=zl >
’nAznz
[l Az]l2

= < algebra >
([Azl

= < x was chosen so that ||Az|2 = ||All2 >
[A]l2

Hence the bound is attained. We conclude that [|All2 = max g, =yj.=1 |7 Az].

o ATz = [|All2:

| AH]|

= < first part of homework >
Max|, |,=ly[=1 [y A7 z]
<lal=la| >
Max| |, =ly|=1 |27 Ayl

= < first part of homework >
[A]]2.

o AT A2 = [l A3:

AT Al

= < first part of homework >
Max ||y |,=y|l.=1 [y A7 Az|

> < restricts choices of y >
Max|z,=1 |z AH Az

= <zlz =123 >
max||||,=1 | Az|3

= < algebra >

2

(max), =1 [| Az(l2)

= < definition >
1A]3.

So, | A All = [|All3.

WEEK 1. NORMS 50

Now, let’s show that ||Af A||y < ||A||3. This would be trivial if we had already discussed the fact that
Il |2 is & submultiplicative norm (which we will in a future unit). But let’s do it from scratch. First,
we show that ||Az||s < ||A]|2]|z]]2 for all (appropriately sized) matrices A and x:

| Az|

= < norms are homogeneus >
Azl llellz

< < algebra >

max |y |,=1 [|Ay[[2[[|2
= < definition of 2-norm

[All2]z]|2-

With this, we can then show that

A7 Al

= < definition of 2-norm >
maxj|z||,=1 ||"4H‘4'rH2

<< sl < Alalella >
o1 (1A 2] Az]l2)

= < algebra >
A" [l max g =1 | Az]l2)

< definition of 2-norm >
|2/l All2 u

< [[A% 2 = Al >

Tm

1A

1A

(vl

Alternatively, as suggested by one of the learners in the course, we can use the Cauchy-Schwarz in-
equality:
| AT All2
= < part (a) of this homework >
max| g |, y),=1 [z AT Ay
= < simple manipulation >
H
MAX|), =y =1 | (A7) " Ay]
< < Cauchy-Schwarz inequality >
max| iz ,=ly»=1 | A]l2[| Ay]|2
= < algebra >
MAaX|[(,—1 || AZ[|2 maxjy |, -1 | Ay]2
= < definition >

([All2]|All2
= < algebra >
I AlI3
Ao || Aon—1
Homework 1.3.5.5 Partition A =
Apm-1,0 Ap—1,n-1

ALWAYS/SOMETIMES/NEVER: || 4; |2 < [|All2-

Hint. Using Homework 1.3.5.4 choose v; and w; such that ||4; ;|2 = [w A; jv;].

WEEK 1. NORMS 51

Solution. Choose v; and w; such that ||A; ;|2 = |[wf A; jv;]. Next, choose v and w such that

0 0
0 0
v = Vj , W= Wy
0 0
0 0

You can check (using partitioned multiplication and the last homework) that w Av = wf A; jv;. Then, by
Homework 1.3.5.4
[All2
= < last homework >
H
MaX|q,=|ly|l,=1 [y Az|
> < w and v are specific vectors >
|wH Av|
= < partitioned multiplication >
i’ A; jvj]
= < how w; and v; were chosen >
[A jl2-

1.3.6 Computing the matrix 1-norm and oco-norm

1.3.6
The 1- and infnily narrm

YouTube: https://www.youtube.com/watch?v=QTKZdGQ2C6w

The matrix 1-norm and matrix co-norm are of great importance because, unlike the matrix 2-norm, they
are easy and relatively cheap to compute.. The following exercises show how to practically compute the
matrix 1-norm and oo-norm.

Homework 1.3.6.1 Let A € C™*" and partition A = (aop ‘ ay ‘ ‘ An_1) ALWAYS/SOMETIMES/
NEVER ||A||1 = max0§j<n ||aj||1.

Hint. Prove it for the real valued case first.
Answer. ALWAYS

https://www.youtube.com/watch?v=QTKZdGQ2C6w

WEEK 1. NORMS

Solution. Let J be chosen so that maxo<;<n ||a;j|l1 = ||as||1. Then

(Al
= < definition >
max| z ||, =1 || Az||1
= < expose the columns of A and elements of x >
X0
X1
max|g,=1 ||(@0 [|-+ [ana)| .
Xn—1 1
= < definition of matrix-vector multiplication >
max| |, =1 [Xo@0 + X101 + -+ + Xn—10n-1lJ1
< < triangle inequality >
max||z ||, =1 ([[xoaoll1 + Ix1a1ll1 + -+ [[Xn-10n-1]1)
= < homogeneity >
max| (|, =1 ([Xolllaoll1 + [xalllall1 + - + Ixn-1lllan-1l[1)
< < choice of aj >
maX|jg), = 1 (Ixolllaslly + Ixalllaslly 4 -+ - + xn-1lllasll)
= < factor out HCLJHl >
max |, =1 ([Xo| + [xa| + -+ [xn-1]) llaslx

= < algebra >
lasll-
Also,
llasllx
= < ey picks out column J >
[Ae|lx
< < ey is a specific choice of x >
max|||, =1 || Az]1.
Hence

lasl < max [Az|1 < [las]l
which implies that

Az|ly = =
max [Az[ly = llasll = Ofélfx llajllx-

Homework 1.3.6.2 Let A € C"™*™ and partition A =

ALWAYS/SOMETIMES/NEVER:

[Alloe = max [l (= max (ol + sl + -+ i)

Notice that in this exercise a; is really (al)”
Hint. Prove it for the real valued case first.

Answer. ALWAYS

since a is the label for the ith row of matrix A.

92

WEEK 1. NORMS 93

ag
Solution. Partition A = : . Then
—_—
A1
1Al
= < definition >
maXHzHoo::l ||A$Hoo
= < expose rows >
ag
MAX 2] o =1 : z
A1 00
= < matrix-vector multiplication >
adx
MAX ||z o =1
—_—
Gy 12

o0
= < definition of || - - |loc >
maXnguoozl (maX0§¢<m |5?$|)
= < expose alz >
n—1
Max g | =1 MaXo<i<m | Yp—g ¥ipXpl
< < triangle inequality >
n—1
MaX g |, =1 MaXo<i<m) _p—o |VipXpl
= < algebra >
-1
MAX| |||, =1 MAX0<i<m 2 (| Xp])
< < algebra >
-1
Max|, |, =1 MAXo<i<m Yo (|ip|(maxy [xx|))
= < definition of || - ||oc >
-1
MAX |z o =1 MAX0<i<m Y_p—o (| pl[Z]|o0)
= < ||33||Of =1>
maxo<i<m Z;:o ‘ai,p|
= < definition of || - ||; >
maxo<i<m ||@i[1

so that || Allcc < maxo<icm [[a:-

We also want to show that ||A||cc > maxo<i<m ||@:]l1. Let k be such that maxo<;<m ||@;:||1 = ||ax|1 and
Yo
pick y = : so that aly = |ago| + |ak1] + - + |agn-1] = ||akl1. (This is a matter of picking
1%—1

;= |ag,;|/ak,; if g ; # 0 and ¢ = 1 otherwise. Then || = 1, and hence ||y|loc = 1 and ;o ; = |ag ;|.)

WEEK 1. NORMS 54

Then
[Al
= < definition >
maxHle:l ||A.’£||Oo
= < expose rows >
~T
ap
MaX] ||, =1 : %‘

T
Am—1 00
> < y is a specific x >
=T
9

Y

—_—
A1 00
= < matrix-vector multiplication >

~7
apy

B/ A—
A —1Y %)

> < algebra >
lay. yl

= < choice of y >
k-

= < choice of k >
maxo<i<m ||5z‘||1

Remark 1.3.6.1 The last homework provides a hint as to how to remember how to compute the matrix
1-norm and oo-norm: Since ||z||; must result in the same value whether z is considered as a vector or as a
matrix, we can remember that the matrix 1-norm equals the maximum of the 1-norms of the columns of the
matrix: Similarly, considering |||/~ as a vector norm or as matrix norm reminds us that the matrix co-norm
equals the maximum of the 1-norms of vectors that become the rows of the matrix.

1.3.7 Equivalence of matrix norms

ki i Rl AR Wtal1r] K- By

1.37

Egqavalence of malrix norms
o

YouTube: https://www.youtube.com/watch?v=Csqd4AnH7ws

https://www.youtube.com/watch?v=Csqd4AnH7ws

WEEK 1. NORMS %)

Homework 1.3.7.1 Fill out the following table:

A TAT: [TAT= [14T+ [14T
1 0 0
0 1 0
0 0 1
1 1 1
1 1 1
1 1 1
1 1 1
01 0
01 0
0 1 0

Hint. For the second and third, you may want to use Homework 1.3.5.2 when computing the 2-norm.

Solution.
A AT [Al [A7 | ATl
1 0 0
01 0 1 1 V3 1
0 0 1
1 1 1
11 1
111 4 3 2v3 | 2v3
111
010
01 0 3 1 V3 V3
010

To compute the 2-norm of I, notice that

||z = max |[Ix]2 = max ||z|]2 = 1.
‘1‘2:1 2 1

Next, notice that

11 1 1
11 1 1
111:1(111)
11 1 1
and
010 1
010 |=1](010).
01 0 1

which allows us to invoke the result from Homework 1.3.5.2.

We saw that vector norms are equivalent in the sense that if a vector is "small" in one norm, it is "small"
in all other norms, and if it is "large" in one norm, it is "large" in all other norms. The same is true for
matrix norms.

Theorem 1.3.7.1 Equivalence of matrix norms. Let | -| : C™*"™ — R and ||| - ||| : C™*™ — R both be
matrix norms. Then there exist positive scalars o and T such that for all A € C™*"

ol Al < [[[A[ll < T[] All.
Proof. The proof again builds on the fact that the supremum over a compact set is achieved and can be
replaced by the maximum.

WEEK 1. NORMS 56
We will prove that there exists a 7 such that for all A € C™*"

A[I < [Al

leaving the rest of the proof to the reader.
Let A € C™*™ be an arbitary matrix. W.l.o.g. assume that A # 0 (the zero matrix). Then

Al
= < algebra >
AL
rar 1Al
< < definition of suppremum >

zZ
sup 4o) 1l

= < homogeneity >
(sup2 00 757 1) DA

= < change of variables B = Z/||Z|| >
(supyzy— lIBIIT) 1)

= < the set ||B|| =1 is compact >
(max gy =1 [I|B]]) [|A]|

The desired 7 can now be chosen to equal max =1 ||| B]|. [|

Remark 1.3.7.2 The bottom line is that, modulo a constant factor, if a matrix is "small" in one norm, it is
"small" in any other norm.

Homework 1.3.7.2 Given A € C"™*"show that ||A||2 < ||A||r. For what matrix is equality attained?
Hmmm, actually, this is really easy to prove once we know about the SVD... Hard to prove without it.
So, this problem will be moved...

Solution. Next week, we will learn about the SVD. Let us go ahead and insert that proof here, for future
reference.

Let A = ULVH be the Singular Value Decomposition of A, where U and V are unitary and ¥ =
diag(oo, - - -, Omin(m,n)) With 00 > 01 > ... > Omin(m,n) > 0. Then

1Al = [USVH 2 = o9

and

1Allr = IUSVT ||p = 2] F = \/03 +...+0?

min(m,n)’
Hence, ||A|l2 < ||A]|F-

Homework 1.3.7.3 Let A € C™*". The following table summarizes the equivalence of various matrix

norms:
Al < vmllAllz | [Allh < m[|Allc | [[AlL < VM Allp
[Allz < vl Allx [All2 < vm[[All | [|All2 < [|Allr
[Alloo < nflAllL | [Allse < v[lAll2 [Allec < VnllAllp
[Allr < vallAll | [[Alle <?IAllz | [Allr < vVmllAlls
For each, prove the inequality, including that it is a tight inequality for some nonzero A.
(Skip || A|lr <?||All2: we will revisit it in Week 2.)
Solution.

o Al < vmlAl:

WEEK 1. NORMS

Equality is attained for A =

o [[Alh < m|[Alloo:

Equality is attained for A =

 [[AllL < vVmllAllp:

o7

[Allx
= < definition >
l| Az
MaXaz£0 Tz,
< <zl £ vmllzll2 >
A
maXg=£o ﬁl|‘fl‘2
< <zl =z [zl >
A
maXg-£0 \/n»ﬁ‘glgnjlb

= < algebra; definition >

V|| All2

1]

= < definition >
I Az])s
MaAXz£0 Tl
< <|zlh £m|z|l >
s MAT]
270 Tzl
< <zl = [2lloe >
m| Az
[P

= < algebra; definition >
ml| Al|so

maxg-o

It pays to show that ||A]|2 < ||A||F first. Then

Equality is attained for A =

o [[Allz < vl Al

V||l All2
<
VmllAl g

< last part >

< some other part:||A]2 < ||4||F >

WEEK 1. NORMS

[All2

= < definition >
max | A2

270 Tl

< <zl <zl >

|1
MaXz£0 Tz,

< <+/mlz||2 > ||z]]1 when z is of size n >
VnllAz|l

HAX22£0 “lafy
= < algebra; definition >

VAl
Equality is attained for A = (1 ‘ 1 ‘ ‘ 1)

o Al < VAl Allo:

[A2
= < definition >
[[Az]2
MaXaz£0 Tz,
< <zl £ vmlizllee >
Az oo
MaXzz0 m\ﬂ.lruf”
< <zl =z =l >
Az oo
maXg-£0 \/ﬁLIJH:;H

= < algebra; definition >

V| A -

Equality is attained for A =

o [Allz < [|All#:
(See Homework 1.3.7.2, which requires the SVD, as mentioned...)

¢ Please share more solutions!

1.3.8 Submultiplicative norms

1.3.8
Fubrrlliplicative reres

YouTube: https://www.youtube.com/watch?v=TvthvYGt9Ix8

a8

There are a number of properties that we would like for a matrix norm to have (but not all norms do
have). Recalling that we would like for a matrix norm to measure by how much a vector is "stretched," it
would be good if for a given matrix norm, ||--- | : C™*™ — R, there are vector norms || - ||, : C™ — R and
I -], : C* — R such that, for arbitrary nonzero z € C", the matrix norm bounds by how much the vector

https://www.youtube.com/watch?v=TvthvYGt9x8

WEEK 1. NORMS 99

is stretched:
| Az || %

B4

< [lAll

or, equivalently,
Azl < 1Al

where this second formulation has the benefit that it also holds if z = 0. When this relationship between
the involved norms holds, the matrix norm is said to be subordinate to the vector norms:

Definition 1.3.8.1 Subordinate matrix norm. A matrix norm |-|| : C"™*™ — R is said to be subordinate
to vector norms || - ||, : C™ - Rand | - ||, : C* — R if, for all z € C,

[Az]l,e < [[A[l|zl.-

If || - ||, and || - ||, are the same norm (but perhaps for different m and n), then || - || is said to be subordinate
to the given vector norm. O

Fortunately, all the norms that we will employ in this course are subordinate matrix norms.

Homework 1.3.8.1 ALWAYS/SOMETIMES/NEVER: The Frobenius norm is subordinate to the vector
2-norm.

Answer. TRUE
Now prove it.

Solution. W.l.o.g., assume x # 0.

[Az|l2
]2

So, it suffices to show that |A||2 < ||A||r. But we showed that in Homework 1.3.7.2.

|| yll2
]|z < lzllz = max [Aylz2llzll2 = [Allzllz]]2-

Az
lAzlz = o [yl vl

Theorem 1.3.8.2 Induced matriz norms, || - wa : Cm*™ — R, are subordinate to the norms, || - ||u and
Il -l that induce them.
Proof. W.l.o.g. assume x # 0. Then

[Az| Ay
[Az, = =l < max Ellzlly = 1Al ll2]l-
[E3(P lyll
|
Corollary 1.3.8.3 Any matriz p-norm is subordinate to the corresponding vector p-norm.
Another desirable property that not all norms have is that
IAB| < [|A[l[|BI]-
This requires the given norm to be defined for all matrix sizes..
Definition 1.3.8.4 Consistent matrix norm. A matrix norm |- || : C™*™ — R is said to be a consistent
matrix norm if it is defined for all m and n, using the same formula for all m and n. O

Obviously, this definition is a bit vague. Fortunately, it is pretty clear that all the matrix norms we will
use in this course, the Frobenius norm and the p-norms, are all consistently defined for all matrix sizes.

Definition 1.3.8.5 Submultiplicative matrix norm. A consistent matrix norm | - || : C™*"™ — R is
said to be submultiplicative if it satisfies

IAB]| < [[A[ll|BI]-

WEEK 1. NORMS 60

Theorem 1.3.8.6 Let || - || : C* — R be a vector norm defined for all n. Define the corresponding induced
matriz norm as
IIA I _
max || Az||.

TP i

Then for any A € C™** and B € C**™ the inequality | AB| < ||A||||B]| holds.
In other words, induced matrix norms are submultiplicative. To prove this theorem, it helps to first prove
a simpler result:

Al =

Lemma 1.3.8.7 Let ||| : C" — R be a vector norm defined for alln and let || - || : C™*™ — R be the matriz
norm it induces. Then | Ax| < ||All||z]|.-
Proof. If © = 0, the result obviously holds since then ||Az| = 0 and ||z|| = 0. Let = # 0. Then

ye I1 -]

IA[l = :
o Tl = Tl

Rearranging this yields ||Az| < [|A]|||=]|- []
We can now prove the theorem:

Proof.

|AB|

= < definition of induced matrix norm >
MaXq = 1 || ABx||

= < associativity >
max||z||=1 [|A(Bz)||

< < lemma >
maXHwH ([A[l[| Bz]])

< lemma >

maX\le:l(llAllHBIIHwII)

= <|lz||=1>
Al B]-

Homework 1.3.8.2 Show that ||Az||, < ||A||.. |z
Solution. W..0.g. assume that z # 0.

A Ax
Iyl = [l
Rearranging this establishes the result.

Homework 1.3.8.3 Show that [|AB]||, <

Solution.

|AB| .

= < definition >
max|g, =1 [ABz[|,

< < last homework >
max|z ||, =1 || Al 0| Bzl

= < algebra >
[Al 1,0 max)z, =1 [Bzl

= < definition >
|

Homework 1.3.8.4 Show that the Frobenius norm, || - ||, is submultiplicative.

WEEK 1. NORMS 61

Solution.)
IAB|%
= < partition >
~ 2
ag
aj
.| Coo[br oo [bar)
~T.
Q-1 F
= < partitioned matrix-matrix multiplication >
~ ~ ~ 2
agbo agbl s agb,L_l
b | alby || alby
ap1bo | G 1b1 Ay ibnr /|l

= < definition of Frobenius norm >
> Z @ b;[?

< definition of Hermitian transpose vs transpose >

ZZIaz 2

< Cauchy-Schwarz inequality >

2 Zj las 131613

= < algebra and ||Z||2 = ||z||2 >

(S lale) (525 o)

< previous observations about the Frobenius norm >
HAHF”BHF

Hence ||AB||% < ||A||%||B||%. Taking the square root of both sides leaves us with ||AB||r < ||A|lr| B F-
This proof brings to the forefront that the notation a! leads to some possible confusion. In this particular
situation, it is best to think of @; as a vector that, when transposed, becomes the row of A indexed with 4.

~ TH o~ =
In this case, al = a; and (al)" = @ (where, recall, T equals the vector with all its entries conjugated).
Perhaps it is best to just work through this problem for the case where A and B are real-valued, and not
worry too much about the details related to the complex-valued case...

Homework 1.3.8.5 For A € C"™*" define

m—1 n—1
1A]| = fhag ha e

1. TRUE/FALSE: This is a norm.
2. TRUE/FALSE: This is a consistent norm.

Answer.
1. TRUE
2. TRUE

Solution.
1. This is a norm. You can prove this by checking the three conditions.

2. It is a consistent norm since it is defined for all m and n.

Remark 1.3.8.8 The important take-away: The norms we tend to use in this course, the p-norms and the
Frobenius norm, are all submultiplicative.

WEEK 1. NORMS 62

Homework 1.3.8.6 Let A € C™*".
ALWAYS/SOMETIMES/NEVER: There exists a vector

Xo
T = with |x;|=1fori=0,...,n—1

Xn—1

such that ||Allcc = ||A%]c0-

Answer. ALWAYS
Now prove it!

Solution. Partition A by rows:

We know that there exists k such that ||ax|1 = ||Allcc. Now

l[ax 1
= < definition of 1-norm >

lakof + -+ + ok n—1]

= < algebra >
lovk,ol |k, n—1|
7a e ’7a 1.
Qg0 k0 + Ohn—1 Em—l

where we take % = 1 whenever a;,; = 0. Vector
2J
lokol
k.0
xTr =
Ak n—1
Qg op—1

has the desired property.

1.3.9 Summary

1.3%

Sumnmdry

YouTube: https://www.youtube.com/watch?v=DyoT2tJhxIs

https://www.youtube.com/watch?v=DyoT2tJhxIs

WEEK 1. NORMS 63

1.4 Condition Number of a Matrix

1.4.1 Conditioning of a linear system

1.4.1
The ennditisa numbar of a
miakiia

YouTube: https://www.youtube.com/watch?v=QwFQNAPKIwk

A question we will run into later in the course asks how accurate we can expect the solution of a linear
system to be if the right-hand side of the system has error in it.

Formally, this can be stated as follows: We wish to solve Ax = b, where A € C™*™ but the right-hand
side has been perturbed by a small vector so that it becomes b + .

Remark 1.4.1.1 Notice how the § touches the b. This is meant to convey that this is a symbol that
represents a vector rather than the vector b that is multiplied by a scalar 4.

The question now is how a relative error in b is amplified into a relative error in the solution z.
This is summarized as follows:

Axr = b exact equation
Alz+ &) = b+ d perturbed equation

We would like to determine a formula, (A, b, ®), that gives us a bound on how much a relative error in b is
potentially amplified into a relative error in the solution x:

1]l

el _
w40)

Tall =

We assume that A has an inverse since otherwise there may be no solution or there may be an infinite number
of solutions. To find an expression for (A, b, ®), we notice that

Az +Ar = b+

Az = b -
Ar = b
and from this we deduce that
Az = b
& = A7ld.
If we now use a vector norm || - || and its induced matrix norm || - ||, then
ol = llA=] < [l A}l
]| = [[A7 | < [lA=7][]|]]

since induced matrix norms are subordinate.

From this we conclude that 1

< [l Al
]l IIbII

and

la]| < A=)

so that
H&UII

||

|
< JlAllA -
ol

https://www.youtube.com/watch?v=QwFQNAPKIwk

WEEK 1. NORMS 64

Thus, the desired expression k(A4,b,d) doesn’t depend on anything but the matrix A:

16| Sl
< papazy 121
[zl = ~——[It]
k(A
Definition 1.4.1.2 Condition number of a nonsingular matrix. The value x(4) = || Al|||[A7Y] is

called the condition number of a nonsingular matrix A.

A question becomes whether this is a pessimistic result or whether there are examples of b and & for
which the relative error in b is amplified by exactly x(A). The answer is that, unfortunately, the bound is
tight.

e There is an 7 for which
|Al| = max [|Az| = [|Az]],

llzll=1

namely the x for which the maximum is attained. This is the direction of maximal magnification. Pick
b= AZ.

« There is an & for which R
||A71H — max HAil‘TH — ”Ail&)”
lzll0 | &)

again, the x for which the maximum is attained.

It is when solving the perturbed system

~

Az +d&)=b+d
that the maximal magnification by k(A) is observed.

Homework 1.4.1.1 Let || - || be a vector norm and corresponding induced matrix norm.
TRUE/FALSE: ||I|| = 1.

Answer. TRUE

Solution.
]l = max |[Iz]| = max [lz] =1
lzl=1 l=zl=1
Homework 1.4.1.2 Let ||-|| be a vector norm and corresponding induced matrix norm, and A a nonsingular
matrix.

TRUE/FALSE: x(A) = ||A[|[|A~Y] > 1.
Answer. TRUE

Solution.
1
= < last homework >
1]
= < A is invertible >
[AATH|
< < || -] is submultiplicative >
JANA=.

Remark 1.4.1.3 This last exercise shows that there will always be choices for b and % for which the relative
error is at best directly translated into an equal relative error in the solution (if K(A) = 1).

WEEK 1. NORMS

1.4.2 Loss of digits of accuracy

1.4.2

Digits oF atcurmssy

YouTube: https://www.youtube.com/watch?v=-5190v5RXYo
Homework 1.4.2.1 Let oo = —14.24123 and @ = —14.24723. Compute

[] |a‘ =
e la—al=
la—al _

]

o logy, (la‘;l‘”) —

Solution. Let a = —14.24123 and @ = —14.24723. Compute

e |a =14.24123
e |a—al=0.006

le=al ~ 0.00042

]

o log (%) ~—3.4
The point of this exercise is as follows:

o If you compare o = —14.24123

A

—14.24 is accurate.

la—&

o Computing log;, (a\a|) tells you approximately how many decimal digits are accurate: 3.4 digits.

Be sure to read the solution to the last homework!
1.4.3 The conditioning of an upper triangular matrix
1.4.3

Conditiching af a rdndaim
Fridngular mats iz

YouTube: https://www.youtube.com/watch?v=LGBFyjhjt6U

& = —14.24723 and you consider & to be an approximation of «, then & is accurate to four digits:

We now revisit the material from the launch for the semester. We understand that when solving Lz = b,
even a small relative change to the right-hand side b can amplify into a large relative change in the solution

Z if the condition number of the matrix is large.

https://www.youtube.com/watch?v=-5l9Ov5RXYo
https://www.youtube.com/watch?v=LGBFyjhjt6U

WEEK 1. NORMS 66

Homework 1.4.3.1 Change the script Assignments/Week@1/matlab/Test_Upper_triangular_solve_100.m to also
compute the condition number of matrix U, «(U). Investigate what happens to the condition number as you
change the problem size n.

Since in the example the upper triangular matrix is generated to have random values as its entries,
chances are that at least one element on its diagonal is small. If that element were zero, then the triangular
matrix would be singular. Even if it is not exactly zero, the condition number of U becomes very large if
the element is small.

1.5 Enrichments

1.5.1 Condition number estimation

It has been observed that high-quality numerical software should not only provide routines for solving a given
problem, but, when possible, should also (optionally) provide the user with feedback on the conditioning
(sensitivity to changes in the input) of the problem. In this enrichment, we relate this to what you have
learned this week.

Given a vector norm || - || and induced matrix norm || - ||, the condition number of matrix A using that
norm is given by x(A) = ||A||||A~!||. When trying to practically compute the condition number, this leads
to two issues:

e« Which norm should we use? A case has been made in this week that the 1-norm and oco-norm are
canditates since they are easy and cheap to compute.

« It appears that A~! needs to be computed. We will see in future weeks that this is costly: O(m?)
computation when A is m x m. This is generally considered to be expensive.

This leads to the question "Can a reliable estimate of the condition number be cheaply computed?" In this
unit, we give a glimpse of how this can be achieved and then point the interested learner to related papers.
Partition m x m matrix A:

ag
A=|
1
We recall that
e The oco-norm is defined by
[Alloe = e [Ao

e From Homework 1.3.6.2, we know that the co-norm can be practically computed as

[Alloe = max a1,
0<i<m

where a; = (al')?. This means that || Ao can be computed in O(m?) operations.

o From the solution to Homework 1.3.6.2, we know that there is a vector x with [x;| =1for 0 <j <m
such that ||Al|s = ||Az||c. This x satisfies ||zl = 1.

More precisely: || Al = [|a} |1 for some k. For simplicity, assume A is real valued. Then

[Alle = lowol + - + |akm-1]
= QpoXot -+ Um—1Xm-1,

where each x; = =£1 is chosen so that xjar; = |ag;|. That vector = then has the property that
[Alloe = llally = [Az]|oo-

Assignments/Week01/matlab/Test_Upper_triangular_solve_100.m

WEEK 1. NORMS 67

From this we conclude that
”A”oo = max ||AxHoo,
zeS

where S is the set of all vectors with |x;|=1,0<j <n.

We will illustrate the techniques that underly efficient condition number estimation by looking at the
simpler case where we wish to estimate the condition number of a real-valued nonsingular upper triangular
m X m matrix U, using the co-norm. Since U is real-valued, |x;| = 1 means y; = +1. The problem is that
it appears we must compute ||[U~!||o. Computing U~! when U is dense requires O(m?) operations (a topic
we won’t touch on until much later in the course).

Our observations tell us that

1T oo = max [T oo,
€S

where S is the set of all vectors x with elements y; € {—1,1}. This is equivalent to

U oo = max 2o

where T is the set of all vectors z that satisfy Uz = y for some y with elements ¥; € {—1,1}. So, we could
solve Uz = y for all vectors y € S, compute the co-norm for all those vectors z, and pick the maximum of
those values. But that is not practical.

One simple solution is to try to construct a vector y that results in a large amplification (in the co-norm)
when solving Uz = y, and to then use that amplification as an estimate for ||U~!||o.. So how do we do this?
Consider

Um—2,m—2 Um—-2m—1 Cm—? - wm—Z
0 0 Um—1,m—1 Cm—l Ym—1
U z Y

Here is a heuristic for picking y € S:

o We want to pick ¢,,—1 € {—1,1} in order to construct a vector y € S. We can pick ¥,,_1 = 1 since
picking it equal to —1 will simply carry through negation in the appropriate way in the scheme we are
describing.

From this %,,_1 we can compute (p,_1.

o Now

)

Um—2,m—2<m—2 + Um—2,m—1Cm—1 = Pm—2

where (,,—1 is known and 1,,,_o can be strategically chosen. We want z to have a large co-norm and
hence a heuristic is to now pick ¢,,—2 € {—1,1} in such a way that (,,—2 is as large as possible in
magnitude.

With this ¢.,,,_2 we can compute (2.
e And so forth!

When done, the magnification equals ||z]|co = |x|, where (j is the element of z with largest magnitude. This
approach provides an estimate for |[U | o with O(m?) operations.

The described method underlies the condition number estimator for LINPACK, developed in the 1970s
[16], as described in [11]:

e A K. Cline, C.B. Moler, G.W. Stewart, and J.H. Wilkinson, An estimate for the condition number of
a matrix, STAM J. Numer. Anal., 16 (1979).

The method discussed in that paper yields a lower bound on ||A™}|s and with that on koo (A).

WEEK 1. NORMS 68

Remark 1.5.1.1 Alan Cline has his office on our floor at UT-Austin. G.W. (Pete) Stewart was Robert’s
Ph.D. advisor. Cleve Moler is the inventor of Matlab. John Wilkinson received the Turing Award for his
contributions to numerical linear algebra.

More sophisticated methods are discussed in [21]:

e N. Higham, A Survey of Condition Number Estimates for Triangular Matrices, SIAM Review, 1987.

His methods underlie the LAPACK [1] condition number estimator and are remarkably accurate: most of
the time they provides an almost exact estimate of the actual condition number.

1.6 Wrap Up

1.6.1 Additional homework

Homework 1.6.1.1 For e¢; € R" (a standard basis vector), compute
¢ lleslle =
o llejlh =
o llejlloo =

o lleslly =

Homework 1.6.1.2 For I € R™*" (the identity matrix), compute

« Ml =
« Moo =
o Mz =
e 1l =
e e =
do O 0
0 & 0
Homework 1.6.1.3 Let D = 0 (a diagonal matrix). Compute
0 0 On—1
« D=
* Do =
« |IDllp =
« |Dlr=
Zo
T

Homework 1.6.1.4 Let z = and 1 < p < ooorp=oc.

TN-1
ALWAYS/SOMETIMES/NEVER: ||z;][, < ||z||-

Homework 1.6.1.5 For
A 1 2 -1
-1 1 0/

compute

WEEK 1. NORMS 69

« (Al =
* [[Allee =
. [[Allr =

Homework 1.6.1.6 For A € C™*" define

m—1n—1 |Oé()’0|, Ty |a0,n71|7
1A= > il =) :
=0 7=0 |am—1,0 y T |am—1,n—l|

o TRUE/FALSE: This function is a matrix norm.
e How can you relate this norm to the vector 1-norm?
« TRUE/FALSE: For this norm, ||A| = ||A#]].

o TRUE/FALSE: This norm is submultiplicative.
Homework 1.6.1.7 Let A € C™*". Partition

A=(ao|an |- ans)=

Prove that
o Allr = A" ||F.

o Al = Vlaoll3 + llax 3 + -+ + an—1]3-

o AllF = Vlaol3 + llaxll3 + - + lam—1l5.
Note that here @; = (al)7.
Homework 1.6.1.8 Let x € R™ with ||z|; = 1.
TRUE/FALSE: ||z||2 = 1 if and only if x = *e; for some j.
Solution. Obviously, if z = e; then ||z|1 = ||z]2 = 1.

Assume x # e;. Then |y;| < 1foralli. But then ||z = v/[x02 + - + [xm—112 < V/Ix0| + *+ + [xm—1] =

V1=1.

Homework 1.6.1.9 Prove that if ||z, < 8|z, is true for all z, then ||A||, < B||A||4,0-

1.6.2 Summary

If a, 8 € C with @ = - + aci and 5 = S, + i, where a,., a., By, Be € R, then
e Conjugate: @ = o, — ai.
o Product: aff = (a,8r — afe) + (e + acBr)i.
o Absolute value: |a| = /a2 + a2 = Vaa.

X0 Yo
Let z,y € C™ with x = : and y = : . Then

Xm—1 wm— 1

WEEK 1. NORMS 70

e Conjugate:

o Transpose of vector:

= (X0 o Xmo)

o Hermitian transpose (conjugate transpose) of vector:

a:H:TT:xT:(YO o Xt)

m—1

« Dot product (inner product): 2%y =Z"y = 2Ty =Yoo + - + Xpn_1¥m-1 = Yoico Xiti-

Definition 1.6.2.1 Vector norm. Let || - || : C™ — R. Then || - || is a (vector) norm if for all z,y € C™
and all a € C

o £ #0=|z|]| >0 (|||l is positive definite),
o |laz|| = |ea||lz|| (]| - || is homogeneous), and

o lz+yll <llzll+ llyll (|| - || obeys the triangle inequality).
%

« 2-norm (Euclidean length): [lzlls = Vafz = \/Ixol?+ -+ [xm-1> = /XoXo T+ Xm_1Xm—1

-1
= /2l
—1
+ prnomm: [lally = /o -+ Pomoal? = {/S05" bl

-1
o l-norm: |zl1 = |xo| + -+ [xm—1] = Doieg Xl

o oo-norm: [|z]lee = max(|xol, - -, Xm—1]) = maxy" [xi| = limp_ o0 ||z,
o Unit ball: Set of all vectors with norm equal to one. Notation: ||z| = 1.
Theorem 1.6.2.2 Equivalence of vector norms. Let ||| : C™ — R and ||| - ||| : C™ — R both be vector

norms. Then there exist positive scalars o and T such that for all x € C™

ollzll < llz[l| <l].

[zl < vmlizlla | 2]l < milzflo
]2 < |l=]lx []l2 < vm[z]lo
[elloo <zl | [lelloe < 2

Definition 1.6.2.3 Linear transformations and matrices. Let L : C* — C™. Then L is said to be a
linear transformation if for all & € C and z,y € C"

o L(ax) = aL(x). That is, scaling first and then transforming yields the same result as transforming
first and then scaling.

o L(x+y) = L(z)+ L(y). That is, adding first and then transforming yields the same result as trans-
forming first and then adding.

O

Definition 1.6.2.4 Standard basis vector. In this course, we will use e; € C"™ to denote the standard

WEEK 1. NORMS 71

basis vector with a "1" in the position indexed with j. So,

0

—J

[

(o

|
—_

If L is a linear transformation and we let a; = L(e;) then
A.ZZ(aO‘ ai ""‘ Anp—1)

is the matrix that represents L in the sense that Az = L(x).
Partition C, A, and B by rows and columns

~T ~T

€ a9
C=(erllem)=| : |ia=(a|fam)=| & |
Cm—1 ()
and _
bg
B=(bo| - [bur)=| : |,
b1

then C := AB can be computed in the following ways:

1. By columns:

(ol Lens)= A by | [b) = (Aby |- | Aboy).
In other words, ¢; := Ab; for all columns of C'.
2. By rows:
ar ar B
= . B =
Crn1 al al B

In other words, ¢/ = a! B for all rows of C.
3. As the sum of outer products:
bf
C:=(ao| | ar1) : = agbg + -+ ap_1b} 4,

T
bkfl

which should be thought of as a sequence of rank-1 updates, since each term is an outer product and
an outer product has rank of at most one.

Partition C, A, and B by blocks (submatrices),
Coo || Con-1 Ao |-+ | Aox-1
c=| s d z ,

Cyv-10 || Cvu—1,n-1 Av—10 | 0 | Av—1,x-1

WEEK 1. NORMS 72

and
Boo |---| Bon-1

Br_10 | | Bxk—1,N-1

where the partitionings are "conformal." Then

K-—1
Cij=Y_ AipBy.
p=0

Definition 1.6.2.5 Matrix norm. Let |- | : C™*" — R. Then || - || is a (matrix) norm if for all
A, BeC™™and all a € C

o A#0=|A| >0(] -] is positive definite),
o ||laAll = |al||A|l (]| - || is homogeneous), and

o [|[A+ B <||A|l+ ||B|l (|| - || obeys the triangle inequality).

Let A € C™*™ and
~T
0,0 T 0Qn—1 ag
A= : : =(a |- lana)=|
—_—
Am—-1,0 " " Om—1n-1 A1
Then
e Conjugate of matrix:
Qoo Qonp—1
Z p—
Am—1,0 *°° Om—1n-1
e Transpose of matrix:
Qg0 Qup—10
AT =
aon—1 7 Qm—_1n—1

» Conjugate transpose (Hermitian transpose) of matrix:

Qo0 Qme—1,0

AH =" = A" =

Qop—1 *°° Qm_1n-1

. 1 —1 —1 1 —1 —1)~
 Frobenius norm: [|Allp = /S0 S50l = /X050 lagl3 = /S0 1l

o matrix p-norm: [|Al[, = max,-g % = max|y|,—1 || Az||p.

o matrix 2-norm: ||A||2 = max,£o Hlﬁj\‘k = max|z|,=1 [|Az|2 = [|A¥ ..

o matrix I-norm: ||A|; = max,-o % = max||z||, =1 ||Az||1 = maxo<j<n ||a;|l1 = | AH | oo .

« matrix oo-norm: [[A]|se = maxyo Il = max 1 | 47|00 = maxo<icm ||l = A7 1.

WEEK 1. NORMS 73

Theorem 1.6.2.6 Equivalence of matrix norms. Let | -| : C™*™ = R and ||| -]|| : C™*™ — R both be
matriz norms. Then there exist positive scalars o and T such that for all A € C™*"
ol Al < [[|A][]| < 7|[All.
Al < vm|All2 1Al < ml|Alls | 1Al < vm|Allr

[All2 < VnllAllx [All2 < vm[|All | [[All2 < [|Allr

[Alloe < nllA[lx [Allse < VnllA]2 [Alloe < VnllAllr

[Allr < vnllAlly | [|AllF < rank(A)[All2 | Al < vml[Alle
Definition 1.6.2.7 Subordinate matrix norm. A matrix norm |-|| : C™*™ — R is said to be subordinate
to vector norms || - ||, : C™ = Rand | - |, : C* — R if, for all z € C,

Azl < Az
If || - ||, and || - ||, are the same norm (but perhaps for different m and n), then || - || is said to be subordinate
to the given vector norm. O
Definition 1.6.2.8 Consistent matrix norm. A matrix norm ||| : C™*™ — R is said to be a consistent
matrix norm if it is defined for all m and n, using the same formula for all m and n. %
Definition 1.6.2.9 Submultiplicative matrix norm. A consistent matrix norm || - | : C™*" — R is
said to be submultiplicative if it satisfies
[AB|| < [Alll|BI|-
O
Let A,AA € C™*™ x &, b, € C™, A be nonsingular, and || - || be a vector norm and corresponding
subordinate matrix norm. Then &) 18]
1ol < paggaty IO
[z = ~—— bl
Kk(A)

Definition 1.6.2.10 Condition number of a nonsingular matrix. The value xk(A) = || A||[|A7!]| is

called the condition number of a nonsingular matrix A.

Week 2

The Singular Value Decomposition

2.1 Opening Remarks

2.1.1 Low rank approximation

z.1.1

Lo ik approsinmdbisn

YouTube: https://www.youtube.com/watch?v=12K5aydB9cQ
Consider this picture of the Gates Dell Complex that houses our Department of Computer Science:

It consists of an m x n array of pixels, each of which is a numerical value. Think of the jth column of
pixels as a vector of values, b;, so that the whole picture is represented by columns as

B=(bo by || bu),

where we recognize that we can view the picture as a matrix. What if we want to store this picture with
fewer than m x n data? In other words, what if we want to compress the picture? To do so, we might
identify a few of the columns in the picture to be the "chosen ones" that are representative of the other
columns in the following sense: All columns in the picture are approximately linear combinations of these
chosen columns.

74

https://www.youtube.com/watch?v=12K5aydB9cQ

WEEK 2. THE SINGULAR VALUE DECOMPOSITION (0]

Let’s let linear algebra do the heavy lifting: what if we choose k roughly equally spaced columns in the
picture:

ap = b()
ai = bn/k:—l
ag—1 = b—1)n/k—1,

where for illustration purposes we assume that n is an integer multiple of k. (We could instead choose them
randomly or via some other method. This detail is not important as we try to gain initial insight.) We could

then approximate each column of the picture, b;, as a linear combination of ag, ..., ar—1:
X0,j
bj = X0,j@0 + X1,j01 + - + Xe—1,50k—1 = (a0 ‘ ‘ ar—1)
Xk—1,5

We can write this more concisely by viewing these chosen columns as the columns of matrix A so that
X0,j
bj = Axz;, where A= (ap ‘ ‘ Ar_1) and x; =
Xk—1,5

If A has linearly independent columns, the best such approximation (in the linear least squares sense) is
obtained by choosing
T; = (ATA)ilATbj,

where you may recognize (AT A)"1AT as the (left) pseudo-inverse of A, leaving us with
b~ A(ATA) 71 ATD;.

This approximates b; with the orthogonal projection of b; onto the column space of A. Doing this for every
column b; leaves us with the following approximation to the picture:

Bx | A (ATA) ATy |- | A (ATA) ATy, |,
N——

which is equivalent to
BrA (ATA)TTAT (bo | -+ | bper) =A (ATA)T'ATB = AX.
(20| | oo) X

Importantly, instead of requiring m x n data to store B, we now need only store A and X.
Homework 2.1.1.1 If B is m x n and A is m x k, how many entries are there in A and X 7
Solution.

e Aism x k.

e Xiskxn.

A total of (m + n)k entries are in A and X.
Homework 2.1.1.2 AX is called a rank-k approximation of B. Why?

Solution. The matrix AX has rank at most equal to k (it is a rank-k matrix) since each of its columns

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 76

can be written as a linear combinations of the columns of A and hence it has at most k linearly independent
columns.
Let’s have a look at how effective this approach is for our picture:

original:

]

1 .
[R TN L TEEEREEE J P]

Now, there is no reason to believe that picking equally spaced columns (or restricting ourselves to columns
in B) will yield the best rank-k approximation for the picture. It yields a pretty good result here in part
because there is quite a bit of repetition in the picture, from column to column. So, the question can be
asked: How do we find the best rank-k approximation for a picture or, more generally, a matrix? This would
allow us to get the most from the data that needs to be stored. It is the Singular Value Decomposition
(SVD), possibly the most important result in linear algebra, that provides the answer.

Remark 2.1.1.1 Those who need a refresher on this material may want to review Week 11 of Linear Algebra:
Foundations to Frontiers [26]. We will discuss solving linear least squares problems further in Week 4.

2.1.2 Overview
e 2.1 Opening Remarks

o 2.1.1 Low rank approximation
o 2.1.2 Overview
o 2.1.3 What you will learn

e 2.2 Orthogonal Vectors and Matrices

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 7

[¢]

2.2.1 Orthogonal vectors
o 2.2.2 Component in the direction of a vector

o 2.2.3 Orthonormal vectors and matrices

o

2.2.4 Unitary matrices

o 2.2.5 Examples of unitary matrices

[¢]

2.2.6 Change of orthonormal basis

o]

2.2.7 Why we love unitary matrices choice
2.3 The Singular Value Decomposition

o 2.3.1 The Singular Value Decomposition Theorem
o 2.3.2 Geometric interpretation

o 2.3.3 An "algorithm" for computing the SVD

o 2.3.4 The Reduced Singular Value Decomposition
o 2.3.5 The SVD of nonsingular matrices

o 2.3.6 Best rank-k approximation
2.4 Enrichments

o 2.4.1 Principle Component Analysis (PCA)
2.5 Wrap Up

o 2.5.1 Additional homework

o 2.5.2 Summary

2.1.3 What you will learn

This week introduces two concepts that have theoretical and practical importance: unitary matrices and the
Singular Value Decomposition (SVD).
Upon completion of this week, you should be able to

Determine whether vectors are orthogonal.

Compute the component of a vector in the direction of another vector.
Relate sets of orthogonal vectors to orthogonal and unitary matrices.
Connect unitary matrices to the changing of orthonormal basis.

Identify transformations that can be represented by unitary matrices.

Prove that multiplying with unitary matrices does not amplify relative error.
Use norms to quantify the conditioning of solving linear systems.

Prove and interpret the Singular Value Decomposition.

Link the Reduced Singular Value Decomposition to the rank of the matrix and determine the best
rank-k approximation to a matrix.

Determine whether a matrix is close to being nonsingular by relating the Singular Value Decomposition
to the condition number.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 78

2.2 Orthogonal Vectors and Matrices

2.2.1 Orthogonal vectors

z.2.1

Drthegamdl vechers

YouTube: https://www.youtube.com/watch?v=3zpdTfwZSEo

At some point in your education you were told that vectors are orthogonal (perpendicular) if and only
if their dot product (inner product) equals zero. Let’s review where this comes from. Given two vectors
u,v € R™, those two vectors, and their sum all exist in the same two dimensional (2D) subspace. So, they
can be visualized as

where the page on which they are drawn is that 2D subspace. Now, if they are, as drawn, perpendicular
and we consider the lengths of the sides of the triangle that they define

vl

a2

then we can employ the first theorem you were probably ever exposed to, the Pythagorean Theorem, to
find that

[ull3 + [lv]l3 = [lu+olf3-
Using what we know about the relation between the two norm and the dot product, we find that
uTu+vTv = (u+v)T(u+v)

& < multiply out >
uTu + Ty =uTu + uTv + vTu + vTy

& < uTv = vTu if u and v are real-valued >
uTu+vTv =uTu+2uTv 4+ 0w

& < delete common terms >
0=2u"v

so that we can conclude that u’v = 0.
While we already encountered the notation " = as an alternative way of expressing the length of a vector,
|z]l2 = VaHx, we have not formally defined the inner product (dot product), for complex-valued vectors:

H

https://www.youtube.com/watch?v=3zpdTfwZSEo

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 79

Definition 2.2.1.1 Dot product (Inner product). Given z,y € C™ their dot product (inner product)

is defined as
m—1

ey =7y = 2Ty = Xovo + Xath1 + -+ Xpno1¥m—1 = Z Xi¥i-

=0

H

The notation ¥ is short for Z7, where T equals the vector z with all its entries conjugated. So,

fy
= < expose the elements of the vectors >
) djm 1
= < H _
[x \ ¢o
Xm—1 1pmfl
= < conjugate the elements of x >
_ T
Xo Yo
mel 'l/)m—l
= < view x as a m x 1 matrix and transpose >
Yo
(YO ‘ ‘ Xm—l)
wmnfl
= < view zf as a matrix and perform matrix-vector multiplication >
m—1
Zz =0 szb

Homework 2.2.1.1 Let z,y € C™.
ALWAYS/SOMETIMES/NEVER: zHy =y .

Answer. ALWAYS
Now prove it!

Solution.

m—1 m—1
ey = "X =Y Xt =

i=0 i=0 i=0
Homework 2.2.1.2 Let x € C™.
ALWAYS/SOMETIMES/NEVER: 27z is real-valued.

Answer. ALWAYS
Now prove it!

Solution. By the last homework,

A complex number is equal to its conjugate only if it is real-valued.
The following defines orthogonality of two vectors with complex-valued elements:

Definition 2.2.1.2 Orthogonal vectors. Let z,y € C™. These vectors are said to be orthogonal
(perpendicular) iff 2y = 0. O

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 80

2.2.2 Component in the direction of a vector

2,02
Companent in the directicn of
& wacher

YouTube: https://www.youtube.com/watch?v=CqcJ6Nh1QWg
In a previous linear algebra course, you may have learned that if a,b € R™ then

~ aTb aa
b:Ta:Tb
a” a a”a

equals the component of b in the direction of a and

~ afp aa’?
b= a=—
afa afa
equals the component of b in the direction of a and
H

~ aa

br=b—b=(1- —

=)

equals the component of b orthogonal to a.

Remark 2.2.2.1 The matrix that (orthogonally) projects the vector to which it is applied onto the vector

a is given by
aa'

afla
while
aa'
afla

is the matrix that (orthogonally) projects the vector to which it is applied onto the space orthogonal to the
vector a.

Homework 2.2.2.1 Let ¢ € C™.
ALWAYS/SOMETIMES/NEVER>:

aa™ aat aa™
ala afla ala’

Interpret what thi s means about a matrix that projects onto a vector.

Answer. ALWAYS.
Now prove it.

https://www.youtube.com/watch?v=CqcJ6Nh1QWg

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 81

aa’l aa’l
atla atla

< multiply numerators and denominators >

Solution.

= < associativity >
a(a a)a’?
(a”a)(aa)
= < aq is a scalar and hence commutes to front >
CLHCL(l(lH
(afa)(afa)
= < scalar division >

U.U.H

ala-

Interpretation: orthogonally projecting the orthogonal projection of a vector yields the orthogonal pro-
jection of the vector.

Homework 2.2.2.2 Let ¢ € C™.
ALWAYS/SOMETIMES/NEVER:

aa’® aa'l
) Y
(aHa> < aHa>

(the zero matrix). Interpret what this means.

Answer. ALWAYS.
Now prove it.

Solution.

aa’l _aa®l
atla atla

< distribute >

(=
(o) = (24) ()
(

= < last homework >

aa\ _ (aa®
atla atla

Interpretation: first orthogonally projecting onto the space orthogonal to vector a and then orthogonally
projecting the resulting vector onto that a leaves you with the zero vector.

Homework 2.2.2.3 Let a,b € C™, b= %b, and bt = b —b.

ALWAYS/SOMETIMES/NEVER: b¥b = 0.

Answer. ALWAYS.
Now prove it.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 82

Solution. R
bH bt

= < substitute b and b+ >

o \H ~
(20) D)

= < (Az)H = 2 A, substitute b ~b>
H (aa®? i aa®l
b (%) (1)b

afla
< (((zy™) /o) = y2t /o if o is real >
b et (1 — s)b
= < last homework >
bH0b
= <0x=0:470=0>
0.

2.2.3 Orthonormal vectors and matrices

Drthensrmal vackers and
mal rices

YouTube: https://www.youtube.com/watch?v=GFfvDpj5dzw
A lot of the formulae in the last unit become simpler if the length of the vector equals one: If ||uljs = 1
then

o the component of v in the direction of u equals

ufly H
u=u"vu.

ufy

e the matrix that projects a vector onto the vector u is given by

uu
iy = w”
ufuy
e the component of v orthogonal to u equals
ufy I
V-~ U=V — U VU,
utu

e the matrix that projects a vector onto the space orthogonal to w is given by

Homework 2.2.3.1 Let u # 0 € C™.
ALWAYS/SOMETIMES/NEVER u/||ul|2 has unit length.

Answer. ALWAYS.
Now prove it.

https://www.youtube.com/watch?v=GFfvDpj5dzw

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 83

Solution.

< homogenuity of norms >

< algebra >

This last exercise shows that any nonzero vector can be scaled (normalized) to have unit length.

Definition 2.2.3.1 Orthonormal vectors. Let ug,u1,...,u,_1 € C™. These vectors are said to be
mutually orthonormal if for all 0 <i,5 <n

1 ifi=y
H, = _ J
Ui Uy = { 0 otherwise

%
The definition implies that ||u;||2 = \/ufu; = 1 and hence each of the vectors is of unit length in addition
to being orthogonal to each other.
The standard basis vectors (Definition 1.3.1.3)

—1
{ej :’;0 C(Cm,

where

<— entry indexed with j

@
<L
|
—

are mutually orthonormal since, clearly,

1 ifi=y
H, _ J
€ G = { 0 otherwise.

Naturally, any subset of the standard basis vectors is a set of mutually orthonormal vectors.

Remark 2.2.3.2 For n vectors of size m to be mutually orthonormal, n must be less than or equal to m.
This is because n mutually orthonormal vectors are linearly independent and there can be at most m linearly
independent vectors of size m.

A very concise way of indicating that a set of vectors are mutually orthonormal is to view them as the
columns of a matrix, which then has a very special property:

Definition 2.2.3.3 Orthonormal matrix. Let @@ € C™*" (with n < m). Then @ is said to be an
orthonormal matrix iff Q7 Q = I. O

The subsequent exercise makes the connection between mutually orthonormal vectors and an orthonormal
matrix.
Homework 2.2.3.2 Let @ € C™*" (with n < m). Partition Q = (qo ‘ q ‘ ‘ Gn-1)

TRUE/FALSE: @ is an orthonormal matrix if and only if qo,q1, ..., ¢,—1 are mutually orthonormal.

Answer. TRUE
Now prove it!

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 84

Solution. Let Q € C™*" (with n < m). Partition Q = (Qo ‘ ¢ ‘ ‘ Gn—1) Then
Q"Q = (wl|a | |aws) (w|lal| | a)

q

= | 0 |(wlal o)
%Iz{—l
adlao | dar || ddanr

B adq | ' |-] aflqn
ad o [¢ | | i ian

Now consider that Q7 Q = I:

a'a | af'ar |- | af'an 1]0]---]0
a'qo [af'er [-] affgu 0[1[---]0
AR T R ojo] 1
Clearly @ is orthonormal if and only if ¢g, q1,...,¢,—1 are mutually orthonormal.

Homework 2.2.3.3 Let Q € C™*™,
ALWAYS/SOMETIMES/NEVER: If Q¥Q = I then QQ¥ =1.

Answer. SOMETIMES.
Now explain why.

Solution.

o If Q is a square matrix (m = n) then Q7 Q = I means Q! = Q. But then QQ ! = I and hence
QT =1.

« If Q is not square, then Q@ = I means m > n. Hence @ has rank equal to n which in turn means
QQ¥ is a matrix with rank at most equal to n. (Actually, its rank equals n.). Since I has rank equal
to m (it is an m x m matrix with linearly independent columns), QQ cannot equal I.

More concretely: let m > 1 and n = 1. Choose Q = (€o) Then Q7Q =elleg =1=1. But
10
QQ" =eoef = | 0 0

2.2.4 Unitary matrices

.24

Wnilary malricas

YouTube: https://www.youtube.com/watch?v=izONEmO9uqw

https://www.youtube.com/watch?v=izONEmO9uqw

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 85

Homework 2.2.4.1 Let Q € C™*™ be an orthonormal matrix.
ALWAYS/SOMETIMES/NEVER: Q7! = Qf and QQ¥ =1.
Answer. SOMETIMES
Now explain it!
Solution. If @ is unitary, then it is an orthonormal matrix and square. Because it is an orthonormal

matrix, QFQ = I. If A, B € C™*™, the matrix B such that BA = I is the inverse of A. Hence Q! = Q.
Also, if BA =TI then AB = I and hence QQ = 1.
) is an

Definition 2.2.4.1 Unitary matrix. Let U € C™*™. Then U is said to be a unitary matrix if and only
if UHU = I (the identity). O

However, an orthonormal matrix is not necessarily square. For example, the matrix Q = (

SSEN

orthonormal matrix: QT Q = I. However, it doesn’t have an inverse because it is not square.
If an orthonormal matrix is square, then it is called a unitary matrix.

Remark 2.2.4.2 Unitary matrices are always square. Sometimes the term orthogonal matrix is used
instead of unitary matrix, especially if the matrix is real valued.

Unitary matrices have some very nice properties, as captured by the following exercises.
Homework 2.2.4.2 Let Q € C™*™ be a unitary matrix.
ALWAYS/SOMETIMES/NEVER: Q! = Qf and QQY = I.

Answer. ALWAYS
Now explain it!

Solution. If Q is unitary, then it is square and Q”Q = I. Hence Q7' = Q and QQ¥ = I.

Homework 2.2.4.3 TRUE/FALSE: If U is unitary, so is UX.

Answer. TRUE
Now prove it!

Solution. Clearly, U is square. Also, (U)HUH = (UUH)H = I by the last homework.
Homework 2.2.4.4 Let Uy, Uy € C™*™ both be unitary.
ALWAYS/SOMETIMES/NEVER: UyU,, is unitary.

Answer. ALWAYS
Now prove it!

Solution. Obviously, UyU; is a square matrix.
Now,
U (Uyth) = U vfu, Uy = U, =1
S~ S~

I I
Hence UyU; is unitary.

Homework 2.2.4.5 Let Uy, Uy, ...,Ux_1 € C™*™ all be unitary.
ALWAYS/SOMETIMES/NEVER: Their product, UyUs - - - Ug—_1, is unitary.

Answer. ALWAYS
Now prove it!

Solution. Strictly speaking, we should do a proof by induction. But instead we will make the more informal

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 86

argument that
(UOUl"'Uk—l)HUOUl"‘Uk—l — U;f,l"'Uf{UonUr“Uk—l

vh, - vl vflu, vy - Uy =1
N——

I
—_——

I
I
I

(When you see a proof that involed - - -, it would be more rigorous to use a proof by induction.)

Remark 2.2.4.3 Many algorithms that we encounter in the future will involve the application of a sequence
of unitary matrices, which is why the result in this last exercise is of great importance.

Perhaps the most important property of a unitary matrix is that it preserves length.
Homework 2.2.4.6 Let U € C™*™ be a unitary matrix and € C™. Prove that |Uz||2 = ||z]|2.

Solution.

1U=]3

= < alternative definition >
(Uz)"Uz

= < (Ax)H = HAH >
cHUH U

= < U is unitary >
zHy

= < alternative definition >
3.

The converse is true as well:

Theorem 2.2.4.4 If A € C™*™ preserves length (||Az|s = ||z||2 for all x € C™), then A is unitary.
Proof. We first prove that (Az)f (Ay) = 2y for all x,y by considering ||z — y||3 = ||A(z — y)||3. We then
use that to evaluate elf AH Ae;.

Let x,y € C™. Then

lz =yl = Az —)3
& < alternative definition >

(z—y)(z—y) = (Az —y)) T Az —y)
= < (Bz)H = HBH >

(x—yfz—y) =(@-yTATA(z —y)
& < multiply out >

oy — oty —yfy +yfly =T A" Az — 2 AT Ay — yH AH Az + yH AT Ay
& < alternative definition ; zHy = y" 2 >

I3 = (zy + 27y) + [lyl3 = [|Az]3 — (a7 AT Ay + 2 A7 Ay) + || Ayl|3
& <|Az|z = ||z[]2 and [[Ayll2 = |lyll2; & + @ = 2Re(a) >

Re (zfy) = Re ((Az)" Ay)

One can similarly show that Im (z*y) = Im ((Az)” Ay) by considering A(iz — y).

Conclude that (Az)f (Ay) = zfy.

We now use this to show that A7 A = I by using the fact that the standard basis vectors have the
property that

1 ifi=y
H, _ J
€ ¢ = { 0 otherwise

and that the 4, j entry in A7 A equals e A Ae;.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 87

Note: I think the above can be made much more elegant by choosing « such that azfy is real and
then looking at ||z + ayll2 = ||A(x + ay)]|2 instead, much like we did in the proof of the Cauchy-Schwartz
inequality. Try and see if you can work out the details. ||

Homework 2.2.4.7 Prove that if U is unitary then ||U||2 = 1.
Solution.
U2
= < definition >
max”xu,z:l ||UCL'||2
= < unitary matrices preserve length >
Max|jz),=1 |22
< algebra >

1
(The above can be really easily proven with the SVD. Let’s point that out later.)

Homework 2.2.4.8 Prove that if U is unitary then ko (U) = 1.

Solution.
KJQU
= < definition >
U200 |2
= < both U and U~ are unitary ; last homework >
1x1

= < arithmetic >
1

The preservation of length extends to the preservation of norms that have a relation to the 2-norm:d

Homework 2.2.4.9 Let U € C™*™ and V € C™*" be unitary and A € C"™*". Show that
o [[UTA2 = [IA]2.

 [AV]2 = [A]l2.
o |UTAV|z = || All2.

Hint. Exploit the definition of the 2-norm:

[All2 = max [[Az]l2.
lll2=1

Solution.

IU™ A2
= < definition of 2-norm >
mawaHz:l ||UHAJZ||2
= < U is unitary and unitary matrices preserve length >
maxuz‘h:l ||A1‘H2
= < definition of 2-norm >
[A]2.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 88

1AV]2
= < definition of 2-norm >
max|z,=1 || AV x|z
= < VH is unitary and unitary matrices preserve length >
max| v |,=1 [A(V)|2
= < substitute y = Va >
max|y|,=1 | Ay||2
= < definition of 2-norm >

[1A]]2.
o The last part follows immediately from the previous two:
[UHAV |2 = [UH(AV)]2 = [[AV]2 = [|All2.

Homework 2.2.4.10 Let U € C™*™ and V € C™*" be unitary and A € C™*™. Show that
o« [[U7A|r = ||AllF.
o [|AV[F = [|A]lF
« [UFAV|F = [lAllF.

Hint. How does ||A||r relate to the 2-norms of its columns?

Solution.

o Partition

A:(ao ‘ ‘ QAp—1)
. . —1
Then we saw in Subsection 1.3.3 that [|A[7 = =72 [[al5.
Now,
IU*All%
= < partition A by columns >
1" (ao |-+ | an-1) I
= < property of matrix-vector multiplication >
I(UMag | -+ | UMan—1) [

= < exercise in Chapter 1 >
-1
>0 1U™ayll3
= < unitary matrices preserve length >
n—1 2
2 =0 llajll3
= < exercise in Chapter 1 >
Al

o To prove that ||AV | r = ||A||r recall that |AH|r = ||A| F.

e The last part follows immediately from the first two parts.
In the last two exercises we consider UH AV rather than UAV because it sets us up better for future
discussion.

2.2.5 Examples of unitary matrices

In this unit, we will discuss a few situations where you may have encountered unitary matrices without
realizing. Since few of us walk around pointing out to each other "Look, another matrix!", we first consider if
a transformation (function) might be a linear transformation. This allows us to then ask the question "What
kind of transformations we see around us preserve length?" After that, we discuss how those transformations
are represented as matrices. That leaves us to then check whether the resulting matrix is unitary.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 89

2.2.5.1 Rotations

Mk ik I e Wpmdiad b B0 b

225
Examples oF unitary matrices:
redlatices

YouTube: https://www.youtube.com/watch?v=COmlDZ280hc
A rotation in 2D, Ry : R? — R?, takes a vector and rotates that vector through the angle 6:

s Rg(x)

If you think about it,

e If you scale a vector first and then rotate it, you get the same result as if you rotate it first and then
scale it.

e If you add two vectors first and then rotate, you get the same result as if you rotate them first and
then add them.

Thus, a rotation is a linear transformation. Also, the above picture captures that a rotation preserves the
length of the vector to which it is applied. We conclude that the matrix that represents a rotation should
be a unitary matrix.

Let us compute the matrix that represents the rotation through an angle 6. Recall that if L : C* — C™
is a linear transformation and A is the matrix that represents it, then the jth column of A, a;, equals L(e;).
The pictures

and
cos(8) R,(e) =
sin(6)

- Sln(@) el

""""""'-&(eo)= cos(@) | g

sin(0) 8 |} cos(6)

https://www.youtube.com/watch?v=C0mlDZ28Ohc

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 90

illustrate that
cos(f) — sin(6)

et = (20} Rty = ().

o) = (sl |)) (3.
Homework 2.2.5.1 Show that (cos(8) —sin(6))

sin(d) cos(0)

Thus,

is a unitary matrix. (Since it is real valued, it is usually called an orthogonal matrix instead.)
Hint. Hint: use ¢ for cos(#) and s for sin(f) to save yourself a lot of writing!

Solution.

Ee A (e

— sin(0)
cos(6)
the matrix is real valued >

<
(cos(6) | —sin(0))T(cos(8) | —sin())
<

cos(0) sin(6) cos(0)
transpose >

(=50 o) ()| o))

= < multiply >

(cos? () + sin?() | —cos(6) sin(§) + sin(6) cos(d))
—sin(0) cos(f) + cos(0) sin(6) | sin?(0) + cos?(0)
< geometry; algebra >

(o5

Homework 2.2.5.2 Prove, without relying on geometry but using what you just discovered, that cos(—6) =
cos(d) and sin(—0) = —sin(6)

Solution. Undoing a rotation by an angle # means rotating in the opposite direction through angle 6 or,
equivalently, rotating through angle —f. Thus, the inverse of Ry is R_y. The matrix that represents Ry is

given by .
((contey s)

and hence the matrix that represents R_y is given by

(o) e,

Since R_g is the inverse of Ry we conclude that

(o)) = (S ey).

But we just discovered that

(56 o) = (o) - (n) =6,

(38 2)= (o2t =)
)

from which we conclude that cos(—6) = cos(f) and sin(—6) = —sin(6).

Hence

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 91

2.2.5.2 Reflections

Bl s 1 g M i i i | B P

225
Examples oF unitary matrices:
et ticns

YouTube: https://www.youtube.com/watch?v=r8S04qqcc-o

Picture a mirror with its orientation defined by a unit
length vector, u, that is orthogonal to it. u‘

X
We will consider how a vector, x, is reflected by this
mirror. u
X
(1" X)u
The component of z orthogonal to the mirror equals
the component of z in the direction of u, which equals u

(uTz)u.

https://www.youtube.com/watch?v=r8S04qqcc-o

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 92

The orthogonal projection of & onto the mirror is then

given by the dashed vector, which equals 2 — (u?x)u.

(u" X)u

To get to the reflection of x, we now need to go further

,
yet by —(ul'z)u. u —(u' X)u

—(u' X)u

We conclude that the transformation that mirrors (re-

flects) = with respect to the mirror is given by M (z) =

r—2(uTz)u.

M(x)=x=2"x)u

The transformation described above preserves the length of the vector to which it is applied.
Homework 2.2.5.3 (Verbally) describe why reflecting a vector as described above is a linear transformation.
Solution.

e If you scale a vector first and then reflect it, you get the same result as if you reflect it first and then
scale it.

e If you add two vectors first and then reflect, you get the same result as if you reflect them first and
then add them.

Homework 2.2.5.4 Show that the matrix that represents M : R?® — R3 in the above example is given by
I—2uu”.

Hint. Rearrange z — 2(u”z)u.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 93

Solution. We notice that
r—2uTz)u
= < ar =za >
x —2u(u’l'r)
= < associativity >
Iz — 2uu’x
= < distributivity >
(I —2uu®)z.

Hence M (z) = (I — 2uu®)z and the matrix that represents M is given by I — 2uu?.
Homework 2.2.5.5 (Verbally) describe why (I — 2uu®)™! = I — 2uu® if u € R® and ||jul|z = 1.

Solution. If you take a vector, x, and reflect it with respect to the mirror defined by wu, and you then
reflect the result with respect to the same mirror, you should get the original vector z back. Hence, the
matrix that represents the reflection should be its own inverse.

Homework 2.2.5.6 Let M : R?* — R3 be defined by M(z) = (I — 2uu®)x, where |Jul|s = 1. Show that the
matrix that represents it is unitary (or, rather, orthogonal since it is in R3*3).

Solution. Pushing through the math we find that

(I — 2uu™)T(I — 2uu™)

= <(A+B7T=AT+BT>
(I — uu™)T)(I — 2uu®)

= < (@aABT)T = aBAT >
(I —2uu®)(I — 2uuT)

= < distributivity >
(I —2uu®) — (I — 2uu®)(2uu?)

= < distributivity >
I —2uu® — 2uu® + 2uu® 2uu®

= <uTu=1>
I — 4uu™ + 4uu®
= <A—-A=0>

1.

Remark 2.2.5.1 Unitary matrices in general, and rotations and reflections in particular, will play a key
role in many of the practical algorithms we will develop in this course.

2.2.6 Change of orthonormal basis

Z.2.5

Change of effhanormal bagis
o

YouTube: https://www.youtube.com/watch?v=DwTVkdQKJIK4

Homework 2.2.6.1 Consider the vector z = (-2 > and the following picture that depicts a rotated basis

1
with basis vectors ug and wu;.

https://www.youtube.com/watch?v=DwTVkdQKJK4

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 94

What are the coordinates of the vector x in this rotated system? In other words, find ¥ = < ;0 > such
1

that S(\QU() + 5(\1’&1 =x.

Solution. There are a number of approaches to this. One way is to try to remember the formula you may
have learned in a pre-calculus course about change of coordinates. Let’s instead start by recognizing (from
geometry or by applying the Pythagorean Theorem) that

v (B2)-40) m () 2(7)

Here are two ways in which you can employ what you have discovered in this course:

e Since ug and u; are orthonormal vectors, you know that

x
= < ug and wu; are orthonormal >
(ud z)ug + (ufz)u,
N—— N———
component in the component in the
direction of ug direction of uq

= < instantiate ug and u; >

(2 (1) () (2 () ()

p 2
—%uo + %ul.

e An alternative way to arrive at the same answer that provides more insight. Let U = () ‘ Uy)

WEEK 2. THE SINGULAR VALUE DECOMPOSITION
Then
= < U is unitary (or orthogonal since it is real valued) >

= < instantiate U >

o) ()

= < matrix-vector multiplication >
T
Uy T
(uolur) (-42)
= < instantiate >

sl 1\ [-2
(ol)| ~NAAN!

NG -1 -2
2 1 1
= < evaluate >

V2
<>(f)

= < simplify >

i (#(7)

Below we compare side-by-side how to describe a vector x using the standard basis vectors e, .
(on the left) and vectors uo, ..., u,—1 (on the right):

95

<3 €m—1

WEEK 2. THE SINGULAR VALUE DECOMPOSITION

96
Xo Ugm
The vector z = : describes the vec- The vector T = : describes the vector
T
Xm—1 Uy 1T
tor x in terms of the standard basis vectors z in terms of the orthonormal basis ug, ..., Upm_1:
€0y---,Em—1"
x
T <x=Ilx=UU"2 >
<zg=Ilz=IIz=1ITx > UUH
Iy < expose columns of U >
= < expose columns of I > ud!
el .
0 (wo [fuma)| o |
(eof fema)f + |= W
€m—1 < evaluate >
< evaluate > ullz
T
i (’LLO“"‘Umfl)
(ol]ema) : ul
emjl Lz
T, _
<€ T =X >
Xo
(eof - lema)f
Xm—1 < evaluate >
< evaluate > ué{xuo + u{{xul + -+ ugflxum,l.
Xo€o + X1€1 + -+ Xm—1€m—1-
T T
0 X ={q,Xq, +q, Xq,
Xe]zeljxelz(P J 3
A -4 2
X
A
e
I Ilustration:
>

e()

R 4

Xo€y = 317»"’(60
Ilustration:
Another way of looking at this is that if ug, u1,

3
0
.+, Um—1 is an orthonormal basis for C, then any z € C™
can be written as a linear combination of these vectors:

T = QoUp + aqur + -+ Qp—1Um—1-
Now,
H, _ . H
u;x u; (ouo + oug + - -+ o 1ui—1 F oy + Ui+ 1 U—1)
H H H
g U ug +op U U oo U Ui
—— ——
0 0 0
H H H
+ o upu; oy U U1 Q1 U U1
S~— ——
1 0 0
Q.
Thus uf

i = ay, the coefficient that multiplies w;.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 97

Remark 2.2.6.1 The point is that given vector & and unitary matrix U, U” 2 computes the coefficients for
the orthonormal basis consisting of the columns of matrix U. Unitary matrices allow one to elegantly change
between orthonormal bases.

2.2.7 Why we love unitary matrices

.27

‘Why = love uniliry malrices

YouTube: https://www.youtube.com/watch?v=d8-AeC3Q8Cw
In Subsection 1.4.1, we looked at how sensitive solving

Ax =D

is to a change in the right-hand side
Alx+d&)=b+d

when A is nonsingular. We concluded that

o Ly 18

b japary 120

e = A g
W)

when an induced matrix norm is used. Let’s look instead at how sensitive matrix-vector multiplication is.

Homework 2.2.7.1 Let A € C"*" be nonsingular and x € C™ a nonzero vector. Consider

y=Az and y+dy= Az + &).

o that I]
T < ANATH T
K(A)
where || - || is an induced matrix norm.
Solution. Since z = A~ !y we know that
] < A= 1yl
and hence 1 1
S (2.2.1)
lyll [l
Subtracting y = Az from y + dy = A(z + &) yields
Sy = Adr
and hence
lloyll < [[Alllla|]. (2.2.2)

Combining (2.2.1) and (2.2.2) yields the desired result.
There are choices of x and & for which the bound is tight.

https://www.youtube.com/watch?v=d8-AeC3Q8Cw

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 98

What does this mean? It means that if as part of an algorithm we use matrix-vector or matrix-matrix
multiplication, we risk amplifying relative error by the condition number of the matrix by which we multiply.
Now, we saw in Section 1.4 that 1 < x(A). So, if we there are algorithms that only use matrices for which
k(A) =1, then those algorithms don’t amplify relative error.

Remark 2.2.7.1 We conclude that unitary matrices, which do not amplify the 2-norm of a vector or matrix,
should be our tool of choice, whenever practical.

2.3 The Singular Value Decomposition

2.3.1 The Singular Value Decomposition Theorem

z.3.1

The S¥D

YouTube: https://www.youtube.com/watch?v=uBo3XAGt24Q
The following is probably the most important result in linear algebra:

Theorem 2.3.1.1 Singular Value Decomposition Theorem. Given A € C™*" there exist unitary
U € C™ ™ unitary V€ C™", and X € R™*"™ such that A= UXV . Here

oo 0 - 0
> 0 o -- 0
s (20N s = | . (2.3.1)
0 0 : : N .
0 0 - o4
and o9 > 01 > -+ > o,_1 > 0. The values og,...,0._1 are called the singular values of matriz A. The

columns of U and V' are called the left and right singular vectors, respectively.
Recall that in our notation a 0 indicates a matriz of vector "of appropriate size" and that in this setting
the zero matrices in (2.3.1) may be 0 x 0, (m —1r) x 0, and/or 0 x (n —1r).

Before proving this theorem, we are going to put some intermediate results in place.

Remark 2.3.1.2 As the course progresses, we will notice that there is a conflict between the notation that
explicitly exposes indices, e.g.,
U:(UO (VA1 Un_1>

and the notation we use to hide such explicit indexing, which we call the FLAME notation, e.g.,
U= (U() ‘ (751 U2)
The two linked by

Ug Ug—1 Uk Uk4+1 Unp—1
N———— ~ N—————
Uy Ll U,

In algorithms that use explicit indexing, k often is the loop index that identifies where in the matrix or
vector the algorithm currently has reached. In the FLAME notation, the index 1 identifies that place. This
creates a conflict for the two distinct items that are both indexed with 1, e.g., w1 in our example here. It is
our experience that learners quickly adapt to this and hence have not tried to introduce even more notation
that avoids this conflict. In other words: you will almost always be able to tell from context what is meant.
The following lemma and its proof illustrate this further.

https://www.youtube.com/watch?v=uBo3XAGt24Q

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 99

Lemma 2.3.1.3 Given A € C™*", with 1 < n < m and A # 0 (the zero matriz), there exist unitary
matrices U € C™*™ and V € C™"*™ such that

~ 0\ ~
A=U (001 5 > VH where o1 = I A]l2-

Proof. In the below proof, it is really imporant to keep track of when a line is part of the partitioning of a
matrix or vector, and when it denotes scalar division.
Choose o1 and v; € C™ such that

. ||51H2 = 1; and
« o1 = [[Avil2 = [[All2-

In other words, 97 is the vector that maximizes maxj,,=1 ||Az|2.
Let w; = Av;/o1. Then

[ar]l2 = [[Av1l2/01 = [[Avillo/[[All2 = [[All2/[|All2 = 1.

Choose (72 e Cmx(m=1) and ‘72 e C"*("=1) 5o that

U:(ﬂl‘ﬁg>and‘~/:(ﬁ1‘%)
are unitary. Then

UHAV
= < instantiate >
~ H ~
(@m0) A(0|W)
= < multiply out >
all Av, | all AV,
UL A, | UFF AV,
= < Avy = oquy >
(ol | Wl AV,)

o U, | UF AV,
= <@y = 1,08, = 0; pick w = VARG, and B = UF AV, >

g1 wH
0| B ’

where w = %HAHﬂl and B = ﬁ2HA\~/2

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 100

We will now argue that w = 0, the zero vector of appropriate size:

o7
= < assumption >
2
[V
= < 2-norm is invariant under multiplication by unitary matrix >
U7 AV 3
= < definition of || - ||z >
10" AVe|3
MaXz2£0 a2
= < see above >
H 2
g1 w
xr
0| B) i
HaXaz£0 12173

> < x replaced by specific vector >
g1 ’U)H 01 :
0| B w
2
J1
ISall
= < multiply out numerator >

0% +wfw ’
Bw

2
2
01
1G]
RYE o \ |
()| = ot + el = ot | (-2 =+ w0 >

. < 2

2
(02 + whw)?/(o? £ wh
= < algebra >

a% + wHw.

2

w)

Thus 02 > 02 + wHw which means that w = 0 (the zero vector) and U¥ AV = (%‘%) so that

_ (. 01]0 T H
A_U<0 B)V. []

Hopefully you can see where this is going: If one can recursively find that B = UgX gV, then

A = ﬁ(‘”o jH

p— H %

_ =(1]0 o1] 0 1| 0 \og

U(ow)(om)(ovg)v

(1] 0 o] 0 ~ /1] 0 \\"

= (atw) (51) (Vo) -
U > VH

The next exercise provides the insight that the values on the diagonal of ¥ will be ordered from largest
to smallest.

g1 0

Homework 2.3.1.1 Let A € C™*" with A = 0B

ALWAYS/SOMETIMES/NEVER: || B2 < 0.
Solution. We will employ a proof by contradiction. Assume that ||B|l2 > o1. Then there exists a vector z

) and assume that ||A|2 = o7.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 101

with [|z|l2 = 1 such that || Bz = [[Bz||2 = max|;|,—1 || Bz[|2. But then

1A]l2
= < definition >

InaXHgEH2 1 HAxHQ

> < pick a specific vector with 2 — norm equal to one >

< 1nstantlate A>

(%)(2%

< partitioned matrix-vector multiplication >

w)l

2

Yo
= <) = s + iz >
hn 9
| Bz]|2
= < assumption about z >
1Bll2
> < assumption >
g1.

which is a contradiction.
Hence ||B||2 < o01.

We are now ready to prove the Singular Value Decomposition Theorem.
Proof of Singular Value Decomposition Theorem for n < m. We will prove this for m > n, leaving the case
where m < n as an exercise.
Proof by induction: Since m > n, we select m to be arbritary and induct on n.
o Base case: n=1.
In this case A = (a1) where a; € C™ is its only column.

Case 1: a3 = 0 (the zero vector).

Then
A:(0): I’";m (4‘7) I\li}’

VH

so that U = I,,xm, V = I1x1, and X7, is an empty matrix.
Case 2: a; # 0.
Then
A=(a)=(u)(lall)

where u; = a1/||a1]|2. Choose U; € Cm*(m=1) g6 that U = (U1 ‘ Us) is unitary. Then

A = (al)

Il I
—~
IS~
= =
T~~~
=
=
~— =
o
N—
o=
I°H
N~
—
—_
SN—"
T

Il
~
™
<
=

where

OU:(UO‘Ul)a

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 102

) .
o XY= (%) with Srp = (01) and o1 = [Ja1]l2 = [|A]2

oV = (1)
e Inductive step:

Assume the result is true for matrices with 1 < k columns. Show that it is true for matrices with &+ 1
columns.

Let A € C™*(* D) with 1 <k < n.
Case 1: A =0 (the zero matrix)

Then
A= Im m I + +
X < 0 (1)) (k+1)x (k+1)

so that U = Inxm, V = I(p41)x(k+1), and Xy is an empty matrix.
Case 2: A #0.
Then || Al|2 # 0. By Lemma 2.3.1.3, we know that there exist unitary U € C™*™ and V € C(k+1)x(k+1)

such that A = U < (Bl g) V with oy = ||A]J2.

By the inductive hypothesis, there exist unitary Up € Cm=Dx(m=1) unitary Vg € CF** and Y5 €

R(m=1xk guch that B = ﬁBiBVé{ where Y = < EgL 8), Yo = diag(oa, -+ ,0,-1), and o9 >
> 001 > 0.
Now, let

(1] 0 (1] 0 (o] 0

(There are some really tough to see "checks" in the definition of U, V, and X!!) Then A = UXVH
where U, V, and ¥ have the desired properties. Key here is that oy = ||A|2 > || B]|2 which means that
g1 2 g9.

e By the Principle of Mathematical Induction the result holds for all matrices A € C™*" with m > n.

Homework 2.3.1.2 Let ¥ = diag(oo, . ..,0,-1). ALWAYS/SOMETIMES/NEVER: |||z = max |o;|.

Answer. ALWAYS
Now prove it.

Solution. Yes, you have seen this before, in Homework 1.3.5.1. We repeat it here because of its importance
to this topic.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 103

IZ13 = max)g),—1 X3 ,
0o 0 0 X0
0 0'1 “ e 0 Xl
= MaX|jp,=1 : .
0 0 s Ope1 Xn—1)
2
g0X0
01X1
= MaX|p,=1
On—1Xn—1 2
—1
= max|g|,=1 |2 IUijIQ}
—1
= maxag | 255 [log 2l?]]
[—n—1 _
< maxyg, 1 |25 [maxi o2y 7] |
I 1 —1
= max|,=1 [maxisy ol? 375 Ixﬂ

- 2
= (max}Zy |oi]) max,=1 |23
(max?z_o1 |0i|)
so that ||Ss < max}=; |oy].
Also, choose j so that |o;| = max}~}' |o;|. Then

1]z = max|z,=1 |1Zz]l2 > [|Sejll2 = lojesllz = lojlllesllz = o] = max}— |o4].

so that max~ ' |o;| < |22 < max!~;' |o;|, which implies that ||X||2 = max?=;" |oy].
Homework 2.3.1.3 Assume that U € C"™*™ and V € C"*™ are unitary matrices. Let A, B € C™*™ with
B = UAVH, Show that the singular values of A equal the singular values of B.

Solution. Let A = UAZAVf be the SVD of A. Then B = UUAEAV};IVH = (UUA)XA(VV4)H where
both UU4 and VV4 are unitary. This gives us the SVD for B and it shows that the singular values of B
equal the singular values of A.

Homework 2.3.1.4 Let A € C™*" with n < m and A = USVH be its SVD.
ALWAYS/SOMETIMES/NEVER: A7 = VyTUH,
Answer. ALWAYS
Solution.
Al — (uxvhHH — (vEESTyH — yy Ty
since ¥ is real valued. Notice that ¥ is only "sort of diagonal" (it is possibly rectangular) which is why
T £y,
Homework 2.3.1.5 Prove the Singular Value Decomposition Theorem for m < n.
Hint. Consider the SVD of B = AH

Solution. Let B = Af. Since it is n x m with n > m its SVD exists: B = UBEBVE‘?. Then A = B =
VpXLUH and hence A = USVH with U = Vg, ¥ = %L and V = Up.

I believe the following video has material that is better presented in second video of 2.3.2.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 104

z.3.1

The S¥D and change of basiz
=

YouTube: https://www.youtube.com/watch?v=ZYzqTC5LelLs

2.3.2 Geometric interpretation

232
& peomatnc interpredation of the
oYl Pati

YouTube: https://www.youtube.com/watch?v=XKhCTtX1z6A

We will now illustrate what the SVD Theorem tells us about matrix-vector multiplication (linear trans-
formations) by examining the case where A € R?*2. Let A = USVT be its SVD. (Notice that all matrices
are now real valued, and hence V# = VT.) Partition

A:(uoul)(%o 001>(v0v1)T.

Since U and V are unitary matrices, {ug, u1} and {vg, v1} form orthonormal bases for the range and domain
of A, respectively:

R?: Domain of A: R?: Range (codomain) of A:

Ug-_

https://www.youtube.com/watch?v=ZYzqTC5LeLs
https://www.youtube.com/watch?v=XKhCTtX1z6A

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 105

Let us manipulate the decomposition a little:

0
Uo‘ul <0 0_1) 1)0"[)1
- [t (D] o1

= (O’oUo‘O’lul)(Uo"Ul

A

Now let us look at how A transforms vg and v:

Avo = ((aouo | orur) ((wo | o1)" v = (ooug | orur) ((1)) = ogug

and similarly Avy; = oyuy. This motivates the pictures in Figure 2.3.2.1.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 106

R?: Domain of A: R2: Range (codomain) of A:
3 T T T T ; 3

2 2

-3 " L L L L -3 " L L

-3 -2 -1) 1 2 3 -3 -2 -1 0 1 2 3
R?: Domain of A: R?: Range (codomain) of A:

3 ' - w - ‘ 3 . : . :

2t 2

-3 1 L L 1 . -3
-3 -2 =1 0 1 2 3 -3 -2 =1 0 1 2

o

Figure 2.3.2.1 Illustration of how orthonormal vectors vy and v; are transformed by matrix A = UXV.

Next, let us look at how A transforms any vector with (Euclidean) unit length. Notice that x = (iﬁo)
1

means that
T = Xoe€o + X1€1,

where eg and ey are the unit basis vectors. Thus, xo and x; are the coefficients when x is expressed using

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 107

ep and e; as basis. However, we can also express x in the basis given by vy and vy:

= vl = Yo = Lk
v = ‘I,x—(vovl)(vovl) r= (v o) (-
= olz v+ vlTxm:aovo-f-OloUl:(UOU1)<ao)'
N ~— o
[e7) aq

Thus, in the basis formed by vy and vy, its coefficients are ay and «1. Now,

Ax = (oouo‘alul)(vo‘m)T

= (oouo | orur) ((wo | v)vaovl)(%)

aq
(oouo | orur) < 3(1’

) = QpOpUg + X101UT.

This is illustrated by the following picture, which also captures the fact that the unit ball is mapped to an

oval with major axis equal to og = ||A||2 and minor axis equal to o1, as illustrated in Figure 2.3.2.1 (bottom).
Finally, we show the same insights for general vector & (not necessarily of unit length):
R?: Domain of A: R?: Range (codomain) of A:
2 2
e
1 — 1 ’ ?

0 1 2 3

-3 -2 -1 o 1 2

o
'
w
|
(29
|
[

Another observation is that if one picks the right basis for the domain and codomain, then the computation
Ax simplifies to a matrix multiplication with a diagonal matrix. Let us again illustrate this for nonsingular

A € R?%2? with
A= (wo|w) () (wlw)”
—_—— 0 |o1 —_——
U \—5_’ \%

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 108

Now, if we chose to express y using ug and w1 as the basis and express x using vy and vy as the basis, then

vty = U Uy = (ugy)uo+ (ufy)u
I y
T ~
Up Y Yo
(01)<u1y> <¢1>
A/(_/
Y
VVvT 2 = vV VTz = (wlz)ve + (wfz)n
I x
T ~
Yol \ _ X0
i () ()
W—/
x
If y = Az then
UUTy = Usvliz =UXZ
~—~— ——
U Az
so that
Y=z
and

TZO :< 0056\0)
11)1. 0—15(\1~ '

Remark 2.3.2.2 The above discussion shows that if one transforms the input vector z and output vector

y into the right bases, then the computation y := Axz can be computed with a diagonal matrix instead:
Y := X7. Also, solving Az = y for x can be computed by multiplying with the inverse of the diagonal matrix:
=Xl

These observations generalize to A € C™*": If
y= Az

then

so that

(X is a rectangular "diagonal" matrix.)

gecematric intenpretatian of tha
SV Pat 2

YouTube: https://www.youtube.com/watch?v=1LpKodbFX1g

https://www.youtube.com/watch?v=1LpK0dbFX1g

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 109

2.3.3 An "algorithm" for computing the SVD

We really should have created a video for this section. Those who have taken our "Programming for Cor-
rectness" course will recognize what we are trying to describe here. Regardless, you can safely skip this unit
without permanent (or even temporary) damage to your linear algebra understanding.

In this unit, we show how the insights from the last unit can be molded into an "algorithm" for computing
the SVD. We put algorithm in quotes because while the details of the algorithm mathematically exist, they
are actually very difficult to compute in practice. So, this is not a practical algorithm. We will not discuss
a practical algorithm until the very end of the course, in (((section to be determined))).

We observed that, starting with matrix A, we can compute one step towards the SVD. If we overwrite A
with the intermediate results, this means that after one step

T H -~ ~T
a1 aip \ _ ~ Qi1 Ay ~ =5 _[(on O
<a21 Azz)_<u1 U2> (621 Agg)(vl V2>_<0 B)’

where A allows us to refer to the original contents of A.
In our proof of Theorem 2.3.1.1, we then said that the SVD of B, B = UpXgVA! could be computed,

and the desired U and V can then be created by computing U = [7UB and V = \7VB.

Alternatively, one can accumulate U and V every time a new singular value is exposed. In this approach,
you start by setting U = I, xm and V = I,,«,. Upon completing the first step (which computes the first
singular value), one multiplies U and V from the right with the computed U and V:

U = UU
Vo= VV.

Now, every time another singular value is computed in future steps, the corresponding unitary matrices are
similarly accumulated into U and V.
To explain this more completely, assume that the process has proceeded for k steps to the point where

U = (Uy|Ug)eCm™™ with U, € C™*F

V = (VL ‘ Vi) e cmxm with Vj, € C"xF
o ATL ATR - kxk

A = < Ans | Apn with Ay, € CF>F,

where the current contents of A are

Arp | Arr) o Arp | Arg
= U, | U Vi | Vi
(A2) = (o v () (i Vi)
_ YXrr | 0
- 0 |B /)
This means that in the current step we need to update the contents of Aggr with

TH AV — (ou | ¢)

0 | B
and update
(U|Ur) = (U |Ug) (22500
L R = L R 0 U
. Ipxi | O
(Vilva) = (Vilva) ().

which simplify to _ B
UBR = UBRU and VBR = VBRV.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 110

At that point, Ay, is expanded by one row and column, and the left-most columns of Ui and Vi are moved
to Ur, and Vi, respectively. If Apg ever contains a zero matrix, the process completes with A overwritten
with ¥ = UH V. These observations, with all details, are captured in Figure 2.3.3.1. In that figure, the boxes
in yellow are assertions that capture the current contents of the variables. Those familiar with proving loops
correct will recognize the first and last such box as the precondition and postcondition for the operation and

(ATL ATR) B (ULUR)H<A\TL ETR>(VLVR)

ABL ABR ABL ABR
Yrr | O
0 B

as the loop-invariant that can be used to prove the correctness of the loop via a proof by induction.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 111

A=A
L = Imxm,:, V:= nxTn
Arr | Arr - i) o)
A= U= (UL|L-R) V= (VL|VR) where Arp 8 0x 0, U, ismx 0,V isnx0
Agpp |Apr
Arr | Arn u { Arp| Arn Erp| 0 .
:(ULlU:a) = = (VL|VR)= — (here Erp is 0 x 0)
Apr | Arr Apr | Asr 0 |B
while || B|2 # 0
Arr | Arr w [Arp|Arg Zrr| 0
=(UL|UR) —T= (VL|VR)= A|Bll2 #0
Apr | Asr Apr | Apr 0 |B
o1 = |Aprl2
if ¢17 = 0 break (exit loop)
pick 71 s.t. |[Ui]l2 = 1 and ||Aprt:| = [[Asg]2(= 011)
Uy 1= ABRGU’UII

pick i}g and ﬁg st V = (EII | 17’2) and [J = ({:1 |Ez) are unitary
VR = Vni}; UR = U;gﬁ

-y Ao |ap Apg
(reten) [t | () (o 02). (1) (sl)
BL|7BR Ay |an Ao

2351 ﬂ"{z 4t 0
ay Agp 0 Uj'AppV,

Apy | App Ay ap | Aoz
4’7 T . T . . .
(AEL ABR) < Miﬁ !(LL|UR)<—(LD ﬂ1|Lg):(VL|VR)-{—(VG 1,1 Vg)
22

Ay ay

Arr | Arr i Arp | Arn v | 0

(ABL a,m) =(UL|UR) (EBL ;i}m) (VL|V3)=(; B)
endwhile
(i) -Gt () o () o
() - (oo (2] () - (2]
—_— e \,_r_,.- Vv . S

A A 5

Figure 2.3.3.1 Algorithm for computing the SVD of A, overwriting A with 3. In the yellow boxes are
assertions regarding the contents of the various matrices.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 112

The reason this algorithm is not practical is that many of the steps are easy to state mathematically, but
difficult (computationally expensive) to compute in practice. In particular:

o Computing ||Apg||2 is tricky and as a result, so is computing v;.

e Given a vector, determining a unitary matrix with that vector as its first column is computationally
expensive.

 Assuming for simplicity that m = n, even if all other computations were free, computing the product
Agg := UH AprVs requires O((m — k)3) operations. This means that the entire algorithm requires
O(m*) computations, which is prohibitively expensive when n gets large. (We will see that most
practical algorithms discussed in this course cost O(m?) operations or less.)

Later in this course, we will discuss an algorithm that has an effective cost of O(m?) (when m = n).

Ponder This 2.3.3.1 An implementation of the "algorithm" in Figure 2.3.3.1, using our FLAME API
for Matlab (FLAMEQlab) [5] that allows the code to closely resemble the algorithm as we present it, is
given in mySVD.m (Assignments/Week02/matlab/mySVD.m). This implemention depends on routines in
subdirectory Assignments/flameatlab being in the path. Examine this code. What do you notice? Execute
it with

m=05;

n = 4;

A =rand(m, n); % create m x n random matrix
[U, Sigma, V] = mySVD(A)

Then check whether the resulting matrices form the SVD:
norm(A - U * Sigma * V')
and whether U and V are unitary

norm(eye(n,n) -V
norm(eye(mym) - U

2.3.4 The Reduced Singular Value Decomposition

3.4

Faduced VD

YouTube: https://www.youtube.com/watch?v=HAAh4IsIdsY

Corollary 2.3.4.1 Reduced Singular Value Decomposition. Let A € C™*" and r = rank(A).
There exist orthonormal matrixz Uy, € C™*", orthonormal mariz Vi, € C™*", and matriz X7, € R™" with
ZTL = diag(oo, .. .,O'rfl) and 00 >01 2> 2> 0p_1 > 0 such that A = ULETLVI{-I'

Homework 2.3.4.1 Prove the above corollary.

Y7, | 0

Solution. Let A = UXVH = (UL ‘ Ugr) < 0 0

> (Vi | Va)™ be the SVD of A, where Uy, €

https://www.youtube.com/watch?v=HAAh4IsIdsY

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 113

Cm™>7, vV, € C™" and ¥rr, € R™" with Xrp, = diag(oo, 01, ,0,-1) and 09 > 01 > -+ > 0,1 > 0. Then
A
= < SVD of A >
uxvT

= < Partitioning >
by
(U2 | Un) () (Vi Vi)

0 0
= < partitioned matrix — matrix multiplication >
U VHE.
Corollary 2.3.4.2 Let A = ULZTLVLH be the Reduced SVD with Uy, = (Uug ‘ ‘ Up_1), Vi = (v ‘ ‘ Vp_1),
oo
and Y71, = . Then

Or—1

H H
A = ooupvy + -+ Tro1Ur—10_ .

Remark 2.3.4.3 This last result establishes that any matrix A with rank r can be written as a linear
combination of r outer products:

H H H
A= ooy + o1U1v] + et Or—1Ur—1Vp_q

o0 | ———— o1 | — Or—1

2.3.5 SVD of nonsingular matrices

Bl g 1k 7 g b b il | e b

Z.3.5

¥ ef nonsiqular malirices

YouTube: https://www.youtube.com/watch?v=5Gvmt115T3k

Homework 2.3.5.1 Let A € C"™*™ and A = ULV be its SVD.
TRUE/FALSE: A is nonsingular if and only if 3 is nonsingular.
Answer. TRUE
Solution. ¥ = U7 AV. The product of square matrices is nonsingular if and only if each individual matrix
is nonsingular. Since U and V are unitary, they are nonsingular.

Homework 2.3.5.2 Let A € C™*™ and A = UXVH be its SVD with

oo 0 .- 0
0 o - 0

Y= L .
0 0 - o,

TRUE/FALSE: A is nonsingular if and only if 0,1 # 0.
Answer. TRUE

https://www.youtube.com/watch?v=5Gvmtll5T3k

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 114

Solution. By the last homework, A is nonsingular if and only if ¥ is nonsingular. A diagonal matrix is
nonsingular if and only if its diagonal elements are all nonzero. gy > --+ > ,,—1 > 0. Hence the diagonal
elements of ¥ are nonzero if and only if g,,—1 # 0.

Homework 2.3.5.3 Let A € C™*™ be nonsingular and A = UXV# be its SVD.
ALWAYS/SOMETIMES/NEVER: The SVD of A~! equals VXU,
Answer. SOMETIMES
Explain it!
Solution. It would seem that the answer is ALWAYS: A~ = (UXVH) =1 = (VH)~Iy-ly-t = yy-lyH
with

271

= <>

o] 0]-- 0 -1

0 |oy |- 0

010 - |om1

= <>

1/09 0 e 0
0 1/oq | - 0
0 0 oo | 1 om—1

However, the SVD requires the diagonal elements to be positive and ordered from largest to smallest.
So, only if 0g = 01 = -+ - = 01 is it the case that VI 1U¥ is the SVD of A~!. In other words, when

Y= 0'0[.
Homework 2.3.5.4 Let A € C"™*™ be nonsingular and

A = UxvH
g0 0
= (uw | Jum) [] 0 (o] o)
0 Om—1
be its SVD.
The SVD of A1 is given by (indicate all correct answers):
1. VE-1UH,
oo | - 0
. ; H
2. (oo fom—s)| 0] (wo |- [um-1)
0 || 1/omo
1om |-+ | 0
H
5 (omer [l) [2 [| Camn |)"
0 BN VEN
0 0 1
0 1 0
4. (VPH)(PZ_lPH)(UPH)H where P = .
1 O 0

Answer. 3. and 4.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 115
Explain it!
Solution. This question is a bit tricky.

1. Tt is the case that A~' = VE~1UH. However, the diagonal elements of ¥~! are ordered from smallest
to largest, and hence this is not its SVD.

2. This is just Answer 1. but with the columns of U and V', and the elements of X, exposed.

3. This answer corrects the problems with the previous two answers: it reorders colums of U and V so
that the diagonal elements of ¥ end up ordered from largest to smallest.

4. This answer is just a reformulation of the last answer.

Homework 2.3.5.5 Let A € C™*™ be nonsingular. TRUE/FALSE: ||A~!|; = 1/ minj,,— [|Az]2.
Answer. TRUE

Solution.)
[A™H |2
= < definition >
A 2]l
MaXa70 "],
= < algebra >
1
MaXz2£0 Ty
A=z,
= < algebra >
1
ming 0 ||A”—m1H§||2
= < substitute z = A"z >
1
min -0 272

= < A is nonsingular >
min. o o2
= <z =z/|z|2 >
1

min . ,=1 [Az[2

In Subsection 2.3.2, we discussed the case where A € R2%2, Letting A = ULV and partitioning

A= o) (<) (o)7

01

yielded the pictures
R2: Domain of A: R2: Range (codomain) of A:

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 116

ra
ra

-2} -2t

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
This captures what the condition number k2(A) = 0¢/0,—1 captures: how elongated the oval that equals
the image of the unit ball is. The more elongated, the greater the ratio o¢/o,—1, and the worse the condition
number of the matrix. In the limit, when o,_1; = 0, the unit ball is mapped to a lower dimensional set,
meaning that the transformation cannot be "undone."

Ponder This 2.3.5.6 For the 2D problem discussed in this unit, what would the image of the unit ball look
like as ko(A) — 00? When is ko(A) = 00?

2.3.6 Best rank-k approximation

z.38

The best rank-K approssalion

YouTube: https://www.youtube.com/watch?v=sNODKG8vPhQ

We are now ready to answer the question "How do we find the best rank-k approximation for a picture
(or, more generally, a matrix)? " posed in Subsection 2.1.1.

Theorem 2.3.6.1 Given A € C™*", let A=UXVH beits SVD. Assume the entries on the main diagonal of
¥ are 0o, Omin(m,n)—1 With 09 > -+ > Opmingmny—1 > 0. Given k such that 0 < k < min(m,n), partition

> 0
U:(ULUR)J/:(VLVR),GTLOZE:< gL E}g}{)7

where Uy, € C™** Vi € C**F, and Srp, € RF¥*. Then

B=UpSr VH

https://www.youtube.com/watch?v=sN0DKG8vPhQ

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 117

is the matriz in C™*™ closest to A in the following sense:

|A— B2 = min 1A = Clla.
C c men
rank(C) < k

In other words, B is the matriz with rank at most k that is closest to A as measured by the 2-norm. Also,

for this B,
_ | o if k <min(m,n)
14— Bll2 = { 0 otherwise.

The proof of this theorem builds on the following insight:
Homework 2.3.6.1 Given A € C"™*", let A= UXV# be its SVD. Show that

Av; = oju; for 0 < j < min(m, n),
where u; and v; equal the columns of U and V indexed by j, and o; equals the diagonal element of ¥ indexed

with 7.
Solution. W.l.o.g. assume n < m. Rewrite A = UXVH as AV = US. Then

AV =U%Y = < partition >
A(wvo |- [vn)
O'O ... 0
0 ne
= (uo |- [unor [| o fwmer) | 5
0 0
= < multiply out >
(Avg |-+ | Avar) = (oouo | -+ | ont1ttn—1).

Hence Av; = oju; for 0 < j < n.
Proof of Theorem 2.5.6.1. First, if B is as defined, then |4 — Bl = o:
A= Bl
= < multiplication with unitary matrices preserves 2-norm >
[T (A= B)V|2
= < distribute >
|[UFAV —UHBV |,
= < use SVD of A and partition >
S— (UL | U) B(V| Va)H2
= < how B was chosen >
Cef))
0 ‘ YBR 0 ‘ 0 /1,
= < partitioned subtraction >
0} O
(0| XBRr)
= <>

1XBRll,
= < ZTL iskxk>

2

ok

(Obviously, this needs to be tidied up for the case where k > rank(A).)

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 118

Next, assume that C' has rank r < k and ||[A — C||2 < ||A — Bl|2. We will show that this leads to a
contradiction.

o The null space of C has dimension at least n — k since dim(N(C)) =n —r.

o If 2 € N(C) then
[Az]l2 = (A= C)zll2 < [|A = Cllo[zll2 < ok[l]2-

o Partition U = (Ug ‘ ‘ Um—1) and V = (20 ‘ ‘ Up—1) Then [|Avj[2 = [loju;llz = 05 = oy
for j=0,...,k.
e Now, let y be any linear combination of vy, ..., vs: y = oug + - - - + axvi. Notice that

HZ/H% = ||agvo + - + ak”k“% = |010|2 +e |0!k|2
since the vectors v; are orthonormal. Then

| Ayll5
= <y=oovy+ -+ ogvg >
HA(O(OUO R ozkvk)H%
= < distributivity >
HOé()A’Uo + -+ OtkA’UkH%
= < AUJ' = 0;Uj >
lovooouo + - - - + arorug|3
= < this works because the u; are orthonormal >
lewoouoll3 + - - - + [lakorux3
= < norms are homogeneous and ||u;|ls =1 >
loo 208 4+ -+ + | |?0}
> <opgzo1 =20 =>0>
(lao|* + -+ + |ag[*) o}
= <|yli5 = laol* + -+ [e|* >
aillyll3-

so that ||Aylla > ogllyll. In other words, vectors in the subspace of all linear combinations of
{vo,...,vx} satisfy ||Ax|l2 > okl|z|l2. The dimension of this subspace is k + 1 (since {vg,--- , v}

form an orthonormal basis).

e Both these subspaces are subspaces of C™. One has dimension k + 1 and the other n — k. This means
that if you take a basis for one (which consists of n — k linearly independent vectors) and add it to
a basis for the other (which has k + 1 linearly independent vectors), you end up with n + 1 vectors.
Since these cannot all be linearly independent in C™, there must be at least one nonzero vector z that
satisfies both ||Az||2 < ok||z]|2 and ||Az||2 > ok||z||2, which is a contradiction.

]
Theorem 2.3.6.1 tells us how to pick the best approximation to a given matrix of a given desired rank.
In Section Subsection 2.1.1 we discussed how a low rank matrix can be used to compress data. The SVD
thus gives the best such rank-k approximation. Let us revisit this.
Let A € R™*™ be a matrix that, for example, stores a picture. In this case, the i, j entry in A is, for
example, a number that represents the grayscale value of pixel (i, 7).

Homework 2.3.6.2 In Assignments/Week02/matlab execute
IMG = imread('Frida.jpg');

A = double(IMG(:,:,1));

imshow(uint8(A))

size(A)

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 119

to generate the picture of Mexican artist Frida Kahlo

75

Although the picture is black and white, it was read as if it is a color image, which means a m x n x 3
array of pixel information is stored. Setting A = IMG(:,:,1) extracts a single matrix of pixel information.
(If you start with a color picture, you will want to approximate IMG(:,:,1), IMG(:,:,2), and IMG(:,:,3)
separately.)

Next, compute the SVD of matrix A

[U, Sigma, V] = svd(A);

and approximate the picture with a rank-k update, starting with £ = 1:

k =1
B = uint8(U(:, 1:k) * Sigma(1:k,1:k) * V(:, 1:k)');
imshow(B);

Repeat this with increasing k.

r =min(size(A))

for k=1:r
imshow(uint8(U(:, 1:k) % Sigma(1:k,1:k) * V(:, 1:k)"));
input(strcat(num2str(k), " press return"));

end

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 120

To determine a reasonable value for k, it helps to graph the singular values:

figure
r = min(size(A));
plot([1:r 1, diag(Sigma), 'x');

Since the singular values span a broad range, we may want to plot them with a log-log plot
loglog([1:r 1, diag(Sigma), 'x');

For this particular matrix (picture), there is no dramatic drop in the singular values that makes it obvious
what k is a natural choice.

Solution.

E0000 T T T T T T T

50000 - =

30000 1
20000 1

10000 1

.
|
t

8 b S S S S S T S

tH 20 100 130 200 250 300 350 400

Figure 2.3.6.2 Distribution of singular values for the picture.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 121

k=1 k=2

k=25 Original picture

Figure 2.3.6.3 Multiple pictures as generated by the code.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 122

2.4 Enrichments

2.4.1 Principle Component Analysis (PCA)

Principle Component Analysis (PCA) is a standard technique in data science related to the SVD. You may
enjoy the article

e [30] J. Novembre, T. Johnson, K. Bryc, Z. Kutalik, A.R. Boyko, A. Auton, A. Indap, K.S. King, S.
Bergmann, M.. Nelson, M. Stephens, C.D. Bustamante, , Nature, 2008.
https://www.ncbinlm.nih.gov/pme/articles/PMC2735096/ .

In that article, PCA is cast as an eigenvalue problem rather than a singular value problem. Later in the
course, in Week 11, we will link these.

2.5 Wrap Up

2.5.1 Additional homework

Homework 2.5.1.1 U € C™*"™ is unitary if and only if (Ux) (Uy) = 2"y for all 2,y € C™.

Hint. Revisit the proof of Homework 2.2.4.6.

Homework 2.5.1.2 Let A, B € C™*"™. Furthermore, let U € C™*™ and V € C"*" be unitary.
TRUE/FALSE: UAVY = B iff UR BV = A.

Answer. TRUE
Now prove it!

Homework 2.5.1.3 Prove that nonsingular A € C™*™ has condition number k2(A) = 1 if and only if

A = 0@ where @ is unitary and o € R is positive.

Hint. Use the SVD of A.

Homework 2.5.1.4 Let U € C™*™ and V € C™*" be unitary.

ALWAYS/SOMETIMES/NEVER: The matrix ((({ 3) is unitary.

Answer. ALWAYS
Now prove it!

Homework 2.5.1.5 Matrix A € R™*™ is a stochastic matrix if and only if it is nonnegative (all its entries
are nonnegative) and the entries in its columns sum to one: » o, _,. a;; = 1. Such matrices are at the core
of Markov processes. Show that a matrix A is both unitary matrix and a stochastic matrix if and only if it
is a permutation matrix.

Homework 2.5.1.6 Show that if || - - - || is a norm and A is nonsingular, then || - || s-1 defined by ||z||4-1 =
|[A=1z| is a norm.
Interpret this result in terms of the change of basis of a vector.

Homework 2.5.1.7 Let A € C™*™ be nonsingular and A = UXV# be its SVD with

oo | 0 |- 0
0 oy |- 0
Y= ;
0]o] - |on

The condition number of A is given by (mark all correct answers):

1. rig(A) = [|All2l| A7 2.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 123

2. KJQ(A) = Jo/O'mfl.
3. ka(A) = ull Avg/ull | Avy, 1.
4. ko(A) = max| g ,=1 |[Az|]2/ minjg =1 [[Az]2.

(Mark all correct answers.)

Homework 2.5.1.8 Theorem 2.2.4.4 stated: If A € C™*™ preserves length (||Az|2 = ||z for all x € C™),
then A is unitary.Give an alternative proof using the SVD.

Homework 2.5.1.9 In Homework 1.3.7.2 you were asked to prove that [|A|2 < ||Al|F given A € C™*™.
Give an alternative proof that leverages the SVD.

Homework 2.5.1.10 In Homework 1.3.7.3, we skipped how the 2-norm bounds the Frobenius norm. We
now have the tools to do so elegantly: Prove that, given A € C™*"|

1Al < V7l All2,

where r is the rank of matrix A.

2.5.2 Summary
Given z,y € C™

e their dot product (inner product) is defined as

ey =2"y=a2Ty =Xpho + X1¥1 + - + Xm_1¥m-1= Y _ Xi¥i-
« These vectors are said to be orthogonal (perpendicular) iff 27y = 0.

e The component of y in the direction of = is given by

e The component of y orthogonal to x is given by

2Hy ; -
—_ —r = —_— —— .
Y= ol iy)Y

Thus, the matrix that projects a vector onto the space orthogonal to x is given by

Given u,v € C™ with u of unit length

e The component of v in the direction of u is given by

UHUU = UUHU.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 124

e The matrix that projects a vector onto the space spanned by u is given by

U/LLH

e The component of v orthogonal to u is given by

v—ufou = (I—uuH) V.

e The matrix that projects a vector onto the space that is orthogonal to x is given by

I —uu®

Let ug, u1,...,u,—1 € C™. These vectors are said to be mutually orthonormal if for all 0 <i,5 <n

1 ifi=j
H L=
Ui U { 0 otherwise

Let @ € C™*™ (with n <m). Then @ is said to be

« an orthonormal matrix iff QFQ = I.

e a unitary matrix iff Q#Q = I and m = n..

o an orthogonal matrix iff it is a unitary matrix and is real-valued.

Let Q@ € C™*™ (with n <m). Then Q = (Qo ‘ C Qn1 D is orthonormal iff {qo, ..., ¢n—1 are mutually
orthonormal.

Definition 2.5.2.1 Unitary matrix. Let U € C™*™. Then U is said to be a unitary matrix if and only
if UHU = I (the identity). O
If U,V € C™*™ are unitary, then

« UHU = 1.
o UUH =1.
« Ul=UH,

o U" is unitary.
e UV is unitary.
IfU € C™*™ and V € C™*™ are unitary, x € C™, and A € C™*", then
o Uzllz = |z]]2.

[UHAllz = [UA]|2 = [|AV]2 = [AVH |2 = [UT AV]|2 = [[UAVH |2 = [|A]|2.

U Allp = |UAllp = |AV[|lp = AV |[p = [UF AV |[p = [UAVE|[r = || A] .

Ul =1
. KQ(U) =1

Examples of unitary matrices:

¢ Rotation in 2D: (€ s >
s c

o Reflection: I — 2uuf’ where u € C™ and ||uls = 1.

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 125

Change of orthonormal basis: If x € C™ and U = (Ug ‘ ‘ Upp—1) is unitary, then

ullx

r= (ullo)ug + -+ (Wl _ 2 Uy = (uo |- | tmo1) =UUH.

Let A € C"*™ be nonsingular and = € C™ a nonzero vector. Consider
y=Ax and y+dy = A(x+ &).

Then

16yl —1yp Nl
< JAjATY| ;
lyl = ~~—— =l
K(A)
where || - || is an induced matrix norm.

Theorem 2.5.2.2 Singular Value Decomposition Theorem. Given A € C™*" there exist unitary

U € C™ ™ unitary V € C™", and ¥ € R™*" such that A =UXVH. Here ¥ = < Xz | 0) with

0 |0
oo 0 .- 0
0 o --- 0
Yrp = L i and og>o01 > >0,-1>0.
0 0 - o4
The values og,...,0._1 are called the singular values of matrix A. The columns of U and V are called the

left and right singular vectors, respectively.
Let A€ C™*™ and A = USVH its SVD with

U=(Us | Ur)=(u| | tms),
Ve (V| Ve)=(vo| | vas).
and
66 0 o 0
Z:(EgL 8>7WhereZTL= 0 T O and 09> 01> >0 >0,
0 0 - oy

Here Up € C™*7, Vi, € C**" and Y¥7p € R™*". Then
e ||A|l2 = 0¢. (The 2-norm of a matrix equals the largest singular value.)
o rank(A) =r.
o« C(A)=C(Up).
o« N(A) =C(Vg).
o R(A)=C(Vy).
o Left null-space of A = C(Ug).
o AH =yYTUH,

WEEK 2. THE SINGULAR VALUE DECOMPOSITION 126

e SVD: A" = VXUH,
e Reduced SVD: A = ULETLVLH.

H H H
A= ooUpV + g1uU1V + e+ Op—1Ur—10,,_1

o) 01 - Or—1

o Reduced SVD: A7 =V XU,

o If m x m matrix A is nonsingular: A~ =VE1UH,

e If A€ C™*™ then A is nonsingular if and only if ¢,,,—1 # 0.

o If A e C™*™ is nonsingular then k2(A) = 0¢/0m—_1.

o (Left) pseudo inverse: if A has linearly independent columns, then AT = (AHA)=1AH = V¥ 1 UH.
e g is the direction of maximal magnification.

e v,_1 is is the direction of minimal magnification.

o If n <'m, then Av; = ojuy, for 0 < j <n.

Theorem 2.5.2.3 Given A € C™*", let A= UXVH beits SVD. Assume the entries on the main diagonal of
Y oare g, Omin(m,n)—1 With 09 > -+ > Ominmn)—1 > 0. Given k such that 0 < k < min(m,n), partition

by
U:(ULUR),VZ(VLVR)aGNdZZ< gL EZR>7

where Uy, € C™*k Vi € C**F, and Tpp, € RF*%. Then
B=USr V]
is the matrixz in C™*"™ closest to A in the following sense:

|A— B2 = min A = Cl2.
O 6 (men
rank(C) < k

In other words, B is the matrix with rank at most k that is closest to A as measured by the 2-norm. Also,
for this B,
or if k <min(m,n)

1A= B2 = { 0 otherwise.

Week 3

The QR Decomposition

3.1 Opening

3.1.1 Choosing the right basis

1.1
Canditiening of a Vandermanda
malfis

YouTube: https://www.youtube.com/watch?v=5lEm5gZ027g

A classic problem in numerical analysis is the approximation of a function, f : R — R, with a polynomial
of degree n — 1. (The n — 1 seems cumbersome. Think of it as a polynomial with n terms.)

FOO =y +nx+ -+ m1x" "

x Now, often we know f only "sampled" at points xq,..., Xm—1:
fxo) = o
f(mel) = ¢m71~

In other words, input to the process are the points

(X07 ¢0)a R (X’mfh (b'mfl)

and we want to determine the polynomal that approximately fits these points. This means that

Y% + mxo o+ o o+ Yexdh om o
Y% o+ MXme1 + o+ aXmh R Gme1
This can be reformulated as the approximate linear system
1 xo - xp! o %o
1 oxi o X! m b1
1 Xm—-1 *°° X;L»Lill Tn—1 (b’m—l

127

https://www.youtube.com/watch?v=5lEm5gZo27g

WEEK 3. THE QR DECOMPOSITION 128

which can be solved using the techniques for linear least-squares in Week 4. The matrix in the above equation
is known as a Vandermonde matrix.

Homework 3.1.1.1 Choose xo, X1, - , Xm—1 t0 be equally spaced in the interval [0, 1]: for i =0,...,m—1,
Xi = ih ,where h = 1/(m — 1). Write Matlab code to create the matrix

1 oxo - X0t

Toxa X!
X = . .

1 Xm—1 e X:,:_ll

as a function of n with m = 5000. Plot the condition number of X, ko(X), as a function of n (Matlab’s
function for computing ko(X) is cond(X).)

Hint. You may want to use the recurrence /! = 27 and the fact that the .* operator in Matlab performs
an element-wise multiplication.

Solution.

o Here is our implementation: Assignments/Week03/answers/Vandermonde.m.

(Assignments/Week03/answers/Vandermonde.m)
o The graph of the condition number, x(X), as a function of n is given by

Condition number

108 .
Vandenmonde |

o The parent functions 1,z,22,... on the interval [0, 1] are visualized as

Assignments/Week03/answers/Vandermonde.m

WEEK 3. THE QR DECOMPOSITION 129

Basis functions for Vandenmonde matrix

X oM XM X X R

-0.2 - ' ' '
0 0.2 0.4 0.6 0.8 1

Notice that the curves for 7 and x7*! quickly start to look very similar, which explains why the
columns of the Vandermonde matrix quickly become approximately linearly dependent.

Think about how this extends to even more columns of A.

1.1

Lagendre palynomials

YouTube: https://www.youtube.com/watch?v=cBFt2dmXbu4

An alternative set of polynomials that can be used are known as Legendre polynomials. A shifted
version (appropriate for the interval [0,1]) can be inductively defined by

Po(x) =1
Pi(x) = 2x-1
Poi() = (204 1)@x — DPu(x) — nPus(x)) /(n +1).

The polynomials have the property that

1 .
C, if s =t for some nonzero constant C
/0 P ()P (x)dx = { 0 otherwise

which is an orthogonality condition on the polynomials.
The function f: R — R can now instead be approximated by

FOO = vPo(x) +7Pi(x) + -+ -1 Pr1(X)-

https://www.youtube.com/watch?v=cBFt2dmXbu4

WEEK 3. THE QR DECOMPOSITION 130

and hence given points

(X07 ¢O)a Tty (Xm—17 ¢m—1)

we can determine the polynomial from

YPo(xo) + mPilxo) + - + Ya-1Pailxo) = oo

YPo(Xm-1) + 7MPi(xm-1) + - + Yo1Paci(Xm-1) = Om-1.

This can be reformulated as the approximate linear system

L Pi(xo) - Pa1(xo) Yo %o
L P(a) - Paalxa) 8! o3}
1 Pl(mel) e Pnfl(mel) Yn—1 ¢m71
which can also be solved using the techniques for linear least-squares in Week 4. Notice that now the columns
of the matrix are (approximately) orthogonal: Notice that if we "sample" = as xo, ..., Xn—1, then
1 n—1
/ P.0)P ()X ~ 3 Pulxi) Po(x),
0 i=0

which equals the dot product of the columns indexed with s and ¢.

Homework 3.1.1.2 Choose X, X1, " s Xm—1 t0 be equally spaced in the interval [0,1]: for i =0,...,m—1,
Xi = th, where h = 1/(m — 1). Write Matlab code to create the matrix

1 Pi(xo) - Paixo)

1 Pi(x1) - Pooilxa)
X = : . .

i P(Xm-1) -+ Paci(Xm-1)

as a function of n with m = 5000. Plot x2(X) as a function of n. To check whether the columns of X are
mutually orthogonal, report | X7 X — D|| where D equals the diagonal of X7 X.

Solution.
o Here is our implementation: ShiftedLegendre.m. (Assignments/Week03/answers/ShiftedLegendre.m)

e The graph of the condition number, as a function of n is given by

Assignments/Week03/answers/ShiftedLegendre.m

WEEK 3. THE QR DECOMPOSITION 131

8 Condition number
10 T T
Vandenmonde
Shifted Legendre

10°

—

10° ' ' '
2 4 6 8 10

n

We notice that the matrices created from shifted Legendre polynomials have a very good condition
numbers.

e The shifted Legendre polynomials are visualized as

Shifted Legendre polynomials

1
05r]
X ot]
[a 1
P, (X)
P, (x)
05+ P2{x)]
P3(X)
P,(x)
-1 PS(x) | |
0 0.2 0.4 0.6 0.8 1

X

e The columns of the matrix X are now reasonably orthogonal:

WEEK 3. THE QR DECOMPOSITION 132

X*T % X for n=5:

ans =
5000 1
0 0
1 1
0 0
1 556

z1.1
Summsary

YouTube: https://www.youtube.com/watch?v=syq-jOKWqTQ

Remark 3.1.1.1 The point is that one ideally formulates a problem in a way that already captures or-
thogonality, so that when the problem is discretized ("sampled"), the matrices that arise will likely inherit
that orthogonality, which we will see again and again is a good thing. In this chapter, we discuss how
orthogonality can be exposed if it is not already part of the underlying formulation of the problem.

3.1.2 Overview Week 3
e 3.1 Opening Remarks

o 3.1.1 Choosing the right basis
o 3.1.2 Overview Week 3
o 3.1.3 What you will learn

e 3.2 3.2 Gram-Schmidt Orthogonalization

o 3.2.1 Classical Gram-Schmidt (CGS)

o 3.2.2 Gram-Schmidt and the QR factorization
o 3.2.3 Classical Gram-Schmidt algorithm

o 3.2.4 Modified Gram-Schmidt (MGS)

o 3.2.5 In practice, MGS is more accurate

o 3.2.6 Cost of Gram-Schmidt algorithms

e 3.3 Householder QR Factorization

o 3.3.1 Using unitary matrices

o 3.3.2 Householder transformation

o 3.3.3 Practical computation of the Householder vector
o 3.3.4 Householder QR factorization algorithm

o 3.3.5 Forming Q

3.3.6 Applying QH

o 3.3.7 Orthogonality of resulting Q

o

¢ 3.4 Enrichments

https://www.youtube.com/watch?v=syq-jOKWqTQ

WEEK 3. THE QR DECOMPOSITION 133

o 3.4.1 Blocked Householder QR factorization
e 3.5 Wrap Up

o 3.5.1 Additional homework

o 3.5.2 Summary

3.1.3 What you will learn

This chapter focuses on the QR factorization as a method for computing an orthonormal basis for the column
space of a matrix.
Upon completion of this week, you should be able to

e Relate Gram-Schmidt orthogonalization of vectors to the QR factorization of a matrix.

o Show that Classical Gram-Schmidt and Modified Gram-Schmidt yield the same result (in exact arith-
metic).

e Compare and contrast the Classical Gram-Schmidt and Modified Gram-Schmidt methods with regard
to cost and robustness in the presence of roundoff error.

o Derive and explain the Householder transformations (reflections).
e Decompose a matrix to its QR factorization via the application of Householder transformations.
e Analyze the cost of the Householder QR factorization algorithm.

e Explain why Householder QR factorization yields a matrix @ with high quality orthonormal columns,
even in the presence of roundoff error.

3.2 Gram-Schmidt Orthogonalization

3.2.1 Classical Gram-Schmidt (CGS)

3zl

GFdm Sehsidp
erihagonaization Park |

YouTube: https://www.youtube.com/watch?v=CWhBZB-3kg4

Given a set of linearly independent vectors {ag,...,a,—1} C C™, the Gram-Schmidt process computes
an orthonormal basis {qo, ..., ¢n—1} that spans the same subspace as the original vectors, i.e.

Span({ag, .. .,an—1}) = Span({qo, - - -, ¢n-1})-
The process proceeds as follows:
o Compute vector go of unit length so that Span({ag}) = Span({qo}):

o poo = llaoll2
Computes the length of vector ag.

https://www.youtube.com/watch?v=CWhBZB-3kg4

WEEK 3. THE QR DECOMPOSITION 134

© 4o = ao/ £0,0
Sets go to a unit vector in the direction of ag.

Notice that ag = gopo,o
« Compute vector i of unit length so that Span({ao,a1}) = Span({qo,q1}):

© po1 = Qé{ ay
Computes pg 1 so that pg 190 = qt’ a1qo equals the component of a; in the direction of go.

1
© ay = ai — Po,190

Computes the component of a; that is orthogonal to qq.
o p11 = [lai |2

Computes the length of vector ai .
o q =ai/ P11

Sets g1 to a unit vector in the direction of af .

Notice that

(aoal)(%ql)(pgﬂ Po,1>'

P1,1

o Compute vector ¢ of unit length so that Span({ag, a1, a2}) = Span({qo, ¢1, ¢2}):

H
P02 = qq a2 . £0.2 H
o ’ or, equivalently, ’ = a

P12 =qi'ay E Y (P12) (o n) ?

Computes pp2 so that pg2qo = qtlazqo and P1,2q1 = g asqy equal the components of as in the
directions of gy and ¢;.

£0,2

Or, equivalently, (g0 ¢) (p) is the component in Span({qo, q1}).
1

s

o azL = a2 — po,290 — P1,2q1 = A2 — (9 1) (Z‘iz)

Computes the component of ay that is orthogonal to gg and ¢;.
o p22 = [laz (|2

Computes the length of vector az .
o g2 =ay/ P2,2

Sets g2 to a unit vector in the direction of as .

Notice that

£0,0 Po,1 | PO,2
(a0 ar]az)=(q o|e) 0 p11|p12
0 0 ‘ p2,2

e And so forth.

ke pich ia SR Pt K -

3zl
EFam Schmidl
erthogonakzation Part 2

YouTube: https://www.youtube.com/watch?v=AvXeoMfK1l_0
Yet another way of looking at this problem is as follows.

https://www.youtube.com/watch?v=AvXe0MfKl_0

WEEK 3. THE QR DECOMPOSITION 135

3zl

Grdm Schmidl

afthogonakzatign Part 3

YouTube: https://www.youtube.com/watch?v=0ZelM7YUwZo
Consider the matrices
A= (ao | ascr [i [o | - s)

and
Q="(qo| a1 |ar]| a1]|] am1)
We observe that

o Span({ao}) = Span({go})
Hence ag = po,0qo for some scalar pg .

« Span({ao, a1}) = Span({qo, q1})
Hence
a1 = po,190 + P1,1q1

for some scalars po.1, p1,1-

o In general, Span({ag,...,arx—1,ar}) = Span({qo, - - -, qr—1, qx })

Hence
ar = po.kqo + -+ Pr—1,qk—1 + Pk, kqK
for some scalars po i, , Pk,k-
Let’s assume that qg, ..., qx—1 have already been computed and are mutually orthonormal. Consider

ax = po,kqo + -+ + Pk—1,kqk—1 T Pk,kqk-

Notice that

alar = qff (porgo++ + Pr—1,kqk—1 + Pr.1qk)
= pPok (JEQO + -t Pr—1.k qg%q + Pk,k (JEQk
—— — ——
0 0 1
so that
Pik = quak7
fori=0,...,k — 1. Next, we can compute
1 _
A = Ak — Po,kq0 — *** — Pk—1,kqk—1

and, since pg kg = aé‘, we can choose
L
Pk = llag |2
and
G = ai [Prk
Remark 3.2.1.1 For a review of Gram-Schmidt orthogonalization and exercises orthogonalizing real-valued
vectors, you may want to look at Linear Algebra: Foundations to Frontiers (LAFF) [26] Week 11.

https://www.youtube.com/watch?v=OZelM7YUwZo

WEEK 3. THE QR DECOMPOSITION 136

3.2.2 Gram-Schmidt and the QR factorization

L2

igEdm Schimidh and tha G
Facbarizaliola

YouTube: https://www.youtube.com/watch?v=tHj20PSBCek

The discussion in the last unit motivates the following theorem:

Theorem 3.2.2.1 QR Decomposition Theorem. Let A € C™*" have linearly independent columns.
Then there exists an orthonormal matriz Q and upper triangular matriz R such that A = QR, its QR
decomposition. If the diagonal elements of R are taken to be real and positive, then the decomposition is
unique.

In order to prove this theorem elegantly, we will first present the Gram-Schmidt orthogonalization algo-
rithm using FLAME notation, in the next unit.

Ponder This 3.2.2.1 What happens in the Gram-Schmidt algorithm if the columns of A are NOT linearly
independent? How might one fix this? How can the Gram-Schmidt algorithm be used to identify which
columns of A are linearly independent?

Solution. If a; is the first column such that {ao,...,a;} are linearly dependent, then ajl will equal the
zero vector and the process breaks down.

When a vector with ajL equal to the zero vector is encountered, the columns can be rearranged (permuted)
so that that column (or those columns) come last.

Again, if aj- = 0 for some j, then the columns are linearly dependent since then a; can be written as a
linear combination of the previous columns.

3.2.3 Classical Gram-Schmidt algorithm

YouTube: https://www.youtube.com/watch?v=YEEEJYp8snQ

Remark 3.2.3.1 If the FLAME notation used in this unit is not intuitively obvious, you may to review
some of the materials in Weeks 3-5 of Linear Algebra: Foundations to Frontiers (http://www.ulaff.net).

An alternative for motivating that algorithm is as follows:
o Consider A = QR.

e Partition A, @, and R to yield

Roo | ror Roz
(Ao|ar A2)=(Qo|an Q2) 0 [pu 1
0 0 Roo

e Assume that Qg and Ry have already been computed.

https://www.youtube.com/watch?v=tHj20PSBCek
https://www.youtube.com/watch?v=YEEEJYp8snQ
http://www.ulaff.net

WEEK 3. THE QR DECOMPOSITION 137

e Since corresponding columns of both sides must be equal, we find that

ar = Qoro1 + q1p11- (3.2.1)
Also, Qi Qo = I and Q¥ g1 = 0, since the columns of @ are mutually orthonormal.

e Hence
Qb a1 = Q¥ Qoror + Q q1p11 = 101

e This shows how rg; can be computed from @ and a;, which are already known:
ro1 = Qé{al.
e Next,

1.
a; =a1 — Qoro1

is computed from (3.2.1). This is the component of a; that is perpendicular (orthogonal) to the columns
of Qp. We know it is nonzero since the columns of A are linearly independent.

e Since p11q1 = ai and we know that ¢; has unit length, we now compute
pu1 = [lai [l
and
q1 = af/ﬂn,
These insights are summarized in the algorithm in Figure 3.2.3.2.
[Q, R] = CGS-QR(4)
A= (AL | Ar).Q—(QL | Qn),R—>(

Ap, and Qr, has 0 columns and Ry, is 0 x 0
while n(Ar) < n(A)
(AL |Ar)= (Ao|ar A2), (QL|Qr)—=(Qo|a: Q2),

Roo | 701 Roo2
R R
< TL TR > N 0 o 7"?2

Rrr | Rrr
0 | RBr

0 | Epr 0 | 0 R

To1 = Qéqfll

all = a; — Qoror
pi1 = [lat [l
q1 = a%/ﬂn

(AL [AR)« (Ao a1 | A2), (QL|Qr)+ (Q & |Q2),

R R
Rrr | Rrr 80 rot 7
0 Ron < P11 | Tig
0 0 | R

endwhile

Figure 3.2.3.2 (Classical) Gram-Schmidt (CGS) algorithm for computing the QR factorization of a matrix
A.

Having presented the algorithm in FLAME notation, we can provide a formal proof of Theorem 3.2.2.1.
Proof of Theorem 3.2.2.1. Informal proof: The process described earlier in this unit constructs the QR
decomposition. The computation of p; ; is unique if it is restricted to be a real and positive number. This
then prescribes all other results along the way.

Formal proof:

(By induction). Note that n < m since A has linearly independent columns.

WEEK 3. THE QR DECOMPOSITION 138

e Base case: n = 1. In this case A = (Ap ‘ ay), where Ag has no columns. Since A has linearly
independent columns, a; # 0. Then

A= (a1)= (q)(p11),

where p11 = |la1]|2 and ¢1 = a1/p11, so that Q@ = (¢1) and R = (p11).

e Inductive step: Assume that the result is true for all Ay with k linearly independent columns. We will
show it is true for A with k + 1 linearly independent columns.
Let A € C™*(* +1) Partition A — (Ag ‘ a)

By the induction hypothesis, there exist Qp and R such that Q¥Qq = I, Rgo is upper triangular
with nonzero diagonal entries and Ay = QoRoo. Also, by induction hypothesis, if the elements on the
diagonal of Ry are chosen to be positive, then the factorization Ag = Qo Roo is unique.

; R
(@l o) ana (o)

(A0a1)_<QOQ1)<R80 ;21)

We are looking for

so that

This means that

o Ao = QoRoo, N
We choose Qg = Qg and Rypg = Rgo. If we insist that the elements on the diagonal be positive,

this choice is unique. Otherwise, it is a choice that allows us to prove existence.

o a; = Qoro1 + p11q1 which is the unique choice if we insist on positive elements on the diagonal.
a1 = Qoro1 + p11q1- Multiplying both sides by Qéf we find that rg; must equal Qfal (and is
uniquely determined by this if we insist on positive elements on the diagonal).

o Letting ai- = a; — Qo701 (which equals the component of a; orthogonal to C(Qy)), we find that
p11q1 = ai . Since ¢; has unit length, we can choose p1; = ||ai-||2. If we insist on positive elements
on the diagonal, then this choice is unique.

o Finally, we let q; = ai/p11-
o By the Principle of Mathematical Induction the result holds for all matrices A € C™*" with m > n.

Homework 3.2.3.1 Implement the algorithm given in Figure 3.2.3.2 as
function [Q, R] = CGS_QR(A)

by completing the code in Assignments/Week@3/matlab/CGS_QR.m. Input is an m X n matrix A. Output is the
matrix @ and the upper triangular matrix R. You may want to use Assignments/Week@3/matlab/test_CGS_QR.m
to check your implementation.

Solution. See Assignments/Week@3/answers/CGS_QR.m. (Assignments/Week03/answers/CGS__QR.m)

Assignments/Week03/matlab/CGS_QR.m
Assignments/Week03/matlab/test_CGS_QR.m
Assignments/Week03/answers/CGS_QR.m

WEEK 3. THE QR DECOMPOSITION 139

3.2.4 Modified Gram-Schmidt (MGS)

YouTube: https://www.youtube.com/watch?v=pOBJHhV3TKY
In the video, we reasoned that the following two algorithms compute the same values, except that the
columns of @) overwrite the corresponding columns of A:

for j=0,....,n—1 for =0,...,n—1
aj- = aj
for k=0,...,5—1 for k=0,...,5—1
Prj = qt aj Pr.j = ajla;
aj = a; — pr,jqx aj = a; = Pk Ok
end end
i = llaj 2 i = llajll2
qj = aj /pj a; = a;/pj;
end end
(a) MGS algorithm that computes @ and R from (b) MGS algorithm that computes @ and R from
A. A, overwriting A with Q.
Homework 3.2.4.1 Assume that qq, . .., gx—1 are mutually orthonormal. Let p;, = qJHy forj=0,...,1—1.
Show that
'y =q (y- PO,EGO — = Pi—1,kGi—1)
—~
Pik
fori=0,...,k— 1.
Solution. "
4" (Y= porgo — - — pi—1,kqi—1)
= < distribute >
0y —af porgo — -+ — ¢ pi—1.k0i 1
= < po,k is a scalar >
a'y—por ¢f'a0 —— picingl g
\\0,-/ _O/_/

YouTube: https://www.youtube.com/watch?v=000NPondq5M

This homework illustrates how, given a vector 4 € C™ and a matrix @Q € C™** the component orthogonal
to the column space of Q, given by (I — QQ™)y, can be computed by either of the two algorithms given in
Figure 3.2.4.1. The one on the left, Proj L Qcas(Q,y) projects y onto the column space perpendicular to @
as did the Gram-Schmidt algorithm with which we started. The one on the left successfuly subtracts out the

https://www.youtube.com/watch?v=pOBJHhV3TKY
https://www.youtube.com/watch?v=0ooNPondq5M

WEEK 3. THE QR DECOMPOSITION 140

component in the direction of ¢; using a vector that has been updated in previous iterations (and hence is
already orthogonal to qq, ..., ¢;—1). The algorithm on the right is one variant of the Modified Gram-Schmidt
(MGS) algorithm.

[yla T] = PrOjJ-QCGS (Qa y) [yJ_v T] = PrOjJ—QMGS (Q? y)
(used by CGS) (used by MGS)
yt=y yt=y
fori=0,...,k—1 fori=0,...,k—1

pi = qly pi=aqi'y*

yt =yt = pigs yt =yt = pigs
endfor endfor

Figure 3.2.4.1 Two different ways of computing y* = (I — QQ")y = y — Qr, where r = QHy. The
computed y* is the component of y orthogonal to C(Q), where @ has k orthonormal columns. (Notice the
y on the left versus the y* on the right in the computation of p;.)

These insights allow us to present CGS and this variant of MGS in FLAME notation, in Figure 3.2.4.2
(left and middle).

[A, K] = GS(A)
A*)(AL ‘ AR),RH

(overwrites A with Q)
(Rrr | Rrr)
0 | RBr
A has 0 columns and Rrp, is 0 x 0
while n(Ar) < n(A)

Roo | o1 Roz

R R

(7)“L RTR)_> 0 [pn %
BR 0 | 0 Ry

MGS (alternative)

(Ar]Ar) = (oo 42). (

CGS

ro1 = Agal

a1 ‘= a1 — Ao?"ol
p11 = [laxll2

ay :=ay/pi

MGS

[a1,701] = ProjltoQuas (Ao, a1)
p11 = llaxll2
ay = al/Pll

pi1 = [lazl]2
ay = al/Pu
riy = all Ay
A2 = A2 — (117"{2
Ron Roo o1 R:(F)z
) — 0 pu| o

Rpr 0 0 | Roo

(AL‘AR)(-(AO a1A2)a<R3L

endwhile

Figure 3.2.4.2 Left: Classical Gram-Schmidt algorithm. Middle: Modified Gram-Schmidt algorithm. Right:
Alternative Modified Gram-Schmidt algorithm. In this last algorithm, every time a new column, ¢y, of @ is
computed, each column of As is updated so that its component in the direction of ¢; is is subtracted out.
This means that at the start and finish of the current iteration, the columns of A;, are mutually orthonormal
and the columns of Ar are orthogonal to the columns of Ay,.

Next, we massage the MGS algorithm into the alternative MGS algorithmic variant given in Figure 3.2.4.2
(right).

P EEE TSPPT T SECp S Sy L S T

https://www.youtube.com/watch?v=3XzHFWzV5iE

WEEK 3. THE QR DECOMPOSITION

YouTube: https://www.youtube.com/watch?v=3XzHFWzV5iE

141

The video discusses how MGS can be rearranged so that every time a new vector g is computed (over-
writing ay), the remaining vectors, {ag+1,...,a,—1}, can be updated by subtracting out the component in
the direction of ¢. This is also illustrated through the next sequence of equivalent algorithms.

for j=0,...,n—1
pii = llajll2
aj = a;/p;;
fork=j+1,...,n—1
pik = allay
Gk 1= Ak — Pj kG;j
end
end

(¢) MGS algorithm that normalizes the jth col-
umn to have unit length to compute g¢; (over-
writing a; with the result) and then subtracts
the component in the direction of g; off the rest
of the columns (ajt1,...,an-1).

for j=0,....,n—1
pij = llajll2
aj = a;/pj;
Pj.5+1 \ \ Pin-1) =
o (Cajir || ans
i | | any)=
ajp1 = pjj+1aj | o | @no1 = pin-ra;)
end

(e) Algorithm in (d) rewritten to expose only the
outer loop.

Figure 3.2.4.3 Various equivalent MGS algorithms.

for 7=0,...,n—1
pij = llajllz
aj = a;/p;;
fork=j+1,....n—1
pik = aj ay
end
fork=j+1,....n—1
A = A — Pj,kQ;
end
end

(d) Slight modification of the algorithm in (c)
that computes p; 1 in a separate loop.

for j=0,...,n—1

i = llajll2
aj = a;/pj,;
Pji+1 \ \ Pjn-1) =
o (Cajpr |- | any)
aj+1 ‘ ‘ an—1 =
(ajr |- [an)
—a; ((piger || i1)
end

(f) Algorithm in (e) rewritten to ex-
pose the row-vector-times matrix mul-
tiplication af(aj41 ‘ ‘ Ap_1) and
(%‘H‘““anq) _
a; (pjger |-+ | pinaa

rank-1 update

This discussion shows that the updating of future columns by subtracting out the component in the
direction of the latest column of @ to be computed can be cast in terms of a rank-1 update. This is also
captured, using FLAME notation, in the algorithm in Figure 3.2.4.2, as is further illustrated in Figure 3.2.4.4:

WEEK 3. THE QR DECOMPOSITION

142
Algorithm: [A,R] := MGS(A)
Partition A%(Ar | Ap) 3
Ry | Rrr _
R— 1z for j=0,...,n—1
BR oy L
where A; has 0 columns and Ryy is 0 x 0 Pii = H%Hz (p“ T Hal H2)
Qg =l Pry a —a
while n(A;) <n(4) do i = a5/Pj (a1 :=a1/pu)
Repartition 7
"z
(ALlAR)%(Aolal‘Az), - s ~
Roo | 101 | Rz (P+t ‘ ‘ Pin—1) =
Rrr | Rrr - H
=5 0 | pu| r2 a Ajr1 | | dn-1
0 Rgr — -
0 R22 H S
&y A2
p11 = |12
ap = a1/pii Az Az
r{z = a’;{A2 - o - &
(o] o) = (o] o)
— a: s ces .
Continue with \,J_/ \(P+ ‘ ‘ Pin—1),
(ALlAR)F(AO‘allAZ)’ al f”sz
Roo | 101 | Roz end
Rye | Rrr =
0 | pu | 2
0 | Rar
0 0 | Ry
endwhile

Figure 3.2.4.4 Alternative Modified Gram-Schmidt algorithm for computing the QR factorization of a

matrix A.

Bl g 1 8, M b, i i | s

X

PGS algarithe in FLAME
Fieinlion

YouTube: https://www.youtube.com/watch?v=elwc14-1WFQ

Ponder This 3.2.4.2 Let A have linearly independent columns and let A = QR be a QR factorization of
A. Partition

A= (AL |Ar), Q@—(QL|Qr), and R—>(RTL RTR),

0 | RBr

where Ay, and Qp have k columns and Ry, is k X k.
As you prove the following insights, relate each to the algorithm in Figure 3.2.4.4. In particular, at the
top of the loop of a typical iteration, how have the different parts of A and R been updated?

1. AL, =QrRrr.

https://www.youtube.com/watch?v=elwc14-1WF0

WEEK 3. THE QR DECOMPOSITION 143

(QLRrL equals the QR factorization of Ay,.)

- C(AL) = C(Qr)-

(The first k columns of @ form an orthonormal basis for the space spanned by the first & columns of

A)
Rrp = QU Ap.

(Ar — QLRrr)? QL =0.
(Each column in Agp — QrRrr equals the component of the corresponding column of Ag that is
orthogonal to Span(Qr.).)

. C(Ar — QLRrR) = C(QR)-

Ar — QrLRrr = QrRBER.
(The columns of Qg form an orthonormal basis for the column space of Ag — QL Rrr.)

Solution. Consider the fact that A = QR. Then, multiplying the partitioned matrices,

(Aufar) = (Qu|Qe) (e ifre)

= (QuRre | QuRrr+QrRer).

Hence

5.

6

7.

AL =QLRrr, and Agr=QrRrr+ (QrRBR- (3.2.2)

. The left equality in (3.2.2) answers 1.

. C(Ar) = C(Qr) can be shown by noting that R is upper triangular and nonsingular and hence Rrj, is

upper triangular and nonsingular, and using this to show that C(AL) C C(Qr) and C(Qr) C C(AL):

e C(Ar) CC(QL): Let y € C(AL). Then there exists = such that Az = y. But then QpRrrx =y
and hence Q. (Rrpx) =y which means that y € C(Qp).

e C(Qr) CC(AL): Let y € C(Qr). Then there exists such that Qro = y. But then A R,jz =y
and hence Ar(R;;x) =y which means that y € C(Af).

This answers 2.

. Take Ag — Q. Rrr = QrRpr and multiply both side by Q¥:

Qi (Ar — QLRrr) = QF QrRBR
is equivalent to
QrAr— Q7'QL Rrr= QI Qr Rpr=0.
S~—— S~——
1 0
Rearranging yields 3.

Since Ar — QrRrr = QrRpr we find that (Ar — QrRrr)?Qr = (QrRer)" QL and
(Ar — QLRrr)" QL = RERQEQL = 0.

Similar to the proof of 2.

Rearranging the right equality in (3.2.2) yields Agp — QrRrr = QrRpBRr., which answers 5.

Letting A denote the original contents of A, at a typical point,

Homework 3.2.4.3 Implement the algorithm in Figure 3.2.4.4 as
function FAadkts hesiupdatadswill &r R)

e Rpp and Rygr have been computed.

Input is an {7 X rzmat%y(and a n x n matrix R. Output is the matrix @, which has overwritten matrix
e Ap = AR — JLIVTR.

WEEK 3. THE QR DECOMPOSITION 144
A and the upper triangular matrix R. (The values below the diagonal can be arbitrary.) You may want to

use Assignments/Week@3/matlab/test_MGS_QR.m to check your implementation.

Solution. See Assignments/Week@3/answers/MGS_QR.m.

3.2.5 In practice, MGS is more accurate

ki i Wi il PEtallr] K- -y

X [=

Boturdcy of 0G5 and MGS
Part 1

YouTube: https://www.youtube.com/watch?v=7ArZnHEQOPIw

In theory, all Gram-Schmidt algorithms discussed in the previous sections are equivalent in the sense
that they compute the exact same QR factorizations when exact arithmetic is employed. In practice, in the
presense of round-off error, the orthonormal columns of @) computed by MGS are often "more orthonormal"
than those computed by CGS. We will analyze how round-off error affects linear algebra computations in
the second part of the ALAFF. For now you will investigate it with a classic example.

When storing real (or complex) valued numbers in a computer, a limited accuracy can be maintained,
leading to round-off error when a number is stored and/or when computation with numbers is performed.
Informally, the machine epsilon (also called the unit roundoff error) is defined as the largest positive number,
€mach, such that the stored value of 1 + €pacn is rounded back to 1.

Now, let us consider a computer where the only error that is ever incurred is when

1+ €mach

is computed and rounded to 1.

Homework 3.2.5.1 Let € = /€mach and consider the matrix

—(ao|a|a). (3.2.3)

OO N =
o O =
a O O =

By hand, apply both the CGS and the MGS algorithms with this matrix, rounding 1 + €pach to 1 whenever
encountered in the calculation.
Upon completion, check whether the columns of @) that are computed are (approximately) orthonormal.

Solution. The complete calculation is given by

Assignments/Week03/matlab/test_MGS_QR.m
Assignments/Week03/answers/MGS_QR.m
https://www.youtube.com/watch?v=7ArZnHE0PIw

WEEK 3. THE QR DECOMPOSITION 14

First iteration CGS First iteration MGS
Poo = ||ao]2 = V1+€r = /1 +€mach poo = llaollz = v/ 1+8% = /14 emach
which is rounded to 1. which is rounded to 1.
1 1 1 1
£ £ € £
_ — — 4o = Go/Pop = /1=
g0 = 40/ Po,o . /1) 0 o
0 0 0 0
Second iteration Second iteration
po1=gia =1 po1 = gha =1
0 0
S —€
a1l =41 —Poi1go = . af =41 —pPo,1490 =
£
0 0
p11=|lat]2 =v2e2 = /2e P11 = |laf |2 = V22 = v2e
0 0 0 0
V2 e 2
—E o o _ B 5
q1 = ali/pl)l =5 /(‘\/QS) = \/52 q=aq /pl,l = & /(\/’EE) e e
e 5 2
0 0 0 0
Third iteration Third iteration
po2=ggay=1 po2 = ghaz =1
0
—€
aﬁ =42 —Po240 =
£
p12=gilay =0 P2 =gras = (vV2/2)e
0 0
—€ - _ —&/2
a% = a2 —Po290—P1291 = a; =43 —pP1,291 =
0 —&/2
& £
pr2=||ay |2 =22 =2 P22 = [laz|l2 = 4/ (6/4)€? = (v6/2)e
0 0 0 0
- 7_\@ ”S
1 € 3 _ £ \@ _ N6
r=ay /P2 = V2e) = =gl - 2 Moy = 6
92 =4y /P2, . /(v 2e) 8 g2 =ay/pa2 s /(5®) W
e 3? e g

Click here to enlarge.

WEEK 3. THE QR DECOMPOSITION 146

CGS yields the approximate matrix

1] 0 | o
el vz | 2
Q% 2 2
o 2| o
o o | £
while MGS yields
1l 0 | o
ol 2| _vE
~ 2 6
@1 | 2 | v
2 6
0o o | ¥

Clearly, they don’t compute the same answer.
If we now ask the question "Are the columns of @ orthonormal?" we can check this by computing Q¥ Q,
which should equal I, the identity.

e For CGS: .
Q7 Q
1] 0 o \" /1] o 0
V2| V2 V2| V2
€ p) p) € 2 p)
of 2 | o o 2 | o
o] 0 | ¥ 0o 0 | ¥
1+6mach _§€ _§6
2 1
_ég } 1
—76 5 1

Clearly, the computed second and third columns of @) are not mutually orthonormal.

What is going on? The answer lies with how ag is computed in the last step a3 := as — (gt as)qo —

(¢ as)q1. Now, qo has a relatively small error in it and hence qé{ asqo has a relatively small error in
it. Tt is likely that a part of that error is in the direction of q;. Relative to ¢t aaqo, that error in the
direction of ¢; is small, but relative to as — g aaqo it is not. The point is that then as — gl aaqo has a
relatively large error in it in the direction of ;. Subtracting ¢ asq; does not fix this and since in the
end aj is small, it has a relatively large error in the direction of ¢;. This error is amplified when g is
computed by normalizing a; .

e For MGS: .
QR7Q
1] 0 o \" /1] o 0
| 2| _E el _va| _E
2 6 2 6
0l v2 | _ve 0l v2 | _ve
2 6 2 6
o 0o | ¥ o 0 | ¥
1+6mach —§€ _%6
—ge 1 0
—%6 0 1

Why is the orthogonality better? Consider the computation of ay = as — (¢f1az)q1:

aé‘ = azL - Q{{aé'(h = [a2 - (Qé{az)%] - (Q{{[Cm - (qgléw)%])(h.

WEEK 3. THE QR DECOMPOSITION 147

This time, if az — g{’as go has an error in the direction of gy, this error is subtracted out when (¢ a3)q1

is subtracted from ay. This explains the better orthogonality between the computed vectors ¢; and

q2-

X

Aocurdcy of OG5 and MGS
Park 2

YouTube: https://www.youtube.com/watch?v=0T4Yd-eVMSo

We have argued via an example that MGS is more accurate than CGS. A more thorough analysis is
needed to explain why this is generally so.

3.2.6 Cost of Gram-Schmidt algorithms
(No video for this unit.)

Homework 3.2.6.1 Analyze the cost of the CGS algorithm in Figure 3.2.4.2 (left) assuming that A € C™*".

Solution. During the kth iteration (0 < k < n), Ag has k columns and A has n — k — 1 columns. In each
iteration

Operation Approximate cost
(in flops)

To1 : = Aéq(ll 2mk

a1 == a; — Agro1 2mk

p11 = a1 |2 2m

ay = al/pu m

Thus, the total cost is (approximately)

SV o [2mk + 2mk 4 2m + m]

>hzo [3m + 4mk]
3mn+4m Yok
~ <SP k=n(n-1)/2~n?/2>
3mn + 4m%2
3mn + 2mn?
~ < 3mn is of lower order >
2mn?

Homework 3.2.6.2 Analyze the cost of the MGS algorithm in Figure 3.2.4.2 (right) assuming that A €

Can

Solution. During the kth iteration (0 < k < n), Ap has k columns. and As has n —k — 1 columns. In each
iteration

Operation Approximate cost
(in flops)

p11 = [la1]l2 2m

ay ‘= al/ﬂn m

L = all Ay 2m(n — k —1)

Ay = Ay —arrly | 2m(n—k—1)

https://www.youtube.com/watch?v=OT4Yd-eVMSo

WEEK 3. THE QR DECOMPOSITION 148

Thus, the total cost is (approximately)

S o 2m(n —k— 1)+ 2m(n — k — 1) + 2m + m]

Yiso [Bm+dm(n —k —1)]
3mn + 4m22;3(n —k—-1)

= < Substitute j=(n—k—1) >
3mn + 4m Z;L:_ollj

~ <;?:Oj:n(n—1)/2%n2/2>
3mn + 4m%
3mn + 2mn?

~ < 3mn is of lower order >
2mn?

Homework 3.2.6.3 Which algorithm requires more flops?

Solution. They require the approximately same number of flops.
A more careful analysis shows that, in exact arithmetic, they perform exactly the same computations,
but in a different order. Hence the number of flops is exactly the same.

3.3 Householder QR Factorization

3.3.1 Using unitary matrices

kb diih Bieiad MArlrE: Weadal] K- S

33l
QR Factorizalion using wailary
mal rices

YouTube: https://www.youtube.com/watch?v=NAdMU_1ZANk

A fundamental problem to avoid in numerical codes is the situation where one starts with large values and
one ends up with small values with large relative errors in them. This is known as catastrophic cancellation.
The Gram-Schmidt algorithms can inherently fall victim to this: column a; is successively reduced in length
as components in the directions of {qo,...,q;—1} are subtracted, leaving a small vector if a; was almost in
the span of the first j columns of A. Application of a unitary transformation to a matrix or vector inherently
preserves length. Thus, it would be beneficial if the QR factorization can be implementated as the successive
application of unitary transformations. The Householder QR factorization accomplishes this.

The first fundamental insight is that the product of unitary matrices is itself unitary. If, given A € C™*"
(with m > n), one could find a sequence of unitary matrices, {Ho, ..., H,_1}, such that

Hn—l"'HOA_<§>7

where R € C"*" is upper triangular, then

https://www.youtube.com/watch?v=NAdMU_1ZANk

WEEK 3. THE QR DECOMPOSITION 149

which is closely related to the QR factorization of A.

Homework 3.3.1.1 Show that if A € C"™*"™ and A = Q (](?) , where Q € C™*"™ is unitary and R is
upper triangular, then there exists Q, € C™*™ such that A = Qp R, is the QR factorization of A.

Solution.
Q(]O%):(QL QR)(?)ZQLRv

The second fundamental insight will be that the desired unitary transformations {Hy, ..., H,_1} can be
computed and applied cheaply, as we will discover in the remainder of this section.

3.3.2 Householder transformation

YouTube: https://www.youtube.com/watch?v=6TIVIw4B5VA
What we have discovered in this first video is how to construct a Householder transformation, also referred

to as a reflector, since it acts like a mirroring with respect to the subspace orthogonal to the vector u, as
illustrated in Figure 3.3.2.1.

(I =2uu")x

PowerPoint source (Resources/Week03/HouseholderTransformation.pptx).

Figure 3.3.2.1 Given vector x and unit length vector u, the subspace orthogonal to u becomes a mirror for
reflecting = represented by the transformation (I — 2uu®?).

Definition 3.3.2.2 Let u € C" be a vector of unit length (||ul|z = 1). Then H = I — 2uu’! is said to be a
Householder transformation or (Householder) reflector. O

We observe:

https://www.youtube.com/watch?v=6TIVIw4B5VA
Resources/Week03/HouseholderTransformation.pptx

WEEK 3. THE QR DECOMPOSITION 150

e Any vector z that is perpendicular to w is left unchanged:

(I —2uuf)z = 2 — 2u(u®2) = 2.

o Any vector = can be written as © = z+u zu where z is perpendicular to u and v zu is the component
of z in the direction of u. Then

(I —2uu)z = (I —2uu)(z+uzu) =2+ u2u—2u vz — 2uufuzu
= z4uflou— 20z vy u=2—uzu.
1

These observations can be interpreted as follows: The space perpendicular to u acts as a "mirror": a vector
that is an element in that space (along the mirror) is not reflected. However, if a vector has a component
that is orthogonal to the mirror, that component is reversed in direction, as illustrated in Figure 3.3.2.1.
Notice that a reflection preserves the length of a vector.

Homework 3.3.2.1 Show that if H is a reflector, then

o HH =1 (reflecting the reflection of a vector results in the original vector).
o H=HH.
o HEH = HHY =T (a reflector is unitary).

Solution. Show that if H is a reflector, then

o HH =T (reflecting the reflection of a vector results in the original vector).

Solution:
(I — 2uu™) (I — 2uut)
I —2uu® — 2uu® + 40 wu uf
~—~
1
I — 4w + 4w =1
o H=HH,
Solution:

I — 2uu®?
o HHH =T (a reflector is unitary).
Solution:
H9H
HH

WEEK 3. THE QR DECOMPOSITION 151

B s g W e S o] e Bl

LIE

Housshalder Franformaticns

Part 2
0 =
]|

YouTube: https://www.youtube.com/watch?v=wmjUHak9yHU

PowerPoint source (Resources/Week03/HouseholderTransformationAsUsed.pptx)
Figure 3.3.2.3 How to compute u given vectors x and y with ||z||2 = ||y]|2.

Next, let us ask the question of how to reflect a given 2 € C™ into another vector y € C™ with ||z|2 = ||y/|2-
In other words, how do we compute vector u so that

(I —2uuf)z =y.

From our discussion above, we need to find a vector u that is perpendicular to the space with respect to
which we will reflect. From Figure 3.3.2.3 we notice that the vector from y to x, v = x — y, is perpendicular
to the desired space. Thus, u must equal a unit vector in the direction v: u = v/||v]|2.

Remark 3.3.2.4 In subsequent discussion we will prefer to give Householder transformations as I —uu /7,

where 7 = ufu/2 so that u needs no longer be a unit vector, just a direction. The reason for this will become
obvious later.

When employing Householder transformations as part of a QR factorization algorithm, we need to intro-
duce zeroes below the diagonal of our matrix. This requires a very special case of Householder transformation.

https://www.youtube.com/watch?v=wmjUHak9yHU
Resources/Week03/HouseholderTransformationAsUsed.pptx
https://www.youtube.com/watch?v=iMrgPGCWZ_o

WEEK 3. THE QR DECOMPOSITION 152

YouTube: https://www.youtube.com/watch?v=iMrgPGCWZ_o

As we compute the QR factorization via Householder transformations, we will need to find a Householder
transformation H that maps a vector x to a multiple of the first unit basis vector (eg). We discuss first how
to find H in the case where 2 € R". We seek v so that (I — —#~vv?)z = %||z||2e0. Since the resulting vector
that we want is y = %||z||2ep, we must choose v = © — y = = F ||z||2€0-

Example 3.3.2.5 Show that if z € R", v = 2 F ||z 20, and 7 = vTv/2 then (I — LvvT)z = +[|z||2e0.
Solution. This is surprisingly messy... It is easier to derive the formula than it is to check it. So, we won’t
check it! O

In practice, we choose v = x + sign(1)||z||2e0 where x; denotes the first element of . The reason is as
follows: the first element of v, vy, will be v; = x1 F ||z|]2. If x1 is positive and ||z||2 is almost equal to x1,
then y1 — ||z]|2 is a small number and if there is error in x; and/or ||z||2, this error becomes large relative
to the result x; — ||x||2, due to catastrophic cancellation. Regardless of whether x; is positive or negative,
we can avoid this by choosing v = = + sign(x1)||z||2€0:

. sign T + sign T
U::xﬂlgnm)nxnzeoz(2 >+()] |2>:<xl g0l)

T2

Remark 3.3.2.6 This is a good place to clarify how we index in this course. Here we label the first element
of the vector x as x1, despite the fact that we have advocated in favor of indexing starting with zero. In
our algorithms that leverage the FLAME notation (partitioning/repartitioning), you may have noticed that
a vector or scalar indexed with 1 refers to the "current column/row" or "current element'. In preparation
of using the computation of the vectors v and w in the setting of such an algorithm, we use x; here for the
first element from which these vectors will be computed, which tends to be an element that is indexed with
1. So, there is reasoning behind the apparent insanity.

Ponder This 3.3.2.2 Counsider z € R2 as drawn below:

Ko
X

and let u be the vector such that (I — uu® /7) is a Householder transformation that maps = to a vector

1
peozp(o)

e Draw a vector peg to which x is "mirrored."

WEEK 3. THE QR DECOMPOSITION 153

e Draw the line that "mirrors."
e Draw the vector v from which u is computed.

e Repeat for the "other" vector peg.

Computationally, which choice of mirror is better than the other? Why?

3.3.3 Practical computation of the Householder vector

YouTube: https://www.youtube.com/watch?v=UX_QBt90jf8

3.3.3.1 The real case

Next, we discuss a slight variant on the above discussion that is used in practice. To do so, we view z as a
vector that consists of its first element, y1, and the rest of the vector, xo: More precisely, partition

where x; equals the first element of x and x5 is the rest of x. Then we will wish to find a Householder vector

G_i<i)(i)v(ﬁ)—<igm>

Notice that y in the previous discussion equals the vector < Hg I2), so the direction of u is given by

UZ(meM)_
T2

We now wish to normalize this vector so its first entry equals "1":

v 1 <X13F|9C||2>< 1 >
U= — = ——— =)
vi x1F [z T2 T2 /11

where 11 = x1 F ||z||2 equals the first element of v. (Note that if 11 = 0 then us can be set to 0.)

1
u= so that
U2

3.3.3.2 The complex case (optional)

Let us work out the complex case, dealing explicitly with x as a vector that consists of its first element, y1,
and the rest of the vector, xo: More precisely, partition

https://www.youtube.com/watch?v=UX_QBt90jf8

WEEK 3. THE QR DECOMPOSITION 154

where y; equals the first element of x and x5 is the rest of . Then we will wish to find a Householder vector

u = (!) so that
U
H
() ()- ()
T u2 U2 X9 O
Here denotes a complex scalar on the complex unit circle. By the same argument as before
o= (DR,
T2

We now wish to normalize this vector so its first entry equals "1":

w= " = ! (X1—|CC||2>:(1)
vox1 f I |l2 Z2 T2/11

where v1 = x1 — [lz]|2. (If 1 = 0 then we set ugz to 0.)
As was the case for the real-valued case, the choice is important. We choose = —sign(x1) =

_ X1
Ix1l

3.3.3.3 A routine for computing the Householder vector

()

is the Householder vector that reflects « into lz||2e0. The notation

()] mmomer ()

represents the computation of the above mentioned vector us, and scalars p and 7, from vector z. We will
use the notation H(z) for the transformation I — %uuH where u and 7 are computed by Housev(zx).

The vector

Algorithm : < p) ,7| = Housev (< X1)>
U2 T2
X2 = [|lz2(l2
X1
o = = ||T
1), et
p = —sign(x1)|z2 p = —sign(x1)a
vy = x1 +sign(xa)l|zll2 | vii=x1—p
Uus = X9 /11 ug 1= xa /11
X2 = x2/|vil(= [Juall2)
7= (1+udluy)/2 T=(1+x3)/2

Figure 3.3.3.1 Computing the Householder transformation. Left: simple formulation. Right: efficient
computation. Note: I have not completely double-checked these formulas for the complex case. They work
for the real case.

Remark 3.3.3.2 The function
function [rho,
u2, tau] = Housev(chil,
X2)

limplements the function Housev. It can be found in Assignments/Week®3/matlab/Housev.m

Assignments/Week03/matlab/Housev.m

WEEK 3. THE QR DECOMPOSITION 155

Homework 3.3.3.1 Function Assignments/Week@3/matlab/Housev.m implements the steps in Figure 3.3.3.1
(left). Update this implementation with the equivalent steps in Figure 3.3.3.1 (right), which isSv"T v closer
to how it is implemented in practice.

Solution. Assignments/Week@3/answers/Housev-alt.m

3.3.4 Householder QR factorization algorithm

T ISP TSP TP TRy S E TR Ty S

134
Housshaslder GIF Factarizabion
algerithe Part |

YouTube: https://www.youtube.com/watch?v=5MeeuSoFBdY
Let A be an m x n with m > n. We will now show how to compute A — QR, the QR factorization,
as a sequence of Householder transformations applied to A, which eventually zeroes out all elements of that
matrix below the diagonal. The process is illustrated in Figure 3.3.4.1.

T
P11 _ Qi1 Ay -
U21 T T az1 Ago o
Original matrix T/ o7 “Move forward”
) Q11 P11 aip — Wi2
Housev T
\ a Aqr) 3 ’llr)}’ll‘l{)
X

£
Iy

X X X X X
X X X X X
X X X X X
X X X X X

OOOOXOOOOXOOOO‘XXXXXX
O OO X X[© © O X XX X X X|XX X X

S O X X XX X X[|X XX X X X[XX X X X
XX‘XXXXXXXXXXXXXXXXXX»—
OOOOXOOOOXOOOO‘XOOOOX
O OO X X©o © O X Xjo o o X|[X[X X X X
S O X X Xo © X|X XX X X X[XX X X X X
OX‘XXXXXXXXXXXXXXXXXX
DOOOXDDOOXDDOOXDDOO‘X
OO © X XO OO X X©o © O X XX X X X|X
SIS X X X© O X X XX X XX XX X X X|X
OXXXXXX‘XXXXXXXXXXXXX

Figure 3.3.4.1 Illustration of Householder QR factorization.
T
Q11 ap2
A— .
< az; Az >

(2)on] e ((51)

be the Householder transform computed from the first column of A. Then applying this Householder trans-

In the first iteration, we partition

Let

Assignments/Week03/matlab/Housev.m
Assignments/Week03/answers/Housev-alt.m
https://www.youtube.com/watch?v=5MeeuSoFBdY

WEEK 3. THE QR DECOMPOSITION 156
form to A yields
H
11 CL,{Q — I_ 1 1 1 11 G{Q
az Az ' T\ U2 Ug1 az Ag
_ (pii afy —wiy >
0 A22 — UQl’LUiFQ ’

where wl, = (afy + ull Ass)/m. Computation of a full QR factorization of A will now proceed with the
updated matrix Ass.

l-'l._ sahaldwr SR Factarizalion
ahgerithm Partk 2

YouTube: https://www.youtube.com/watch?v=WWe8yVccZy@
Homework 3.3.4.1 Show that

I 0 L [0 o \"”
T _ _
o134 (o) (o) "
71 U1 U1 U21 U21
Solution.
I‘ 0 O‘ 0
H H
= J—
o 1= () (o) 14 (o) (o)
1 U21 U21 1 U21 U21
0 0
_ 1 y2g
= I—,?l 0 1 1
U21 U21
0]0 6
= I-| 01 f
0| us ungl
0 0o \"”
= -+ 1 1
T1
U1 U21

More generally, let us assume that after k iterations of the algorithm matrix A contains

Roo | 701 Roe
A— (RgL iTR) = 0 a1 afy |,
BR 0 |an Az

where Rpyp and Rgyg are k X k upper triangular matrices. Let

(55)on]z ((51))

https://www.youtube.com/watch?v=WWe8yVccZy0

WEEK 3. THE QR DECOMPOSITION 157

and update
I 0 - Roo | ro1 Roo
A = 0 1 1 1 0 11 (I’{VQ
T\ ugy Uzl 0 |an A
H
0 0 Roo | ror Roz
L —) [——
= [I-%1 1 1 0 |11 df
Ug1 Ug1 0 | an A
Roo ‘ T01 ROQ
= 0 | pun aly—wh ;

T
0 0 A22 — U21 w12

where, again, wly = (al, + ull Ass) /7.
Let

v 0 \ 7
Hy=|1—-— 1 1
T1
U21 U21

be the Householder transform so computed during the (k + 1)st iteration. Then upon completion matrix A
contains

R= (RSL > —H, - H HyA

where A denotes the original contents of A and Ryry, is an upper triangular matrix. Rearranging this we find
that

A=HyH, - -H, 1R
which shows that if Q = HyH --- H,,_, then A = QR.

Typically, the algorithm overwrites the original matrix A with the upper triangular matrix, and at each
step ug is stored over the elements that become zero, thus overwriting as;. (It is for this reason that the
first element of u was normalized to equal "1".) In this case @ is usually not explicitly formed as it can be
stored as the separate Householder vectors below the diagonal of the overwritten matrix. The algorithm
that overwrites A in this manner is given in Figure 3.3.4.2.

WEEK 3. THE QR DECOMPOSITION 158

[A,t] = HQR_unb_varl(A)

Arr | Argr tr
A— < Aps [Apn > and t — (tB)

Apyr is 0 x 0 and t7 has 0 elements
while Tl(ABR) >0
Aoo Aga

Arp | Arr ‘Ti—T*a01 tr 0
— aig | @11 aig and ([— | — 1
Apr | ABr A A tp

20 | a1 Ao

11 ST = P11 ,71| = Housev 11
a1 U21 az1 r
Update(Zm)::(I—Tl(ul)(1 ui))(jlz)
22 1 21 22

via the steps
wiy = (afy + ab} Ags) /71

T T T
i) ._ a1z — w12T
Ago Agg — az1wiy
to

Ago ao1 | Ao

A A t

< AZE AZI; > — aly an | dd and <t£> —~ | n
Asg a1 | Ao

to

endwhile

Figure 3.3.4.2 Unblocked Householder transformation based QR factorization.

In that figure,
[A,t] = HQR_unb_varl(A)

denotes the operation that computes the QR factorization of m x n matrix A, with m > n, via Householder
transformations. It returns the Householder vectors and matrix R in the first argument and the vector of
scalars "7;" that are computed as part of the Householder transformations in t.

Homework 3.3.4.2 Given A € R™*" show that the cost of the algorithm in Figure 3.3.4.2 is given by
2 23
Cuqr(m,n) =~ 2mn* — 3" flops.

Solution. The bulk of the computation is in
wiy = (aiy + uzy Az2) /71

and
T
A22 — u21w12.

During the kth iteration (when Ry, is k x k), this means a matrix-vector multiplication (ul} As2) and rank-1
update with matrix Age which is of size approximately (m — k) x (n — k) for a cost of 4(m — k)(n — k) flops.

WEEK 3. THE QR DECOMPOSITION 159

Thus the total cost is approximately

Z_;S A(m — k) (n — k)
A (m—n+j)j

n—1 . n—1 .
4(m —n) Ej:O J+ 4Zj:0 7

2(m —n)n(n —1) + 42;:01 52

~
~

2(m —n)n* +4 [2?dx
2mn? — 2n3 + %n?’

2mn2 — %n3.

Homework 3.3.4.3 Implement the algorithm given in Figure 3.3.4.2 as
function [A_out, t J = HQRC A)

by completing the code in Assignments/Week@3/matlab/HQR.m. Input is an m x m matrix A. Output is the
matrix A,ut with the Householder vectors below its diagonal and R in its upper triangular part. You may
want to use Assignments/Week@3/matlab/test_HQR.m to check your implementation.

Solution. See Assignments/Week@3/answers/HQR.m. Warning: it only checks if R is computed correctly.

3.3.5 Forming @)

F h'l'l'l-i d Part |

YouTube: https://www.youtube.com/watch?v=cFWMsVNBzDY
Given A € C™*" let [4,t] = HQR_unb_ varl(A) yield the matrix A with the Householder vectors stored
below the diagonal, R stored on and above the diagonal, and the scalars 7;, 0 < ¢ < n, stored in vector ¢.

We now discuss how to form the first n columns of Q = HyoHy --- H,_1. The computation is illustrated in
Figure 3.3.5.1.

Assignments/Week03/matlab/HQR.m
Assignments/Week03/matlab/test_HQR.m
Assignments/Week03/answers/HQR.m
https://www.youtube.com/watch?v=cFWMsVNBzDY

WEEK 3. THE QR DECOMPOSITION 160

an | afy —
Original matrix a2 | Az /- “Move forward”
(171/7’1 ‘ 7(11,5[11422)/7'1 >
—U21/T1

oo o o
oo OO
oo = OO
o= o O O

S Rloolo o+
= Qoo oo~ o

‘Xooxxooo

X of/X X|X o olojlor oo

KX X X|X olo olo~ o|lo|lo o — o

XXXX‘XOOOOHOOOO’_‘OOOOH
XXXXXXXXXOXXXOOOO)—‘OQ
><><><><><><><><><c>><><><<:>o><><‘c>oo

XXXXXOOOO‘!—\OOO
X X X X X|X X X X|o|l© o O

Figure 3.3.5.1 Illustration of the computation of Q.

Notice that to pick out the first n columns we must form

Ian

Inn Inn
Q(OX> = Ho--~Hn1(OX> = Hy---Hp_, Hp---

&
L
7N
o
N———

o

so that Q = By, where By, = Hy--- H,_1 <I"6<”>

Homework 3.3.5.1 ALWAYS/SOMETIMES/NEVER:

Lsn I 0
e (55)- (i)

for some (m — k) x (n — k) matrix B,
Answer. ALWAYS
Solution. The proof of this is by induction on k:

e Base case: k =n. Then B,, = (ITLOX”) which has the desired form.

WEEK 3. THE QR DECOMPOSITION 161

o Inductive step: Assume the result is true for Bj. We show it is true for Bj_1:

0
Hy 1By
I 0
Hy 4 (kOXk B, >
T—1yx(k—1) 0 I—1yx(k=1y 0] O
1 0 11 0
1 H
0 I_‘I'lc(uk)(]'uk) 0 O‘Bk
T—1yx(k—1) 0

o () o) (wrE)

= < choose yI = uf’ By /7 >

T 1yx(k—1) ‘ 0
1] 0 1
_ 1 T
o () (o) G
Ih—1)x (k—1) 0
0 (-1/ | -y)
—Up [Tk ‘ By — uryj
T—1yx(k—1) 0 0
0 1—1/7 —ykT
0 —ug /T ‘ By, — upy}

I-1yx -1y 0
0 By)’

e By the Principle of Mathematical Induction the result holds for By, ..., B,.

335

Farin 'l'l-g o Parlk 2

YouTube: https://www.youtube.com/watch?v=pNEp5X1lsZ4k
The last exercise justifies the algorithm in Figure 3.3.5.2,

https://www.youtube.com/watch?v=pNEp5XlsZ4k

WEEK 3. THE QR DECOMPOSITION

162

[A] = FormQ(A,t)

Arr

Apr

Ay,
A—
< Apr

while n(Ary) >0

e

Arp is n(A) x n(A) and tp has n(A) elements

Ago ao1 | Ao2 to
A7y | Argp tr
(ABL ABR — (ZTO Q11 Q?Q N s — T1
Axg asy | Ao to
T
Q11 | Gip
Update | ——F—=| =
P (az | Aaa >

r—1 (1t
U\ U21

via the steps
11 = 1-— 1/7'1

) (HRS)

afy := —(ab} Ag2) /71
Agg 1= Agp + a21a1T2
ag1 = —021/7'1
A7y | Arg A%O o1 AQQQ tr o
(An | A) — aip | Q11 Aj9 s (tB) — T1
A | a21 Ago ta

endwhile

Figure 3.3.5.2 Algorithm for overwriting A with @ from the Householder transformations stored as House-
holder vectors below the diagonal of A (as produced by [A,¢] = HQR_unb_varl(A4,t)).

which, given [A,t] = HQR_unb_varl(A) from Figure 3.3.4.2, overwrites A with the first n = n(A)
columns of Q.

Homework 3.3.5.2 Implement the algorithm in Figure 3.3.5.2 as
function [A_out] = FormQ(A, t)

by completing the code in Assignments/Week@3/matlab/FormQ.m. You will want to use Assignments/Week@3/
matlab/test_FormQ.m to check your implementation. Input is the m x n matrix A and vector t that resulted
from [A, t] = HQR(A). Output is the matrix Q for the QR factorization. You may want to use
Assignments/Week@3/matlab/test_FormQ.m to check your implementation.

Solution. See Assignments/Week@3/answers/FormQ.m

Homework 3.3.5.3 Given A € C™*" show that the cost of the algorithm in Figure 3.3.5.2 is given by

2
CFoer (m7 n) ~ 2mn2 - gns ﬂOpS.

Hint. Modify the answer for Homework 3.3.4.2.

Solution. When computing the Householder QR factorization, the bulk of the cost is in the computations
wiy = (aiy + ug) A) /71

and

A22 — uzlwg.
When forming @, the cost is in computing
aly == —(all Ayy /1y

and
— T
A22 = A22 + U21 W7o

Assignments/Week03/matlab/FormQ.m
Assignments/Week03/matlab/test_FormQ.m
Assignments/Week03/matlab/test_FormQ.m
Assignments/Week03/matlab/test_FormQ.m
Assignments/Week03/answers/FormQ.m

WEEK 3. THE QR DECOMPOSITION 163

During the when Ary, is k X k), these represent, essentially, identical costs: p the matrix-vector multiplication
(udl Azz) and rank-1 update with matrix Age which is of size approximately (m — k) x (n — k) for a cost of
4(m — k)(n — k) flops. Thus the total cost is approximately

0
2 ken—1 4m —k)(n — k)
= < reverse the order of the summation >

"o A(m —k)(n — k)
42?:1(7” —n+j)j

4(m —n) Z?:lj +4 Z?:l 2

2(m —n)n(n+1) +43°7_, 5>

~
~

2(m —n)n? +4 [} 2?dx

omn? — 2n3 + %ng’

2mn? — %n?’.

Ponder This 3.3.5.4 If m = n then) could be accumulated by the sequence

Q= (- (IHo)Hy) - Hp1).

Give a high-level reason why this would be (much) more expensive than the algorithm in Figure 3.3.5.2

3.3.6 Applying Q7

A B MR] B P

336

fpplying

YouTube: https://www.youtube.com/watch?v=BfK3DVgfxIM

In a future chapter, we will see that the QR factorization is used to solve the linear least-squares problem.
To do so, we need to be able to compute § = Qfy where Q7 = H,,_; --- Hy.
Let us start by computing Hoy:

(-5 ()
()-(2) () ()

w1

https://www.youtube.com/watch?v=BfK3DVgfxIM

WEEK 3. THE QR DECOMPOSITION

More generally, let us compute Hyy:

H

1 0 0 Yo
I - 1 1 1;[}1 =
T1
Uz U2 Y2

Yo

P1 — w1

Y2 — Wiz

164

where wy = (¥1 +udly2) /7. This motivates the algorithm in Figure 3.3.6.1 for computing y := H,,_1 - -- Hoy
given the output matrix A and vector ¢ from routine HQR_ unb_ varl.

ly] = Apply_ QH(A, t,y)

Arr | Arr tr
A— gt=>—)y—
(Apr | ABr) (13:]) 4 (

Arp is 0 x 0 and t7, yr have 0 elements
while n(Apgr) <0

(ATL Arr) .

Apr | ABr

yr
YB

(1

U21) (! ugﬁ

wy = (Y1 + afhyo) /7
(1/)1),:(Y1 —wi)
Y2 ’ Yo — wWil21

Update (¥ > = <I L
Y2 i

via the steps

) (i

)

A A
ETATTLING WY

a all a12
A. A. 10
BL | ©2BR Aoy a1 | Ao

to Yo

t
()= () () =
B t YB s

endwhile

Figure 3.3.6.1 Algorithm for computing y := Qy(= H,,_1--- Hyy) given the output from the algorithm

HQR__unb_ varl.

Homework 3.3.6.1 What is the approximate cost of algorithm in Figure 3.3.6.1 if @ (stored as Householder

vectors in A) is m x n.

Solution. The cost of this algorithm can be analyzed as follows: When yr is of length k, the bulk of the
computation is in a dot product with vectors of length m — k — 1 (to compute w;) and an axpy operation
with vectors of length m — k — 1 to subsequently update 1, and y,. Thus, the cost is approximately given by

n—1 n—1 n—1
dAm—k—1)=4) m-4> (k—1)~4mn—2n>.
k=0 k=0 k=0

Notice that this is much cheaper than forming @ and then multiplying Q" y.

WEEK 3. THE QR DECOMPOSITION 165

3.3.7 Orthogonality of resulting @)
Homework 3.3.7.1 Previous programming assignments have the following routines for computing the QR
factorization of a given matrix A:
o Classical Gram-Schmidt (CGS) Homework 3.2.3.1:
[A_out, R_out | = CGS_QR(A).

o Modified Gram-Schmidt (MGS) Homework 3.2.4.3:
[A_out, R_out | = MGS_QR(A).

o Householder QR factorization (HQR) Homework 3.3.4.3:
[A_out, t_out] = HQR(A).

e Form Q) from Householder QR factorization Homework 3.3.5.2:
Q = FormQ(A, t).

Use these to examine the orthogonality of the computed @ by writing the Matlab script Assignments/
Week03/matlab/test_orthogonality.m for the matrix

OO A =
O N O
A O o

Solution. Try Assignments/Week@3/answers/test_orthogonality.m.

109 How orthonormal are the columns of Q?
E I T T

102 |
104 F
106

108 |

norm(1-Q"* Q)

10-12 é_

10 3

E ——
1016 L . . h 1 i r . | g " . 1

1020 10°71% 10710 10 100
epsilon

Ponder This 3.3.7.2 In the last homework, we examined the orthogonality of the computed matrix @ for a
very specific kind of matrix. The problem with that matrix is that the columns are nearly linearly dependent
(the smaller € is).

Assignments/Week03/answers/test_orthogonality.m

WEEK 3. THE QR DECOMPOSITION 166

How can you quantify how close to being linearly dependent the columns of a matrix are?
How could you create a matrix of arbitrary size in such a way that you can control how close to being
linearly dependent the columns are?

Homework 3.3.7.3 (Optional). Program up your solution to Ponder This 3.3.7.2 and use it to compare
how mutually orthonormal the columns of the computed matrices @ are.

3.4 Enrichments

3.4.1 Blocked Householder QR factorization

3.4.1.1 Casting computation in terms of matrix-matrix multiplication

Modern processors have very fast processors with very fast floating point units (which perform the multiply/
adds that are the bread and butter of our computations), but very slow memory. Without getting into
details, the reason is that modern memories are large and hence are physically far from the processor, with
limited bandwidth between the two. To overcome this, smaller "cache" memories are closer to the CPU of
the processor. In order to achieve high performance (efficient use of the fast processor), the strategy is to
bring data into such a cache and perform a lot of computations with this data before writing a result out to
memory.

Operations like a dot product of vectors or an "axpy" (y := ax+y) perform O(m) computation with O(m)
data and hence don’t present much opportunity for reuse of data. Similarly, matrix-vector multiplication
and rank-1 update operations perform O(m?) computation with O(m?) data, again limiting the opportunity
for reuse. In contrast, matrix-matrix multiplication performs O(m3) computation with O(m?) data, and
hence there is an opportunity to reuse data.

The goal becomes to rearrange computation so that most computation is cast in terms of matrix-matrix
multiplication-like operations. Algorithms that achieve this are called blocked algorithms.

It is probably best to return to this enrichment after you have encountered simpler algorithms and their
blocked variants later in the course, since Householder QR factorization is one of the more difficult operations
to cast in terms of matrix-matrix multiplication.

3.4.1.2 Accumulating Householder transformations

Given a sequence of Householder transformations, computed as part of Householder QR factorization, these
Householder transformations can be accumulated into a new transformation: If Hg,---, Hr_1 are House-
holder transformations, then

HyH, - -H,_1=1-UT"'U",

where T is an upper triangular matrix. If U stores the Householder vectors that define Hy, ..., Hi—1 (with
"1"s explicitly on its diagonal) and ¢ holds the scalars 7o, ..., Tx—1, then

T := FormT(U, t)
computes the desired matrix 7. Now, applying this UT transformation to a matrix B yields
(I-UT~'Uu™B =B -U(T""(U"B)),

which demontrates that this operations requires the matrix-matrix multiplication W := U B, the triangular
matrix-matrix multiplication W := T~'W and the matrix-matrix multipication B — UW, each of which can
attain high performance.

In [23] we call the transformation I —UT~*U# that equals the accumulated Householder transformations
the UT transform and prove that T" can instead by computed as

T = trin(UU)

(the upper triangular part of UH U) followed by either dividing the diagonal elements by two or setting them
to To,...,Tk—1 (in order). In that paper, we point out similar published results [8] [35] [46] [32].

WEEK 3. THE QR DECOMPOSITION 167

3.4.1.3 A blocked algorithm

A QR factorization that exploits the insights that yielded the UT transform can now be described:
A A
A—
(Ag1 Az

e We can use the unblocked algorithm in Subsection 3.3.4 to factor the panel (An >

o Partition

where Ajp; is b x b.

A21

[< ﬁ; > 1] = HouseQRunbvarl((ﬁ;i))7

overwriting the entries below the diagonal with the Householder vectors (gﬂ) (with the ones on
21

the diagonal implicitly stored) and the upper triangular part with Ri;.

e Form Tj; from the Householder vectors using the procedure described earlier in this unit:
Ty := FormT((An))
Agy

e Now we need to also apply the Householder transformations to the rest of the columns:

(2
Az

Aio Ui
— W,
< A1 — U1 W)

Ao — Ug1 Wi

where
Wio = T (UE A1y + UH Ag).

This motivates the blocked algorithm in Figure 3.4.1.1.

WEEK 3. THE QR DECOMPOSITION 168

[A,t] := HouseQR__blk_varl(A,t)

Arr | Arr i1
A= < Apr | Ar >’t_> < tp >
Arpp is 0 x 0,t7 has 0 rows
while m(Ary) < m(A)
choose block size b

Ago | Aor Ape to
(jTL ﬁTR) = | Ao | A1 A2 7(?) = | &
BL BR Ao | Ao1 Az B to

Aqq is b x b, t1 has b rows

[(j{l;) Jt1] = HQRunbVarl((ﬁ; >)

T11 = FormT((jll) ,tl)
21
Wio := T (UH Ay + U Ayy)

Az \ _ [Az —UnWi
Agy) Agg — Ua1 Wio
Ago Aor | Aoz to
A A t
(ATL ATR) — | Ao A | A ,(T) — | h
BL | #BR Axg Az | Ao

endwhile

Figure 3.4.1.1 Blocked Householder transformation based QR factorization.
Details can be found in [23].

3.4.1.4 The WY transform

An alternative (and more usual) way of expressing a Householder transform is
I — Bovf,

where 8 = 2/vfv (= 1/7, where 7 is as discussed before). This leads to an alternative accumulation of
Householder transforms known as the compact WY transform [35]:

I-uUsuf

where upper triangular matrix S relates to the matrix 7" in the UT transform via S = T~!. Obviously, T can
be computed first and then inverted via the insights in the next exercise. Alternatively, inversion of matrix
T can be incorporated into the algorithm that computes 7' (which is what is done in the implementation in
LAPACK [1)).

3.4.2 Systematic derivation of algorithms

We have described two algorithms for Gram-Schmidt orthogonalization: the Classical Gram-Schmidt (CGS)
and the Modified Gram-Schmidt (MGS) algorithms. In this section we use this operation to introduce our
FLAME methodology for systematically deriving algorithms hand-in-hand with their proof of correctness.
Those who want to see the finer points of this methodologies may want to consider taking our Massive Open
Online Course titled "LAFF-On: Programming for Correctness," offered on edX.

The idea is as follows: We first specify the input (the precondition) and ouput (the postcondition)
for the algorithm. factorization

e The precondition for the QR factorization is

WEEK 3. THE QR DECOMPOSITION 169

A contains the original matrix, which we specify by A since A will be overwritten as the algorithm
proceeds.

e The postcondition for the QR factorization is
A=QAA=QRAQYQ=1. (3.4.1)

This specifies that A is to be overwritten by an orthonormal matrix () and that Q)R equals the original
matrix A. We will not explicitly specify that R is upper triangular, but keep that in mind as well.

Now, we know that we march through the matrices in a consistent way. At some point in the algorithm
we will have divided them as follows:

R R
A%(ALAR),Q%(QLQR)’R—)<R;Z RZIJ:)’

where these partitionings are "conformal" (they have to fit in context). To come up with algorithms, we
now ask the question "What are the contents of A and R at a typical stage of the loop?" To answer this, we
instead first ask the question "In terms of the parts of the matrices are that naturally exposed by the loop,
what is the final goal?" To answer that question, we take the partitioned matrices, and enter them in the
postcondition (3.4.1):

(Ar[4r) = (Qc|Qr)
A Q

A _ Rrr | Rrr
/\(ALAAR)—(QLQR) (0 RBR)
A Q j

H 110
plelen)” (efen) = (1)
Q" 0 —

(Notice that Rpy, becomes a zero matrix since R is upper triangular.) Applying the rules of linear algebra
(multiplying out the various expressions) yields

(A [Ar) =(Q|Qr)
A (Ay | Ag) = (QLRrr | QuRrr + QrRBR) (3.4.2)
A(QfQLQEQR) :(Io>
QRQL | QRQr 0[r1
We call this the Partitioned Matrix Expression (PME). It is a recursive definition of the operation to
be performed.

The different algorithms differ in what is in the matrices A and R as the loop iterates. Can we system-
atically come up with an expression for their contents at a typical point in the iteration? The observation is
that when the loop has not finished, only part of the final result has been computed. So, we should be able
to take the PME in (3.4.2) and remove terms to come up with partial results towards the final result. There

are some dependencies (some parts of matrices must be computed before others). Taking this into account
gives us two loop invariants:

e Loop invariant 1:

(AL‘AR):(QL‘A\R)
NAp = QLRrr (34.3)
ANQEQL =1

WEEK 3. THE QR DECOMPOSITION 170

e Loop invariant 2:

(Al an)=(Qu|An—Qutrn)
/\(Ay | Ag) = (QLRrr | QuRrr + QrRBR)
ANQHQL =1
We note that our knowledge of linear algebra allows us to manipulate this into
(AL | Ar) = (QL ‘ Ar — QLRrr)

L (3.4.4)
NAL =QrRr NQY¥ AL = Rrp AQHQL = 1.

The idea now is that we derive the loop that computes the QR factorization by systematically deriving the
algorithm that maintains the state of the variables described by a chosen loop invariant. If you use (3.4.3),
then you end up with CGS. If you use (3.4.4), then you end up with MGS.

Interested in details? We have a MOOC for that: LAFF-On Programming for Correctness.

3.5 Wrap Up

3.5.1 Additional homework

B
o A= QR4 be the QR factorization of A.

Homework 3.5.1.1 Consider the matrix (A) where A has linearly independent columns. Let

R
. (%4) = @QpRp be the QR factorization of < ; >

A
. () = @R be the QR factorization of (B) .

Assume that the diagonal entries of R4, Rp, and R are all positive. Show that R = Rp.

i Qa ‘ 0 Ra Qa ‘ 0
() = (515) () = (4 ann
A . L . .
Also, 5)= QR. By the uniqueness of the QR factorization (when the diagonal elements of the triangular

matrix are restricted to be positive), Q = (%A ? > @Qp and R = Rp.

Remark 3.5.1.1 This last exercise gives a key insight that is explored in the paper

Solution.

o [20] Brian C. Gunter, Robert A. van de Geijn, Parallel out-of-core computation and updating of the
QR factorization, ACM Transactions on Mathematical Software (TOMS), 2005.

3.5.2 Summary

Classical Gram-Schmidt orthogonalization: Given a set of linearly independent vectors {ay, . ..,a,—1} C C™,
the Gram-Schmidt process computes an orthonormal basis {qo,...,¢n,—1} that spans the same subspace as
the original vectors, i.e.

Span({ao, - ..,an—1}) = Span({qo, - - - , gn—1})-
The process proceeds as follows:

https://www.edx.org/course/laff-on-programming-for-correctness-2

WEEK 3. THE QR DECOMPOSITION 171

o Compute vector ¢o of unit length so that Span({aop}) = Span({qo}):
© po,o = ||a0H2
Computes the length of vector ag.
° qo = ao/po,o
Sets go to a unit vector in the direction of ag.
Notice that ag = q0,0,0
o Compute vector ¢; of unit length so that Span({ag,a1}) = Span({qo, ¢1}):
o po1 = qtlar
Computes pg,1 so that pg1g0 = gt a1qo equals the component of a; in the direction of go.

o af‘ = a1 — pPo,190
Computes the component of a; that is orthogonal to qq.
o pr1 = [lat |2
1

Computes the length of vector aj .

o q1 =ai/pi
Sets ¢ to a unit vector in the direction of ai .

Notice that

(aoa1)—(q0q1)(l)(()),o P0,1>.

P1,1

o Compute vector ¢o of unit length so that Span({ag, a1, a2}) = Span({qo, q1,¢21}):

H
Po,2 = gy a2 : Po,2 H
o or, equivalently, = a
P12 = Q1Ha2 d v < P12 > (o q) 2

Computes pp 2 so that pgaqo = qtlazqo and p12q1 = g asqy equal the components of as in the
directions of gy and ¢;.

Or, equivalently, (q q1) (ZO’Q) is the component in Span({qo,q1})-
1,2

o ag =ay— P0,240 — P1,2q1 = a2 — (do q1) (Z(l)z >

Computes the component of as that is orthogonal to ¢y and ¢ .
o paa = llag |2

Computes the length of vector ay .
° g2 = G%/Pm

Sets g2 to a unit vector in the direction of as .

Notice that
£0,0 Po,1 | PO,2
(a0 ar]az)=(q @o|aq) 0 p11|pi2
0 0 ‘ p2,2

o And so forth.

Theorem 3.5.2.1 QR Decomposition Theorem. Let A € C™*" have linearly independent columns.
Then there exists an orthonormal matriz QQ and upper triangular matrix R such that A = QR, its QR
decomposition. If the diagonal elements of R are taken to be real and positive, then the decomposition is
unique.

WEEK 3. THE QR DECOMPOSITION 172

Projection a vector y onto the orthonormal columns of Q) € C™*":
[y™,7] = ProjLQocs(Q. y) [y, 7] = ProjLQues(Q: y)
(used by CGS) (used by MGS)
yt=y yt =y
fori=0,...,k—1 fori=0,...,k—1
pi=ql'y pi = qf'y*
yh=yt = pidi Y=yt = pidi
endfor endfor

Gram-Schmidt orthogonalization algorithms:

[A, R] := GS(A) (overwrites A with Q)
Rrr | Rrr
A—>(AL ‘ AR),R—> (0 RBR)
Ay has 0 columns and Ry, is 0 x 0
while n(Ar) < n(A)

R R Roog | ro1 Ro2
(AL‘AR)—)(A()‘GJ AQ),(1L TR>—> 0 P11 T%

0 | fisr 0 | 0 R

CGS MGS MGS (alternative)
o1 = Aé{al
a] ‘= a1 — AOT01 [al, 7’01] = PI‘OjJ_tOQMGS(A(), (11)
p11 = |la1|l2 p11 = a1 |2 pi1 = a2
ay = al/,011 q1 = al/Pu ay = al/Pu

rL, = all Ay

A2 = Ag — a1r1T2

R R
RTL RTR) — 00 ro1 70“2

0 Rpn 0 P11 | Tig

(Ar]Ar) e (Ao ar]4).(
0 0 | Ra

endwhile

Classic example that shows that the columns of @), computed by MGS, are "more orthogonal" than those
computed by CGS:

A:

1
o | =Caolala).
0

SO N =
a o O

Cost of Gram-Schmidt algorithms: approximately 2mn? flops.

Definition 3.5.2.2 Let u € C" be a vector of unit length (||ul|2 = 1). Then H = I — 2uu’! is said to be a
Householder transformation or (Householder) reflector. O

If H is a Householder transformation (reflector), then
e« HH =1.

e H=HH,

e« HEH = HH™I.

e H'=HH =H.

Computing a Householder transformation I — 2uu®:

e Real case:

WEEK 3. THE QR DECOMPOSITION

o v=2a F ||z|2e0.

v =z + sign(x1)||z||2e0 avoids catastrophic cancellation.

o u=uv/lv[ly

e Complex case:

cv=u=x :F |l]|2€0-

(Picking carefully avoids catastrophic cancellation.)

o u=uv/lv[l

Practical computation of u and 7 so that I — uu? /tau is a Householder transformation (reflector):

Algorithm :

()

o ()]

p = —sign(x1)||zl2
v1 = x1 +sign(x1) ||z
Ug = 172/1/1

7= (1+udluy)/2

X2 = [[22]|2
(= llzll2)

-=|(%)
X2 9

p = —sign(x1)o
Vi=X1—0p

ug 1= xa /11

x2 = X2/ |v1|(= |luzll2)
7= (1+x3)/2

Householder QR factorization algorithm:

[A,t] = HQR_unb_varl(A)

Aty | Arr
A | Are
(Apr | ABr

while n(Apgr) >0

> and t — (tT)
tp

Arp, is 0 x 0 and ¢t has 0 elements

endwhile

A A Ago | a1 Aoz " lo
TL TR T T T I
(a1 a1) — ajg | i1 A and <t> — 1
BL BR Asp | aa1 Aao B to
ot)omf = ()] = momer (2)
asq U21 azi
a 1 a¥,
Update (412):= (71— 2% 1 ull 12
pdate (Aoy) (T\ ugy (U321) Ao
via the steps
wiy 1; (afy + agA2T2)/Tl .
a1z) ._ iz — w12T
Az Agx — az1wiy
Ago ao1 | Ag2 to
< jTL jTR) — | aly a1 | af, | and <§T > — |
BL BR Axg a1 | Ao B to

Cost: approximately 2mn? — %n3 flops.

173

WEEK 3. THE QR DECOMPOSITION

Algorithm for forming @ given output of Householder QR factorization algorithm:

[A] = FormQ(A,t)

Arp | Arr tr
A— b= | —
< Apr | ABR) (tp)

Arp is n(A) x n(A) and tr has n(A) elements
while n(Arp) >0

Aoy ao1 | Ao2 to
A A t
(aL Ag)% o) o | ,(tz)% n
Asg asy | Ao

T
11 | Q12 —
Update (o1 | Ao > =
1 110
I-1L 1| ul

via the steps
11 = 1-— 1/7'1

o

afy := — (a5} Ag2) /71
Agg 1= Agp + a21a1T2
ag1 ‘= —021/7'1

A a A t
Arp | Argr - a%o a01 aZO“Q tr «— 7—70
Apr | ABr e e !

Agg | a21 Asgo

endwhile

Cost: approximately 2mn? — 5713 flops.
Algorithm for applying Q

given output of Householder QR factorization algorithm:
ly] = Apply_ QH(A, ¢,y)
Aty ATR) (W) (yT)
A— A= =] y—= |-
(Apr | ABr tg)Y YB
A7y is 0 X 0 and t7, yr have 0 elements
while n(Apr) <0

A A
(Arp | Arr) N i oo Aoy

T
Qip | 11 Q412)
Apr | ABr Ao

a1 Ago

Yo
(- (5) 620~
b to vB Y2
Y1\ ._ 1 (4
Update(yi).-(]—é(uzl)(l ull)><y21>

via the steps

wy = (Y1 + afiyo) /T
(Y1\ _(Y1—wr

y2) Yo — Wiz

Ago ao1 | Aoz
ATL ATR <— aT 11 CLT
10 i2

Apr | ABr ’

Azo az1 | Ago

to Yo
tr yr
(tB) — T1) (UB) — 1;[}1

ta Y2

endwhile

Cost: approximately 4mn — n? flops.

174

Week 4

Linear Least Squares

4.1 Opening

4.1.1 Fitting the best line

YouTube: https://www.youtube.com/watch?v=LPfd0YoQQuUo
A classic problem is to fit the "best" line through a given set of points: Given

{0)i

we wish to fit the line f(x) = o + 71X to these points, meaning that the coefficients vy and v; are to be
determined. Now, in the end we want to formulate this as approximately solving Az = b and for that reason,
we change the labels we use: Starting with points

{(azvﬁb) 27;_017
we wish to fit the line f(a) = xo + x1a through these points so that

50
A

Xo + X100
Xo + X101

~
~
~
~

Xo +X105m71 ~ ﬁm,fla

which we can instead write as

Az = b,
where
1 Qg 50
1 o B1
A= ,x:(XO>,andb:
X1
1 Qg —1 ﬂmfl

175

https://www.youtube.com/watch?v=LPfdOYoQQU0

WEEK 4. LINEAR LEAST SQUARES 176
Homework 4.1.1.1 Use the script in Assignments/Week@4/matlab/LineFittingExercise.m to fit a line to the
given data by guessing the coefficients yo and x1.

Ponder This 4.1.1.2 Rewrite the script for Homework 4.1.1.1 to be a bit more engaging...)

4.1.2 Overview
e 4.1 Opening
o 4.1.1 Fitting the best line

o 4.1.2 Overview
o 4.1.3 What you will learn

e 4.2 Solution via the Method of Normal Equations
o 4.2.1 The four fundamental spaces of a matrix
o 4.2.2 The Method of Normal Equations
o 4.2.3 Solving the normal equations

o 4.2.4 Conditioning of the linear least squares problem

o 4.2.5 Why using the Method of Normal Equations could be bad
e 4.3 Solution via the SVD

o 4.3.1 The SVD and the four fundamental spaces
o 4.3.2 Case 1: A has linearly independent columns
o 4.3.3 Case 2: General case

e 4.4 Solution via the QR factorization

o 4.4.1 A has linearly independent columns
o 4.4.2 Via Gram-Schmidt QR factorization
o 4.4.3 Via the Householder QR factorization

o 4.4.4 A has linearly dependent columns

e 4.5 Enrichments

o 4.5.1 Rank Revealing QR (RRQR) via MGS
o 4.5.2 Rank Revealing Householder QR factorization

e 4.6 Wrap Up

o 4.6.1 Additional homework
o 4.6.2 Summary

4.1.3 What you will learn

This week is all about solving linear least squares, a fundamental problem encountered when fitting data or
approximating matrices.
Upon completion of this week, you should be able to

e Formulate a linear least squares problem.

e Transform the least squares problem into normal equations.

Assignments/Week04/matlab/LineFittingExercise.m

WEEK 4. LINEAR LEAST SQUARES 177

e Relate the solution of the linear least squares problem to the four fundamental spaces.
¢ Describe the four fundamental spaces of a matrix using its singular value decomposition.

e Solve the solution of the linear least squares problem via Normal Equations, the Singular Value De-
composition, and the QR decomposition.

e Compare and contrast the accuracy and cost of the different approaches for solving the linear least
squares problem.

4.2 Solution via the Method of Normal Equations

4.2.1 The four fundamental spaces of a matrix

YouTube: https://www.youtube.com/watch?v=9mdDqC1SChg

We assume that the reader remembers theory related to (vector) subspaces. If a review is in order, we
suggest Weeks 9 and 10 of Linear Algebra: Foundations to Frontiers (LAFF) [26].

At some point in your linear algebra education, you should also have learned about the four fundamental
spaces of a matrix A € C™*" (although perhaps only for the real-valued case):

o The column space, C(A), which is equal to the set of all vectors that are linear combinations of the
columns of A

{y|y= Az}
o The null space, N'(A), which is equal to the set of all vectors that are mapped to the zero vector by A

{z | Az = 0}.

e The row space, R(A), which is equal to the set
{y |y =24},
Notice that R(A) = C(AH).
e The left null space, which is equal to the set of all vectors
{z | 27 A =0}.

Notice that this set is equal to N(A™).

Definition 4.2.1.1 Orthogonal subspaces. Two subspaces S, T C C™ are orthogonal if any two arbitrary
vectors (and hence all vectors) x € S and y € T are orthogonal: xfy = 0. %

The following exercises help you refresh your skills regarding these subspaces.

Homework 4.2.1.1 Let A € C™*". Show that its row space, R(A), and null space, N'(A), are orthogonal.
Solution. Pick arbitrary z € R(A) and y € N (A4). We need to show that these two vectors are orthogonal.

https://www.youtube.com/watch?v=9mdDqC1SChg

WEEK 4. LINEAR LEAST SQUARES 178

Then

< x € R(A) iff there exists z s.t. v = ATz >
< transposition of product >

= <yeN(4) >
2H0 =0.

Homework 4.2.1.2 Let A € C™*". Show that its column space, C(A), and left null space, N'(AH), are
orthogonal.

Solution. Pick arbitrary z € C(A) and y € N(AH). Then

Ty
= <z €C(A) iff there exists z s.t. z = Az >
(Az)Ty
= < transposition of product >
2T AHy
= <yeNAH)>
2H0 =0
Homework 4.2.1.3 Let {sg, -+ ,s.—1} be a basis for subspace S C C" and {to, - ,tx—1} be a basis for

subspace T C C™. Show that the following are equivalent statements:

1. Subspaces S,T are orthogonal.

2. The vectors in {sg, -, Sy—1} are orthogonal to the vectors in {tg, - ,tx_1}.
3. sfltj:0fora110§i<rand0§j<k;.

4. (So ‘ ‘ Sr—1)H(to ‘ ‘ th—1) = 0, the zero matrix of appropriate size.

Solution. We are going to prove the equivalence of all the statements by showing that 1. implies 2., 2.
implies 3., 3. implies 4., and 4. implies 1.
e 1. implies 2.
Subspaces S and T are orthogonal if any vectors x € S and y € Tare orthogonal. Obviously, this
means that s; is orthogonal to ¢; for 0 <i <rand 0 <j < k.
e 2. implies 3.
This is true by definition of what it means for two sets of vectors to be orthogonoal.
e 3. implies 4.
Sglto Sé{tl

(ol oo)" (o oo [y) = | S0 st

e 4. implies 1.
We need to show that if x € S and y € T then 2y = 0.
Notice that

p=(sol - loa)| 0 | amdy=(of)

WEEK 4. LINEAR LEAST SQUARES 179

for appropriate choices of Z and 7. But then

2 \\" o

ey = | (Cso -])| (to || ter)
Xr-1 7/7k—1
%\ o

= (so |51)" (to] - | tia)
Xr—1 Orxk QZk—l

=0

Homework 4.2.1.4 Let A € C™*". Show that any vector z € C"™ can be written as x = x, + x,,, where
r, € R(A) and z,, € N(A), and 22z, = 0.
Hint. Let r be the rank of matrix A. In a basic linear algebra course you learned that then the dimension
of the row space, R(A), is r and the dimension of the null space, N'(A4), is n — r.

Let {wyg, - ,wr—1} be a basis for R(A) and {w,,--- ,w,_1} be a basis for N'(A).
Answer. TRUE

Now prove it!

Solution. Let r be the rank of matrix A. In a basic linear algebra course you learned that then the
dimension of the row space, R(A), is r and the dimension of the null space, N'(A), is n — r.
Let {wo, -+ ,wr_1} be a basis for R(A) and {w,, - ,w,_1} be a basis for N (A). Since we know

that these two spaces are orthogonal, we know that {wq, -+ ,w,_1} are orthogonal to {w,, -+ ,w,_1}.
Hence {wg,- - ,w,—1} are linearly independent and form a basis for C®. Thus, there exist coefficients
{ag, -+ ,an_1} such that

T=0aowWo+ -+ Qp_1Wnp—1
= < split the summation >
Qowo + o F Q1 Wr—1 + QW+ Q1 Wh—1 -

Ty Ln

YouTube: https://www.youtube.com/watch?v=ZdlraR_7cMA
Figure 4.2.1.2 captures the insights so far.

https://www.youtube.com/watch?v=ZdlraR_7cMA

WEEK 4. LINEAR LEAST SQUARES

Column
space

dim =r o -

b dim=r

)

dim=n-r dim=m-r
Left null
Null space Space

Ax=A(x, +x,)= Ax, + Ax, = Ax,

180

Figure 4.2.1.2 Illustration of the four fundamental spaces and the mapping of a vector x € C™ by matrix

AeCmxn,

That figure also captures that if r is the rank of matrix, then
o dim(R(A)) = dim(C(A)) = r;

o dim(N(A)) =n—r;

o dim(N(AT))=m —r.

Proving this is a bit cumbersome given the knowledge we have so far, but becomes very easy once we relate

the various spaces to the SVD, in Subsection 4.3.1. So, we just state it for now.

4.2.2 The Method of Normal Equations

YouTube: https://www.youtube.com/watch?v=0T4KIOxx-f4

https://www.youtube.com/watch?v=oT4KIOxx-f4

WEEK 4. LINEAR LEAST SQUARES 181

Consider again the LLS problem: Given A € C"™*" and b € C™ find & € C" such that

b— Az|> = min [|b— Az|.,.
1o~ Azll2 = min [|b — Az|

We list a sequence of observations that you should have been exposed to in previous study of linear algebra:
e b= Az is in the column space of A.

o b equals the member of the column space of A that is closest to b, making it the orthogonal projection
of b onto the column space of A.

e Hence the residual, b — 13, is orthogonal to the column space of A.
e From Figure 4.2.1.2 we deduce that b — b=b— A& isin N(AH)] the left null space of A.
e Hence A7 (b— A%) = 0 or, equivalently,
AP Az = APp,
This linear system of equations is known as the normal equations.

o If A has linearly independent columns, then rank(A4) = n, N'(A) =), and A" A is nonsingular. In this
case,

&= (ATA)"1ATp,
Obviously, this solution is in the row space, since R(A4) = C™.

With this, we have discovered what is known as the Method of Normal Equations. These steps are summa-
rized in Figure 4.2.2.1

Row space

£= (A”A)’1 A7p

PowerPoint Source

Figure 4.2.2.1 Solving LLS via the Method of Normal Equations when A has linearly independent columns
(and hence the row space of A equals C™).

images/Chapter04/FundamentalSpacesLLSLinIndep.pptx

WEEK 4. LINEAR LEAST SQUARES 182

Definition 4.2.2.2 (Left) pseudo inverse. Let A € C™*" have linearly independent columns. Then
Al = (AF A)~1AH
is its (left) pseudo inverse. O

Homework 4.2.2.1 Let A € C™*™ be nonsingular. Then A~! = AT,
Solution.
AAT = A(AFA)TTAH = AA 1A H AR — [T =T
Homework 4.2.2.2 Let A € C™*" have linearly independent columns. ALWAYS/SOMETIMES/NEVER:
AAT =1
Hint. Consider A = (€o)
Answer. SOMETIMES

Solution. An example where AA" = I is the case where m = n and hence A is nonsingular.
An example where AAT # I is A = ¢y for m > 1. Then

AAT
= < instantiate >
-1
1 1\" /1 1\"
0 0 0 0
1
1
= < simplify >
1
0 (10 -)
= < multiply out >
1 0 ---
00
= <m>1>
£ 1.
Ponder This 4.2.2.3 The last exercise suggests there is also a right pseudo inverse. How would you define

it?

4.2.3 Solving the normal equations

YouTube: https://www.youtube.com/watch?v=1n4XogsWcOE

https://www.youtube.com/watch?v=ln4XogsWcOE

WEEK 4. LINEAR LEAST SQUARES 183

Let us review a method you have likely seen before for solving the LLS problem when matrix A has
linearly independent columns. We already used these results in Subsection 2.1.1

We wish to solve A7 A2 = AHb, where A has linearly independent columns. If we form B = A A and
y = Afb, we can instead solve Bi = y. Some observations:

e Since A has linearly independent columns, B is nonsingular. Hence, Z is unique.
e B is Hermitian since BY = (AHA)? = AH(AH)H = AHA = B.

o B is Hermitian Positive Definite (HPD): = # 0 implies that 2 Bz > 0. This follows from the fact
that
e Br = o AP Az = (Ax)® (Az) = || Az||3.

Since A has linearly independent columns, z # 0 implies that Az # 0 and hence || Az||3 > 0.

In Section 5.4, you will find out that since B is HPD, there exists a lower triangular matrix L such that
B = LLY. This is known as the Cholesky factorization of B. The steps for solving the normal equations
then become

o Compute B = A7 A,

Notice that since B is Hermitian symmetric, only the lower or upper triangular part needs to be
computed. This is known as a Hermitian rank-k update (where in this case k = n). The cost is,
approximately, mn? flops. (See Subsection C.0.1.)

« Compute y = AHb.

The cost of this matrix-vector multiplication is, approximately, 2mn flops. (See Subsection C.0.1.)

« Compute the Cholesky factorization B — LLH.

Later we will see that this costs, approximately, %ng’ flops. (See Subsection 5.4.3.)

e Solve
Lz=y

(solve with a lower triangular matrix) followed by
L3 =2
(solve with an upper triangular matrix).
Together, these triangular solves cost, approximately, 2n? flops. (See Subsection C.0.1.)

We will revisit this in Section 5.4.

4.2.4 Conditioning of the linear least squares problem

YouTube: https://www.youtube.com/watch?v=etx_1VZ4VFk

Given A € C™*™ with linearly independent columns and b € C™, consider the linear least squares (LLS)
problem
Ib — AZ||2 = min||b — Az||s (4.2.1)

https://www.youtube.com/watch?v=etx_1VZ4VFk

WEEK 4. LINEAR LEAST SQUARES 184

and the perturbed problem
[(b+ d) — A(Z + &&)||2 = mwin [[(b+ &) — Az + &)||2 (4.2.2)

The question we want to examine is by how much the relative error in b is amplified into a relative error in
2. We will restrict our discussion to the case where A has linearly independent columns.
Now, we discovered that b, the projection of b onto the column space of A, satisfies

b= Az (4.2.3)
and the projection of b+ & satisfies o
b+ b= A2+ &) (4.2.4)

where & equals the projection of &b onto the column space of A.
Let 6 equal the angle between vectors b and its projection b (which equals the angle between b and the
column space of A). Then

cos(f) = ||B\\2/||b||2

and hence .
cos(0)[|bllz = [|bll2 = [|AZ[|]2 < [[All2]l2]]2 = oollZ]|2

which (as long as & # 0) can be rewritten as

1 < go 1
12[l2 = cos(6) [1bll2”

(4.2.5)

Subtracting (4.2.3) from (4.2.4) yields
o= A&

or, equivalently,
A=

which is solved by
& = Ald
ATA(AT AL AH 5
(AT A)"LAH A(AH A)~TAH b
= Af®,

where AT = (A7 A)~1 A" is the pseudo inverse of A and we recall that & = A(A7 A)~' A" §b. Hence
18212 < [|A[|2 |- (4.2.6)
Homework 4.2.4.1 Let A € C"™*" have linearly independent columns. Show that
I(ATA) T ARy = 1o,

where 0,_1 equals the smallest singular value of A.
Hint. Use the reduced SVD of A.
Solution. Let A = UpX7;VH be the reduced SVD of A, where V is square because A has linearly

WEEK 4. LINEAR LEAST SQUARES 185

independent columns. Then
[(ATA)~T AT
H((gLETLVH)HULETLVH)_l(ULETLVH)HHz
H(‘;ZTLUEULETLVH)_lvaLUfHQ
I(VSZE STV S UE |,
IVEZLUE
ISrLU2
1/07171.

This last step needs some more explanation: Clearly ||Sr,UH s < ||SrLl2|UE 2 = ool|[UH |2 < 00. We
need to show that there exists a vector z with ||z||2 = 1 such that ||S7LUHz|s = |27 U |2, If we pick
x = ug (the first column of Uy), then |Sr U z|2 = |S7LU o2 = ||E7Leoll2 = ||ooeollz = oo-

Combining (4.2.5), (4.2.6), and the result in this last homework yields

laells . 1 oo [|®]2
12l ~ cos(0) on-1 b2

(4.2.7)

Notice the effect of the cos()b. If b is almost perpendicular to C(A), then its projection b is small and
cos 6 is small. Hence a small relative change in b can be greatly amplified. This makes sense: if b is almost
perpendical to C(A), then & ~ 0, and any small & € C(A) can yield a relatively large change dx.

Definition 4.2.4.1 Condition number of matrix with linearly independent columns. Let A €
C™>™ have linearly independent columns (and hence n < m). Then its condition number (with respect to

the 2-norm) is defined by
00

ra(4) = [[All2 ATl = —

n—1

It is informative to explicity expose cos(6) = [|b]l2/||b]l2 in (4.2.7):

6]z [lbll2 oo [z
[12ll2 = [|B]|2 on—1 [10]l2

Notice that the ratio
|0]]2

[161]2

can be made smaller by adding a component, b,., to b that is orthogonal to C(A) (and hence does not change
the projection onto the column space, b):

1]
15+ bl

The factor 1/ cos(f) ensures that this does not magically reduce the relative error in 2:

latllz _ [6+brllz o0 [|1Bll2
”@”2 B ||bH2 On—1 ||b+er2

WEEK 4. LINEAR LEAST SQUARES 186

4.2.5 Why using the Method of Normal Equations could be bad

YouTube: https://www.youtube.com/watch?v=W-HnQDsZsOw

Homework 4.2.5.1 Show that ro(A7 A) = (k2(A))%
Hint. Use the SVD of A.
Solution. Let A = UXVH be the reduced SVD of A. Then

ra (AT A) AT Al2][(AT A)]2
[(USVIHUSVA || (USV)IUSV)=,
[VE2VH o[V (2-1)2VH |
=220

= () = Ay

n—1

Let A € C™*™ have linearly independent columns. If one uses the Method of Normal Equations to solve
the linear least squares problem min, ||b — Az||s via the steps

« Compute B = A A,
« Compute y = Ab.
e Solve Bt =y.

the condition number of B equals the square of the condition number of A. So, while the sensitivity of the
LLS problem is captured by

oz 1 ob
[8le _ 16l

[£]l2 ~ cos(0) 1612
the sensitivity of computing Z from BZ = y is captured by

I8l _ g2 00l
B Tl

If ko(A) is relatively small (meaning that A is not close to a matrix with linearly dependent columns), then
this may not be a problem. But if the columns of A are nearly linearly dependent, or high accuracy is
desired, alternatives to the Method of Normal Equations should be employed.

Remark 4.2.5.1 It is important to realize that this squaring of the condition number is an artifact of the
chosen algorithm rather than an inherent sensitivity to change of the problem.

https://www.youtube.com/watch?v=W-HnQDsZsOw

WEEK 4. LINEAR LEAST SQUARES 187

4.3 Solution via the SVD

4.3.1 The SVD and the four fundamental spaces

YouTube: https://www.youtube.com/watch?v=Zj720RSSsH8

Theorem 4.3.1.1 Given A € C™*", let A = UpSrV{! equal its Reduced SVD and A= (Up | Ug) (EgL .) (Ve |V
its SVD. Then

 C(A) =C(UL),

e N(A) =C(Vgr),

e R(A)=C(AH) =C(V1), and

e N(A") =C(Up).

Proof. We prove that C(A) = C(UyL), leaving the other parts as exercises.
Let A= ULETLVLH be the Reduced SVD of A. Then

o UHUL =1 (Uy is orthonormal),

o VIV, =1 (VL is orthonormal), and

e Yy, is nonsingular because it is diagonal and the diagonal elements are all nonzero.
We will show that C(A) = C(Uy) by showing that C(A) C C(Ur) and C(Ur) C C(A)

« C(A) CC(Up):
Let z € C(A). Then there exists a vector x € C" such that z = Az. But then z = Az = U S V2 =
Uy SppVile =Upz. Hence z € C(Uy).
———

x
o C(UL) CC(A):
Let z € C(Ur). Then there exists a vector x € C" such that z = Upz. But then z = Upz =
Up SrVEVEYp 2= A Vi¥yir = AZ. Hence z € C(A).
—_——— ~———
I T
We leave the other parts as exercises for the learner. |

Homework 4.3.1.1 For the last theorem, prove that R(A) = C(A") = C(V1).
Solution. R(A)=C(Vy5):

The slickest way to do this is to recognize that if A = ULZTLVLH is the Reduced SVD of A then
A" = Vi Sr U is the Reduced SVD of A”. One can then invoke the fact that C(A) = C(UL) where in
this case A is replaced by A” and Uy by V.

Ponder This 4.3.1.2 For the last theorem, prove that N'(AH) = C(Ug).

https://www.youtube.com/watch?v=Zj72oRSSsH8

WEEK 4. LINEAR LEAST SQUARES 188

Homework 4.3.1.3 Given A € C™*", let A = ULETLVLH equal its Reduced SVD and A = (Up, ‘ Ugr) (

its SVD, and r = rank(A).

ALWAYS/SOMETIMES/NEVER: r = rank(A4) = dim(C(A)) = dim(C(UL)),
ALWAYS/SOMETIMES/NEVER: r = dim(R(A)) = dim(C(Vy)),
ALWAYS/SOMETIMES/NEVER: n — r = dim(NV(4)) = dim(C(Vz)), and
ALWAYS/SOMETIMES/NEVER: m — 7 = dim(N (A")) = dim(C(Ug)).

Answer.

ALWAYS: r = rank(A) = dim(C(A)) = dim(C(U1)),
ALWAYS: r = dim(R(A)) = dim(C(V7,)),
ALWAYS: n — r = dim(N'(4)) = dim(C(VR)), and
ALWAYS: m — r = dim(N(AH)) = dim(C(Ug)).

Now prove it.

Solution.

Homework 4.3.1.4 Given A € C"™*" let A = ULZTLVLH equal its Reduced SVD and A = (Ug, ‘ Ugr) (ESL
its SVD.

Any vector € C" can be written as = x, + ©,, where z, € C(Vy) and x,, € C(VR).

TRUE/FALSE

ALWAYS: r = rank(4) = dim(C(A)) = dim(C(UL)),

The dimension of a space equals the number of vectors in a basis. A basis is any set of linearly
independent vectors such that the entire set can be created by taking linear combinations of those
vectors. The rank of a matrix is equal to the dimension of its columns space which is equal to the
dimension of its row space.

Now, clearly the columns of Uy, are linearly independent (since they are orthonormal) and form a basis
for C(Ur). This, together with Theorem 4.3.1.1, yields the fact that r = rank(A) = dim(C(A)) =
dim(C(UL)).

ALWAYS: r = dim(R(A4)) = dim(C(V1)),

There are a number of ways of reasoning this. Omne is a small modification of the proof that r =
rank(A) = dim(C(A)) = dim(C(UL)). Another is to look at A¥ and to apply the last subproblem.
ALWAYS: n — r = dim(N(A)) = dim(C(Vgr)).

We know that dim(N(A)) + dim(R(A)) = n. The answer follows directly from this and the last
subproblem.

ALWAYS: m — r = dim(N(AH)) = dim(C(Ug)).

We know that dim(N(Af)) + dim(C(A)) = m. The answer follows directly from this and the first
subproblem.

Answer. TRUE
Now prove it!

Xrr

0

0
0

0
0

) (v

) (v

WEEK 4. LINEAR LEAST SQUARES 189

Solution.
r=Ic=VVHig
Z(VL‘VR)(VLJVR)Hm
1%
= (v vie) (Ve)
= ViVfiz + VgV .
N—— N——
cn—Acm
Column
M =cvi) x Ax —b e
dim = r o~ . C(A) =C(UL)
\ b dim=r
\
\
\
0> o>
s
dim=n-r dim=m-r
N (AT) = C(Ug)
N(A) =C(Vg)| *» Left null
space

Null space

Ax=A(x, +x,)= Ax,+ Ax, = Ax,

PowerPoint Source
Figure 4.3.1.2 Mlustration of relationship between the SVD of matrix A and the four fundamental spaces.

4.3.2 Case 1: A has linearly independent columns

YouTube: https://www.youtube.com/watch?v=wLCNOyOLFkM

images/Chapter04/FundamentalSpacesSVD.pptx
https://www.youtube.com/watch?v=wLCN0yOLFkM

WEEK 4. LINEAR LEAST SQUARES 190

Let us start by discussing how to use the SVD to find & that satisfies

b~ A#llo = min [|p — Ac]),

for the case where A € C™*™ has linearly independent columns (in other words, rank(A) = n).

Let A = UpX7rVH be its reduced SVD decomposition. (Notice that Vz = V since A has linearly
independent columns and hence V7, is n x n and equals V)

Here is a way to find the solution based on what we encountered before: Since A has linearly independent
columns, the solution is given by & = (A# A)~*AHb (the solution to the normal equations). Now,

A

z
< solution to the normal equations >

(AH A)-1AH}

= < A= ULETLVH >
[(ULSr VI E (UL S, V] T (UL S0, VE)Hb

= < (BCD)H = (D CHBH) and E;IL = Y7L >
[(VEr UR)ULSr, V] (VS U

= <UHUL,=1>
[VSrs 2 V] VS UHD

= <V t=VH and (BCD)"' =D 'C'B~! >
VI S VAV UHD

= <VIV=Tand S, ;S =1>
VY UED

A=UzZ, V"

m
C dim=r

b=A2=U,>, V'VSU"b=U,U"b

PowerPoint Source
Figure 4.3.2.1 Solving LLS via the SVD when A had linearly independent columns (and hence the row
space of A equals C™).

Alternatively, we can come to the same conclusion without depending on the Method of Normal Equa-
tions, in preparation for the more general case discussed in the next subsection. The derivation is captured

images/Chapter04/FundamentalSpacesSVDLLSLinIndep.pptx

WEEK 4. LINEAR LEAST SQUARES 191

in Figure 4.3.2.1.

mingecn ||b — Ax||3
= < substitute the SVDA = UXVH >
mingecn [|b — USV 2 z||3
= < substitute I = UUH and factor out U >
mingecn |[U(UHb — SV H1)||2
= < multiplication by a unitary matrix preserves two-norm >
mingecn [|[U70 — SV 5|3
= < partition, partitioned matrix-matrix multiplication >

U\ (Zre \ yu |
U RH b 0 9
= < partitioned matrix-matrix multiplication and addition >

. Uflb - ETLVHI 2
mMingecn Ugb
2

v
= < T
B 9

mingeen [UFb— Srp V|2 + [UHb)

mingecn

2

= vzl + [lvsll3 >

The x that solves L VHz = Uf[b minimizes the expression. That x is given by
&=V UM

since Yy, is a diagonal matrix with only nonzeroes on its diagonal and V' is unitary.
Here is yet another way of looking at this: we wish to compute & that satisfies

16— AZ[]2 = min [[b — Az|j5,

for the case where A € C™*" has linearly independent columns. We know that A = Uy X7 VH | its Reduced
SVD. To find the x that minimizes, we first project b onto the column space of A. Since the column space
of A is identical to the column space of Uy, we can project onto the column space of Uy, instead:

b=ULUHb.

Notice that this is not because Uy, is unitary, since it isn’t. It is because the matrix U,U projects onto
Y, L proj

the columns space of Uy, since Uy, is orthonormal.) Now, we wish to find & that exactly solves A% = b.
Substituting in the Reduced SVD, this means that

UpSrp Ve =U U,
Multiplying both sides by U yields
YrVHEZ = UHb.
and hence
&=V U

We believe this last explanation probably leverages the Reduced SVD in a way that provides the most insight,
and it nicely motivates how to find solutions to the LLS problem when rank(A) < r.

The steps for solving the linear least squares problem via the SVD, when A € C™*" has linearly inde-
pendent columns, and the costs of those steps are given by

o Compute the Reduced SVD A = U X V.

We will not discuss practical algorithms for computing the SVD until much later. We will see that the
cost is O(mn?) with a large constant.

WEEK 4. LINEAR LEAST SQUARES 192

e Compute & = VZ;}JUf{b.
The cost of this is approximately,
o Form yr = UHb: 2mn flops.

o Scale the individual entries in yr by dividing by the corresponding singular values: n divides,
overwriting yr = Z;kyT. The cost of this is negligible.

o Compute & = Vyr: 2n? flops.
The devil is in the details of how the SVD is computed and whether the matrices Uy, and/or V are
explicitly formed.
4.3.3 Case 2: General case
|

YouTube: https://www.youtube.com/watch?v=ghsPHQk1id8
Now we show how to use the SVD to find Z that satisfies

b — Azl = mwin |b — Ax||2,

where rank(A) = r, with no assumptions about the relative size of m and n. In our discussion, we let

A=U, LETLVZ{{ equal its Reduced SVD and

A= (00| Un) () (Vi Vi)

its SVD.
The first observation is, once more, that an & that minimizes ||b — Ax||2 satisfies

Az = b,

where b = Uy, UHb, the orthogonal projection of b onto the column space of A. Notice our use of "an 2" since
the solution won’t be unique if » < m and hence the null space of A is not trivial. Substituting in the SVD
this means that

hM
(UL |Ur) <3Lg> (Vi | Ve)" & =00,

Multiplying both sides by U} yields

by 0 H
(10)<3L0>(VLVR) &=Ufb

or, equivalently,
Yr VHEE = UHb. (4.3.1)

Any solution to this can be written as the sum of a vector in the row space of A with a vector in the null
space of A:

i‘ZVZZ(VLVR)<§£>= Vizr + Vgszp .

Ty Tn

https://www.youtube.com/watch?v=qhsPHQk1id8

WEEK 4. LINEAR LEAST SQUARES 193

Substituting this into (4.3.1) we get
ETLVEI(VLZT + VRZB) = UII:IZL

which leaves us with
ZTLZT = U[I/Jb

Thus, the solution in the row space is given by
zp = Vizr = VX UHD

and the general solution is given by
& =VEr UL b+ Vreg,

where zp is any vector in C"~". This reasoning is captured in Figure 4.3.3.1.

c(AfY =c(v,
dim=r
dim=n-r
N(A)

2=V,2aUb+V,z,

PowerPoint Source
Figure 4.3.3.1 Solving LLS via the SVD of A.

Homework 4.3.3.1 Reason that
&=V S U

is the solution to the LLS problem with minimal length (2-norm). In other words, if 2* satisfies
b — Az*|]2 = min ||b — Az||2
x
then [[Z]]z < [l2*][2.
Solution. The important insight is that
¥ = VX UFb + Veep
‘'
2

and that
ViSr UFb and Vezp

images/Chapter04/FundamentalSpacesSVDLLS.pptx

WEEK 4. LINEAR LEAST SQUARES 194

are orthogonal to each other (since VI Vg = 0). If uffv = 0 then ||u + v||3 = ||ul|3 + ||v||3. Hence
lz*113 = 12 + Vrzpl3 = 12113 + | Vr2sll? > 123

and hence ||2]|2 < [|z*]|2-

4.4 Solution via the QR factorization

4.4.1 A has linearly independent columns
|

YouTube: https://www.youtube.com/watch?v=mKAZjYX656Y

Theorem 4.4.1.1 Assume A € C™*"™ has linearly independent columns and let A = QR be its QR fac-
torization with orthonormal matriz Q@ € C™*" and upper triangular matrix R € C*"*™. Then the LLS
problem

Find & € C" such that ||b — AZ||2 = afrelg}t b — Az||2

is solved by the unique solution of
Ri = QHb.
Proof 1. Since A = QR, minimizing ||b — Az||2 means minimizing

1b—@Q Bz, 2.
z

Since R is nonsingular, we can first find z that minimizes
16— Q|2

after which we can solve Rx = z for z. But from the Method of Normal Equations we know that the
minimizing z solves

Q"Qz=Q"b.
Since @) has orthonormal columns, we thus deduce that
2z =QHb.
Hence, the desired & must satisfy
R = Q"b.

]
Proof 2. Let A = QrRrr be the QR factorization of A. We know that then there exists a matrix Qg such
that Q = (Qr ‘ Qr) is unitary: Qg is an orthonormal basis for the space orthogonal to the space spanned

https://www.youtube.com/watch?v=mKAZjYX656Y

WEEK 4. LINEAR LEAST SQUARES 195

by Q. Now,
mingecn ||b — Az||3
= < substitute A = QR >
mingecn [|b — QrRrrz|3
= < two norm is preserved since Q¥ is unitary >
mingec Q7 (b — QrRrra)|l3
= < partitioning; distributing >
H H
mingecn (%%f) b— (%Lr) QLRrLz
R R 2
= < partitioned matrix-matrix multiplication >

, Hy, R 2
mingeccn (g}%b > — < TOLx)
2

= < partitioned matrix addition >

Hyp
mingecn (QL bQ IzTLx)
R

2

2 2

= [lull3 + [[ll3 >

= < property of the 2-norm: H (Z)
2

. 2
mingeen ([|QFb — Reve|; + |Qf0I3)
= < ng is independent of x >
. 2
(mlanC" | @b — RTLIH2) + lQFE0I3
= < minimized by Z that satisfies Rrp& = Qb >
lQEDI3.

Thus, the desired # that minimizes the linear least squares problem solves Ry = QHy. The solution is
unique because Ry, is nonsingular (because A has linearly independent columns). |

Homework 4.4.1.1 Yet another alternative proof for Theorem 4.4.1.1 starts with the observation that the
solution is given by & = (A¥ A)"1AHb and then substitutes in A = QR. Give a proof that builds on this
insight.
Solution. Recall that we saw in Subsection 4.2.2 that, if A has linearly independent columns, the LLS
solution is given by # = (A7 A)~'AH}p (the solution to the normal equations). Also, if A has linearly
independent columns and A = QR is its QR factorization, then the upper triangular matrix R is nonsingular
(and hence has no zeroes on its diagonal).
Now,
z
= < Solution to the Normal Equations >
(AT A)~tAHp
= <A=QR>
[(@RT(QR)] " (QR)"b
= < (BO)? = (CHBH) >
[RHQHQR] -1 RHQH}
= <QHiQ=1>
[RHR] ™" REQH)
= <(BC)"'=Cc"'B71>
RIRHRHQHD
= <RHUIRH=T>
R™1Q"b.

Thus, the & that solves RZ = Qb solves the LLS problem.

Ponder This 4.4.1.2 Create a picture similar to Figure 4.3.2.1 that uses the QR factorization rather than
the SVD.

WEEK 4. LINEAR LEAST SQUARES 196

4.4.2 Via Gram-Schmidt QR factorization

In Section 3.2, you were introduced to the (Classical and Modified) Gram-Schmidt process and how it was
equivalent to computing a QR factorization of the matrix, A, that has as columns the linearly independent
vectors being orthonormalized. The resulting () and R can be used to solve the linear least squares problem
by first computing y = Qb and next solving RZ = y.

Starting with A € C™*"™ let’s explicitly state the steps required to solve the LLS problem via either CGS
or MGS and analyze the cost.:

e From Homework 3.2.6.1 or Homework 3.2.6.2, factoring A = QR via CGS or MGS costs, approximately,
2mn? flops.

« Compute y = Q7b: 2mn flops.
e Solve R% = y: n? flops.

Total: 2mn? + 2mn + n? flops.

4.4.3 Via the Householder QR factorization

YouTube: https://www.youtube.com/watch?v=Mk-Y_15aGGc

Given A € C™*" with linearly independent columns, the Householder QR factorization yields n House-
holder transformations, Hy, ..., H,_1, so that

H, 1---Hy A= (Rry >
——— 0
QH

[A,t] = HouseQR__unb_ varl(A) overwrites A with the Householder vectors that define Hy, - - , H,_1 below
the diagonal and Ry, in the upper triangular part.

Rather than explicitly computing @ and then computing 7 := Q¥ y, we can instead apply the Householder
transformations:

g = Hn—l c HOya

overwriting y with 7. After this, the vector y is partitioned as y = (T) and the triangular system
B

Rppz = yr yields the desired solution.
The steps and theirs costs of this approach are

e From Subsection 3.3.4, factoring A = QR via the Householder QR factorization costs, approximately,

2mn? — %n3 flops.

e From Homework 3.3.6.1, applying) as a sequence of Householder transformations costs, approximately,
4dmn — 2n? flops.

e Solve Ryp& = yp: n? flops.

Total: 2mn? — %n3 + 4mn —n? =~ 2mn? — %n3 flops.

https://www.youtube.com/watch?v=Mk-Y_15aGGc

WEEK 4. LINEAR LEAST SQUARES 197

4.4.4 A has linearly dependent columns

Let us now consider the case where A € C™*™ has rank r < n. In other words, it has r linearly independent
columns. Let p € R™ be a permutation vector, by which we mean a permutation of the vector

n—1

And P(p) be the matrix that, when applied to a vector x € C™ permutes the entries of = according to the

vector p:
T T

7 L e
671'1 eﬂ'lx X1
P(p)s = -
T T
67Tn71 671—,”71 z Xﬂ—n* 1
P(p)

where e; equals the columns of I € R"*" indexed with j (and hence the standard basis vector indexed with

J)-
If we apply P(p)T to A € C™*" from the right, we get

< definition of P(p) >

T T
ex
A :
T
67\'n— 1

< transpose >

A em [emy)

= < matrix multiplication by columns >
((Aery |-+ | Aen,_,)

= < Be; =b; >
(am [[am, .y).

In other words, applying the transpose of the permutation matrix to A from the right permutes its columns
as indicated by the permutation vector p.

The discussion about permutation matrices gives us the ability to rearrange the columns of A so that
the first 7 = rank(A) columns are linearly independent.

Theorem 4.4.4.1 Assume A € C™*"™ and that r = rank(A). Then there exists a permutation vector p € R™,
orthonormal matriz Qr, € C™*7", upper triangular matriz Ryy, € C™*", and Ry € C™(™=7) such that

AP(p)" =Qr(Rrr | Rrr).
Proof. Let p be the permutation vector such that the first » columns of A” = AP(p)T are linearly indepen-
dent. Partition

A= APG)T = (A7 | AF)

where AT € C™*". Since AL has linearly independent columns, its QR factorization, A” = Qr Rrr, exists.
Since all the linearly independent columns of matrix A were permuted to the left, the remaining columns,
now part of AL, are in the column space of AY and hence in the column space of Q. Hence AL = Q1 Rrr
for some matrix Rrg, which then must satisfy Q¥ A§ = Ryppg giving us a means by which to compute it.
We conclude that

AP = AP(p)" = (AP | AL) =Qu(Rre | Ren).

WEEK 4. LINEAR LEAST SQUARES 198

Let us examine how this last theorem can help us solve the LLS

Find & € C" such that ||b — AZ||2 = m%n b — Ax||2
zelCn

when rank(A) < n:

mingecn ||b — Az||o

= <P@p'Pp=1I>
mingecn b — AP(p)T P(p)z||2

= <AP()"=Qu(Rrr | Rrr) >
mingecn |b— Qr (Rrr | Rrr) P(p)z |2

w

= < substitute w= (Rrr | Rrr) P(p)z >

mingecr [[b — Qrw|2

which is minimized when w = Q¥b. Thus, we are looking for vector 4 such that

(Rr | Rrr) P(p)d = Qb
= (=)
ZB

(RTLRTR)(zz)be.

Now, we can pick zp € C"™" to be an arbitrary vector, and determine a corresponding zp by solving

Substituting

for P(p)& we find that

H
Rrpzr = Q7 b — Rrrzp.
A convenient choice is zg = 0 so that zp solves
RTLZT = ng

Regardless of choice of zg, the solution Z is given by

= Pp)” < Ry (Q¥b — Rrpep)) .

ZB

(a permutation of vector z.) This defines an infinite number of solutions if rank(A) < n.

The problem is that we don’t know which columns are linearly independent in advance. In enrichments
in Subsection 4.5.1 and Subsection 4.5.2, rank-revealing QR factorization algorithms are discussed that
overcome this problem.

4.5 Enrichments

4.5.1 Ran -Revealing QR (RRQR) via MGS
The discussion in Subsection 4.4.4 falls short of being a practical algorithm for at least two reasons:
¢ One needs to be able to determine in advance what columns of A are linearly independent; and

¢ Due to roundoff error or error in the data from which the matrix was created, a column may be linearly
independent of other columns when for practical purposes it should be considered dependent.

WEEK 4. LINEAR LEAST SQUARES 199

We now discuss how the MGS algorithm can be modified so that appropriate linearly independent columns
can be determined "on the fly" as well as the defacto rank of the matrix. The result is known as the Rank
Revealing QR factorization (RRQR). It is also known as QR factorization with column pivoting.
We are going to give a modification of the MGS algorithm for computing the RRQR.

For our discussion, we introduce an elementary pivot matrix, P(j) € C**", that swaps the first element
of the vector to which it is applied with the element indexed with j:

e; egz X
€] erx X1
~ eT. eT €T X ",
Pz = i Izt = -1
U) e T Yo
e]T+1 ef+1x Xj+1
61711—1 65—11' Xn—1
Another way of stating this is that
0 0 1 0
= | 9 fu-vxg-n O 0
0 0 0 Jn—j—1)x(n—j-1)

where I« equals the k x k identity matrix. When applying]5(j) from the right to a matrix, it swaps the
first column and the column indexed with j. Notice that P(5)” = P(j) and P(j) = P(j)~'.

Remark 4.5.1.1 For a more detailed discussion of permutation matrices, you may want to consult Week 7 of
'Linear Algebra: Foundations to Frontiers' (LAFF) [26]. We also revisit this in Section 5.3 when discussing
LU factorization with partial pivoting.

Here is an outline of the algorithm:

o Determine the index m; such that the column of A indexed with 7 has the largest 2-norm (is the
longest).

e Permute A := Aﬁ(m), swapping the first column with the column that is longest.
o Partition
A_>(a/1 AQ)vQ%(QI Q2)7R_> P sz D — i
0 Roo P2
o Compute p11 := ||ay||2-
e 1= al//J’11~
o Compute rL, := ¢f' As.

o Update Ay := Ay — qi7l5.

This substracts the component of each column that is in the direction of ¢ .
o Continue the process with the updated matrix As.

The complete algorithm, which overwrites A with @, is given in Figure 4.5.1.2. Observe that the elements on
the diagonal of R will be positive and in non-increasing order because updating Ay := Ay — g%, inherently
does not increase the length of the columns of A,. After all, the component in the direction of ¢; is being
subtracted from each column of As, leaving the component orthogonal to ¢ .

WEEK 4. LINEAR LEAST SQUARES 200

[A, R, p] := RRQR_MGS_simple(4, R, p)
Rrr | Rrr pr)
A— A A s R — D —
(Av]Ar) <RBL RBR)p (pB
Ay has 0 columns, Ry, is 0 X 0, pr has 0 rows
while n(Ar) < n(A)
(AL | Ar)= (Ao |a As),
R R
Rrr | Rrr - rol 2 Pr Lo
Rpr | BBr T\ Mo ATz B -l ™
Rao | 721 Rao D2
71 = DetermineColumnIndex((a1 Az))

(aq A2)2: (aq A2)P(’]Tl)
pi1 = |la1]|2

ay :=ay/pn

rl, :=aT Ay

AQIZLAQ——a1T£
(Ar|Ar)< (A a|4),

R
(RTL RTR > . ,10—‘0 To1

r P11
R R 10
BL | 7BR Ryo 721 | Roz

Rz » Do
K <T> | m
pPB Do

endwhile

Figure 4.5.1.2 Simple implementation of RRQR via MGS. Incorporating a stopping critera that checks
whether p;; is small would allow the algorithm to determine the effective rank of the input matrix.

The problem with the algorithm in Figure 4.5.1.2 is that determining the index m; requires the 2-norm of
all columns in Ag to be computed, which costs O(m(n—j)) flops when Ay, has j columns (and hence Ag has

0
131
n — j columns). The following insight reduces this cost: Let A = (ag ‘ ai ‘ ‘ Ap_1), v = . =
Un—-1
||‘10||§ Po
lal | | | i o
, ¢ q = 1 (here g is of the same size as the columns of A), and r = A'q =
Hanflng Pn—1
Compute B := A — gr” with B = (bo ‘ b1 ‘ ‘ bp—1) Then
1boll3 W — P%
loal3 | v —pi
an—1||§ Vp—1— pgz—l

To verify this, notice that
a; = (a; — aj qq) + af qq

and
(ai—ajq@)"q=0a]q—alqq"q=al q—alq=0.

This means that
ladll3 = ll(ai — af qq) + af qql3 = llai — ai qqll3 + llaf qqll3 = llai — pigll5 + llpiqlls = 1b:ll5 + o}

so that
10:l13 = llalls — p} = vi — 0} -

WEEK 4. LINEAR LEAST SQUARES 201

Building on this insight, we make an important observation that greatly reduces the cost of determining
the column that is longest. Let us start by computing v as the vector such that the ith entry in v equals
the square of the length of the ith column of A. In other words, the ith entry of v equals the dot product
of the i column of A with itself. In the above outline for the MGS with column pivoting, we can then also

partition
v — ("1 > .
V2

The question becomes how vy before the update Ay := Ay — g177, compares to vy after that update. The
answer is that the ith entry of vy must be updated by subtracting off the square of the ith entry of r7,.

Let us introduce the functions v = ComputeWeights(A) and v = UpdateWeights(v, r) to compute
the described weight vector v and to update a weight vector v by subtracting from its elements the squares
of the corresponding entries of r. Also, the function DeterminePivot returns the index of the largest in the
vector, and swaps that entry with the first entry. An optimized RRQR via MGS algorithm, RRQR-MGS, is
now given in Figure 4.5.1.3. In that algorithm, A is overwritten with Q.

[A, R,p] := RRQR_MSG(A, R, p)
v := ComputeWeights(A)

Rrr | Rrr pr ur
A%(ALAR),RH<RBL RBR>,p*><pB LA s

Ay, has 0 columns, Ry, is 0 x 0, pr has 0 rows, vy has 0 rows
while n(Ar) < n(A)
(AL | Ar)= (Ao|a Ar),

< Rrp | Rrr) - R%O | ror R%2

r P11 Ti2)
Rpr | RBr 10
Rayo | r21 Rao
Do Vo
v
< gT) — T s (UT > — 141
B B
D2 V2

[("),71'1] = DeterminePivot((1))

V2 V2
(A()‘al AQ)::(A()‘al AQ)P(TFl)T
pi1 = [laz]2

ay = a1/P11

7”{2 = (I{Az

A2 = A2 — qlrﬂ

vy := UpdateWeights(va, 712)
(AL |Ar)« (A ar[A),

Ry ro1 | Ro2
Rrr | Rrr P I A
10 i2
Rpr | Rer ’

Rao 721 | Raz

Do Vo

pr < T s or < 141
bB UB

V2

D2

endwhile

Figure 4.5.1.3 RRQR via MGS, with optimization. Incorporating a stopping critera that checks whether
p11 is small would allow the algorithm to determine the effective rank of the input matrix.

Let us revisit the fact that the diagonal elements of R are positive and in nonincreasing order. This upper
triangular matrix is singular if a diagonal element equals zero (and hence all subsequent diagonal elements
equal zero). Hence, if p1; becomes small relative to prior diagonal elements, the remaining columns of the

WEEK 4. LINEAR LEAST SQUARES 202

(updated) Ag are essentially zero vectors, and the original matrix can be approximated with

A~QL(Rrr Rrr)=

If Q1 has k columns, then this becomes a rank-k approximation.

Remark 4.5.1.4 Notice that in updating the weight vector v, the accuracy of the entries may progressively
deteriorate due to catastrophic cancellation. Since these values are only used to determine the order of the
columns and, importantly, when they become very small the rank of the matrix has revealed itself, this is in
practice not a problem.

4.5.2 Rank Revealing Householder QR factorization

The unblocked QR factorization discussed in Section 3.3 can be supplemented with column pivoting, yielding
HQRP__unb_varl in Figure 4.5.2.1. In that algorithm, we incorporate the idea that the weights that are
used to determine how to pivot can be updated at each step by using information in the partial row 77,
which overwrites al,, just like it was in Subsection 4.5.1.

[A,t,p] = HQRP_unb_varl(A)
v := ComputeWeights(A)

Arr | Arr) (tr)
A— gdtd= =), p—
(Apr | ABr tg)

Aryr is 0 X 0 and t7 has 0 elements
while n(Ary) < n(A)

()= ()

t
Arr | Argr 0
— T1 s
Apr | ABr £
Po)
< pr > — T s (vr) — 11
PB UB
D2 V2
[< “1 > ,] = DeterminePivot((Y1))
Vo V2
ap1 Ao apr Aoz
app aly =\ a1 aly | P(m)T
as; Agg az1 Ago

()= [l) a2
as1 U21 a21

wiy = (afy + af] Ays) /71

T T T
2) ._ ayz — wlZT
Az Agg — az1wiy

vy = UpdateWeight(vy, a12)

endwhile

Figure 4.5.2.1 Rank Revealing Householder QR factorization algorithm.

Combining a blocked Householder QR factorization algorithm, as discussed in Subsubsection 3.4.1.3, with
column pivoting is tricky, since half the computational cost is inherently in computing the parts of R that
are needed to update the weights and that stands in the way of a true blocked algorithm (that casts most
computation in terms of matrix-matrix multiplication). The following papers are related to this:

e [33] Gregorio Quintana-Orti, Xioabai Sun, and Christof H. Bischof, A BLAS-3 version of the QR
factorization with column pivoting, SIAM Journal on Scientific Computing, 19, 1998.

WEEK 4. LINEAR LEAST SQUARES 203

discusses how too cast approximately half the computation in terms of matrix-matrix multiplication.

o [25] Per-Gunnar Martinsson, Gregorio Quintana-Orti, Nathan Heavner, Robert van de Geijn, House-
holder QR Factorization With Randomization for Column Pivoting (HQRRP), STAM Journal on Sci-
entific Computing, Vol. 39, Issue 2, 2017.

shows how a randomized algorithm can be used to cast most computation in terms of matrix-matrix
multiplication.

4.6 Wrap Up

4.6.1 Additional homework

We start with some concrete problems from our undergraduate course titled "'Linear Algebra: Foundations
to Frontiers" [26]. If you have trouble with these, we suggest you look at Chapter 11 of that course.

1 0 1
Homework 4.6.1.1 Consider A = 0 1 and b = 1
1 1 0

o Compute an orthonormal basis for C(A).

o Use the method of normal equations to compute the vector Z that minimizes min, ||b — Ax||2
o Compute the orthogonal projection of b onto C(A).

e Compute the QR factorization of matrix A.

o Use the QR factorization of matrix A to compute the vector Z that minimizes min, ||b — Az||2

Homework 4.6.1.2 The vectors
1 _g
= (1) oz)
2

o= (1)

o TRUE/FALSE: These vectors are mutually orthonormal.

SN
%

. 4 . o
o Write the vector (9 > as a linear combination of vectors qg and ¢ .

4.6.2 Summary

The LLS problem can be states as: Given A € C™*" and b € C™ find z € C" such that
|b — AZ||2 = min [[b — Ax||,.
reCn

Given A € C™*™,

e The column space, C(A), which is equal to the set of all vectors that are linear combinations of the
columns of A

{y |y =Ax}.
e The null space, N'(A), which is equal to the set of all vectors that are mapped to the zero vector by A

{z | Az = 0}.

WEEK 4. LINEAR LEAST SQUARES

o The row space, R(A), which is equal to the set

{y | y" =2 A}

Notice that R(A) = C(AH).

e The left null space, which is equal to the set of all vectors

{z | 27 A=0}.

Notice that this set is equal to N'(AX).

o If Az = b then there exist z,, € R(A4) and = = z, + x,, where z,, € R(A) and z,, € N'(A).

204

These insights are summarized in the following picture, which also captures the orthogonality of the spaces.

dim=r
dim=n-r
Null space

cr—A4 .cm

Ax=A(x, +x,)=Ax, + Ax, = Ax,

Column
space

b dim=r

)

dim=m-r

Left null
space

If A has linearly independent columns, then the solution of LLS, Z, equals the solution of the normal

equations

as summarized in

(AP Az = AHp.

WEEK 4. LINEAR LEAST SQUARES 205

n
dim=r

Row space

dim=m-r

b-b

Left null
space

A% = A(AHA)‘1 Ap

The (left) pseudo inverse of A is given by AT = (A7 A)~'AH 5o that the solution of LLS is given by
z = Afb.
Definition 4.6.2.1 Condition number of matrix with linearly independent columns. Let A €

C™>™ have linearly independent columns (and hence n < m). Then its condition number (with respect to
the 2-norm) is defined by

ag
ra(4) = [[All2 ATl = — :

n—1

¢

Assuming A has linearly independent columns, let b= Az where b is the projection of b onto the column
space of A (in other words, & solves the LLS problem), cos(8) = ||b||2/||b]|2, and b+ & = A(Z + &%), where &b
equals the projection of % onto the column space of A. Then

[l . 1 oo [|®]2
[#ll2 ~ cos(0) on-1 b2

captures the sensitivity of the LLS problem to changes in the right-hand side.

Theorem 4.6.2.2 Given A € C™*"™, let A = ULETLVLH equal its Reduced SVD and A = (U | Ur) (ESL
its SVD. Then
« C(4) =C(UL),
N(A) =C(Vr),
R(A) = C(AT) =C(V1), and
(Af) = C(Ug).

0
0

)(VL|V1

WEEK 4. LINEAR LEAST SQUARES 206

cr—4-¢m
Column
C(AT) —C(V, _ >pace
dirr|1=(r) (L)L\x*' = C(A) = C(UL)
\\ b dim=r
\
\
0> o>

'
dim=n-r dim=m-r
N (A™) = C(Ur)
N(A) =CVr)| % Left null
Null space Space

Ax=A(x +x)= Ax, +Ax, = Ax,

WEEK 4. LINEAR LEAST SQUARES 207

dim=r

N (A™) = C(Ur)

b=A%=U,2, VVEU"b=U,U"b

If A has linearly independent columns and A = Uy LVIfI is its Reduced SVD, then
&=V S UED
solves LLS. .
Given A € C™*", let A = U, X7 V! equal its Reduced SVD and A = (Uy, | Ug) (rz |0) (Vi | Ve)

0 [0
its SVD. Then
&=V URD + Vi,

is the general solution to LLS, where z;, is any vector in C"~".

Theorem 4.6.2.3 Assume A € C™*™ has linearly independent columns and let A = QR be its QR fac-
torization with orthonormal matriz Q@ € C™*™ and upper triangular matric R € C"*™. Then the LLS

problem
Find & € C" such that ||b — AZ|2 = nelécrgl Ib — Ax||2

is solved by the unique solution of
R& = Q"b.
Solving LLS via Gram-Schmidt QR factorization for A € C™*™:
« Compute QR factorization via (Classical or Modified) Gram-Schmidt: approximately 2mn? flops.
« Compute y = QHb: approximately 2mn? flops.
e Solve Ri = y: approximately n? flops.
Solving LLS via Householder QR factorization for A € C™*™:

« Householder QR factorization: approximately 2mn? — §n3 flops.

LINEAR LEAST SQUARES 208

« Compute y7 = Q”bnn by applying Householder transformations: approximately 4mn — 2n? flops.

e Solve Ryp# = yp: approximately n? flops.

Part 11

Solving Linear Systems

209

Week 5

The LU and Cholesky Factorizations

5.1 Opening

5.1.1 Of Gaussian elimination and LU factorization

5.1.1
indirif lan &liminglicn versus LLI

fackarigation Park |
L
B

YouTube: https://www.youtube.com/watch?v=fszE2KNxTmo

Homework 5.1.1.1 Reduce the appended system

2 -1 1 1
-2 2 1(-1
4 —4 1 5

to upper triangular form, overwriting the zeroes that are introduced with the multipliers.
Solution.

2 -1 1

-1 1 2

2 -2 3 3

O =

5.1.1
ik lan eliminglicn versus LLI
facborization Park 2

YouTube: https://www.youtube.com/watch?v=Tt00Qikd-nI

210

https://www.youtube.com/watch?v=fszE2KNxTmo
https://www.youtube.com/watch?v=Tt0OQikd-nI

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

A=T0A)
Arr | Argr
A—
(Apr | ABr)
ATL is0Ox0

while n(Ary) < n(A)

Arp | Arr)
H
< Apr | ABr

ag1 = a21/a11
._ T
Agg i= Aoy — aniaiy

AOO

A
(ATL Ar > . o ao1 02

Ao @11 | G39
Ay azr | Ax

Apr | ABr

endwhile

Figure 5.1.1.1 Algorithm that overwrites A with its LU factorization.

Homework 5.1.1.2 The execution of the LU factorization algorithm with

211

2 -1 1
A= -2 2 1
4 —4 1
in the video overwrites A with
2 -1 1
-1 1 2
2 -2 3
Multiply the L and U stored in that matrix and compare the result with the original matrix, let’s call it A.
Solution.
1 0 0 2 -1 1
L= -1 1 0 andU=| 0 1 2
2 -2 1 0 0 3
1 0 0 2 -1 1 2 -1
Lu=1 -1 1 0 0 2 | =1 -2 2
2 =2 1 0 0 3 4 —4

5.1.2 Overview

e 5.1 Opening

o 5.1.1 Of Gaussian elimination and LU factorization

o 5.1.2 Overview

o 5.1.3 What you will learn

¢ 5.2 From Gaussian elimination to LU factorization

o 5.2.1 Gaussian elimination

o

5.2.2 LU factorization: The right-looking algorithm

o 5.2.3 Existence of the LU factorization

o 5.2.4 Gaussian elimination via Gauss transforms

o 5.3 LU factorization with (row) pivoting

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 212

o 5.3.1 Gaussian elimination with row exchanges

o 5.3.2 Permutation matrices

[¢]

5.3.3 LU factorization with partial pivoting

o 5.3.4 Solving A x = y via LU factorization with pivoting
o 5.3.5 Solving with a triangular matrix

o 5.3.6 LU factorization with complete pivoting

o 5.3.7 Improving accuracy via iterative refinement
5.4 Cholesky factorization

o 5.4.1 Hermitian Positive Definite matrices

o 5.4.2 The Cholesky Factorization Theorem

o 5.4.3 Cholesky factorization algorithm (right-looking variant)
o 5.4.4 Proof of the Cholesky Factorizaton Theorem

o 5.4.5 Cholesky factorization and solving LLS

5.4.6 Implementation with the classical BLAS

O

5.5 Enrichments

o 5.5.1 Other LU factorization algorithms
5.6 Wrap Up

o 5.6.1 Additional homework

o 5.6.2 Summary

5.1.3 What you will learn

This week is all about solving nonsingular linear systems via LU (with or without pivoting) and Cholesky
factorization. In practice, solving Az = b is not accomplished by forming the inverse explicitly and then
computing x = A~'b. Instead, the matrix A is factored into the product of triangular matrices and it is
these triangular matrices that are employed to solve the system. This requires fewer computations.

Upon completion of this week, you should be able to

Link Gaussian elimination to LU factorization.

View LU factorization in different ways: as Gaussian elimination, as the application of a sequence of
Gauss transforms, and the operation that computes L and U such that A = LU.

State and prove necessary conditions for the existence of the LU factorization.

Extend the ideas behind Gaussian elimination and LU factorization to include pivoting.

Derive different algorithms for LU factorization and for solving the resulting triangular systems.
Employ the LU factorization, with or without pivoting, to solve Az = b.

Identify, prove, and apply properties of Hermitian Positive Definite matrices.

State and prove conditions related to the existence of the Cholesky factorization.

Derive Cholesky factorization algorithms.

Analyze the cost of the different factorization algorithms and related algorithms for solving triangular
systems.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 213

5.2 From Gaussian elimination to LU factorization

5.2.1 Gaussian elimination

Gaizkilan Elminalica

YouTube: https://www.youtube.com/watch?v=UdNOW8Czj8c
Homework 5.2.1.1 Solve

2 -1 1 X0 —6
—4 0 1 X1 = 2
4 0 -2 X2 0
Answer.
X0 -1
X1 | = 2
X2 -2

Solution. We employ Gaussian elimination applied to an appended system:

o Compute the multiplier A\jg = (—4)/(2) = -2

e Subtract \jg = —2 times the first row from the second row, yielding
2 -1 1] —6
0 -2 3]-10
4 0 -2 0

o Compute the multiplier Agg = (4)/(2) =2

e Subtract Ayg = 2 times the first row from the third row, yielding

2 -1 1| -6
0 -2 3| —10
0 2 —4 12

o Compute the multiplier Agy = (2)/(—2) = -1

e Subtract Ag; = —1 times the second row from the third row, yielding

2 -1 1] —6
0 -2 3| —10
0 0 —1 2

https://www.youtube.com/watch?v=UdN0W8Czj8c

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 214

e Solve the triangular system

2 1 1 Xo 6
0 -2 3 v | = =10
0 0 -1 X2 2
to yield
X0 -1
X1 | = 2
X2 -2

The exercise in Homework 5.2.1.1 motivates the following algorithm, which reduces the linear system
Ax = b stored in n X n matrix A and right-hand side vector b of size n to an upper triangular system.

for j:=0,...,n—1
fori:=5+1,....,n—1
Aij = qig/ag
O[i’jZZO
fork=j+1,....n—1

O = 0 — A O . ,
ik bk 2RISR L subtract A j times row j from row k

endfor
Bi = Bi — Xi ;B
endfor
endfor

This algorithm completes as long as no divide by zero is encountered.

Let us manipulate this a bit. First, we notice that we can first reduce the matrix to an upper triangular
matrix, and then update the right-hand side using the multipliers that were computed along the way (if
these are stored):

reduce A to upper triangular form
for j:=0,...,n—1
fori:=5+1,....,.n—1
Aij = ig/ag

Q5 = 0
fork=j+1,....n—1
QG = Ok — i jOG subtract A; ; times row j from row &
endfor
endfor
endfor

update b using multipliers (forward substitution)
for 7:=0,...,n—1
fori:=5+1,....,.n—1
Bi = Bi — XijB;
endfor
endfor

Ignoring the updating of the right-hand side (a process known as forward substitution), for each iteration

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 215

we can first compute the multipliers and then update the matrix:

for j:=0,...,n—1
fori:=j5+1,...,n—1

Nij =y /oy -
“J i3/ %55 compute multipliers
Q5 = 0

endfor

fori:=5+1,...,n—1
fork=j54+1,....,n—1
Qi g = Qi ks — Aij Ok
endfor
endfor
endfor

subtract A; ; times row j from row k

Since we know that oy ; is set to zero, we can use its location to store the multiplier:

for j:=0,...,n—1
fori:=75+1,...,n—1
Q=N =0y /0 compute all multipliers
endfor
fori:=5+1,....,.n—1
fork=j5+1,....n—1
Qi = Q4 — Q4 QG
endfor
endfor
endfor

subtract A; ; times row j from row £

Finally, we can cast the computation in terms of operations with vectors and submatrices:

for 5:=0,...,n—1

iyl Aj+1,5
= : /i
On—1,5)\n—l,j
Qjr154+1 0 Qjrin—1
Qn_1,5+1 °° Opn_1n-1
Qj+1,5+1 "0 Qj4ln—1 Q41,5
- : (Qj+1 0 Qgn—1)
On—1,5+1 *°° Qp-1n-1 On—1,5
endfor

In Figure 5.2.1.1 this algorithm is presented with our FLAME notation.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 216

A= GE(A)
Arr | Argr
A—
(Apr | ABr)
ATL is0Ox0

while n(Ary) < n(A)

Arp | Arr)
H
< Apr | ABr

a1 = lo1 = a21/a11
._ T
A22 = A22 — a21a12

A A
ETATTLING Y

a 11 ajo
A A 10
BL | #BR Ay azr | Ax

endwhile

Figure 5.2.1.1 Gaussian elimination algorithm that reduced a matrix A to upper triangular form, storing
the multipliers below the diagonal.

Homework 5.2.1.2 Apply the algorithm Figure 5.2.1.1 to the matrix

2 -1 1
—4 0 1
4 0 -2

and report the resulting matrix. Compare the contents of that matrix to the upper triangular matrix
computed in the solution of Homework 5.2.1.1.

Answer.
2 -1 1
-2 =2 3
2 -1 -1
Solution. Partition:
2 -1 1
—4 0 1
4 0o -2
o First iteration:
0 a1 1= A1 = a21/01111
2 -1 1
-2 0 1
2 0 -

— T.
o A22 = A22 — a210Q79:

o State at bottom of iteration:

e Second iteration:

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 217

0 (o1 1= Agp = a21/a111

21 -1 1
22 3
2| -1 -4
o Agy = Ay — anialy:
21 -1 1
-2 | =2 3
21 -1 -1

o State at bottom of iteration:

o Third iteration:

0 (o1 1= o1 = o1/

2 -1 1
-2 =2 3
2 —-1]| -1
(computation with empty vector).
o Agp = Ay — anialy:
2 -1 1
-2 =2 3
2 —1] -1

(update of empty matrix)

o State at bottom of iteration:

2 -1 1
0 -2 3
0 0 -1

which can be found in the upper triangular part of the updated matrix A.

Homework 5.2.1.3 Applying Figure 5.2.1.1 to the matrix

yielded
2 -1 1
-2 -2 3
2 -1 -1

This can be thought of as an array that stores the unit lower triangular matrix L below the diagonal (with

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 218

implicit ones on its diagonal) and upper triangular matrix U on and above its diagonal:

1 0 0 2 -1 1
L= -2 1 0 and U = 0 -2 3
2 -1 1 0 0 -1
Compute B = LU and compare it to A.
Answer. Magic! B = A!
Solution.
1 0 0 2 -1 1 2 -1 1
B=LU = -2 1 0 0 -2 3 | = —4 0 1 =A
2 -1 1 0 0 -1 4 0 -2

5.2.2
LU Fagtarizdtion

YouTube: https://www.youtube.com/watch?v=GfpB_RU8pIo

In the launch of this week, we mentioned an algorithm that computes the LU factorization of a given
matrix A so that
A=1LU,

where L is a unit lower triangular matrix and U is an upper triangular matrix. We now derive that algorithm,
which is often called the right-looking algorithm for computing the LU factorization.
Partition A, L, and U as follows:

T T
Q11 ay9 1 0 V1l Ujg
A— , L— , d U— .
< ag1 Aso) (lor Lo) an (0 Uy)
Then A = LU means that

11 CL’{Q _ 1 O V11 u1T2 _ V11 U?Q
a1 Ago lo1 Lo 0 Uaa lo1vnn 121U1T2+L22U22 ’

_ T _ T
Q11 = V11 ajo = Ui
_ _ T
a1 = viilar Agg = logujy + LU

Hence

or, equivalently,
_ T _,T
Q11 = V11 A1o = Uj2
_ T _
ao1 = viilar Agg — l21U12 = LoaUss.

If we overwrite the upper triangular part of A with U and the strictly lower triangular part of A with the
strictly lower triangular part of L (since we know that its diagonal consists of ones), we deduce that we must
perform the computations

o ag =ly = a21/0411-
- T _ T
o Ay = Ay — 121012 = Ao — a21G79-

e Continue by computing the LU factorization of the updated Ags.

https://www.youtube.com/watch?v=GfpB_RU8pIo

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 219

The resulting algorithm is given in Figure 5.2.2.1.

A = LU-right-looking(A)

A7y, | Argp >
A—
(Apr | ABr

ATL is0x0
while n(Ary) < n(A)

A A
(A7 | Arg) = %O ‘ “oL %2

a 11 (5D
AL | ABr 10
Ao | ag1 Ago
az1 ‘= &21/(111
.f T
Agg = Agp — 21079
A A Ago ao1 | Aoz
TL TR T T
AL | ABr | G0 ou | dip
Azo az ‘ Agz

endwhile

Figure 5.2.2.1 Right-looking LU factorization algorithm.

Before we discuss the cost of this algorithm, let us discuss a trick that is often used in the analysis of the
cost of algorithms in linear algebra. We can approximate sums with integrals:

n—1 n 1 1
ka %/ 2Pdy = —— Pt = —_ppth
=0 0 p+1 0 p+1

Homework 5.2.2.1 Give the approximate cost incurred by the algorithm in Figure 5.2.2.1 when applied to
an n X n matrix.

Answer. Approximately %n?’ flops.

Solution. Consider the iteration where Apy, is (initially) & x k. Then

e ag is of size n — k — 1. Thus agy := ag1 /a1 is typically computed by first computing 1/a4; and then
a1 := (1/aq1)asgr, which requires (n — k — 1) flops. (The cost of computing 1/aq; is inconsequential
when n is large, so it is usually ignored.)

o Ay is of size (n —k — 1) x (n — k — 1) and hence the rank-1 update Asy := Ags — asialy requires
2(n—k—1)(n—k—1) flops.

Now, the cost of updating ao; is small relative to that of the update of Ao and hence will be ignored. Thus,
the total cost is given by, approximately,

n—1

Z 2(n — k — 1)? flops.

k=0

Let us now simplify this:

-1

heo 2(n =k —1)?

= < change of variable: j=n—k—1>
>iso 25

= < algebra >

—1 .
2 Z?:o 52
? < Z;:Ol j*~ [a?de =n?/3 >

n

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 220

Homework 5.2.2.2 Give the approximate cost incurred by the algorithm in Figure 5.2.2.1 when applied to
an m X n matrix.

2

Answer. Approximately mn® — %n?’ flops.

Solution. Consider the iteration where Apy, is (initially) & x k. Then
o ag is of size m — k — 1. Thus a9y := ag1 /11 is typically computed by first computing 1/a4; and then

a1 := (1/a11)as1, which requires (m — k — 1) flops. (The cost of computing 1/aq; is inconsequential
when m is large.)

o Ay is of size (m —k — 1) x (n —k — 1) and hence the rank-1 update Ags := Agy — as1al, requires
2(m —k—1)(n—k —1) flops.

Now, the cost of updating ao; is small relative to that of the update of Ao and hence will be ignored. Thus,
the total cost is given by, approximately,

i
L

2(m—k—1)(n—k —1) flops.
0

b
I

Let us now simplify this:

-1
dalm k- 1)(n— k- 1)
= < change of variable: j=n—k—1>
—1 . .
Yip2(m—(n—j—1)—1)j
= < simplify >
-1 N
dico 2(m—n+j)j
= < algebra >
-1 . —1 .
2(m —n) Z?:o j1+ 2 Z?:o j)
~ <Z;;Oj%n2/2 and Y775 % = n®/3 >
(m —n)n® + sn3
= < simplify >
mn? — %n?’
Remark 5.2.2.2 In a practical application of LU factorization, it is uncommon to factor a non-square
matrix. However, high-performance implementations of the LU factorization that use "blocked" algorithms
perform a factorization of a rectangular submatrix of A, which is why we generalize beyond the square case.

Homework 5.2.2.3 It is a good idea to perform a "git pull' in the Assignments directory to update with
the latest files before you start new programming assignments.
Implement the algorithm given in Figure 5.2.2.1 as

function [A_out] = LU_right_looking(A)

by completing the code in Assignments/Week@5/matlab/LU_right_looking.m. Input is an m xn matrix A. Output
is the matrix A that has been overwritten by the LU factorization. You may want to use Assignments/Week@5/
matlab/test_LU_right_looking.m to check your implementation.

Solution. See Assignments/Week05/answers/LU_right_looking.m. (Assignments/Week05/answers/LU_ right_looking.m)

Assignments/Week05/matlab/LU_right_looking.m
Assignments/Week05/matlab/test_LU_right_looking.m
Assignments/Week05/matlab/test_LU_right_looking.m
Assignments/Week05/answers/LU_right_looking.m

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 221

5.2.3 Existence of the LU factorization

proaf

YouTube: https://www.youtube.com/watch?v=Aaa9n97N1qc

Now that we have an algorithm for computing the LU factorization, it is time to talk about when this
LU factorization exists (in other words: when we can guarantee that the algorithm completes).

We would like to talk about the existence of the LU factorization for the more general case where A is
an m X n matrix, with m > n. What does this mean?

Definition 5.2.3.1 Given a matrix A € C"™*" with m > n, its LU factorization is given by A = LU where
L € C™*™ is unit lower trapezoidal and U € C™*" is upper triangular with nonzeroes on its diagonal. O
The first question we will ask is when the LU factorization exists. For this, we need another definition.

Definition 5.2.3.2 Principal leading submatrix. For k < n, the k& x k principal leading submatrix of
Arr | Arr) o

a matrix A is defined to be the square matrix Arz € C*** such that A =
Apr | Ar

This definition allows us to state necessary and sufficient conditions for when a matrix with n linearly
independent columns has an LU factorization:

Lemma 5.2.3.3 Let L € C"*™ be a unit lower triangular matriz and U € C™ ™ be an upper triangular
matriz. Then A = LU is nonsingular if and only if U has no zeroes on its diagonal.

Homework 5.2.3.1 Prove Lemma 5.2.3.3.

Hint. You may use the fact that a triangular matrix has an inverse if and only if it has no zeroes on its
diagonal.

Solution. The proof hinges on the fact that a triangular matrix is nonsingular if and only if it doesn’t
have any zeroes on its diagonal. Hence we can instead prove that A = LU is nonsingular if and only if U is
nonsingular (since L is unit lower triangular and hence has no zeroes on its diagonal).

e (=): Assume A = LU is nonsingular. Since L is nonsingular, U = L=*A. We can show that U is
nonsingular in a number of ways:

o We can explicitly give its inverse:
UAL) =L 'AA' L =1.

Hence U has an inverse and is thus nonsingular.

o Alternatively, we can reason that the product of two nonsingular matrices, namely L~! and A, is
nonsingular.

o («): Assume A = LU and U has no zeroes on its diagonal. We then know that both L=! and U~*
exist. Again, we can either explicitly verify a known inverse of A:

AU'L Y =LUU 'Lt =1

or we can recall that the product of two nonsingular matrices, namely U ' and L', is nonsingular.

Theorem 5.2.3.4 Existence of the LU factorization. Let A € C"™*" and m > n have linearly inde-
pendent columns. Then A has a (unique) LU factorization if and only if all its principal leading submatrices

https://www.youtube.com/watch?v=Aaa9n97N1qc

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 222

are nonsingular.

elafarmant of thasrem

YouTube: https://www.youtube.com/watch?v=SPLE5xJF9hY
Proof.

o (=): Let nonsingular A have a (unique) LU factorization. We will show that its principal leading
submatrices are nonsingular.

Let
(Arr | Arr) _ (Lrp| 0) (Urr | Urr >
AprL | ABr Lpr | Lr 0 | Usr

A L U

be the LU factorization of A, where Ary, Ly, Urp € CF¥F. By the assumption that LU is the LU
factorization of A, we know that U cannot have a zero on the diagonal and hence is nonsingular. Now,

since
(ATL ATR) _ (LTL 0) (UTLUTR>
ApL | ABr B L | Lr 0 | Usr
A L U
(Ly Ury | Ly Urr)
LprUrp | LrUrr + LUk

the k x k principal leading submatrix A7, equals Ar;, = Ly Urr, which is nonsingular since Ly, has
a unit diagonal and Upy, has no zeroes on the diagonal. Since k was chosen arbitrarily, this means that
all principal leading submatrices are nonsingular.

o («): We will do a proof by induction on n.

o Base Case: n = 1. Then A has the form A = (o where «11 is a scalar. Since the

a1

1
principal leading submatrices are nonsingular a7 # 0. Hence A = a1 is the
a21 / Qi1 ~~
L

LU factorization of A. This LU factorization is unique because the first element of L must be 1.

o Inductive Step: Assume the result is true for all matrices with n = k. Show it is true for matrices
with n =k + 1.

Let A of size n = k+1 have nonsingular principal leading submatrices. Now, if an LU factorization

of A exists, A = LU, then it would have to form
Uoo | uo1
(oo) . (5.2.1)
[—

https://www.youtube.com/watch?v=SPlE5xJF9hY

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 223

If we can show that the different parts of L and U exist, are unique, and v1; # 0, we are done
(since then U is nonsingular). (5.2.1) can be rewritten as

Ago Loo ao1 Loouor
aio = lig Ugo and Q11 = l?ou()l + v11)
A Loo as Loouor + la1v11
or, equivalently,
Loougr = ap1
vir = Qi1 — l{oum
lor = (a21 — Laguo1)/v11

Now, by the Inductive Hypothesis Loo, I%,, and Log exist and are unique. So the question is
whether ug1, v11, and l3; exist and are unique:

B u(; exists and is unique. Since Lgp is nonsingular (it has ones on its diagonal) Looug1 = ao1
has a solution that is unique.

B v exists, is unique, and is nonzero. Since 17, and ug; exist and are unique, v1; = a1 — Iy uo;
exists and is unique. It is also nonzero since the principal leading submatrix of A given by

(Aoo ao1):<L00 0)<U00 U01>
aw a11 llO 1 0 V11 ’

is nonsingular by assumption and therefore v1; must be nonzero.
B [5; exists and is unique. Since v1; exists, is unique, and is nonzero,

lo1 = (a21 — Lapao1)/v11

exists and is uniquely determined.
Thus the m x (k + 1) matrix A has a unique LU factorization.
o By the Principal of Mathematical Induction the result holds.

|

The formulas in the inductive step of the proof of Theorem 5.2.3.4 suggest an alternative algorithm for

computing the LU factorization of a m x n matrix A with m > n, given in Figure 5.2.3.5. This algorithm is
often referred to as the (unblocked) left-looking algorithm.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 224

A = LU-left-looking(A)
A < Arr | Arr >

Apr | ABr
ATL is0x0
while n(Ary) < n(A)
A A Ago | apr Aoz
TL TR\ ol Tan ol
Apr | ABr %lo | A1 12
Aso | a1 Aso
Solve Lggugy = ag1 overwriting ag, with ug;
o _ T
Qa1 = V11 = 11 — A19a01
as1 := az1 — Azoao1
as = loy = a21/0411

Arp | Arn Ago ao1 | Ao
T T
(> <« ajg Q11 | G319

ApL ABR A20 a1 | Az

endwhile

Figure 5.2.3.5 Left-looking LU factorization algorithm. Lgg is the unit lower triangular matrix stored in
the strictly lower triangular part of Agg (with the diagonal implicitly stored).

Homework 5.2.3.2 Show that if the left-looking algorithm in Figure 5.2.3.5 is applied to an m x n matrix,
with m > n, the cost is approximately mn? — %ns flops (just like the right-looking algorithm).

Solution. Consider the iteration where Apy, is (initially) & x k. Then
e Solving Looug1 = ag1 requires approximately k2 flops.
o Updating a1 := a11 — afyag; requires approximately 2k flops, which we will ignore.
o Updating ag1 := a1 — Aspag: requires approximately 2(m — k — 1)k flops.
o Updating as; := as1 /11 requires approximately (m — k — 1) flops, which we will ignore.

Thus, the total cost is given by, approximately,

Z k* +2(m — k — 1)k) flops.
k=0

Let us now simplify this:

Zo (K +2(m — k — 1)k)

= < algebra >

ho k4200 (m— k= 1)k

= < algebra >

v 2(m = Dk — Yy g

~ <ZJ 0j~n2/2and Z;'OleNnB/3>
(m—1)n? — n?

Had we not ignored the cost of a1 := a1 — alTOam, which approximately 2k, then the result would have
been approximately
2 13
mn® — -n

3

instead of (m — 1)n? — %ng, which is identical to that of the right-looking algorithm in Figure 5.2.2.1. This

makes sense, since the two algorithms perform the same operations in a different order.

Of course, regardless,
1
(m —1)n? — =n® ~ mn? — —n3
3 3

if m is large.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 225

Remark 5.2.3.6 A careful analysis would show that the left- and right-looking algorithms perform the exact
same operations with the same elements of A, except in a different order. Thus, it is no surprise that the
costs of these algorithms are the same.

Ponder This 5.2.3.3 If A is m x m (square!), then yet another algorithm can be derived by partitioning

A, L, and U so that
L 0 U U
A= 00 @o1 I — 00 U — 00 Uor)
< CL’{O 11 ’ Z{O 1 ’ 0 V11

Assume that Log and Uyg have already been computed in previous iterations, and determine how to compute
ug1, llTO, and wvq1 in the current iteration. Then fill in the algorithm:

A = LU-bordered(A)
Arr | ATr)
A—
< Apr | ABR
ATL is0x0
while n(Ary) < n(A)
Aoo Aoz

(ATL ATR > N T o1 T

a Q11 ajo
A A 10
BL | #°BR A | a21 Ago

A A
(zsLaon) (G 20 OF

a 11 ajg
A A 10
BL bR A20 a1 | Az

endwhile

This algorithm is often called the bordered LU factorization algorithm.

Next, modify the proof of Theorem 5.2.3.4 to show the existence of the LU factorization when A is square
and has nonsingular leading principal submatrices.

Finally, show that this bordered algorithm also requires approximately 2m?3/3 flops.

Homework 5.2.3.4 Implement the algorithm given in Figure 5.2.3.5 as
function [A_out] = LU_left_looking(A)

by completing the code in Assignments/Week@5/matlab/LU_left_looking.m. Input is an m X n matrix A. Output
is the matrix A that has been overwritten by the LU factorization. You may want to use Assignments/Week@5/
matlab/test_LU_left_looking.m to check your implementation.

Solution. See Assignments/Week@5/answers/LU_left_looking.m. (Assignments/Week05/answers/LU_left looking.m)

5.2.4 Gaussian elimination via Gauss transforms

5. 2.4

Gaucks transforms

YouTube: https://www.youtube.com/watch?v=YDtynD4iAVM

Assignments/Week05/matlab/LU_left_looking.m
Assignments/Week05/matlab/test_LU_left_looking.m
Assignments/Week05/matlab/test_LU_left_looking.m
Assignments/Week05/answers/LU_left_looking.m
https://www.youtube.com/watch?v=YDtynD4iAVM

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 226

Definition 5.2.4.1 A matrix L of the form

I, | 0 0
L = o1 0|,
0|l I

where I is the k x k identity matrix and I is an identity matrix "of appropriate size' is called a Gauss
transform. O

Gauss transforms, when applied to a matrix, take multiples of the row indexed with k£ and add these
multiples to other rows. In our use of Gauss transforms to explain the LU factorization, we subtract instead:

Example 5.2.4.2 Evaluate

1| 0o 00 af
0 1 0 0 a |
0] —X1 1 0 a |
0] —X31 0 1 as
Solution.
1| 0 00 al ad ad
0] 1 00 al at al
0 —/\21 1 0 Zig o Zig B)\21 ~T o 6%—A216{
0 —/\31 0 1 6%1 ?1'3T)\31 1 Zig—/\glii{

O
Notice the similarity with what one does in Gaussian elimination: take multiples of one row and sub-
tracting these from other rows.

Homework 5.2.4.1 Evaluate

Ik ‘ 0 0 AOO ‘ aol A02
0 1 0 0 11 G?Q
0| —lor I 0 | a1 A2

where [is the k X k identity matrix and A has k rows. If we compute

Ago | aor Ao Iy 0 0 Ago | ao1 Ao
0 [an %TQ =1 0] 1 0 0 [a; df
0 | da1 A 0| —lar I 0 |az A

how should ls; be chosen if we want @s; to be a zero vector?

Solution.

In| 0 0 Ago | ao1 Anz
0 1 0 0 11 a%
0| =lon 1 0 | ax Az
(Aoo ao1 Ap2
= a1 a%
—lo1on1 + a1 —loialy + Ao
Aoo ap1 Aga
= an a?z
0 asi — aq1lar Ago — laral,

If 121 = agl/all then a21 =— a21 — auagl/all =0.

Hopefully you notice the parallels between the computation in the last homework, and the algorithm in
Figure 5.2.1.1.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 227

Now, assume that the right-looking LU factorization has proceeded to where A contains

Ago | aor Aoz
T
0 all a12 5
0 |a Ao

where A is upper triangular (recall: it is being overwritten by U!). What we would like to do is eliminate
the elements in as; by taking multiples of the "current row"’ (aq1 ‘ a1T2) and subtract these from the rest
of the rows: (as ‘ Ao) in order to introduce zeroes below ;1. The vehicle is an appropriately chosen
Gauss transform, inspired by Homework 5.2.4.1. We must determine ls; so that

I| 0o o0 Aoo | aor Aps Aoo | ao Aoz
0 1 0 0 [an dy | = 0 |an ai;
0 —121 I 0 a1 A22 0 0 AQQ - lglaﬂ

As we saw in Homework 5.2.4.1, this means we must pick lo; = a21/a11. The resulting algorithm is summa-
rized in Figure 5.2.4.3. Notice that this algorithm is, once again, identical to the algorithm in Figure 5.2.1.1
(except that it does not overwrite the lower triangular matrix).

A = GE-via-Gauss-transforms(A)
Arr | Arr >
A—
< Apr | ABr
App is0x0
while n(Arr) < n(A)

Ago | aor Aoz

ATL ATR T T
Ap. | Apr - ajp | Q11 G319
Ao | ag1 Ag

loy := 021/0411

Aoo ‘ a1 Aoz
0 11 a%
0 | ax A
I ‘ 0 0 AOO ‘ aoi A02 -0
=0 1 o0 0 | o ab ! T
0| —ly O 0 4y Aoy 22 ‘= A22 — 121079
Ago | ao1 Ao
= 0 | ann al,
(0 0 A22 — l21GT2
Arp | Arr A%O dot A:%Q
(Apr | ABr) < 0 1 | Gl
Asg azy | Aao

endwhile

Figure 5.2.4.3 Gaussian elimination, formulated as a sequence of applications of Gauss transforms.

Homework 5.2.4.2 Show that

-1

I, 0 O I, | 0 O
0 1 0 = 0|1 O
0| =l I 0 |l I

where Ij; denotes the k x k identity matrix.
Hint. To show that B = A~!, it suffices to show that BA = I (if A and B are square).

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 228

Solution.
In| O 0 In| 0 0
0 1 0 0] 1 0
0 | —lo1 Itnp—1)x(n—k-1) 0 |lar 1
Iy, 0 0
= (0 1 0
0| =lor+1lon 1
I 10 0
= 01 0
0110 I
Starting with an mxm matrix A, the algorithm computes a sequence of m Gauss transforms Lo, . .., Ly, —1,
each of the form
I.| 0 0
Ly = 0 1 0|, (5.2.2)
0| -l I

such that L,,_1Ly_o---L1LoA = U. Equivalently, A = LalLl_1 . L;LI_QL;Ll_lU, where

I, 0 0
L= 01 0
0 |l I

It is easy to show that the product of unit lower triangular matrices is itself unit lower triangular. Hence
L=1Lj'Lyt - L;t,L0h

is unit lower triangular. However, it turns out that this L is particularly easy to compute, as the following
homework suggests.

Homework 5.2.4.3 Let

i In| 0 0
L1 =Ly' Lyt Lt = o1 0],
0 [l I

Solution.

(L20 lor 1

What this exercise shows is that L = Ly'Ly'--- L 1,L !, is the triangular matrix that is created
by simply placing the computed vectors l3; below the diagonal of a unit lower triangular matrix. This
insight explains the "magic" observed in Homework 5.2.1.3. We conclude that the algorithm in Figure 5.2.1.1
overwrites n X m matrix A with unit lower triangular matrix L and upper triangular matrix U such that
A = LU. This is known as the LU factorization or LU decomposition of A.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 229

Ponder This 5.2.4.4 Let

Lixsk | 00
Li=|"0)
0 | —ly I

Show that
k(L) > [l 3.

What does this mean about how error in A may be amplified if the pivot (the aj; by which entries
in ag; are divided to compute l31) encountered in the right-looking LU factorization algorithm is small in
magnitude relative to the elements below it? How can we chose which row to swap so as to minimize ||l21||2?

Hint. Revisit Homework 1.3.5.5.

5.3 LU factorization with (row) pivoting

5.3.1 Gaussian elimination with row exchanges
!

5.3

LUl with piveting

YouTube: https://www.youtube.com/watch?v=t6cK75IE6d8

Homework 5.3.1.1 Perform Gaussian elimination as explained in Subsection 5.2.1 to solve

(Vo)(e)=(7)

Solution. The appended system is given by

0 1|2
1 01)°

In the first step, the multiplier is computed as A1 o = 1/0 and the algorithm fails. Yet, it is clear that the

(unique) solution is
xo Y _ (1
X1 2)

The point of the exercise: Gaussian elemination and, equivalently, LU factorization as we have discussed
so far can fail if a "divide by zero" is encountered. The element on the diagonal used to compute the
multipliers in a current iteration of the outer-most loop is called the pivot (element). Thus, if a zero pivot
is encountered, the algorithms fail. Even if the pivot is merely small (in magnitude), as we will discuss in
a future week, roundoff error encountered when performing floating point operations will likely make the
computation "numerically unstable," which is the topic of next week’s material.

The simple observation is that the rows of the matrix (and corresponding right-hand side element)
correspond to linear equations that must be simultaneously solved. Reordering these does not change the
solution. Reordering in advance so that no zero pivot is encountered is problematic, since pivots are generally
updated by prior computation. However, when a zero pivot is encountered, the row in which it appears can
simply be swapped with another row so that the pivot is replaced with a nonzero element (which then
becomes the pivot). In exact arithmetic, it suffices to ensure that the pivot is nonzero after swapping. As

https://www.youtube.com/watch?v=t6cK75IE6d8

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 230

mentioned, in the presence of roundoff error, any element that is small in magnitude can create problems.
For this reason, we will swap rows so that the element with the largest magnitude (among the elements
in the "current" column below the diagonal) becomes the pivot. This is known as partial pivoting or row
pivoting.

Homework 5.3.1.2 When performing Gaussian elimination as explained in Subsection 5.2.1 to solve
107F 1 xo) _ (1
1 0 x1 /) \ 1)’

1—10*

set
to
—10*

(since we will assume k to be large and hence 1 is very small to relative to 10¥). With this modification
(which simulates roundoff error that may be encountered when performing floating point computation), what

is the answer?
1 0 xXo\ (1
107F 1 x1) \1)"

Next, solve
Solution. The appended system is given by

107% 111
1 o1 /)"

In the first step, the multiplier is computed as A\ o = 10* and the updated appended system becomes
10°F 1 1
0 —10F|1-10"

107* 1 1
0 —10% | —10% -

X1 = (~104)/(~10%) =1

What do you observe?

which is rounded to

We then compute
and

xo=(1-x1)/107%F =(1-1)/107% = 0.

If we instead start with the equivalent system

1 01
107 111 /-

the appended system after one step becomes

10 1

0 1|1—10"F

Xo \ _ 1

x1 / \1—-10"%)"

which yields the solution

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 231

xo \ _ (1
X1 1)
as k gets large.

What this illustrates is how a large multiple of a row being added to another row can wipe out information
in that second row. After one step of Gaussian elimination, the system becomes equivalent to one that started

with
107% 111
1 0]0 /)"

which becomes

5.3.2 Permutation matrices

Permutalion mafrices FPart 1

YouTube: https://www.youtube.com/watch?v=41RnLbvrdtg
Recall that we already discussed permutation in Subsection 4.4.4 in the setting of column pivoting when
computing the QR factorization.

Definition 5.3.2.1 Given

o
p= :)
Tn—1
where {7, m1,...,mh—1} I8 a permutation (rearrangement) of the integers {0,1,...,n — 1}, we define the
permutation matrix P(p) by
el
P(p) = :
el
o
Homework 5.3.2.1 Let
o X0
p= and x =
Tn—1 Xn—1

Evaluate P(p)x.

https://www.youtube.com/watch?v=4lRnLbvrdtg

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 232

Solution.
P(p)z
= < definition >
oL
™o
T
eﬂ'n—l
< matrix-vector multiplication by rows >
el
™o
e?ni T
_ T, _
= <ejr=u;>
Xmo
X1

The last homework shows that applying P(p) to a vector z rearranges the elements of that vector
according to the permutation indicated by the vector p.

Homework 5.3.2.2 Let

0 EOT
p= : and A = :
~T
Tn—1 a’n—l

Evaluate P(p)A.

Solution.

< matrix-matrix multiplication by rows >
el A
o

= < e]TA = ajT >
~T
o

~T.
aﬂ'n—l

The last homework shows that applying P(p) to a matrix A rearranges the rows of that matrix according
to the permutation indicated by the vector p.

Homework 5.3.2.3 Let
o

Tn—1

Evaluate AP(p)7.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 233

Solution.

)T
< deﬁnltlon >

AP(p

= < transpose P(p) >

em R)
= < matrix-matrix multiplication by columns >
(Aeﬁo oo Aen,)
= <:14€j =a; >
(Urg *+° Gm, .)

The last homework shows that applying P(p)? from the right to a matrix A rearranges the columns of
that matrix according to the permutation indicated by the vector p.

Homework 5.3.2.4 Evaluate P(p)P(p)T.
Answer. P(p)P(p)T =1

Solution. "
PP(p)
= < definition >
T T T
€0 (=
T T
eﬂ'nfl Tn—1
= < transpose P(p) >
T
€0
: (em o+ emiy)
T
€7Tn71
= < evaluate >
T T
eﬂoeﬂo eﬂoeﬂl e eﬂoeﬂn—l
671'1 6770 e?rl 6771 T 67!‘1 eﬂ'n—l
T T T
eﬂn716W0 Wn—leﬂl T eﬁnfleﬂnfl
— T . e
= <e;e; = >
1 0 -0
0 1 0
0 0 1

5.3.2

Permutation mafrices Part 2

YouTube: https://www.youtube.com/watch?v=1qvSLl1ln65Ws

We will see that when discussing the LU factorization with partial pivoting, a permutation matrix that
swaps the first element of a vector with the m-th element of that vector is a fundamental tool.

https://www.youtube.com/watch?v=1qvSlln65Ws

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 234

Definition 5.3.2.2 Elementary pivot matrix. Given © € {0,...,n — 1} define the elementary pivot
matrix

or, equivalently,

ifr=0
0
0
0

Infwfl

P(?T) = Iﬂ—,l
0

0

= oo

otherwise,

OOD»—‘ﬁ‘\<

o

where n is the size of the permutation matrix. O

When P(7) is applied to a vector, it swaps the top element with the element indexed with 7. When
it is applied to a matrix, it swaps the top row with the row indexed with 7. The size of matrix P(x) is
determined by the size of the vector or the row size of the matrix to which it is applied.

In discussing LU factorization with pivoting, we will use elementary pivot matrices in a very specific way,
which necessitates the definition of how a sequence of such pivots are applied. Let p be a vector of integers
satisfying the conditions

o
p= : , where 1<k<nand0<m<n-—i, (5.3.1)

Tk—1

then P(p) will denote the sequence of pivots

2o = (" B) (07 s) (o piey) PO

(Here ﬁ() is always an elementary pivot matrix "of appropriate size.") What this exactly does is best
illustrated through an example:

Example 5.3.2.3 Let

) 00 01 02

1.0 1.1 1.2

p= 1 and A=1 o50 91 99
3.0 3.1 3.2

Evaluate P(p)A.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 235

Solution.

< instantiate >
0.0 0.1 0.2
~ 1.0 1.1 1.2
PO 2.0 21 22
3.0 31 3.2
= < definition of ﬁ() >
1 0.0 0.1 0.2
— ~ 1.0 1.1 1.2
o B} PR 50 21 22
3.0 31 3.2
= < swap first row with row indexed with 2 >
1 2.0 21 2.2
— 1.0 1.1 1.2
0) 0.0 0.1 0.2
3.0 3.1 3.2
= < partitioned matrix-matrix multiplication >

(20 21 22)

1.0 1.1 1.2
P (< 1 >) 00 0.1 02 = < swap current first row with row indexed with 1 relative to that row >

1 3.0 3.1 3.2
20 21 2.2
0.0 0.1 0.2
~ 1.0 1.1 1.2
PO (50 51 55)
< swap current first row with row indexed with 1 relative to that row >
20 21 2.2
0.0 0.1 0.2

(3.0 31 3.2
(10 11 12)
2.0
0.0
3.0
1.0

2.1 2.2
0.1 0.2
3.1 3.2
1.1 1.2

The relation between P(-) and P(-) is tricky to specify:

AT D= e) (o s)P

Th—1 k—1

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 236

5.3.3 LU factorization with partial pivoting

eeriid i R’ AR BEatel 1] K- S

e
LU with row pivabing [righi-logking

YouTube: https://www.youtube.com/watch?v=QSnoqrsQNag

algarithm]

Having introduced our notation for permutation matrices, we can now define the LU factorization with
partial pivoting: Given an m X n matrix A, we wish to compute

e vector p of n integers that indicates how rows are pivoting as the algorithm proceeds,
e a unit lower trapezoidal matrix L, and
e an upper triangular matrix U

so that P(p)A = LU. We represent this operation by
[A, p] := LUpivA,

where upon completion A has been overwritten by {L\U}, which indicates that U overwrites the upper
triangular part of A and L is stored in the strictly lower triangular part of A.

Let us start with revisiting the derivation of the right-looking LU factorization in Subsection 5.2.2. The
first step is to find a first permutation matrix P(m;) such that the element on the diagonal in the first column
is maximal in value. (Mathematically, any nonzero value works. We will see that ensuring that the multiplier
is less than one in magnitude reduces the potential for accumulation of error.) For this, we will introduce
the function

maxi(z)

which, given a vector z, returns the index of the element in x with maximal magnitude (absolute value).
The algorithm then proceeds as follows:

e Partition A, L as follows:
T
Q11 Q79 1 0
A— , d L—
(az; As) o < lo1 Loo)

L G
e Compute m; = maxi .
a21

T _ T
« Permute the rows: 1 %12). P(m) a1)
asn As

o Compute loy := ag1/aq1.
. Update A22 = A22 — l21a{2.

This completes the introduction of zeroes below the diagonal of the first column.
Now, more generally, assume that the computation has proceeded to the point where matrix A has been
overwritten by
Aoo | a1 Aga
0 11 a1T2

0 | a1 A

https://www.youtube.com/watch?v=QSnoqrsQNag

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 237

where Agg is upper triangular. If no pivoting was added one would compute la1 := as1/aq; followed by the
update

Ago | ao1 Age I| 0 0 Ago | ao1 Age Ago | ao1 Aoz
0 [a; df =10 1 0 0 [a; df = 0 | o al,
0 | a2 A 0] —lor 1 0 |az A 0 0 Az —lsal,

Now, instead one performs the steps

e Compute

. ar1
7T := maxi .
a1

e Permute the rows:

Aoo ‘ apr Aoz I 0 Aoo ‘ a1 Aoz
0 11 CL’{Q = 0 a11 CL{2
0 P(ﬂ'l)
0 | ax A 0 | an A
o Update
lo1 := a1 /ou1.
e Update
Ago | ap1 Aoz I| 0 0 Aoo | aon Age
0 [ap; af =1 0 1 0 0 | a1 aiy
0 | a2 A 0f—lon I 0 | ax A
Aoo | an Aoz
= 0 Q11 a1T2
0 0 A22 - lgla{g

This algorithm is summarized in Figure 5.3.3.1. In that algorithm, the lower triangular matrix L is accumu-
lated below the diagonal.

[A, p] = LUpiv-right-looking(A)
Aty | Arr) < P)
A— [p—
(Apr, | Agr)P DB

Aryp is 0 x 0, pr has 0 elements
while n(Arr) < n(A4)

Ago | a1 Aoz Do

Arr | Argr pT

(ABL ABR — CL’{O a1l a1T2 s — T
Agg | ao1 Ago

. Qa1
T = maxi | ——
a21

Ap2

ag1 = a21/0611
._ T
Ago = Ao — aniaiy

Ago ao1 | Aoz Do

A A

(o) = | ehen e) (55) < (=
Azg a1 | Ago

endwhile

Figure 5.3.3.1 Right-looking LU factorization algorithm with partial pivoting.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 238

PRSP TSP T U S B rary v T

£33
LU wrth row pyvahng
Prall}

YouTube: https://www.youtube.com/watch?v=n-K162HrYhM

What this algorithm computes is a sequence of Gauss transforms Ly, . .., L, _1 and permutations Py, ..., P,_1
such that
Ly 1Py y--LoPhbA=U

or, equivalently,
A=PfLyt---PT LM U
Ikxk | O

Actually, since P, = (0 Bim)
™

) for some 7 , we know that P = P, and hence

A = POLal A PnflL,;ilU.
What we will finally show is that there are Gauss transforms Lj,... L} _; such that

A=Py---P,y Lf--- L | U
L

or, equivalently, _
P()A=Py - PyA= Ly---Li, U,
—_———
L
which is what we set out to compute.

Here is the insight. If only we know how to order the rows of A and right-hand side b correctly, then
we would not have to pivot. But we only know how to pivot as the computation unfolds. Recall that the
multipliers can overwrite the elements they zero in Gaussian elimination and do so when we formulate it as
an LU factorization. By not only pivoting the elements of

T
Qi1 Ay
azr Ago
T T
ajz | @11 Qg
)
Ao | as1 Ao

we are moving the computed multipliers with the rows that are being swapped. It is for this reason that we
end up computing the LU factorization of the permuted matrix: P(p)A.

but also all of

Homework 5.3.3.1 Implement the algorithm given in Figure 5.3.3.1 as
function [A_out] = LUpiv_right_looking(A)

by completing the code in Assignments/Week@5/matlab/LUpiv_right_looking.m. Input is an m x n matrix A.
Output is the matrix A that has been overwritten by the LU factorization and pivot vector p. You may want
to use Assignments/Week@5/matlab/test_LUpiv_right_looking.m to check your implementation.

The following utility functions may come in handy:

e Assignments/Week@5/matlab/maxi.m

e Assignments/Week@5/matlab/Swap.m

https://www.youtube.com/watch?v=n-Kl62HrYhM
Assignments/Week05/matlab/LUpiv_right_looking.m
Assignments/Week05/matlab/test_LUpiv_right_looking.m
Assignments/Week05/matlab/maxi.m
Assignments/Week05/matlab/Swap.m

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 239

which we hope are self explanatory.
Solution. See Assignments/Week05/answers/LUpiv_right_looking.m. (Assignments/Week05/answers/LUpiv_right_looking.m

5.3.4 Solving A x = y via LU factorization with pivoting

534
Sabveng with LIF Facterizatiasn with
phasding

YouTube: https://www.youtube.com/watch?v=kqj3n1EUCkw

Given nonsingular matrix A € C™*", the above discussions have yielded an algorithm for computing
permutation matrix P, unit lower triangular matrix L and upper triangular matrix U such that PA = LU.
We now discuss how these can be used to solve the system of linear equations Ax = y.

Starting with
Ax =10

where nonsingular matrix A is n x n (and hence square),

e Overwrite A with its LU factorization, accumulating the pivot information in vector p:
[A,p] :== LUpiv(4).
A now contains L and U and P(p)A = LU.

o We notice that Az = b is equivalent to ﬁ(p)A:c = ﬁ(p)b. Thus, we compute y := ﬁ(p)b. Usually, y
overwrites b.

« Next, we recognize that P(p)Az = y is equivalent to L (Uz) = y. Hence, we can compute z by
~——

z

solving the unit lower triangular system
Lz=y

and next compute = by solving the upper triangular system

Ur = z.

5.3.5 Solving with a triangular matrix

We are left to discuss how to solve Lz =y and Uz = z.

5.3.5.1 Algorithmic Variant 1

Saateng o lewar tranguiar ;:.-:h.:n:

Warkant 1

YouTube: https://www.youtube.com/watch?v=qc_4NsNp3q@

Assignments/Week05/answers/LUpiv_right_looking.m
https://www.youtube.com/watch?v=kqj3n1EUCkw
https://www.youtube.com/watch?v=qc_4NsNp3q0

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

Consider Lz = y where L is unit lower triangular. Partition

1 0 ¢
L—><l21 ng)’ z—>(zi> and y—)(
(4 a) (8- G
lor Los %) Y2

—_—— —— ———
L z Y

Then

Multiplying out the left-hand side yields

(on i) (2)
Cilar + Lagzo Yo

and the equalities

G = U
Culor + Looza = 9o,
which can be rearranged as
G = ¥
Lasze = ya — Cilor.

We conclude that in the current iteration

o 11 needs not be updated.

L R U

So that in future iterations Lasze = yo (updated!) will be solved, updating zs.

)

(3
Y2

)

240

These insights justify the algorithm in Figure 5.3.5.1, which overwrites y with the solution to Lz = y.

Solve Lz =y, overwriting y with z (Variant 1)

Lty | LTr > < yr >
L — —),y —
< Lpr | Ler)Y YB

Lpy is 0 x 0 and yr has 0 elements
while n(Lpy) < n(L)

endwhile

(L) - %) (
Lag | lo1 Lo
Yo := y2 — Y1lo
Lrr | Lrr Ilzqqo im Ilzjqz
(Lgr | Lpr > - 10 Ho iz 7(
Lo l21 | Lo

Yo
(3
Y2

Yo
(
Y2

Figure 5.3.5.1 Lower triangular solve (with unit lower triangular matrix), Variant 1

Homework 5.3.5.1 Derive a similar algorithm for solving Uz = z. Update the below skeleton algorithm
with the result. (Don’t forget to put in the lines that indicate how you "partition and repartition" through

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 241

the matrix.)

Solve Uz = z, overwriting z with « (Variant 1)

Urr | Urr 2T
U— | JZ =
(UsL | Usr) : (ZB)

Upr is 0 x 0 and zp has 0 elements
while n(Uggr) < n(U)

Upo uo1 Uop2 20
Ury | Urr 2
T T T
(UBL Upr - Uip V11 Ujg "\ g =1 G
Uso u21 Uz 22

Uogo o1 Up2 20
Urr | Urr ZT
(UBL Ung — UlTo v uly '\ 25 — G1
Uso u21 Uz 22
endwhile

Hint: Partition
Uoo w01 o \ _ [%

0 v X1 G)
Solution. Multiplying this out yields

Uoowo +uorx1 \ _ [2o

v11X1 G /)

So, x1 = (1/v11 after which zg can be computed by solving Uggzp = 20 — x1uo1- The resulting algorithm is
then given by

Solve Uz = z, overwriting z with z (Variant 1)
Urr | Urr 2T
U—= | , 2=
< Ugr | Usr ZB
Uppgr is 0 x 0 and zp has 0 elements

while n(Ugr) < n(U)
Uoo Uo2 - 20
’u’,{Q) () — Cl

Uo1
Urt | Urr
T
(— ulo Ul]
Uz u21 ‘ Uz 22

Upr | Upr

G = CG/on
20 = 20 — C1Uo1
Uoo | o1 Uop2 20
Urr | Urr T ‘ T 27
7 U | Ui | V11 Ui | — | G
BL | UBr U
U21 22 Z2

endwhile

5.3.5.2 Algorithmic Variant 2

£3%
Sateng a lowar tmanguiar |.:.r.|h.'.|1:

Warkart &
o
N

YouTube: https://www.youtube.com/watch?v=2tvfYnDINrQ

https://www.youtube.com/watch?v=2tvfYnD9NrQ

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 242

An alternative algorithm can be derived as follows: Partition

Log O 20 Yo
L—>(11TO 1), Z_>(41) and y—><w1>.

Then
Lo O 20 _ Yo
iy 1 G v)
T —— ——
< Yy

Multiplying out the left-hand side yields

Loozo _(%
oz + G P
and the equalities
Loozo = o
Hozo+¢G = 1.

The idea now is as follows: Assume that the elements of zy were computed in previous iterations in the
algorithm in Figure 5.3.5.2, overwriting yo. Then in the current iteration we must compute (; := 1, — I%; 20,
overwriting ;.

Solve Lz =y, overwriting y with z (Variant 2)

Ly | Lrr yr)
L— — |,y —
< Lpr | Lr) Y (YB

Ly is 0 x 0 and yr has 0 elements
while n(Lpr) < n(L)

Loo | lon Loz Yo
BL BR Lo | lo1 Lao Y2

Y1 =1 — oyo

Loo o1 | Lo2 Yo
L L
(rfio) o (818) () (52
Ly o1 | Loz Y2

endwhile

Figure 5.3.5.2 Lower triangular solve (with unit lower triangular matrix), Variant 2

Homework 5.3.5.2 Derive a similar algorithm for solving Uz = z. Update the below skeleton algorithm
with the result. (Don’t forget to put in the lines that indicate how you "partition and repartition" through

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

the matrix.)

Solve Uz = z, overwriting z with « (Variant 2)

Urr | Urr 2T
U— | JZ =
(UsL | Usr) : (ZB)

Upr is 0 x 0 and zp has 0 elements
while n(Uggr) < n(U)

U U
(Urs | Urg) R 00 Uo1 02 <

T T
Ut | Usr Yo b1l Y1a
Uso u21 Uz

u v u
U U 10 11 12
BL BR

U U
(Ger ey (G)
Uso u21 Uz

endwhile

z “0
T
) — G
ZB
22
20
zT
) < G
ZB
Z2

Hint: Partition

T
Vi1 Uig
U— (0 U) .

V11 U1T2 X1 _ Cl
0 Usa X9 o %)

Solution. Partition

Multiplying this out yields

)

vi1X1 + ulomo _(&
Usowo zo)’

So, if we assume that x5 has already been computed and has overwritten 2o, then x; can be computed as

X1 = (G — ufym2)/vn

which can then overwrite (1. The resulting algorithm is given by

Solve Uz = z, overwriting z with z (Variant 2)

Ury | Urr 27
U— | , 2=
< UsL | Usr) : (ZB)

Uppr is 0 x 0 and zp has 0 elements
while n(Ugr) < n(U)

Uoo o1 | Uo2 20
U U
(Tete) = (o ol) ()
U us1 | Unz 29
Gi=C —uly2
¢ =G /vn
Ury | Urr - 20
Upr | Upr z;
endwhile

243

Homework 5.3.5.3 Let L be an m X m unit lower triangular matrix. If a multiply and add each require

one flop, what is the approximate cost of solving Lx = y?

Solution. Let us analyze Variant 1.

Let Lgg be k X k in a typical iteration. Then yo is of size m — k — 1 and yo := yo — 91lo1 requires

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 244

2(m — k — 1) flops. Summing this over all iterations requires

—

- [2(m — k —1)] flops.
k=0

The change of variables j = m — k — 1 yields

m—1 m—1
Z[2(m—k—1)} :2ijm2.
k=0 j=

Thus, the cost is approximately m? flops.

5.3.5.3 Discussion

Computation tends to be more efficient when matrices are accessed by column, since in scientific computing
applications tend to store matrices by columns (in column-major order). This dates back to the days when
Fortran ruled supreme. Accessing memory consecutively improves performance, so computing with columns
tends to be more efficient than computing with rows.

Variant 1 for each of the algorithms casts computation in terms of columns of the matrix that is involved;

Y2 1= Yo — P1lo1

and
Z0 ‘— 20 — C1U01.

These are called axpy operations:
Y i=oar+y.
"alpha times z plus y." In contrast, Variant 2 casts computation in terms of rows of the matrix that is
involved:
1 = Y1 — Loyo
and
(1= (1 — ufpz

perform dot products.

5.3.6 LU factorization with complete pivoting

LU factorization with partial pivoting builds on the insight that pivoting (rearranging) rows in a linear
system does not change the solution: if Az = b then P(p)Ax = P(p)b, where p is a pivot vector. Now, if r
is another pivot vector, then notice that P(r)T P(r) = I (a simple property of pivot matrices) and AP(r)T
permutes the columns of A in exactly the same order as P(r)A permutes the rows of A.

What this means is that if Az = b then P(p)AP(r)T (P(r)z) = P(p)b. This supports the idea that one
might want to not only permute rows of A, as in partial pivoting, but also columns of A. This is done in a
variation on LU factorization that is known as LU factorization with complete pivoting.

The idea is as follows: Given matrix A, partition

ao (o alb
a1 As
Now, instead of finding the largest element in magnitude in the first column, find the largest element in
magnitude in the entire matrix. Let’s say it is element (71, p1). Then, one permutes

(o afy) - P(m)(o ai;)P(m)T,

azr Ago az Ago

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 245

making a7 the largest element in magnitude. We will later see that the magnitude of a;; impacts element
growth in the remaining matrix (Ase) and that in turn impacts the numerical stability (accuracy) of the
algorithm. By choosing a1 to be as large as possible in magnitude, the magnitude of multipliers is reduced
as is element growth.

The problem is that complete pivoting requires O(n?) comparisons per iteration. Thus, the number of
comparisons is of the same order as the number of floating point operations. Worse, it completely destroys
the ability to cast most computation in terms of matrix-matrix multiplication, thus impacting the ability to
attain much greater performance.

In practice LU with complete pivoting is not used.

5.3.7 Improving accuracy via iterative refinement

When solving Ax = b on a computer, error is inherently incurred. Instead of the exact solution x, an
approximate solution Z is computed, which instead solves AZ = b. The difference between x and Z satisfies

Alx —2)=b—b.

We can compute b = A% and hence we can compute & = b — b. We can then solve A = &. If this
computation is completed without error, then x = Z + dr and we are left with the exact solution. Obviously,
there is error in & as well, and hence we have merely computed an improved approximate solution to Az = b.
This process can be repeated. As long as solving with A yields at least one digit of accuracy, this process can
be used to improve the computed result, limited by the accuracy in the right-hand side b and the condition
number of A.

This process is known as iterative refinement.

5.4 Cholesky factorization

5.4.1 Hermitian Positive Definite matrices

L e Jy P g S TRy S

G 1
Harsitian Posilive Dehnila
makrices

YouTube: https://www.youtube.com/watch?v=nxGR8NgXYxg

Hermitian Positive Definite (HPD) are a special class of matrices that are frequently encountered in
practice.

Definition 5.4.1.1 Hermitian positive definite matrix. A matrix A € C"*" is Hermitian positive
definite (HPD) if and only if it is Hermitian (A = A) and for all nonzero vectors z € C" it is the case that
zf Az > 0. If in addition A € R"*™ then A is said to be symmetric positive definite (SPD). O

If you feel uncomfortable with complex arithmetic, just replace the word "Hermitian" with "symmetric
in this document and the Hermitian transpose operation, ¥, with the transpose operation, *.

Example 5.4.1.2 Consider the case where n = 1 so that A is a real scalar, o. Notice that then A is SPD if
and only if o > 0. This is because then for all nonzero x € R it is the case that ax? > 0. (]
Let’s get some practice with reasoning about Hermitian positive definite matrices.
Homework 5.4.1.1 Let B € C™*™ have linearly independent columns.
ALWAYS/SOMETIMES/NEVER: A = BY B is HPD.
Answer. ALWAYS

https://www.youtube.com/watch?v=nxGR8NgXYxg

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 246

Now prove it!
Solution. Let x € C™ be a nonzero vector. Then z B Bx = (Bx)H (Bz). Since B has linearly indepen-
dent columns we know that Bz # 0. Hence (Bz)” Bz > 0.

Homework 5.4.1.2 Let A € C™*™ be HPD.
ALWAYS/SOMETIMES/NEVER: The diagonal elements of A are real and positive.

Hint. Consider the standard basis vector e;.

Answer. ALWAYS
Now prove it!

Solution. Let e; be the jth unit basis vectors. Then 0 < efAej =y .

Homework 5.4.1.3 Let A € C™*™ be HPD. Partition

H

Q11 | a9
A= .
< ag | Aso)

ALWAYS/SOMETIMES/NEVER: A,, is HPD.

Answer. ALWAYS
Now prove it!

Solution. We need to show that & Assz5 > 0 for any nonzero z, € C™ 1

0
Let 25 € C™~! be a nonzero vector and choose z = (.) Then
2

0
< Ais HPD >

= < partition >

0 H 11 0511 0
(332) (a21 A22>(332>

= < multiply out >
xé_IAQQxQ.

We conclude that Aso is HPD.

5.4.2 The Cholesky Factorization Theorem

G2

Chobisky Faclorizalion Fhaonem

YouTube: https://www.youtube.com/watch?v=w8a9xVHVmAI

We will prove the following theorem in Subsection 5.4.4.
Theorem 5.4.2.1 Cholesky Factorization Theorem. Given an HPD matrix A there exists a lower
triangular matriz L such that A = LL™ . If the diagonal elements of L are restricted to be positive, L is
unique.

Obviously, there similarly exists an upper triangular matrix U such that A = U”U since we can choose
UH =L.

The lower triangular matrix L is known as the Cholesky factor and LL is known as the Cholesky

https://www.youtube.com/watch?v=w8a9xVHVmAI

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 247

factorization of A. It is unique if the diagonal elements of L are restricted to be positive. Typically, only the
lower (or upper) triangular part of A is stored, and it is that part that is then overwritten with the result.
In our discussions, we will assume that the lower triangular part of A is stored and overwritten.

5.4.3 Cholesky factorization algorithm (right-looking variant)

543

Chilasky taciorizalion algonthm
H

YouTube: https://www.youtube.com/watch?v=x4grvf-MfTk

The most common algorithm for computing the Cholesky factorization of a given HPD matrix A is
derived as follows:

o Consider A = LL¥, where L is lower triangular.

_ a1l * o)\11 0
A= < 4y Ag) and L= (lov Loy > (5.4.1)

Since A is HPD, we know that

Partition

o ajj is a positive number (Homework 5.4.1.2).
o Asy is HPD (Homework 5.4.1.3).

« By substituting these partitioned matrices into A = LL¥ we find that
H 3 H
() - ()) -(e)G)
as Az lor Lo lor Lo lor Lo 0 L

‘_)\11|2 *
Milor loal8h + Loy Lt)7
from which we conclude that

11 = |)\11|2 *
as1 = M1la1 Ao = I8 + Lo L

or, equivalently,

A = Ey/ony *
121 = CL21/>\11 L22 = Ch01<A22 — 1211511)

o These equalities motivate the following algorithm for overwriting the lower triangular part of A with
the Cholesky factor of A:

o Partition A — 1 x .
a1 Ago

o Overwrite aj; := A1 = y/a11. (Picking A1 = /a1 makes it positive and real, and ensures
uniqueness.)

o Overwrite asy ‘= 121 = (L21/>\11.

o Overwrite Agy := Ags — lo1l¥ (updating only the lower triangular part of Ass). This operation is
called a symmetric rank-1 update.

https://www.youtube.com/watch?v=x4grvf-MfTk

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 248

o Continue by computing the Cholesky factor of Ags.

The resulting algorithm is often called the "right-looking" variant and is summarized in Figure 5.4.3.1.

A = Chol-right-looking(A)
Ary | ATr)
A— —
(Apr | ABr
ATL is0x0
while n(Ary) < n(A)

Ago | a1 Aoz

ATL ATR T T
Ap. | Apn - ajp | @11 Q39
Asg | aa1 Aso

a1y = A = V11
agy = lp1 = a21/a11
Ao := Aoy — agadl (syr: update only lower triangular part)

A A
ETATTLING Y

a all a12
A A 10
BL | £°BR Asg a1 | Ao

endwhile

Figure 5.4.3.1 Cholesky factorization algorithm (right-looking variant). The operation "syr" refers to
"symmetric rank-1 update", which performs a rank-1 update, updating only the lower triangular part of the
matrix in this algorithm.

Homework 5.4.3.1 Give the approximate cost incurred by the algorithm in Figure 5.4.3.1 when applied to
an n X n matrix.

Answer. %n?’ flops.

Solution.

543

Cofl af Cholesky factorizakion
i

YouTube: https://www.youtube.com/watch?v=6twDI6QhqCY

The cost of the Cholesky factorization of A € C™"*™ can be analyzed as follows: In Figure 5.4.3.1 during
the kth iteration (starting k at zero) Agp is k x k. Thus, the operations in that iteration cost

e «aq1 := +/aq1: this cost is negligible when k is large.
e a9 := ag1/ay1: approximately (n—k—1) flops. This operation is typically implemented as (1/a11)as1-

o Agy := Agy —agial} (updating only the lower triangular part of Ags): approximately (n—k—1)? flops.

https://www.youtube.com/watch?v=6twDI6QhqCY

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 249

Thus, the total cost in flops is given by

Ccnol(n)
~ < sum over all iterations >
n—1 n—1
dn—k-17 + Y (n—k-1
k=0 k=0
—_——— —_——
(Due to update of Ass) (Due to update of as)

= < change of variables j =n—k—1 >
—1 . 1.
Z;’:O 7%+ Z?:olj)
NI P Rnd 3 Y e n?/2 >
2

1.3 4 1
3N + 5N
~ < remove lower order term >
1,3
Fn”.

Remark 5.4.3.2 Comparing the cost of the Cholesky factorization to that of the LU factorization in
Homework 5.2.2.1, we see that taking advantage of symmetry cuts the cost approximately in half.

Homework 5.4.3.2 Implement the algorithm given in Figure 5.4.3.1 as
function [A_out] = Chol_right_looking(A)

by completing the code in Assignments/Week@5/matlab/Chol_right_looking.m. Input is a HPD m x n matrix
A with only the lower triangular part stored. Output is the matrix A that has its lower triangular part
overwritten with the Cholesky factor. You may want to use Assignments/Week@5/matlab/test_Chol_right_
looking.m to check your implementation.

Solution. See Assignments/Week@5/answers/Chol_right_looking.m. (Assignments/Week05/answers/Chol_right looking.m)

5.4.4 Proof of the Cholesky Factorizaton Theorem

Ak ik Rieiad MR Wtal] B S

Gk
Proat &F The Chalesky
Fastorizalion Thaoram

YouTube: https://www.youtube.com/watch?v=unpQfRgIHOg

Partition, once again,
A om o
azr Aso ’
The following lemmas are key to the proof of the Cholesky Factorization Theorem:

Lemma 5.4.4.1 Let A € C**™ be HPD. Then a1y is real and positive.
Proof. This is special case of Homework 5.4.1.1. |

Lemma 5.4.4.2 Let A € C"*" be HPD and ly; = ag1/\/ar1- Then Agg — loyl¥ is HPD.

Proof. Since A is Hermitian so are Agy and Agg — loy 1.

— . 1 .
Let 25 € C"! be an arbitrary nonzero vector. Define x = ;() where 1 = —afixy/a11. Then, since
2

Assignments/Week05/matlab/Chol_right_looking.m
Assignments/Week05/matlab/test_Chol_right_looking.m
Assignments/Week05/matlab/test_Chol_right_looking.m
Assignments/Week05/answers/Chol_right_looking.m
https://www.youtube.com/watch?v=unpQfRgIHOg

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 250

clearly x # 0,

< < Ais HPD >

= < partition >

H

X1 Q11 aéﬁ X1

T2 az; Aa T2

= < partitioned multiplication >
H

X1 anx1 + aéqlllfz

T2 azix1 + Ao

= < partitioned multiplication >

- o H H H 4

Q11X1X1 T X1021%2 + Ty G21X1 + Ty A22T2

= < linear algebra >

H H H H
A1 T2 Ty G21 Ty @21 H H as,1T2 H
21 2 —=2 A51T2 — Ty A21 7;111 + Ty A22$2

i1

@11 11 11
= < since xfam, agmg are scalars and hence can move around; a1 /a3 =1 >
H H H
H agnx2 H a2 _ H ay1T2 H
T3 a1 e Ty a1 ot T5 agl—au + x5 Aooxo

= < cancel terms; factor out & and zo >

H
H a2109,
zy (Ao — 221)20

= < simplify >
xg(AQQ — lgllg)xg.

We conclude that Agy — l21l§{ is HPD. [|
Proof of the Cholesky Factorization Theorem. Proof by induction.

1. Base case: n = 1:

Clearly the result is true for a 1 x 1 matrix A = «ay1: In this case, the fact that A is HPD means that
a1 is real and positive and a Cholesky factor is then given by A1 = \/a11, with uniqueness if we insist
that A1y is positive.

2. Inductive step: Assume the result is true for n = k. We will show that it holds for n = k + 1.
Let A € C+Dx(k+1) he HPD. Partition

i A 0
A= @11 G2 dI = 1 .
(a1 Ay) M lor Lo

e A1 = /ai1 (which is well-defined by Lemma 5.4.4.1,

o Iy = CL21/)\11,

Let

o Aoy —lgllfl = Loo L§2 (which exists as a consequence of the Inductive Hypothesis and Lemma 5.4.4.2.)

Then L is the desired Cholesky factor of A.

3. By the Principal of Mathematical Induction, the theorem holds.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 251

5.4.5 Cholesky factorization and solving LLS

ke dich i

545
Sateng the Linear Leayt-Squares

prebilem wa Cholesky foctartzation

YouTube: https://www.youtube.com/watch?v=C7LEuhS4H94
Recall from Section 4.2 that the solution & € C™ to the linear least-squares (LLS) problem

I[b— AZ||s = min ||b— Azl (5.4.2)
zeCn

equals the solution to the normal equations

ATA 7= AHp .
—~— ——
B y

Since A A is Hermitian, it would be good to take advantage of that special structure to factor it more cheaply.
If A” A were HPD, then the Cholesky factorization can be employed. Fortunately, from Homework 5.4.1.1
we know that if A has linearly independent columns, then A7 A is HPD. Thus, the steps required to solve
the LLS problem (5.4.2) when A € C™*™ Are

e Form B = A" A. Cost: approximately mn? flops.

e Factor B = LL* (Cholesky factorization). Cost: approximately n3/3 flops.
o Compute y = AHb. Cost: approximately 2mn flops.

e Solve Lz =. Cost: approximately n? flops.

e Solve L& = z. Cost: approximately n? flops.

for a total of, approximately, mn? + n3/3 flops.

Ponder This 5.4.5.1 Consider A € C™*" with linearly independent columns. Recall that A has a QR
factorization, A = QR where @ has orthonormal columns and R is an upper triangular matrix with positive
diagonal elements. How are the Cholesky factorization of A A and the QR factorization of A related?

5.4.6 Implementation with the classical BLAS

The Basic Linear Algebra Subprograms (BLAS) are an interface to commonly used fundamental linear
algebra operations. In this section, we illustrate how the unblocked and blocked Cholesky factorization
algorithms can be implemented in terms of the BLAS. The explanation draws from the entry we wrote for
the BLAS in the Encyclopedia of Parallel Computing [38].

5.4.6.1 What are the BLAS?

The BLAS interface [24] [15] [14] was proposed to support portable high-performance implementation of
applications that are matrix and/or vector computation intensive. The idea is that one casts computation in
terms of the BLAS interface, leaving the architecture-specific optimization of that interface to an expert.

https://www.youtube.com/watch?v=C7LEuhS4H94

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 252

5.4.6.2 Implementation in Fortran

We start with a simple implementation in Fortran. A simple algorithm that exposes three loops and the
corresponding code in Fortran are given by

for j:=0,...,n—1 do j=1, n
05 = AGG,3) = sart(AGG, 3))
fori:=5+1,....,n—1
Qi = /o do i=j+1,n
end A(i,3) = A(L,3) /7 AGG,3)
fork:=5+1,....n—1 enddo
fori=Fk,...,.n—1
Ok = O — O Ol j do k=j+1,n
endfor do i=k,n
endfor A(L,k) = A(i,k) - A(L,3) * ACk,J)
endfor enddo
enddo
enddo

Notice that Fortran starts indexing at one when addressing an array.
Next, exploit the fact that the BLAS interface supports a number of "vector-vector" operations known
as the Level-1 BLAS. Of these, we will use

dscal(n, alpha, x, incx)

which updates the vector x stored in memory starting at address x and increment between entries of incx
and of size n with ax where « is stored in alpha, and

daxpy(n, alpha, x, incx, y, incy)

which updates the vector y stored in memory starting at address y and increment between entries of incy
and of size n with ax + y where z is stored at address x with increment incx and « is stored in alpha. With
these, the implementation becomes

do j=1, n
for j:=0,...,n—1 A(3,3) = sart(A(3,3)
o=\
Qjt1m—1,j = Qjt1in—1,j/ %,
fork:=54+1,...,n—1

call dscal(n-j, 1.0de0 / a(j,j), a(j+1,3), 1)

Ap:n—1,k ‘= Opn—1k — Ok jQk:n—1,j do k:j+1 N
endfOI‘ call daXpY(n-k+1 ’ _A(kvj), A(ka), 17
endfor A(k’k)v 1)
enddo
enddo
Qjt1,5
Here ajy1:m—1,; = :
Qn 1,5

The entire update Agy := Ags — agiad; can be cast in terms of a matrix-vector operation (level-2 BLAS
call) to

dsyr(uplo, n, alpha, x, A, 1dA)

which updates the matrix A stored in memory starting at address A with leading dimension IdA of size n
by n with azz” + A where z is stored at address x with increment incx and « is stored in alpha. Since both
A and azz” + A are symmetric, only the triangular part indicated by uplo is updated. This is captured by
the below algorithm and implementation.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 253

do j=1, n
for j:=0,...,n—1 A(3,3) = sart(A(d,3))
Qj5 = Y5 . .o . .
Qjb1m—1,j = Qjr1m—1,7/05 call dscal(n-j, 1.0de0 / a(j,j), a(j+1,3), 1)
Qj41n—1,j4+1:n—1 ‘=
Qj1m—1,j+1m—1 call dsyr("Lower triangular", n-j+1, -1.0d00,
— tril(oz.j+1;n_1)jaﬁ_lm_ld) A(J+1 ,J)v 1 ’ A(J+1 yJ+1)v LdA)
endfor enddo

Notice how the code that cast computation in terms of the BLAS uses a higher level of abstraction,
through routines that implement the linear algebra operations that are encountered in the algorithms.

A = Chol-blocked-right-looking(A)
A (Aty | Arr

Apr | ABr
ATL is0x0
while n(Arr) < n(A)

Ago | Aor Aoz
A A
(TL TR)_> Ao [An AT,
Apr | ABr

Agg | Ao1 Aso
A11 = L11 = ChOl(()A11)
Solve L21L;1H = A21 OVGI’WI‘itng A21 with L21
Agg i= Agg — Aoy ALl syrk: update only lower triangular part

Ago Ao | Aoz
(ATL ATR) . AlO All A’{Q
Apr | ABr

Azy Aoy | Ago

endwhile

Figure 5.4.6.1 Blocked Cholesky factorization Variant 3 (right-looking) algorithm. The operation "syrk"
refers to "symmetric rank-k update', which performs a rank-k update (matrix-matrix multiplication with a
small "k" size), updating only the lower triangular part of the matrix in this algorithm.

Finally, a blocked right-looking Cholesky factorization algorithm, which casts most computation in terms
of a matrix-matrix multiplication operation referred to as a "symmetric rank-k update" is given in Fig-

ure 5.4.6.1. There, we use FLAME notation to present the algorithm. It translates into Fortran code that
exploits the BLAS given below.

do j=1, nb ,n
jb = min(nb, n-j)
Chol(jb, AC 3, J);
dtrsm("Right", "Lower triangular", "Transpose",
"Unit diag", jb, n-j-jb+1, 1.0deo, A(j,j), LDA,
AC j+jb, j), LDA)

dsyrk("Lower triangular", n-j-jb+1, jb, 1.0d00,

A(j+jb,j), LDA, 1.0d0@, A(j+jb, j+jb), LDA)
enddo

The routines dtrsm and dsyrk are level-3 BLAS routines:

e The call to dtrsm implements Ay; := Loy where Lo LT, = Ay;.

o The call to dsyrk implements Agy := —Ag; AL} + Aoy, updating only the lower triangular part of the
matrix.

The bulk of the computation is now cast in terms of matrix-matrix operations which can achieve high
performance.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 254

5.5 Enrichments

5.5.1 Other LU factorization algorithms

There are actually five different (unblocked) algorithms for computing the LU factorization that were dis-
covered over the course of the centuries. Here we show how to systematically derive all five. For details, we
suggest Week 6 of our Massive Open Online Course titled "LAFF-On Programming for Correctness" [28].

Remark 5.5.1.1 To put yourself in the right frame of mind, we highly recommend you spend about an hour
reading the paper
o [31] Devangi N. Parikh, Margaret E. Myers, Richard Vuduc, Robert A. van de Geijn, A Simple Method-
ology for Computing Families of Algorithms, FLAME Working Note #87, The University of Texas at
Austin, Department of Computer Science, Technical Report TR-18-06. arXiv:1808.07832.

A = LU-varl(A)
Ary, ATR>
A Arr
(ABL ABr
ATL is0x0
while n(ATL) < TL(A)
A A
Ay | drs Y, (Lo oo Ao
Apr | ABr %lo | C11 G2
Ao | ag1 Ago
A A
Arp | Argr - a%o 201 a%Q
Apr | ABr 1o T Ti2
Ay azr | Az
endwhile

Figure 5.5.1.2 LU factorization algorithm skeleton.

Finding the algorithms starts with the following observations.

e Our algorithms will overwrite the matrix A, and hence we introduce A to denote the original contents
of A. We will say that the precondition for the algorithm is that

A=A

(A starts by containing the original contents of A.)

o We wish to overwrite A with L and U. Thus, the postcondition for the algorithm (the state in which
we wish to exit the algorithm) is that

A=IL\UALU = A

(A is overwritten by L below the diagonal and U on and above the diagonal, where multiplying L and
U yields the original matrix A.)

e All the algorithms will march through the matrices from top-left to bottom-right, giving us the code
skeleton in Figure 5.5.1.2. Since the computed L and U overwrite A, throughout they are partitioned
comformal to (in the same way) as is A.

e Thus, before and after each iteration of the loop the matrices are viewed as quadrants:

ATL ATR) < LTL O > (UTL UTR)
A— , L — ,and U — .
(Apr | ABr Lo | Lor)™ 0 |Ugr

where Ary, Lrr, and Upp, are all square and equally sized.

https://arxiv.org/abs/1808.07832

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 255

e In terms of these exposed quadrants, in the end we wish for matrix A to contain

App | Arr \ _ (L\UrL | Urg
Apr | Apr)\ Lsr | L\Upr
/\<LTL 0)(UTLUTR>_ A\TL‘A\TR
Lpr, ‘ Lpr 0 ‘ Usr ABL ‘ ABR

o Manipulating this yields what we call the Partitioned Matrix Expression (PME), which can be viewed
as a recursive definition of the LU factorization:

(Ary | Arr > _ < I\Ury | Urg)
Apr | ABr \ Lsr | L\Usr
Ly Urp, = Ary, |

LptUrr = Apr, | LprUsr = Apr — LprUrr.

Ly Urr = Arr

A

« Now, consider the code skeleton for the LU factorization in Figure 5.5.1.2. At the top of the loop (right
after the while), we want to maintain certain contents in matrix A. Since we are in a loop, we haven’t
yet overwritten A with the final result. Instead, some progress toward this final result has been made.
The way we can find what the state of A is that we would like to maintain is to take the PME and
delete subexpressions. For example, consider the following condition on the contents of A:

Arr L\Ury, |

(ATL > _ < UTR)
Apr | ABr Lpr | Apr— LprLUrr

A _LriUre = Arp, ‘
LprUry = Apy, |

LrUrr = Arr

What we are saying is that Ay, Argr, and Agy, have been completely updated with the corresponding
parts of L and U, and Agpr has been partially updated. This is exactly the state that the right-looking
algorithm_that we discussed in_Subsection 5.2.2 maintains! What is left is to factor Apg, since it
contains ABR — LBLUTR7 and ABR — LBLUTR = LBRUBR~

o By carefully analyzing the order in which computation must occur (in compiler lingo: by performing
a dependence analysis), we can identify five states that can be maintained at the top of the loop,
by deleting subexpressions from the PME. These are called loop invariants. There are five for LU

factorization:
(Arp | Arr) _ (I\Ury, Arg) (Arr | Arr) _ (L\Urr | Urr)
AL | ABr N ABL ABr ApL | ABr B ABL ABR
Invariant 1 Invariant 2
(Arr | Arr) _ < I\Ury | Arr) < Arp | Arr) _ (L\Ury | Urr)
Apr | Asr | Ler | Agr Apr | Asr | Lpr | ABr
Invariant 3 Invariant 4
Arr L\UTL

ATL
ABL

ABr

)=(

Lpr

Invariant 5

Urr
Apr — LprUrr

e Key to figuring out what updates must occur in the loop for each of the variants is to look at how the
matrices are repartitioned at the top and bottom of the loop body.

For each of the five algorithms for LU factorization, we will derive the loop invariant, and then derive the
algorithm from the loop invariant.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 256

5.5.1.1 Variant 1: Bordered algorithm

Consider the loop invariant:

ATL ‘ ATR) L\UTL ‘ A\TR -~
= A LyrpUpp = Arp,
< Apr, ‘ ABR Apr, ‘ Apgr LT T

meaning that the leading principal submatrix Apy has been overwritten with its LU factorization, and the
remainder of the matrix has not yet been touched.
At the top of the loop, after repartitioning, A then contains

L\Uno ‘ do1 Aoz

_ =T = =T _ 7
= ajg Q11 Qi A LooUoo = Ago
Az | Q21 Az
while after updating A it must contain
Ago ao1 | Ao INUoo uo1 | Ao2
T T T ~T
10 Q11 | A9 = lio Vi1 | Q39
Ay an | Ag Az ‘ Az,
A Lo O Uoo wor \ _ { Ao Qo1
T = ~ ~
lip 1 0 v aty an
LooUoy = Ago Loouor = ao1

T ~T T, pr — B
lioUoo = ajgq liguo1 +v11 = Q11

for the loop invariant to again hold after the iteration. Here the entries in red are known (in addition to
the ones marked with a "hat") and the entries in blue are to be computed. With this, we can compute the
desired parts of L and U:

e Solve Logugr = ap1, overwriting ag; with the result. (Notice that ag; = ap; before this update.)

e Solve 1{,Ugy = a¥y (or, equivalently, UL (11)T = (afy)T for 1%)), overwriting a¥, with the result.
(Notice that a%, = @l before this update.)

e Update aq1 :=v11 = a1 — l{oum. (Notice that by this computation, a{o = l?o and ag; = ugp1-)
The resulting algorithm is captured in Figure 5.5.1.3.

A = LU-varl(A)

Arp | ATr)
A | ATR
(Apr | ABR
ATL is0x0

while n(Arr) < n(A4)

Arr | Arg A%O dot A§2
Apr | ABr 7| %o | e i
Asg | agy Az
Solve Lggugy = ag1 overwriting ag; with the result
Solve 1%,Uno = al overwriting a?, with the result

- _ T
Q1 = U11 = 011 — G19a01
A A Ao aor | Aoz
TL TR T T
A A <_ alO 0411 CL12
BL BR Azo az1 | Ago

endwhile

Figure 5.5.1.3 Variant 1 (bordered) LU factorization algorithm. Here Agg stores L\Ugyo.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 257

Homework 5.5.1.1 If A is n x n, show the cost of Variant 1 is approximately §n3.

Solution. During the kth iteration, Agg is k X k, for k =0,...,n— 1. Then the (approximate) cost of each
of the steps is given by

e Solve Logug, = agi, overwriting ag; with the result. Cost: approximately k2 flops.

o Solve 11Uy = a¥, (or, equivalently, UL (11,)T = (a¥y)T for 1), overwriting a?, with the result. Cost:
approximately k2 flops.

e Compute v1; = a1 — llToum, overwriting a1; with the result. Cost: 2k flops.

Thus, the total cost is given by

n—1 n—1
2 2 ~ 2 13_23
];(k +k +2k)~2;)k ~ 250’ = on’,

5.5.1.2 Variant 2: Up-looking algorithm

Consider next the loop invariant:

(Arp | Arr > _ < I\Urr | Urr
Apr | Apr Ap | Apr

) A LrpUpp = Arp | LepUrg = Arg

meaning that the leading principal submatrix Ary has been overwritten with its LU factorization and Urg
has overwritten Arp.
At the top of the loop, after repartitioning, A then contains

L\Ugo | uor Upz

= G0 | @11 Q12
Azo as1 Ago

A LooUgo = Aoo | Loo ((wor Uz) = (do1 Ao)

LooUoo = Ago ‘ Loouor = @01 LooUo2 = Ap2

while after updating A it must contain

Ago ao1 | Ao2 L\Uoy uo1 | Up2
T T T T
ajy Q11 | Gi9 = Lo V11 | Ul
Ay az | Az Azo a2 ‘ Aga,

A LOO 0 U()Q up1 _ A\OO 601 Loo 0 UQQ _ A\OO

Z?O 1 0 V11 Zi{o an l,{O 1 UTQ 6{2
LooUss = Ago
HoUos + uiy = af,

LooUoo = Ago Loouor = @ox
T ~T T ~
ligUoo =aijp lipuor +v11 = an

for the loop invariant to again hold after the iteration. Here, again, the entries in red are known (in addition
to the ones marked with a "hat") and the entries in blue are to be computed. With this, we can compute
the desired parts of L and U:

e Solve [{,Ugo = afy, overwriting af, with the result.
— — T — T
. Update Q11 *— U111 — (11 — 110“01 = (11 — A19401-

T ._,T _ T T _ T T
o Update ajy 1= ujy = ajy — l{gUo2 = ajy — ajpAoe.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 258

The resulting algorithm is captured in Figure 5.5.1.4.

A = LU-var2(A)
A (Arp | Argr)

Apr | ABr
ATL is0x0
while n(Ary) < n(A)
Ago

apr Aoz

ATL ATR T T
Ap. | Apn - Gi1p | Q11 Q39
Asg | as1 Ago

Solve 17,Uqy = a7, ongrvvriting a¥, with the result
Qq1 = V11 = Q11 — G19001

T ._.T _ T T
a1 = Ugp = a3y — lipUo2

A A
(zs Loy (|

a all a12
A A 10
BL BR Azg a1 | Ago

endwhile

Figure 5.5.1.4 Variant 2 (up-looking) LU factorization algorithm. Here Agg stores L\Upg.

Homework 5.5.1.2 If A is n x n, show the cost of Variant 2 is approximately %n?’.
Solution. During the kth iteration, Agg is k X k, for kK =0,...,n— 1. Then the (approximate) cost of each
of the steps is given by

o Solve I7,Uyo = al,, overwriting a’, with the result. Approximate cost: k? flops.

e Update a1 :=v11 = 11 — lfoum =1 — a?oam. Approximate cost: 2k flops.

o Update af, := ul; = o, — 1¥,Uo2 = a¥; — alyAog2. Approximate cost: 2k(n — k — 1) flops.

Thus, the total cost is approximately given by

Sy (K2 + 2k + 2k(n — k — 1))
= < simplify >
im0 (2kn — &)
= < algebra >
203 0ok — Yiso K
N < Salokman?/2 gk A~ k3>
nd -
< simplify >

colo
Sl

5.5.1.3 Variant 3: Left-looking algorithm

Consider the loop invariant:

(Arp | Arg > _(_L\Urs | Arr A LriUrs = Art |
Ap | Apr L | Asr LpLUry = Apar. |

At the top of the loop, after repartitioning, A then contains

L\Ugyo ‘ dor Aoz LooUoo = Aoo
= lio | an aj | A iU = 7o

Ly | @21 Az LoogUgg = Az

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 259

while after updating A it must contain

Aoo ao1 | Aoz L\Uoo Uo1 Apo
T T T
Ao Q11 | Gjo 110 aia
Az az1 [Az Loy lz1 ‘ Az,

(Loo 0)(Uo uo1 :(Aoo am)
A lﬂ) 1 0 V11 a{o au

(Lao l21)<U80 5(1)1):(‘;[20 321)

LooUoo = Ago Loougr = ao1
T _ AT T A
l1oUoo = aqg l{guo1 + v11 = Q11

LooUoo = A20 Laouo1 + la1v11 = @21 ‘

for the loop invariant to again hold after the iteration. With this, we can compute the desired parts of L
and U:

e Solve Logugi = ag1, overwriting ag; with the result.

e Update a1 :=v11 = a1 — l{oum = Q11 — a?oam.

o Update ag; :=lp1 = (1121 - L20U01)/U11 = (a21 - Azoalo)/an-
The resulting algorithm is captured in Figure 5.5.1.5.

A = LU-var3(A)

Arr | Arr
A—
(Apr | ABr >
ATL is0x0

while n(Arr) < n(A)
Ago | apr Aoz

ATL ATR N A R L
Apr | ABr 7 %0 o a4
Azo a1 Ago

Solve Lggugy = ag1 overwriting ag, with the result

o _ T
Qi1 = V11 = G011 — G1p0a01
as1 = la1 = (a21 — Agoa10)/a11

A A
(st) (G20 F

a a1 (5D
A A 10
BL BR Azo asy | Az

endwhile

Figure 5.5.1.5 Variant 3 (left-looking) LU factorization algorithm. Here Agg stores L\Upo.

Homework 5.5.1.3 If A is n x n, show the cost of Variant 3 is approximately §n3
Solution. During the kth iteration, Agg is k X k, for k =0,...,n— 1. Then the (approximate) cost of each
of the steps is given by

e Solve Logug; = ag1, overwriting ag; with the result. Approximate cost: k2 flops.

o Update ay1 = v1; = a1; — [{yugr = a11 — alyagr. Approximate cost: 2k flops.

o Update ag1 :=la1 = (a21 — Laouo1)/v11 = (a21 — Aspaip) /1. Approximate cost: 2(n — k — 1) flops.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS
Thus, the total cost is approximately given by

Sy (K2 4 2k 4+ 2k(n — k — 1))
= < simplify >
o (2kn — k?))
= < algebra >
-1 -1
MYk — koo K L
~ < Zz;ékmnz/Q; heo k?
3
n® — o
< simplify >

<l

2
gn.

5.5.1.4 Variant 4: Crout variant

Consider next the loop invariant:

~ k33>

Ly Urp = Ary ‘ LriUrr = Arg

<ATLATR>:(L\UTLUTR>/\

Apr | Apr Lpr | Apr

At the top of the loop, after repartitioning, A then contains

LprUry = Apr. |

Ago | ap1 Apz L\Upo | uo1 U
alTo o afy = llTo an @\{2
Asg | an A22A Lo a91 Aog R
LooUgo = Aoo ‘ Loouor = ao1 LooUp2 = Ao
A 1HUoo ZQ{O
LagUgo = Azo

while after updating A it must contain

Ago ao1 | Aoz I\Uoo uo1 | Uop2
T T T T
10 911 | Q39 o v | ujp
A a1 | Ag Loy o1 | A,

Loo 0 Uoo u01>_<Aoo Eim) (Loo 0><UO2)
N iy, 1 0 v aly an iy 1 uty

Uoo uo1
L l
(Ly ln)(0 vy

I
—
)
~—

Azg a2y

LooUgo = Aoo
T _ T
ligUoo = @iy

Loouopr = ao1
T o~
Louor +vi1 = a1

LooUp2 = Apo
T T _ ~T
ligUo2 + uis = @jy

LaoUgo = Ao Laguo1 + la1v11 = @21 ‘

260

for the loop invariant to again hold after the iteration. With this, we can compute the desired parts of L

and U:
Updat = = T = —at;
* pdate o1 = V11 = 011 1001 = Q11 — G710Q01-
T ._.T _ T T _T T
o Update ai, := uijy = ais — ligUo2 = aiy — ajgAo2.
« Update az; :=lay = (a21 — Laouo1)/v11 = (ag1 — Azoaio)/ 1.

The resulting algorithm is captured in Figure 5.5.1.6.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

A = LU-var4(A)
Arr | Argr
A—
(Apr | ABr)
ATL is0Ox0
while n(Ary) < n(A)

Ago | a1 Aog2
<ATL Arpg) T Tarn ol

a 11 a12
A A 10
BL | ©°BR Axg | ao1 Az

— — T
Q11 ‘= V11 = Q11 — G1pa01
T ._,T _ T T
a1g i= Ujy = a1y — a1gAo2
asy = lo1 = (a1 — Azoaio)/a1

A A
(zs o) (G 0| OE

a 11 a12
A A 10
BL | ©2BR Asg a1 | Ao

endwhile

Figure 5.5.1.6 Variant 4 (Crout) LU factorization algorithm.

Homework 5.5.1.4 If A is n x n, show the cost of Variant 4 is approximately %n3.

261

Solution. During the kth iteration, Agg is k X k, for k =0,...,n— 1. Then the (approximate) cost of each

of the steps is given by

e Update ay1 :=v11 = a1 — l{oum = Q] — a{oam. Approximate cost: 2k flops.

« Update a7, := u?y, = af, — IT,Up2 = a¥;, — aTyAge. Approximate cost: 2k(n — k — 1) flops.

o Update asy := lo1 = (a21 — Laguor)/v11 = (a21 — Azpaio) /1. Approximate cost: 2k(n—k—1)+ (n—

k —1) flops.

Thus, ignoring the 2k flops for the dot product and the n — k — 1 flops for multiplying with 1/aq; in each

iteration, the total cost is approximately given by

P Ak(n —k —1)
~ < remove lower order term > Zz;é 4k(n — k)
= < algebra >
-1 n—1
ny i k—4 2;15:0 k2 1
~ <k A/ R k3>
2 — 41
= < simplify >
n3.

win

5.5.1.5 Variant 5: Classical Gaussian elimination

Consider final loop invariant:

< Arp | Arr > _ (L\Ury, | Urr > A LriUrr = Arp | LrpUrr = Arg

Apr | ABr Lpr, ‘ Apr— LprLUrr LprUry = Apy. |

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 262

At the top of the loop, after repartitioning, A then contains
L\Uyo | Uo1 Uo2

T = T =TT
G dip | = lo ai —liguor @iz — l1oUn2
asn Az Log | @21 — Loguor Azz — LogUp2
LooUno = Aqo ‘ Loouor = a1 LooUo2 = Ag2
T —=T
N ligUoo = agg
LaogUgo = Azo
while after updating A it must contain
Ago ao1 | Aoz L\Uoo o1 Uo2
T T T T
@19 Q11 | A1 | = o vn uip
AQO a21 ‘ Ago Lo 21 ‘ Aoy 7[211&12,

(Loo 0>(U00 u01>_<Aoo am) (Loo 0><UO2)_(A\02>
A Iy, 1 0 wn aly an Iy 1 Uiy af,

U, ~ ~
(Lo 521)(80 Zﬁ)(z‘ho a21>

LooUgo = Aoo Loouor = ao1 LooUpz = Ago
T ~T T ~ T T _ ~T
llOUOO = aqp l107l,01 +v11 = Q11 llOUOQ + Uiy = a3y

LagUoo = A0 Laouor + la1vin = Gz ‘
for the loop invariant to again hold after the iteration. With this, we can compute the desired parts of L
and U:
e (X111 ‘= V11 = an — Z?OU(H = 11 (HO—Op).
(a7 already equals ayq — I ugr.)
o afy = ufy = afy — l{yUs2 = afy (no-op).
(af, already equals a?, — 1T, Ups.)
« Update ag; := (521 - L20U01)/1)11 = 021/0411-
(a2 already equals @21 — Lagugr-)
o« Update Ay := Agy — LogUps — la1udy = Asy — asiai,
(A22 already equals A\QQ — L20U02.)
The resulting algorithm is captured in Figure 5.5.1.7.
A = LU-var5(A)

A_>(ATL ATR)

Apr | ABr
ATL is0x0
while n(Ary) < n(A)

Arp | Arr >
H
< Apr | ABr

a1 = loy = a21/a11
._ T
Agg := Aoy — aniaiy

Ago ao1 | Ao
Arp | Argr

T T

< < ajg a1 ajo

Apr | Asr Ay azr | Az

endwhile

Figure 5.5.1.7 Variant 5 (classical Gaussian elimination) LU factorization algorithm.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 263

Homework 5.5.1.5 If A is n x n, show the cost of Variant 5 is approximately §n3.

Solution. During the kth iteration, Agg is k X k, for k =0,...,n— 1. Then the (approximate) cost of each
of the steps is given by

o Update as1 :=la1 = a21/a11. Approximate cost: k flops.
o Update Agy := Agy — loyuly, = A9y — agia’,. Approximate cost: 2(n — k —1)(n — k — 1) flops.

Thus, ignoring n — k — 1 flops for multiplying with 1/a4; in each iteration, the total cost is approximately
given by

ko 20n — k= 1)?
= < change of variable j =n—k —1 >
23 1 42

J
~ <SR K ~E3>

5.5.1.6 Discussion

Remark 5.5.1.8 For a discussion of the different LU factorization algorithms that also gives a historic
perspective, we recommend "Matrix Algorithms Volume 1" by G.W. Stewart [37].

5.5.2 Blocked LU factorization

Recall from Subsection 3.3.4 that casting computation in terms of matrix-matrix multiplication facilitates
high performance. In this unit we very briefly illustrate how the right-looking LU factorization can be
reformulated as such a "blocked" algorithm. For details on other blocked LU factorization algorithms and
blocked Cholesky factorization algorithms, we once again refer the interested reader to our Massive Open
Online Course titled "LAFF-On Programming for Correctness" [28]. We will revisit these kinds of issues in
the final week of this course.

Consider A = LU and partition these matrices as

A1 | Aio Ly | O Uir | Uiz
A— L — U — ,
< Ag1 | Az) (Loy | La2 > (0 | Uz)

where A11, L11, and Uy; are b x b submatrices. Then

(A1 | A) _ (Lii| 0) (Ur | Urz) _ (LU | LAy)
Agy | Az Lot | Lo 0 | Us AnUpy | Agp — LoaUrp)7

From this we conclude that

Ay = LUy | A = L1 Uy
Ay = Loy Ury | Ay — Lo1Usy = Lo Uss.

This suggests the following steps:

o Compute the LU factorization of Ay; (e.g., using any of the "unblocked’ algorithms from Subsec-
tion 5.5.1).
An = L11Uiy,

overwriting A,; with the factors.

e Solve
L11Uia = Apo

for Uys, overwriting Ajs with the result. This is known as a "triangular solve with multple right-hand
sides." This comes from the fact that solving

LX = B,

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 264

where L is lower triangular, can be reformulated by partitioning X and B by columns,

L(wo|a|---) =(bo|bi]-),

(on‘Lxl‘--~)

which exposes that for each pair of columns we must solve the unit lower triangular system Lz; = b;.

¢ Solve
LUy = Ay

for Loy, overwriting As; with the result. This is also a "triangular solve with multple right-hand sides"
since we can instead view it as solving the lower triangular system with multiple right-hand sides

T 1T T
UniLy = Ay
(In practice, the matrices are not transposed.)

o Update
Agg = Aso — L1Uja.

e Proceed by computing the LU factorization of the updated Ass.

This motivates the algorithm in Figure 5.5.2.1.

A = LU-blk-var5(A)

Arr | Argr
A—
(Apr | ABr)
ATL is0x0
while n(Ary) < n(A)
Ago | Ao1 Aoz
<3TL ﬁTR >% Ao | Aun Ar
BL | OBR Agp | Agr Ago

A11 = LU(All)
Solve L11U12 = A12
Solve L21U11 = Agl

L1, and Uy overwrite Aqq
overwriting Ao with Uys
overwriting As; with Loy

Agg = Agy — A2 Aro

Ao Ao | Aoz

(jTL iTR > — | Ao An | A

BL | ©°BR Axyg Aoy | Ago
endwhile

Figure 5.5.2.1 Blocked Variant 5 (classical Gaussian elimination) LU factorization algorithm.

The important observation is that if A is m x m and b is much smaller than m, then most of the
computation is in the matrix-matrix multiplication Agg := Ags — Agq Aqa.

Remark 5.5.2.2 For each (unblocked) algorithm in Subsection 5.5.1, there is a corresponding blocked
algorithm.

5.6 Wrap Up

5.6.1 Additional homework

In this chapter, we discussed how the LU factorization (with pivoting) can be used to solve Az = y. Why
don’t we instead discuss how to compute the inverse of the matrix A and compute x = A~!y? Through a
sequence of exercises, we illustrate why one should (almost) never compute the inverse of a matrix.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 265

Homework 5.6.1.1 Let A € C"™*™ be nonsingular and B its inverse. We know that AB = I and hence
A(bo [[bna) =(eo |- |ema),

where e; can be thought of as the standard basis vector indexed with j or the column of I indexed with j.
1. Justify the following algorithm for computing B:
for j=0,...,m—1
Compute the LU factorization with pivoting : P(p)A = LU
Solve Lz = P(p)e;

Solve Ub; = z
endfor

2. What is the cost, in flops, of the above algorithm?
3. How can we reduce the cost in the most obvious way and what is the cost of this better algorithm?

4. If we want to solve Az = y we can now instead compute z = By. What is the cost of this multiplication
and how does this cost compare with the cost of computing it via the LU factorization, once the LU
factorization has already been computed:

Solve Lz = P(p)y
Solve Uz = z

What do we conclude about the wisdom of computing the inverse?

Homework 5.6.1.2 Let L be a unit lower triangular matrix. Partition

1 0
L= .
< la1 | La2 >

o1 1 |0)
b= (Loyl [Ly)

2. Use the insight from the last part to complete the following algorithm for computing the inverse of a
unit lower triangular matrix:

1. Show that

[L] = inv(L)
Lty | Ltr
L—
Lpr | Ler)
LTL is0Ox0

while n(Lzr) < n(L)

3. The correct algorithm in the last part will avoid inverting matrices and will require, approximately,
m? flops. Analyze the cost of your algorithm.

1
3

I I Loo | lot Loz
< LTL LTR > N o I v
BL | “BR Lo | lor Lo
l21 =
Loo lo1 | Loz
< i/TL ETR > PR VR I
BL | =BR Ly o1 | Lao

endwhile

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 266

Homework 5.6.1.3 LINPACK, the first software package for computing various operations related to
solving (dense) linear systems, includes routines for inverting a matrix. When a survey was conducted to see
what routines were in practice most frequently used, to the dismay of the developers, it was discovered that
routine for inverting matrices was among them. To solve Ax = y users were inverting A and then computing
x = A~'y. For this reason, the successor to LINPACK, LAPACK, does not even include a routine for
inverting a matrix. Instead, if a user wants to compute the inverse, the user must go through the steps.

Compute the LU factorization with pivoting : P(p)A = LU
Invert L, overwriting L with the result

Solve UX = L for X

Compute A~! := X P(p) (permuting the columns of X)

1. Justify that the described steps compute A~1.

2. Propose an algorithm for computing X that solves UX = L. Be sure to take advantage of the triangular
structure of U and L.

3. Analyze the cost of the algorithm in the last part of this question. If you did it right, it should require,
approximately, m® operations.

4. What is the total cost of inverting the matrix?

5.6.2 Summary

The process known as Gaussian elimination is equivalent to computing the LU factorization of the matrix
A G (mem
:A=LU,

where L is a unit lower trianguular matrix and U is an upper triangular matrix.

Definition 5.6.2.1 Given a matrix A € C™*" with m > n, its LU factorization is given by A = LU where
L € C™*™ is unit lower trapezoidal and U € C"*™ is upper triangular with nonzeroes on its diagonal. O

Definition 5.6.2.2 Principal leading submatrix. For k < n, the k x k principal leading submatrix of
Arp | ATr) o

a matrix A is defined to be the square matrix Ar;, € C*** such that A =
Apr | ABr

Lemma 5.6.2.3 Let L € C"*™ be a unit lower triangular matriz and U € C™ ™ be an upper triangular
matriz. Then A = LU is nonsingular if and only if U has no zeroes on its diagonal.

Theorem 5.6.2.4 Existence of the LU factorization. Let A € C"™*™ and m > n have linearly inde-
pendent columns. Then A has a (unique) LU factorization if and only if all its principal leading submatrices
are nonsingular.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

A = LU-right-looking(A)

Arr | Argr
A—
(Apr | ABr)

ATL is0Ox0
while n(Ary) < n(A)

Arp | Arr)
H
< Apr | ABr

ag1 = a21/a11
._ T
Agg i= Aoy — aniaiy

A
(ATL ATR > " 70_9 ao1 i

a 11 ajo
A A 10
BL | #BR Ay azr | Ax

endwhile

Figure 5.6.2.5 Right-looking LU factorization algorithm.

The right-looking algorithm performs the same computations as the algorithm

for j:=0,...,n—1

fori:=5+1,...,n—1
Aij = Qig/ag;
Oll'yj =0

endfor

fori:=5+1,....,n—1
fork=j+1,....n—1
QG = Ok — i jOG subtract A; ; times row j from row &
endfor

compute multipliers

endfor
endfor

A = LU-left-looking(A)
A (Arp | Arr)

Apr | ABr
ATL is0x0
while n(Arr) < n(A)
Ago Ap2

<ATL ATR)_> T do1 T

a 11 ajo
A A 10
BL BR Asp | aa1 Aao

Solve Lggugy = ag1 overwriting ag; with ug;

- _ T
Q11 = V11 = Q11 — A19a01
a21 ‘= a21 — A20a01

Aoy = loy = a21/0l11
Ago ao1 | Aoz

Arr | Argr
T T
< A A F a10 0(11 a12
BL | ABR
Aoy a1 | Ao

endwhile

267

Figure 5.6.2.6 Left-looking LU factorization algorithm. Lgg is the unit lower triangular matrix stored in

the strictly lower triangular part of Agg (with the diagonal implicitly stored).

Solving Ax = b via LU factorization:
e Compute the LU factorization A = LU.
e Solve Lz =b.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 268

e Solve Ux = z.

Cost of LU factorization: Starting with an m x n matrix A, LU factorization requires approximately

mn? — %n3 flops. If m = n this becomes

2 3
—n° flops.
3 P
Definition 5.6.2.7 A matrix L; of the form
I, | 0 0
Ly = 0 1 0 ,
0|l I
where [j is the k x k identity matrix and I is an identity matrix "of appropropriate size" is called a Gauss
transform. O
Llo o\" L] 0o o
L= 01 o0 = 0] 1T 0
0 l21 I 0 _l21 1
Definition 5.6.2.8 Given
o
p=)
Tn—1
where {7, m1,...,mh—1} I8 a permutation (rearrangement) of the integers {0,1,...,n — 1}, we define the
permutation matrix P(p) by
el
P(p) = :
€1

¢

If P is a permutation matrix then P~! = PT.

Definition 5.6.2.9 Elementary pivot matrix. Given 7 € {0,...,n — 1} define the elementary pivot
matrix

e
€1
P(m) = ‘T*g_l
. 0
T+1
en1
or, equivalently,
1, ifr=0
N 0 0 1 0
P(n) = 0| I—11]0 0 .
1 0 0 0 otherwise,
0 0 (VI

where n is the size of the permutation matrix. O

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

[A, p] = LUpiv-right-looking(A)

At | Arg pT)
A— ,p—
< Apr | ABr) b (DB

Ay, is 0 x 0, pr has 0 elements
while n(Ary) < n(A)

Ago | aor Aoz
(ATL ATR>H — (

a 11 ai9
A A 10
BL | ©°BR A | a1 Az

Po
pr) — 1

. 1]
T o= max1< - >
apr Ao I 0
e D (0 P(7T1)>

A | a21 Asgo
azy ‘= Cl21/0411
- T
Agg 1= Agg — a210a79

Aoo ao
Arr | Argr T T
ApL | Apn «— A1p Q11 | G)

Azo a1 | Ago

endwhile

Figure 5.6.2.10 Right-looking LU factorization algorithm with partial pivoting.

Solving Ax = b via LU factorization: with row pivoting:

o Compute the LU factorization with pivoting PA = LU .k
e Apply the row exchanges to the right-hand side: y = Pb.
e Solve Lz =y.

e Solve Ux = z.

Solve Lz =y, overwriting y with z (Variant 1)

Lry | LTr > < yr >
L — —),y —
< Lsr | Ler)Y YB

Lpy is 0 x 0 and yr has 0 elements
while n(Lrr) < n(L)

Lty | Ltr .
Lpr | Lpr Lo

Y2 1= Y2 — YP1la

lor Lo

L l L
Lty | Ltr - Z:IQO)\01 lt?“2
Lsr | Ler 10 11 12)

Ly o1 | Lo

endwhile

lor Lo ur Yo
)\11 l12) () — ¢1

Y2
Yo
yr
- (7
v > Y

Y2

Figure 5.6.2.11 Lower triangular solve (with unit lower triangular matrix), Variant 1

269

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 270

Solve Lz =y, overwriting y with z (Variant 2)

Lty | Ltr yr >
L — Y —
(Lpr | Lr > Y (YB

Ly is 0 x 0 and yr has 0 elements
while n(Lrr) < n(L)

Los | Len Loo i(n ?oz ur Yo
(Lpr | Lr) - S (1UB> e
Lyo | lo1 Lo Y2
Yy =1 — yyo
Loo lor | Lo2 Yo
() e il iy) () e (o
Ly o1 | Lo Y2

endwhile

Figure 5.6.2.12 Lower triangular solve (with unit lower triangular matrix), Variant 2

Solve Uz = z, overwriting z with z (Variant 1)

Urr | Urr zr
U— | , 2=
< UsL | Usr) : (ZB >
Ugppr is 0 x 0 and zp has 0 elements
while n(Ugr) < n(U)
Uoo

[7’ [r uOl [/02
(> — ’uw

P =0

T T

UsL | Upr o T ’< ZB > -
U uz1 | Unz 29

zZ “0
T

H
a< 2B > Cl

Z2

G =G /v

2o 1= 2o — (1Uo1

(Ury | Urr > P By
Usr | Usr Uzg

Up2

endwhile

Figure 5.6.2.13 Upper triangular solve Variant 1

Solve Uz = z, overwriting z with z (Variant 2)
Urry | Urr 2T
U— |1,z —
< UgL | Usr ZB
Uppgr is 0 x 0 and zp has 0 elements

while n(Ugr) < n(U)
Uoo Uo2 - 20
’u”{2) (> — Cl

Uo1
Urt | Urr
T
(— ulo Ull
Uz u21 ‘ Uz 22

Upr | Upr

G =0 —ulhz

¢ =G /v
Uno | uor Upg 20
U U z
(et = (Tl Ton o | (22) < (@
Ugo | w21 U Z2
endwhile

Figure 5.6.2.14 Upper triangular solve Variant 2

Cost of triangular solve Starting with an n x n (upper or lower) triangular matrix 7', solving Tx = b requires
approximately n? flops.

Provided the solution of Ax = b yields some accuracy in the solution, that accuracy can be improved
through a process known as iterative refinement.

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS 271

e Let & is an approximate solution to Az = b.
e Let ar is an approximate solution to Adr = b — AZ,
e Then 7 + &\U, is an improved approximation.

e This process can be repeated until the accuracy in the computed solution is as good as warranted by
the conditioning of A and the accuracy in b.

Definition 5.6.2.15 Hermitian positive definite matrix. A matrix A € C"*" is Hermitian positive
definite (HPD) if and only if it is Hermitian (A” = A) and for all nonzero vectors € C" it is the case that
zf Az > 0. If in addition A € R"*"™ then A is said to be symmetric positive definite (SPD). O

Some insights regarding HPD matrices:
e B has linearly independent columns if and only if A = B¥ B is HPD.
e A diagonal matrix has only positive values on its diagonal if and only if it is HPD.

o If Ais HPD, then its diagonal elements are all real-valued and positive.

e If A= Ary | Arg , where Aryp, is square, is HPD, then Ar; and Aggr are HPD.
Apr | ABr

Theorem 5.6.2.16 Cholesky Factorization Theorem. Given an HPD matriz A there exists a lower

triangular matriz L such that A = LL® . If the diagonal elements of L are restricted to be positive, L is

unique.

A = Chol-right-looking(A)

Arr | Arr)
A—
(Apr | ABr
ATL is0x0

while n(Ar.) < n(A)

A A
EARANE A

a 11 a12
A A 10
BL BR Asp | aa1 Aso

o1 = A = Va1l
agy = lo1 = 1121/0411
Ao := Agy — asialy (syr: update only lower triangular part)
Ago ao1 | Ao2
A A
(_ .-) — afy on | afy

Apr | Apr Asg a1 | Ao

endwhile

Figure 5.6.2.17 Cholesky factorization algorithm (right-looking variant). The operation "syr" refers to
"symmetric rank-1 update", which performs a rank-1 update, updating only the lower triangular part of the
matrix in this algorithm.

H
Lemma 5.6.2.18 Let A = (ZH 221) ,€ C™" be HPD and ly; = ao1/+/ar1. Then Ags — o118 is HPD.
21 22

Let & € C™ equal the solution to the linear least-squares (LLS) problem
b — Az = mé:n b — Az||2, (5.6.1)
zeCm
where A has linearly independent columns, equals the solution to the normal equations
AT A 7= Afp .
—~ ~—
B Y

This solution can be computed via the steps

WEEK 5. THE LU AND CHOLESKY FACTORIZATIONS

Form B = A" A. Cost: approximately mn? flops.

Factor B = LL (Cholesky factorization). Cost: approximately n®/3 flops.

Compute y = AHb. Cost: approximately 2mn flops.
Solve Lz = y. Cost: approximately n? flops.

Solve L # = z. Cost: approximately n? flops.

for a total of, approximately, mn? + n3/3 flops.

272

Week 6

Numerical Stability

The material in this chapter has be adapted from

o [6] Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis, STAM
Journal on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

and the technical report version of that paper (which includes exercises)

o [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses, FLAME
Working Note #33. Aachen Institute for Computational Engineering Sciences, RWTH Aachen. TR
AICES-2008-2. November 2008.

We recommend the technical report version for those who want to gain a deep understanding.
In this chapter, we focus on computation with real-valued scalars, vectors, and matrices.

6.1 Opening Remarks

6.1.1 Whose problem is it anyway?

Ponder This 6.1.1.1 What if we solve Ax = b on a computer and the result is an approximate solution &
due to roundoff error that is incurred. If we don’t know z, how do we check that & approximates x with a
small relative error? Should we check the residual b — AZ?

Solution.

. I A
[Ib — Az|

1]

is small, then we cannot necessarily conclude that

£ — x|

]
is small (in other words: that Z is relatively close to x).

o If .
16— AZ]|
161l
is small, then we can conclude that & solves a nearby problem, provided we trust whatever routine

computes AZ. After all, it solves .
Az =b

273

WEEK 6. NUMERICAL STABILITY 274

where «
b — bl
0]

is small.

So, ||b — AZ||/||b|| being small is a necessary condition, but not a sufficient condition. If ||b — Az|/||b] is
small, then % is as good an answer as the problem warrants, since a small error in the right-hand side is to
be expected either because data inherently has error in it or because in storing the right-hand side the input
was inherently rounded.

In the presence of roundoff error, it is hard to determine whether an implementation is correct. Let’s
examine a few scenerios.

Homework 6.1.1.2 You use some linear system solver and it gives the wrong answer. In other words, you
solve Ax = b on a computer, computing &, and somehow you determine that

[l — &]]

is large. Which of the following is a possible cause (identify all):

o There is a bug in the code. In other words, the algorithm that is used is sound (gives the right answer
in exact arithmetic) but its implementation has an error in it.

e The linear system is ill-conditioned. A small relative error in the right-hand side can amplify into a
large relative error in the solution.

e The algorithm you used accumulates a significant roundoff error.

o Allis well: ||& — z|| is large but the relative error ||Z — z||/||«| is small.

Solution. All are possible causes. This week, we will delve into this.

6.1.2 Overview
e 6.1 Opening Remarks
o 6.1.1 Whose problem is it anyway?

o 6.1.2 Overview
o 6.1.3 What you will learn

¢ 6.2 Floating Point Arithmetic

o 6.2.1 Storing real numbers as floating point numbers
o 6.2.2 Error in storing a real number as a floating point number

o 6.2.3 Models of floating point computation

o

6.2.4 Stability of a numerical algorithm

[e]

6.2.5 Conditioning versus stability

6.2.6 Absolute value of vectors and matrices

o

e 6.3 Error Analysis for Basic Linear Algebra Algorithms

o

6.3.1 Initial insights
o 6.3.2 Backward error analysis of dot product: general case

o 6.3.3 Dot product: error results

o]

6.3.4 Matrix-vector multiplication

WEEK 6. NUMERICAL STABILITY 275

o 6.3.5 Matrix-matrix multiplication
6.4 Error Analysis for Solving Linear Systems

o 6.4.1 Numerical stability of triangular solve

o 6.4.2 Numerical stability of LU factorization

o 6.4.3 Numerical stability of linear solve via LU factorization

o 6.4.4 Numerical stability of linear solve via LU factorization with partial pivoting
o 6.4.5 Is LU with Partial Pivoting Stable?

6.5 Enrichments

o 6.5.1 Systematic derivation of backward error analyses

o 6.5.2 LU factorization with pivoting can fail in practice
6.6 Wrap Up
o 6.6.1 Additional homework

o 6.6.2 Summary

6.1.3 What you will learn

This week, you explore how roundoff error when employing floating point computation affect correctness.
Upon completion of this week, you should be able to

Recognize how floating point numbers are stored.

Employ strategies for avoiding unnecessary overflow and underflow that can occur in intermediate
computations.

Compute the machine epsilon (also called the unit roundoff) for a given floating point representation.

Quantify errors in storing real numbers as floating point numbers and bound the incurred relative error
in terms of the machine epsilon.

Analyze error incurred in floating point computation using the Standard Computation Model (SCM)
and the Alternative Computation Model (ACM) to determine their forward and backward results.

Distinguish between conditioning of a problem and stability of an algorithm.
Derive error results for simple linear algebra computations.
State and interpret error results for solving linear systems.

Argue how backward error can affect the relative error in the solution of a linear system.

6.2 Floating Point Arithmetic

6.2.1 Storing real numbers as floating point numbers

B.2.1

Sharing rmals as Aeals

https://www.youtube.com/watch?v=sWcdwmCdVOU

WEEK 6. NUMERICAL STABILITY 276

YouTube: https://www.youtube.com/watch?v=sWcdwmCdVOU

Ouly a finite number of (binary) digits can be used to store a real number in the memory of a computer.
For so-called single-precision and double-precision floating point numbers, 32 bits and 64 bits are typically
employed, respectively.

Recall that any real number can be written as p x 8¢, where § is the base (an integer greater than one),
u € [—1,1] is the mantissa, and e is the exponent (an integer). For our discussion, we will define the set of
floating point numbers, F', as the set of all numbers xy = pu x 8¢ such that

. B=2,
o p==%.0001--0;—1 (p has only ¢ (binary) digits), where J; € {0,1}),
e 9§ = 0iff 4 =0 (the mantissa is normalized), and
e —L<e<U.
With this, the elements in F' can be stored with a finite number of (binary) digits.

Example 6.2.1.1 Let § =2,¢t =3, p =.101, and e = 1. Then

pox B¢

.101_>< 21
(1
(

1.2

X

27140 x272+1x273) x 2!

b d)x2

N[=
S+

O
Observe that

e There is a largest number (in absolute value) that can be stored. Any number with larger magnitude
"overflows". Typically, this causes a value that denotes a NaN (Not-a-Number) to be stored.

o There is a smallest number (in absolute value) that can be stored. Any number that is smaller in
magnitude "underflows". Typically, this causes a zero to be stored.

In practice, one needs to be careful to consider overflow and underflow. The following example illustrates
the importance of paying attention to this.

Example 6.2.1.2 Computing the (Euclidean) length of a vector is an operation we will frequently employ.
Careful attention must be paid to overflow and underflow when computing it.
Given z € R", consider computing

[z]l2 = (6.2.1)

Notice that)
n—
]l < \/’Ef?jgi\xﬂ

and hence, unless some Y; is close to overflowing, the result will not overflow. The problem is that if some
element ; has the property that x? overflows, intermediate results in the computation in (6.2.1) will overflow.
The solution is to determine & such that

—1
Ixk| = max [y;]
1=0

WEEK 6. NUMERICAL STABILITY 277

and to then instead compute

[2ll2 = [xxl

It can be argued that the same approach also avoids underflow if underflow can be avoided. ([
In our discussion, we mostly ignore this aspect of floating point computation.

Remark 6.2.1.3 Any time a real number is stored in our computer, it is stored as a nearby floating point
number (element in F') (either through rounding or truncation). Nearby, of course, could mean that it is
stored as the exact number if it happens to also be a floating point number.

6.2.2 Error in storing a real number as a floating point number

Akt ik, Bl

622
Errar when shering reals a3

fleals

YouTube: https://www.youtube.com/watch?v=G2jawQW5WPc

Remark 6.2.2.1 We consider the case where a real number is truncated to become the stored floating point
number. This makes the discussion a bit simpler.

Let positive x be represented by

€

X:.(5051"'X2,

where §; are binary digits and g = 1 (the mantissa is normalized). If ¢ binary digits are stored by our

floating point system, then
)V(= .5051 . '6,5_1 x 2¢

is stored (if truncation is employed). If we let jy = x — x. Then

5)(= .(50(51"'5t,1(5t"'><26 — .(5051"'515,1><26
X X
= .0---00 §;---x2°
t
< .0---01 x2¢=27t2¢
t

Since x is positive and dy = 1,

Thus,

which can also be written as

A careful analysis of what happens when x equals zero or is negative yields

0x| < 27Dy

https://www.youtube.com/watch?v=G2jawQW5WPc

WEEK 6. NUMERICAL STABILITY 278

Example 6.2.2.2 The number 4/3 = 1.3333 - - - can be written as

1.3333 - --

I+3+7+3+%+
= < convert to binary representation >

1.0101--- x 2°
= < normalize >
10101 --- x 2t

Now, if ¢ = 4 then this would be truncated to
1010 x 2%,

which equals the number
101 x 28 =
1,0,1,0 1
3tatgtiex2

0625 x2 = < convert to decimal >
1.25

The relative error equals

1.333---—1.25
—————— = 0.0625.
1.333--- 0.0625

If ¥ is computed by rounding instead of truncating, then

x| < 277y

We can abstract away from the details of the base that is chosen and whether rounding or truncation is used
by stating that storing x as the floating point number Y obeys

|0x| < €mach|X]

where €npach is known as the machine epsilon or unit roundoff. When single precision floating point numbers
are used €pach ~ 1078, yielding roughly eight decimal digits of accuracy in the stored value. When double
precision floating point numbers are used €pyacn ~ 10719, yielding roughly sixteen decimal digits of accuracy
in the stored value.

Example 6.2.2.3 The number 4/3 = 1.3333 - - - can be written as

1.3333---

1+Q+l_~_9+i_~_...
2 T1T38T 16
= < convert to binary representation >

1.0101--- x 20
= < normalize >
10101 --- x 2t

Now, if ¢ = 4 then this would be rounded to

1011 x 21,

WEEK 6. NUMERICAL STABILITY 279

which is equals the number

1011 x 28 =
1,0, 1 1
5 + 1 + s + 16 X 21
0.6875 x2 = < convert to decimal >
1.375
The relative error equals
[1.333... — 1.375]
=0.03125.
1.333---

O

Definition 6.2.2.4 Machine epsilon (unit roundoff). The machine epsilon (unit roundoff), €pach, is
defined as the smallest positive floating point number y such that the floating point number that represents
1+ x is greater than one. O

Remark 6.2.2.5 The quantity €,0n is machine dependent. It is a function of the parameters characterizing
how a specific architecture converts reals to floating point numbers.

Homework 6.2.2.1 Assume a floating point number system with § = 2, a mantissa with ¢ digits, and
truncation when storing.

e Write the number 1 as a floating point number in this system.
e What is the €y,en for this system?

Solution.

e Write the number 1 as a floating point number.

Answer:
10---0 x 2!
t
digits
o What is the €yaen for this system?
Answer:
10---0 x2' + 00---1 x2' = 10---1 x2!
— — —
t digits t digits t digits
1 2= (t=1) >1
and
10---0 x2' + 00---011---x2' = 10---0 11---x2!
— — —
t digits t digits t digits
1 < 2= truncates to 1

Notice that
00---1 x2!
——
t digits
can be represented as
10---0 x 2702
—
t digits
and

00---0 11--- x 2!
N—_——

t digits

WEEK 6. NUMERICAL STABILITY 280

as
A1---1 x 27D
~—

t digits

Hence émaen = 271,

6.2.3 Models of floating point computation

When computing with floating point numbers on a target computer, we will assume that all (floating
point) arithmetic that is performed is in terms of additions, subtractions, multiplications, and divisions:

{+773 Xv/}'

6.2.3.1 Notation

In our discussions, we will distinguish between exact and computed quantities. The function fl(expression)
returns the result of the evaluation of expression, where every operation is executed in floating point arith-
metic. For example, given x,,(,w € F and assuming that the expressions are evaluated from left to right
and order of operations is obeyed,

A(x + ¢ + (/w)
is equivalent to

A1 (x +¢) + l(¢/w)).

Equality between the quantities lhs and rhs is denoted by lhs = rhs. Assignment of rhs to lhs is denoted
by lhs := rhs (lhs becomes rhs). In the context of a program, the statements (hs := rhs and lhs := fl(rhs)
are equivalent. Given an assignment

K := expression,

we use the notation % (pronounced "check kappa') to denote the quantity resulting from fl(expression), which
is actually stored in the variable x:
£ = fl(expression).

Remark 6.2.3.1 In future discussion, we will use the notation [-] as shorthand for fl(-).

6.2.3.2 Standard Computational Model (SCM)

623

Slandard Compudabional Madel
o —
‘n

YouTube: https://www.youtube.com/watch?v=RIsLyjFbonU

The Standard Computational Model (SCM) assumes that, for any two floating point numbers x and 1,
the basic arithmetic operations satisfy the equality

fi(x op) = (x op ¥)(1 +¢€), €| < €mach, and op € {+,—,*,/}.

The quantity e is a function of y,# and op. Sometimes we add a subscript (e, €., --) to indicate what
operation generated the (1 + €) error factor. We always assume that all the input variables to an operation
are floating point numbers.

Remark 6.2.3.2 We can interpret the SCM as follows: These operations are performed exactly and it is
only in storing the result that a roundoff error occurs.

https://www.youtube.com/watch?v=RIsLyjFbonU

WEEK 6. NUMERICAL STABILITY 281

What really happens is that enough digits of the result are computed so that the net effect is as if the
result of the exact operation was stored.

Given x,v € F, performing any operation op € {+,—, %, /} with x and ¢ in floating point arithmetic,
fi(x op ¥) yields a result that is correct up to machine precision: Let ¢ = x op ¢ and { = ¢ +& = fl(x op).
Then |&| < €macn|¢| and hence ¢ is close to ¢ (it has k correct binary digits).

Example 6.2.3.3 Consider the operation
Kk =4/3,

where we notice that both 4 and 3 can be exactly represented in our floating point system with § = 2 and
t = 4. Recall that the real number 4/3 = 1.3333--- is stored as .1010 x 2!, if ¢ = 4 and truncation is
employed. This equals 1.25 in decimal representation. The relative error was 0.0625. Now

~.

4/3)

1.25

1.333--- + (—0.0833---)

1.333--- x (1+%)

4/3 x (1 + (—0.0625))

k(1+¢/),

where
|e/| =0.0625 < 0.125 .
N——
= 9—(t=1)

€mach

6.2.3.3 Alternative Computational Model (ACM)

62,3
Alle rmalive Compubalional
Khodel

YouTube: https://www.youtube.com/watch?v=6jBxznXcivg

For certain problems it is convenient to use the Alternative Computational Model (ACM) [21], which
also assumes for the basic arithmetic operations that

o
0 b 9) = 5P 6] < e, and op € {+,-,5, /)

As for the standard computation model, the quantity € is a function of x,v and op. Note that the €’s
produced using the standard and alternative models are generally not equal. The Taylor series expansion of
1/(1 +¢€) is given by

1

1+e

=1+ (—€e)+O0(e?),

https://www.youtube.com/watch?v=6jBxznXcivg

WEEK 6. NUMERICAL STABILITY 282

which explains how the SCM and ACM are related.
The ACM is useful when analyzing algorithms that involve division. In this course, we don’t analyze in
detail any such algorithms. We include this discussion of ACM for completeness.

Remark 6.2.3.4 Sometimes it is more convenient to use the SCM and sometimes the ACM. Trial and error,
and eventually experience, will determine which one to use.

6.2.4 Stability of a numerical algorithm

Akriid ok Rlial AR Wl 1wl K S

6,24
Fhamarical glabilily,

YouTube: https://www.youtube.com/watch?v=_AoelpfTLhI

Correctness in the presence of error (e.g., when floating point computations are performed) takes on a
different meaning. For many problems for which computers are used, there is one correct answer and we
expect that answer to be computed by our program. The problem is that most real numbers cannot be
stored exactly in a computer memory. They are stored as approximations, floating point numbers, instead.
Hence storing them and/or computing with them inherently incurs error. The question thus becomes "When
is a program correct in the presence of such errors?"

Let us assume that we wish to evaluate the mapping f : D — R where D C R" is the domain and
R C R™ is the range (codomain). Now, we will let f : D — R denote a computer implementation of this
function. Generally, for 2 € D it is the case that f(z) # f(x). Thus, the computed value is not "correct'.
From earlier discussions about how the condition number of a matrix can amplify relative error, we know
that it may not be the case that f(a:) is "close to" f(z): even if f is an exact implementation of f, the mere
act of storing « may introduce a small error & and f(x + &) may be far from f(x) if f is ill-conditioned.

https://www.youtube.com/watch?v=_AoelpfTLhI

WEEK 6. NUMERICAL STABILITY

283
Domain
RN Range 7/

Figure 6.2.4.1 In this illustation, f : D — R is a function to be evaluated. The function f represents the
implementation of the function that uses floating point arithmetic, thus incurring errors. The fact that for

a nearby value, &, the computed value equals the exact function applied to the slightly perturbed input z,
that is,

f@) = f(=),
means that the error in the computation can be attributed to a small change in the input. If this is true,
then f is said to be a (numerically) stable implementation of f for input z.

The following defines a property that captures correctness in the presence of the kinds of errors that are
introduced by computer arithmetic:

Definition 6.2.4.2 Backward stable implementation. Given the mapping f : D — R, where D C R"
is the domain and R C R™ is the range (codomain), let f : D — R be a computer implementation of this

function. We will call f a backward stable (also called "numerically stable") implementation of f on domain
D if for all z € D there exists a & "close" to « such that f(z) = f(Z)

O
In other words, f is a stable implementation if the error that is introduced is similar to that introduced

when f is evaluated with a slightly changed input. This is illustrated in Figure 6.2.4.1 for a specific input z.
If an implemention is not stable, it is numerically unstable.

The algorithm is said to be forward stable on domain D if for all € D it is that case that f(z) ~ f(z)
In other words, the computed result equals a slight perturbation of the exact result.

Example 6.2.4.3 Under the SCM from the last unit, floating point addition, k := x + v, is a backward
stable operation.

WEEK 6. NUMERICAL STABILITY 284

Solution.
K
= < computed value for k >
[x +¥]
= < SCM >
(x+¥)(1+eq)
= < distribute >
X(1+ey) + (L +eq)
X+ &)+ (W + &)
where
4 |€+| < €mach,
* 5X = X€+,
o) =1pey.
Hence % equals the exact result when adding nearby inputs. (Il

Homework 6.2.4.1

o« ALWAYS/SOMETIMES/NEVER: Under the SCM from the last unit, floating point subtraction, x :=
X — v, is a backward stable operation.

o« ALWAYS/SOMETIMES/NEVER: Under the SCM from the last unit, floating point multiplication,
K := x X 1, is a backward stable operation.

o ALWAYS/SOMETIMES/NEVER: Under the SCM from the last unit, floating point division, x := x /v,
is a backward stable operation.

Answer.

e ALWAYS: Under the SCM from the last unit, floating point subtraction, x := x — %, is a backward
stable operation.

e ALWAYS: Under the SCM from the last unit, floating point multiplication, k := x X %, is a backward
stable operation.

o ALWAYS: Under the SCM from the last unit, floating point division, x := x/v, is a backward stable
operation.

Now prove it!

Solution.

e ALWAYS: Under the SCM from the last unit, floating point subtraction, xk := x — %, is a backward
stable operation.

~

K

= < computed value for k >
[x — ¢]

= < SCM >
(x—¥)(1+e-)

= < distribute >
(14 €)= (1 +e)

(x+ 80 — (& + &)

where

WEEK 6. NUMERICAL STABILITY 285

o |€7| < €mach,
o 0x = X€—,
o G = e_.
Hence % equals the exact result when subtracting nearby inputs.

e ALWAYS: Under the SCM from the last unit, floating point multiplication, x := x X 1, is a backward
stable operation.

~

K
= < computed value for k >

[x x]
- < SCM >

(x x) (1 +€x)
= < associative property >

Xxw(1+€><)

x(w_ + &)

where

© |€><| < €mach;
o & =1pex.
Hence % equals the exact result when multiplying nearby inputs.

o ALWAYS: Under the SCM from the last unit, floating point division, x := x /v, is a backward stable
operation.

~

K
= < computed value for £ >

/] <
= SCM >

(/)1 +€/)

= < commutative property >
X(L+e€/)/v

(x+ 80/

where

o |€/| S €mach,
o 0x = X€/,
Hence K equals the exact result when dividing nearby inputs.

Ponder This 6.2.4.2 In the last homework, we showed that floating point division is backward stable by

showing that [x/v] = (x + dx)/% for suitably small dy.
How would one show that [x/v] = x/(¢p + &) for suitably small di)?

WEEK 6. NUMERICAL STABILITY 286

6.2.5 Conditioning versus stability

P IS TSP e Sy S R rey gt e

6,25
Shability and Cancilioning

YouTube: https://www.youtube.com/watch?v=e29Yk4XCyLs
It is important to keep conditioning versus stability straight:

e Conditioning is a property of the problem you are trying to solve. A problem is well-conditioned if a
small change in the input is guaranteed to only result in a small change in the output. A problem is
ill-conditioned if a small change in the input can result in a large change in the output.

e Stability is a property of an implementation. If the implementation, when executed with an input
always yields an output that can be attributed to slightly changed input, then the implementation is
backward stable.

In other words, in the presence of roundoff error, computing a wrong answer may be due to the problem
(if it is ill-conditioned), the implementation (if it is numerically unstable), or a programming bug (if the
implementation is sloppy). Obviously, it can be due to some combination of these.

Now,

o If you compute the solution to a well-conditioned problem with a numerically stable implementation,
then you will get an answer that is close to the actual answer.

e If you compute the solution to a well-conditioned problem with a numerically unstable implementation,
then you may or may not get an answer that is close to the actual answer.

e If you compute the solution to an ill-conditioned problem with a numerically stable implementation,
then you may or may not get an answer that is close to the actual answer.

Yet another way to look at this: A numerically stable implementation will yield an answer that is as accurate
as the conditioning of the problem warrants.

6.2.6 Absolute value of vectors and matrices

In the above discussion of error, the vague notions of "near" and "slightly perturbed" are used. Making these
notions exact usually requires the introduction of measures of size for vectors and matrices, i.e., norms.
When analyzing the stability of algorithms, we instead give all bounds in terms of the absolute values of
the individual elements of the vectors and/or matrices. While it is easy to convert such bounds to bounds
involving norms, the converse is not true.

Definition 6.2.6.1 Absolute value of vector and matrix. Given z € R"™ and A € R"™*",

Ixol lavo,0 o] .. Jaon—1]
| | |X1| d |A| |al,0 |0l1,1| |a1,n—1|
| = . an = .
|X7L—1‘ |04m—1,0| |am—1,1| |04m—1,n—1|

Definition 6.2.6.2 Let A€ {<,<,=,>,>} and z,y € R". Then

lz[alyl HE [xa] Al

https://www.youtube.com/watch?v=e29Yk4XCyLs

WEEK 6. NUMERICAL STABILITY

forall i =0,...,n— 1. Similarly, given A and B € R™*",
[Ala|B| i o] o [Bi51,
foralli=0,...,m—1and j=0,...,n—1.
The next Lemma is exploited in later sections:

Homework 6.2.6.1 Let A € R™** and B € RF*",
ALWAYS/SOMETIMES/NEVER: |AB| < |A||B|.

Answer. ALWAYS
Now prove it.

Solution. Let C = AB. Then the (i,7) entry in |C| is given by

k—1 k—1
Z Qi pPpj| < Z |t p By,
p=0 p=0

which equals the (4, j) entry of |A||B|. Thus |AB| < |A||B|.

|%’,j| =

k—1
= Z |t 1 Bp. 51
p=0

287

The fact that the bounds that we establish can be easily converted into bounds involving norms is a

consequence of the following theorem, where || || ¢ indicates the Frobenius matrix norm.

Theorem 6.2.6.3 Let A, B € R™*™. If |A| < |B| then ||A|lr < ||Bllr, |AllL < | Bll1, and ||Allco < || Bloo-

Homework 6.2.6.2 Prove Theorem 6.2.6.3

Solution.

« Show that if |A| < |B| then ||A|r < || B||¢:

m—1n—1 m—1n—1

JAIG =D > P < >0 > 18,17 = I1Bl%

i—0 j=0 i=0 j=0
Hence ||A||r < ||B|F-

o Show that if |A| < |B| then ||A|1 < || B]1:
Let

A:(ao""‘an_l) and B:(bo“bn—l)

Then
A2

= < alternate way of computing 1-norm >

maxo<;j<n ||a;]1

= < expose individual entries of a; >

MAaxg<;j<n (E;’iﬁl |a,»,j|>

= < choose k to be the index that maximizes >

(05 el

< < entries of B bound corresponding entries of A >

(32" 1Bl

= < express sum as l-norm of column indexed with k& >

[0k (|1

< < take max over all columns >
maxo<;<n [|b;[1

= < definition of 1-norm >
B2

WEEK 6. NUMERICAL STABILITY 288
o Show that if |A] < |B| then ||A|loc < ||Bl|oo:
Note:

o [|Allsc = [[AT]l1 and ||Bllo = [|B 1.
o If |[A| < |B]| then, clearly, |AT| < |BT]|.

Hence
[A]lso = [[AT][1 < IB" |1 = [Blloo-

6.3 Error Analysis for Basic Linear Algebra Algorithms

6.3.1 Initial insights

ki i SR PEadarl K- Py

6.3 1
Backward errar of a dal
produch, simphe axampls

YouTube: https://www.youtube.com/watch?v=0HqdJ3hjHFY
Before giving a general result, let us focus on the case where the vectors x and y have only a few elements:

Example 6.3.1.1 Consider
Xo Yo
= d =
= (30) mar= ()

ki=zTy.

and the computation

Under the SCM given in Subsubsection 6.2.3.2, the computed result, &, satisfies

o (X0) (e 0 o
o (X1) (0 ' (1+€i1))(1+6$)) ((3) (6.3.1)

https://www.youtube.com/watch?v=OHqdJ3hjHFY

WEEK 6. NUMERICAL STABILITY 289

Solution.
K
= <i=[2Ty] >
T
X0 Yo
X1 P1
= < definition of 2Ty >
[Xoto + Xx191]
= < each suboperation is performed in floating point arithmetic >
[[xoto] + [xa1¥1]]
= < apply SCM multiple times >
(oo (1 +) +xatr (1 + V)]
= < apply SCM >
(xovo(1+) + xan (1+ D)1+ €)
= < distribute >
Xoto(1+ €)1+ €M)+ xapr (1 +) (1 +€l)
= < commute >
Xo(1+ €1+ e)bo + xa (1 + D)1 + €My
= < (perhaps too) slick way of expressing the final result >
(Xo)T (1+e) 1+ €Dy 0 (o)
1 1
X1 0 (1+€eM)(1 + €My P
where \efko)\, ‘65})‘, \e$)| < €mach- O

An important insight from this example is that the result in (6.3.1) can be manipulated to associate the
accummulated error with vector = as in

%= Xo(1+ €)1+ M) T< ")
X1(1+65<1))(1+e$)) (G

. (X0)T Yo(1+ ey (1 + €M)

k=)) :
X1 Pr(1+e’)1+e’)

This will play a role when we later analyze algorithms that use the dot product.

Homework 6.3.1.1 Consider

or with vector y

Xo Yo
z=| x1 | andy=|
X2 o
and the computation
ki=aly

computed in the order indicated by

K= (Xo%o + x191) + x2¥2.

Employ the SCM given in Subsubsection 6.2.3.2, to derive a result similar to that given in (6.3.1).

Answer.
X0 T (1 +65<0))(1+6$))(1+6(+2)) 0 0 Yo
X1 0 1+ e+ ey +€2) 0 v |,

X2 0 0 (1421 +€2) s

WEEK 6. NUMERICAL STABILITY 290

where \6(0)\ \eg})\, \e$)|, |6§<2)|, |GS_2)| < €mach-

Solution. Here is a solution that builds on the last example and paves the path toward the general solution
presented in the next unit.

~

K
= <i=[2Ty] >

[(X0%0 + X1%1) + X22]
= < each suboperation is performed in floating point arithmetic >

[[Xowo + x191] + [x292]]

= < reformulate so we can use result from Example 6.3.1.1 >

H£§) (&)] +[><2w2]]

< use Example 6.3.1.1; twice SCM >

<< ?1)) < (1+6(0))0((+1)) (1+e(1))0(1+e(1)) > (i?)

X2t (1 + 69)) (1+ €2
= < distribute, commute >

Xo (141 +€D) 0 Yo
<><1> (0 (g JOHE)<w1>

+ x2(1 + 6&2))(1 + ef))wz
= < (perhaps too) slick way of expressing the final result >

xo \7 [QM) +eD)1+P) 0 0 Yo
X1 0 1+ M1+ M)+) 0 N
X2 0 0 (141 + P (5

)

where [el [, [e], €], 1€7], 167 < €macn-

6.3.2 Backward error analysis of dot product: general case

]
Bockward error analysis of dal
praducl

YouTube: https://www.youtube.com/watch?v=PmFUqJXogm8
Consider now

T

X0 Yo
X1 (!
ki=aly= : : = (((X01l)0 +x1t1) +-0) + Xn72/(/)n72) + Xn—1%n-1.
Xn—2 1/’11—2

Xn—1 ¢n71

https://www.youtube.com/watch?v=PmFUqJXogm8

WEEK 6. NUMERICAL STABILITY 291

Under the computational model given in Subsection 6.2.3 the computed result, %, satisfies

i = (vt +) 4 a1+ N+ D) o)1)

+ X1t (14 eﬁ”_1)>> (1+€7)

= xovo(l+)1+ M)A+ e?) (1Y)
v+)+)y)

+ xots(1+) A+ 1+
+ ..
o (14477) @)

= T (@ + N ILZ 0+)

so that
n—1 on—1)
ko= X1+ e JJ+€2) |, (6.3.2)
=0 j=i
where eff) =0 and |e>(k0)|, |e>(kj)|7 |e$)\ < €maen for j=1,...,n—1

Clearly, a notation to keep expressions from becoming unreadable is desirable. For this reason we intro-
duce the symbol §;:

632
Backiward &rrar analysis:
accumulabing errer Fackers

YouTube: https://www.youtube.com/watch?v=6gnYXaw4Bms
Lemma 6.3.2.1 Lete; € R, 0<i<n—1, nemach < 1, and |€;| < €mach. Then 3 6, € R such that

n—1

H(l +e)t =140,
i=0

with 6,] < némach/ (1 — N€mach) -
Here the +£1 means that on an individual basis, the term is either used in a multiplication or a division.
For example
(1 +€0)i1(1 +€1):|:1

might stand for

(1+¢o) (1+e) 1

(1+e)(1+e) or Gta) 7 (1) 7 OUxra)(ite)

so that this lemma can accommodate an analysis that involves a mixture of the Standard and Alternative
Computational Models (SCM and ACM).
Proof. By Mathematical Induction.

e Base case. n = 1. Trivial.

o Inductive Step. The Inductive Hypothesis (I.LH.) tells us that for all ¢; € R, 0 <i <n—1, nemach < 1,

https://www.youtube.com/watch?v=6qnYXaw4Bms

WEEK 6. NUMERICAL STABILITY 292

and |€;| < €mach, there exists a 6, € R such that

n—1

[T+ e)™ =140, with |0n] < nemacn/(1 — némacn)-
=0

We will show that if ; € R, 0 <i <n, (n+1)emach < 1, and |€;| < €mach, then there exists a 0,11 € R
such that

[+e)* =1+ 0np1, with [0nia] < (04 1emacn/(1 = (7 + Lemacn)-
i=0
o Case 1: The last term comes from the application of the SCM.
[T o(1+e)* =170 (1 + &)*' (1 + €,). See Ponder This 6.3.2.1.
o Case 2: The last term comes from the application of the ACM.
[Ty (1+e)* = ([T (1 4 €)F)/(1 + €,). By the LH. there exists a 6,, such that (1 +6,,) =
szol(l + €)1 and |0,,| < nemach/(1 — Némacn). Then

H?:_ol(l + 5i)i1 140, On — €n
= =1+ ,
1+e, 1+e, 1+e€,
——
0n+1

which tells us how to pick 6,,41. Now

|9n+1|
= < definition of 0,1 >

|(0n — €n)/(1 + €n)]

S < |9n*€n‘ S|0n|+|€n| S |9n|+€mach>
(|9n|+€mach)/(|1+€n‘)

< <|1+6n|21_‘6n‘21_6mach>

(|9n| + 6mach)/(l - 6m'a»(:h)
< < bound |0,| using LH. >

(% + 6mach)/(l - 6maLch)

= < algebra >
(nemach + (1 - 'nfmach)emach)/((l - nemach)(l - 6mauch))

= < algebra >

((n+ Demach = n€paen) /(1 = (0 + Demach + €500
< < increase numerator; decrease denominator >

((n+ Démacn)/ (1 — (n + 1)€mach)-

e By the Principle of Mathematical Induction, the result holds.

|
Ponder This 6.3.2.1 Complete the proof of Lemma 6.3.2.1.
Remark 6.3.2.2 The quantity 6,, will be used throughout these notes. It is not intended to be a specific

number. Instead, it is an order of magnitude identified by the subscript n, which indicates the number of
error factors of the form (1 + ¢;) and/or (1 + ¢;)~! that are grouped together to form (1 +6,,).

Since we will often encounter the bound on |6,,| that appears in Lemma 6.3.2.1 we assign it a symbol as
follows:

Definition 6.3.2.3 For all n > 1 and nepacn < 1, define

Yn = nemach/(l - nemach)~

WEEK 6. NUMERICAL STABILITY 293

o
With this notation, (6.3.2) simplifies to
K
Xolbo(l + on) + X1¢1(1 + en) +oeee Xn—ld)n—l(l + 92)
B T
X0 (1+6,) 0 0 s 0 Yo
X1 0 (1+6,) 0 e 0 (3
X2 0 0 (1+9n—1) 0 1/)2
Xn—1 0 0 0 (1 + 02) '¢n—1
~ (6.3.3)
xo \ O, 0 0 0 Yo
X1 0 9n O 0 ¢1
X2 I+| O On—1 0 Vo
Xn—1 0 O 0 coe By Vn—1
I+xM

2T(I +2M)y,

where |0;| <v;,j=2,...,n.

Remark 6.3.2.4 Two instances of the symbol 6,,, appearing even in the same expression, typically do not
represent the same number. For example, in (6.3.3) a (1 + 6,,) multiplies each of the terms xovo and 11,
but these two instances of 6,,, as a rule, do not denote the same quantity. In particular, one should be careful
when factoring out such quantities.

632
Aoeumulaling &rrar fachers
Parf 2

YouTube: https://www.youtube.com/watch?v=Uc6NuDZMakE
As part of the analyses the following bounds will be useful to bound error that accumulates:

Lemma 6.3.2.5 If n,b > 1 then v, < Yntb and Yn + Vo + YV < Vntb-
This lemma will be invoked when, for example, we want to bound |e| such that 1+ €= (14¢€1)(1+€3) =
14 (€1 + €2 + €1€62) knowing that |e;| < 7, and |ea| < 7.

Homework 6.3.2.2 Prove Lemma 6.3.2.5.

https://www.youtube.com/watch?v=Uc6NuDZMakE

WEEK 6. NUMERICAL STABILITY

294
Solution.
Tn
= < definition >
(nemaCh)/(l - nemach)
< 1>
((n + b)emaCh)/(l - nemach)
< < 1/(1 —mnemach) < 1/(1 — (n+ b)émach) if (n+ b)éemach < 1 >
((n + b)emach)/(l — (n + b)emach)
= < definition >
Yn+b-
and

Tn +) + YnYb
= < definition >
Né€mach bemach M€mach bemach
1—ne€mach 1—bemach (1—ne€macn) (1—bemach)

= < algebra >

Ne€mach (1 —b€mach)+ (1 —N€mach)DEmach +bne[2nach
(1—nemach) (1—bemach)
= < algebra >
NE€mach —bne?nach—}-bemach —bnef]nach
1—(n+b)emacn+bne2 |
= < algebra >
(n+b)€emach —bne2

mach

1—(n+b)€emach +bne?

mach

< < bne . > 0>
(n+b)emach

1—(n+b)emacn +bne2

mach

< < bne g > 0>
(n+b)€mach
1_(7l+b)5mach
= < definition >

In+b-

+bn62

mach

6.3.3 Dot product: error results

6,33
Bockward &f ror ragulls For dat
produch

YouTube: https://www.youtube.com/watch?v=QxUCV4k8Gu8

It is of interest to accumulate the roundoff error encountered during computation as a perturbation of
input and/or output parameters:

o B=(z+a)ly;
(% is the exact output for a slightly perturbed z)

a(y + &);
(% is the exact output for a slightly perturbed y)

e K

. k:xTy+5li.

(% equals the exact result plus an error)

https://www.youtube.com/watch?v=QxUCV4k8Gu8

WEEK 6. NUMERICAL STABILITY 295

The first two are backward error results (error is accumulated onto input parameters, showing that the
algorithm is numerically stable since it yields the exact output for a slightly perturbed input) while the last
one is a forward error result (error is accumulated onto the answer). We will see that in different situations,
a different error result may be needed by analyses of operations that require a dot product.

Let us focus on the second result. Ideally one would show that each of the entries of y is slightly perturbed
relative to that entry:

a0%o oo - 0 Yo
by = s o =
Jnfld]nfl 0 o Op—1 /(/)nfl

where each o; is "small" and ¥ = diag(oy,...,0,—1). The following special structure of ¥, inspired by (6.3.3)
will be used in the remainder of this note:

0 x 0 matrix ifn=0
»nm ={ 6 ifn=1
diag(0,,60,,60n—1,...,02) otherwise .

Recall that 6; is an order of magnitude variable with |6,| < ;.
Homework 6.3.3.1 Let £ > 0 and assume that |e;1], |é2| < €macn, with e = 0 if £k = 0. Show that

(I—i—E(k) 0

0 1+ a)) (14 €) = (I + 3¢+,

Hint: Reason the cases where k = 0 and k£ = 1 separately from the case where k > 1.
Solution. Case: k= 0.

then <1+ww 0)
(1+€2)
O (1+61)
= <k=0means (I+%*)is0x0and (1+¢)=(1+0)>
(1+0)<1+62)
(1+e)
(1+61)
(I +),
Case: k=1.
then I+3%® 0
(0 (1+61))(1+€2)
146, 0
(0 1 (1+€))(1+62)
< 6+91)(1+62) 0 >
0 (1+61)(1+62)
((_1+92) 0)
0 (14 62)

Case: £ > 1.

WEEK 6. NUMERICAL STABILITY

Notice that
(I4+2®)(1+ e)

1+ 6, 0 0 0

0 146k 0 0
0 0 14+60,_1 --- 0 (1+62)
0 0 0 e 1464
14 041 0 0 0
0 1461 0 - 0
0 0 1460, - 0
0 0 0 cee 14065

Then ")
I+X 0
(0 (1+61))(1+€2)

(1+2<’<>)(1+62) 0
0 (1—|—61)(1+62)
1—|—9k+1 0 0 0
1461 0 -+ 0
0 146 -~ 0 0
0 0 oo 1404
0 (1+469)
(I + x+D),

We state a theorem that captures how error is accumulated by the algorithm.

Theorem 6.3.3.1 Let 2,y € R™ and let r := 2Ty be computed in the order indicated by

(- ((xo%o + x1¢1) + x2t2) + -+) + Xn—1Vn—-1-

Then
k= [zTy] =2T(I+ My,
Proof.
Proof by Mathematical Induction on n, the size of vectors z and y.

« Base case.

m(x) = m(y) = 0. Trivial!

e Inductive Step.
Inductive Hypothesis (I.H.): Assume that if z7,y7 € RF, k > 0, then

fi(xtyr) = 22(I 4+ Sp)yr, where Sp = %0,

296

We will show that when z7,yr € R¥1 the equality fl(xiyr) = 2%5(I + Sr)yr holds true again.

WEEK 6. NUMERICAL STABILITY 297

Assume that zr,yr € RF+1and partition xp — (o) and yr — (Yo) Then

X1 P
() ()

= < definition >
A((A(xq yo) + Alx1¢1))
< LH. with zp = 2o, yr = yo, and Ly = %) >
fi(xg (I+ Xo)yo + fl(x1¢1))
< SCM, twice >
(23 (I +Xo)yo + xat1(1 +€4)) (1 +€4)
< rearrangement >

(ig >T< (IJrOEo) (1f6*> >(1+6+)<3£)

< renaming >
ap(I +Er)yr

S|

o
23

where |e.],|e4| < €mach, €+ =0 if £ =0, and

(I+%7)= ((I+OZO) (136*))(1+e+)

so that X = D¢+,
e By the Principle of Mathematical Induction, the result holds.

|

A number of useful consequences of Theorem 6.3.3.1 follow. These will be used later as an inventory

(library) of error results from which to draw when analyzing operations and algorithms that utilize a dot
product.

Corollary 6.3.3.2 Under the assumptions of Theorem 6.3.5.1 the following relations hold:
R-1B i = (x + &) Ty, where |&| < v, |7],

R-2B i =27 (y + &), where |§y| < v yl;

R-1F i = 2Ty + &, where || < v |z|T|y|.
Proof. R-1B

We leave the proof of Corollary 6.3.3.2 R-1B as an exercise.

R-2B

The proof of Corollary 6.3.3.2 R-2B is, of course, just a minor modification of the proof of Corollary 6.3.3.2
R-1B.

R-1F

For Corollary 6.3.3.2 R-1F, let ok = 27Xy, where (" is as in Theorem 6.3.3.1. Then

|| 2T my|

IXol[6n %ol + [xallOnllth1] + - + [Xn—1][62]|thn—1]
YnlXol[%ol +vnlx1[[t01] + - + vl xn—1[tn-1]
Tl lyl-

INIAIA

Homework 6.3.3.2 Prove Corollary 6.3.3.2 R1-B.

WEEK 6. NUMERICAL STABILITY

298
Solution. From Theorem 6.3.3.1 we know that
=2l (I+2M)y = (x+ 2™z)Ty,
o
Then
Onx0 |0 X0l 1050l
O X1 |00 X1 10 x1]
|| Mg = || Onxz || = | |On-1xel 101X
92Xn—1 |92Xn—1| |02||Xn—l|
‘97L||X0| 'Yn‘XO‘
10 |[x1] Ynlx1|
0| X7—1] YnlXn—1]

(Note: strictly speaking, one should probably treat the case n = 1 separately.)

6.3.4 Matrix-vector multiplication

6,34
Backward error of malrix-

wacher mulliphtalicos

YouTube: https://www.youtube.com/watch?v=q7rACPOu4ZQ
Assume A € R™*" x € R™ and y € R™. Partition

af o
aj (a1
A= . and y=)
EZ;L—l w’rTL71
Then computing y := Az can be orchestrated as
’L[)O ng
(1 afw
. (6.3.4)
szm—l aT

m—1%

https://www.youtube.com/watch?v=q7rACPOu4ZQ

WEEK 6. NUMERICAL STABILITY 299

From R-1B 6.3.3.2 regarding the dot product we know that

1/:}0 (50 + (ﬁo)Tx
5 (1 (a1 + day) "z
Yy= . = .
'J)m—l (am—l + (ﬁm—l)Tx
at &
aj aai
=) +) x=(A+ M)z,
aZ;L—l &iﬁq

where |&a;| < y,la;], ¢ =0,...,m — 1, and hence |M]| < v,|A4]. .
Also, from Corollary 6.3.3.2 R-1F regarding the dot product we know that

?,?0 5§$ + &g Zi§ o
(0 aj x + G aj &1
’(Z}mfl 5%711} + &ﬂm,1 5571 &pm—l

where [&);] < 7, |a;|"|z| and hence |dy| < v, |Allz].
The above observations can be summarized in the following theorem:

Theorem 6.3.4.1 Error results for matriz-vector multiplication. Let A € R™*" x € R", y € R™ and
consider the assignment y := Ax implemented via dot products as expressed in (6.3.4). Then these equalities
hold:

R-1B § = (A+ AA)z, where |AA| < v, |Al.
R-1F g = Az + dy, where |dy| < v, |A||z].

Ponder This 6.3.4.1 In the above theorem, could one instead prove the result
J= Az + dar),

where & is "small"?

Solution. The answer is "sort of'. The reason is that for each individual element of y
1Li = ?iZT(:c + &L“)

which would appear to support that

77?0 al(z + or)
P1 B ai (z + dr)
T/V)n;—1 Z115—1(9.1j + dr)

However, the & for each entry QZZ is different, meaning that we cannot factor out = + & to find that
= A(x + dr).

However, one could argue that we know that § = Az + dy where |0y| < ~,|A||x|. Hence if Adr = ¢y then
A(x + &) = g. This would mean that dy is in the column space of A. (For example, if A is nonsingular).
However, that is not quite what we are going for here.

WEEK 6. NUMERICAL STABILITY 300

6.3.5 Matrix-matrix multiplication

ahrieed ik Bl A

6.3.5
Errar in mairis malrix

mulliphzatisa Park |

YouTube: https://www.youtube.com/watch?v=pvBMuIzIob8

The idea behind backward error analysis is that the computed result is the exact result when computing
with changed inputs. Let’s consider matrix-matrix multiplication:

C := AB.

What we would like to be able to show is that there exist A4 and AB such that the computed result, C,
satisfies

v

C:=(A+ AA)(B+ AB).
Let’s think about this...
Ponder This 6.3.5.1 Can one find matrices A4 and AB such that

v

C' = (A+ AA)(B + AB)?

6,35
Errar in malris malrix
mulliphealisa Pdrk 2

YouTube: https://www.youtube.com/watch?v=3d6kQ6rnRhA

For matrix-matrix multiplication, it ¢s possible to "throw" the error onto the result, as summarized by
the following theorem:

Theorem 6.3.5.1 Forward error for matrix-matrix multiplication. Let C € R™*" A € R™** qand

B € R*¥*™ and consider the assignment C := AB implemented via matriz-vector multiplication. Then there
exists AC' € R™*™ such that

C' = AB + AC, where |AC| < v4|A||B|.
Homework 6.3.5.2 Prove Theorem 6.3.5.1.

Solution. Partition

C:(co‘cl‘~-~‘c,L_1) and B=<b0‘b1"'~‘bn_1).
Then
(co‘cl‘---‘cn_l)::(Abo‘Abl‘---‘Abn_l).
From R-1F 6.3.4.1 regarding matrix-vector multiplication we know that
(¢o ‘ ¢ ‘ ‘ Cn—-1) = (Abg + dco ‘ Aby + oy ‘ ‘ Abp_1 + dep—)
= (At [Aby [| Abuy)+ (o | &r | | dous)
= AB+ AC.

where |dc;| < yi|A||bj], j=0,...,n — 1, and hence |AC| < ~;|A||B].

https://www.youtube.com/watch?v=pvBMuIzIob8
https://www.youtube.com/watch?v=3d6kQ6rnRhA

WEEK 6. NUMERICAL STABILITY 301

ko ik

6,3.5
Errar in maliris malrix

mulbiphzalizn Park 3
L]
]|

YouTube: https://www.youtube.com/watch?v=rxkKba-pnquQ

Remark 6.3.5.2 In practice, matrix-matrix multiplication is often the parameterized operation C' := ¢ AB+
BC. A consequence of Theorem 6.3.5.1 is that for 8 # 0, the error can be attributed to a change in parameter
C, which means the error has been "thrown back" onto an input parameter.

6.4 Error Analysis for Solving Linear Systems

6.4.1 Numerical stability of triangular solve

B s 1, L, o M

N
Backiward grror of Irisagaldr
selve Park |

YouTube: https://www.youtube.com/watch?v=ayj_rNkSMig

We now use the error results for the dot product to derive a backward error result for solving Lx = y,
where L is an n X n lower triangular matrix, via the algorithm in Figure 6.4.1.1, a variation on the algorithm
in Figure 5.3.5.1 that stores the result in vector x and does not assume that L is unit lower triangular.

Solve Lz =y

Lty | Ltr Tr yr)
L— = | —],y —
< Lpr | LBr) (B) Y (YB

Lpy is 0 x 0 and yp, zp have 0 elements
while n(Lrr) < n(L)

Loo | lor Lo2 Zo Yo

Lrn | L 33 y Yo

(Toi | Lon) ho | s (;) o, (>) "
Loo | l21 Lo

x1 = (Y1 — ywo) /A1
Loo Loz

lo1 Zo Yo

Lrp | Lre) B x| G (25) e o | ()« [wn

Lgr | Ler B YB —
Lo o1 | Loz

endwhile

Figure 6.4.1.1 Dot product based lower triangular solve algorithm.

To establish the backward error result for this algorithm, we need to understand the error incurred in
the key computation

X1 = (Y1 — o) /A1

The following theorem gives the required (forward error) result, abstracted away from the specifics of how
it occurs in the lower triangular solve algorithm.

https://www.youtube.com/watch?v=rxKba-pnquQ
https://www.youtube.com/watch?v=ayj_rNkSMig

WEEK 6. NUMERICAL STABILITY 302

Lemma 6.4.1.2 Letn > 1, \,v € R and x,y € R™. Assume A # 0 and consider the computation
vi=(a—aTy)/A

Then
A +N =a— (z+ &)y, where |6z| < yu|z| and [0\ < 2|\

Homework 6.4.1.1 Prove Lemma 6.4.1.2
Hint. Use the Alternative Computations Model (Subsubsection 6.2.3.3) appropriately.
Solution. We know that

« From Corollary 6.3.3.2 R-1B: if 8 = 27y then 3 = (z + &)Ty where |dz| < v, |z|.

o From the ACM (Subsubsection 6.2.3.3): If v = (a — 8)/A then
a—pf 1

A (T+e)(1+¢)’

1}:

where [e_| < €mach and |€/] < €mach-

Hence

or, equivalently,

or,

where 0\ = 63\ and hence |0\ < ||
The errror result for the algorithm in Figure 6.4.1.1 is given by

Theorem 6.4.1.3 Let L € R™*"™ be a nonsingular lower triangular matriz and let & be the computed result
when executing Figure 6.4.1.1 to solve Lx = y under the computation model from Subsection 6.2.3. Then
there exists a matriz AL such that

(L + AL)Z = y where |AL| < max(va,Yn—1)|L|.

The reasoning behind the result is that one expects the maximal error to be incurred during the final
iteration when computing x; = (¢1 — l{yz0)/A11. This fits Lemma 6.4.1.2, except that this assignment
involves a dot product with vectors of length n — 1 rather than of length n.

You now prove Theorem 6.4.1.3 by first proving the special cases where n = 1 and n = 2, and then the
general case.

Homework 6.4.1.2 Prove Theorem 6.4.1.3 for the case where n = 1.

Solution. Case 1: n = 1.
The system looks like A11x1 = %1 so that

X1 = 1/)1/)\11
and
1

i/
X1 =91/ 111+6/

WEEK 6. NUMERICAL STABILITY 303

Rearranging gives us
Auixi(l+e€/) =11

or
(A1 +A11)X1 = ¢n

where dA\11 = €,A11 and hence

|OA11] le/][A11]
Y1 [A
Yol A11]

max(v2, Yn—1)|A11]-

INIAIA

Homework 6.4.1.3 Prove Theorem 6.4.1.3 for the case where n = 2.

(ot (2)-(2)
Ao | An X1 v)

From the proof of Case 1 we know that

Solution. Case 2: n = 2.
The system now looks like

(Moo + Moo)Xo = Yo, where |(5/\00| < ’yl|/\00|. (6.4.1)
Since x1 = (Y1 — A10X0)/A11, Lemma 6.4.1.2 tells us that
(A0 + A10)Xo + (M1 + A11)xa = ¥, (6.4.2)

where
[0A10] < 71|A10] and |A11] < ya2|A11].

(6.4.1) and (6.4.2) can be combined into

<>\00+6>\00 0 ><X0>
Ao+ 1o | A+ A X1
(|Aool | 0) < (Y1lAool | 0)

[0l [1Al) = \ mlhol [2ldal)

SrEy
>\10 A11 '

I
N
< <
= S
N———

where

Since v1 < o

(5)\00 0
'(6)\10 5A11)‘ S maX(WQ?’Y’ﬂ*l)

Homework 6.4.1.4 Prove Theorem 6.4.1.3 for n > 1.
Solution. We will utilize a proof by induction.

e Casel: n=1.
See Homework 6.4.1.2.

e Case 2: n=2.
See Homework 6.4.1.3.

e Case 3: n > 2.

The system now looks like

() () =(n) 049

where Loy € RO®=1Dx(=1) “and the inductive hypothesis states that

(Loo + ALgg)Zo = yo where [ALgg| < max(vy2,¥n—2)|Lool-

WEEK 6. NUMERICAL STABILITY 304

Since x1 = (¥1 — l{5%0)/A11, Lemma 6.4.1.2 tells us that
(llo + (Ylg)TﬂVS'o + ()\11 + 5)\11))21 = ’L/Jl, (644)

where [d10] < vn—1]l10] and [0A11] < 42| A11].
(6.4.3) and (6.4.4) can be combined into

(Ftptantan) ()-(3)
(o + d10)™ | A1+ A1y X1 P)’

where
(|6Lool | O) < (max (Y2, Yn—2)|Loo| | 0)
afl |1l) — Yn-1ll10] | y2lAul
and hence

<6L00 0 ><max(727)(Loo 0)
&10 (;)\11 - =l llO A1 '

e By the Principle of Mathematical Induction, the result holds for all n > 1.

E-F W
Botkward error of friancglar

solve Park 2
o
YouTube: https://www.youtube.com/watch?v=GB7wj7_dhCE

A careful examination of the solution to Homework 6.4.1.2, together with the fact that ~,_1 <+, allows
us to state a slightly looser, but cleaner, result of Theorem 6.4.1.3:

Corollary 6.4.1.4 Let L € R™*"™ be a nonsingular lower triangular matriz and let & be the computed result
when executing Figure 6.4.1.1 to solve Lx = y under the computation model from Subsection 6.2.3. Then
there exists a matriz AL such that

(L+ AL)i = y where |AL| < 7, |L|.

6.4.2 Numerical stability of LU factorization

Aok iih Bl MR Ptal 1] B BT

62
Backiward errar of LU

Faz BariEal ion

YouTube: https://www.youtube.com/watch?v=fds-FelL28ok
The numerical stability of various LU factorization algorithms as well as the triangular solve algorithms
can be found in standard graduate level numerical linear algebra texts [19] [21]. Of particular interest may
be the analysis of the Crout variant of LU factorization 5.5.1.4 in

« [6] Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis, STAM
Journal on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

https://www.youtube.com/watch?v=GB7wj7_dhCE
https://www.youtube.com/watch?v=fds-FeL28ok

WEEK 6. NUMERICAL STABILITY 305

o [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses, FLAME
Working Note #33. Aachen Institute for Computational Engineering Sciences, RWTH Aachen. TR
AICES-2008-2. November 2008. (Technical report version with exercises.)

since these papers use the same notation as we use in our notes. Here is the pertinent result from those
papers:

Theorem 6.4.2.1 Backward error of Crout variant for LU factorization. Let AVG R”XV” and let
the LU factorization of A be computed via the Crout variant, yielding approximate factors L and U. Then

(A+AA) = LU with |M| <~,|L||U|.

6.4.3 Numerical stability of linear solve via LU factorization

YouTube: https://www.youtube.com/watch?v=c1NsTSCpelk

Let us now combine the results from Subsection 6.4.1 and Subsection 6.4.2 into a backward error result
for solving Ax = y via LU factorization and two triangular solves.

Theorem 6.4.3.1 Let A € R"*"and z,y € R"™ with Ax = y. Let & be the approrimate solution computed
via the following steps:

o Compute the LU factorization, yielding approximate factors LandU.
e Solve Lz = Y, yielding approximate solution Z.
e Solve Uz = Z, yielding approximate solution I.

Then oo
(A+ M) =y with [M]|< 3y, +7)ILI|U].
We refer the interested learner to the proof in the previously mentioned papers [6] [7].

Homework 6.4.3.1 The question left is how a change in a nonsingular matrix affects the accuracy of the
solution of a linear system that involves that matrix. We saw in Subsection 1.4.1 that if

Az =y and Az + &) =y + &y

then o
o] _ g1
] llyll
when || - || is a subordinate norm. But what we want to know is how a change in A affects the solution:
Az =yand (A+AA)(z+ &) =y
then ™
o) _ A4
2l = 1= w(a) IS
Prove this!
Solution.

Az =yand (A+AA)(z+ &)=y

https://www.youtube.com/watch?v=c1NsTSCpe1k

WEEK 6. NUMERICAL STABILITY 306
implies that
(A4 AA)(z + &) = Ax

or, equivalently,
AAz + Adr + AAde = 0.

We can rewrite this as

&t = A~ (— Az — M)

so that
]| = |A™H (= Adz — AAge)[| < [AIAA]l[|] + [[A~ AA] || &

This can be rewritten as

1= A IAAD & < [ATHIAA] |
and finally

o] _ _[lAZ[I[IAA]
= 1
[zl = 1= [[A-H[[[AA]

and finally
_ [|AA]|
lazf _ HANIATM g

-1 _ —1 1Al
el = 1= jaya-—ias

The last homework brings up a good question: If A is nonsingular, how small does AA need to be for it
to be nonsingular?

Theorem 6.4.3.2 Let A be nonsingular, || - || be a subordinate norm, and
AA 1
lag) _ 1
IAll w(A4)

Then A+ AA is nonsingular.
Proof. Proof by contradiction.
Assume that A is nonsingular,
lag) _ 1
1Al K(A)
and A + AA is singular. We will show this leads to a contradition.
Since A + AA is singular, there exists z # 0 such that (A + AA)z = 0. We can rewrite this as

r=—A""AAx

and hence

]l = |A™ Adz|| < AT [|AA] [l
Dividing both sides by ||z| yields

1< [lA7H[la4]
and hence m < ||AA|| and finally
L _ladg
JAJI[A=H = (Al

which is a contradiction. |

WEEK 6. NUMERICAL STABILITY 307

6.4.4 Numerical stability of linear solve via LU factorization with partial pivoting

gk i MR Bt 1A K- -

Bk g
Backward error of LW
hackarizalion with parfial

pivating

YouTube: https://www.youtube.com/watch?v=n95C8qjMBcI

The analysis of LU factorization without partial pivoting is related to that of LU factorization with
partial pivoting as follows:

We have shown that LU factorization with partial pivoting is equivalent to the LU factorization without
partial pivoting on a pre-permuted matrix: PA = LU, where P is a permutation matrix.

The permutation (exchanging of rows) doesn’t involve any floating point operations and therefore does
not generate error.

It can therefore be argued that, as a result, the error that is accumulated is equivalent with or without
partial pivoting
More slowly, what if we took the following approach to LU factorization with partial pivoting:

Compute the LU factorization with partial pivoting yielding the pivot matrix P, the unit lower trian-
gular matrix L, and the upper triangular matrix U. In exact arithmetic this would mean these matrices
are related by PA = LU.

In practice, no error exists in P (except that a wrong index of a row with which to pivot may result
from roundoff error in the intermediate results in matrix A) and approximate factors L and U are
computed.

If we now took the pivot matrix P and formed B = PA (without incurring error since rows are merely
swapped) and then computed the LU factorization of B, then the computed L and U would equal
exactly the L and U that resulted from computing the LU factorization with row pivoting with A in
floating point arithmetic. Why? Because the exact same computations are performed although possibly
with data that is temporarily in a different place in the matrix at the time of that computation.

We know that therefore L and U satisfy

B+ AB = LU, where |AB| < v,|L||U]..

We conclude that

PA+ AB = LU, where |AB| < ,|L||U]

or, equivalently,

P(A+ AA) = LU, where P|AA| < ,|L||U|

where AB = PAA and we note that P|AA| = |PAA| (taking the absolute value of a matrix and then swapping
rows yields the same matrix as when one first swaps the rows and then takes the absolute value).

https://www.youtube.com/watch?v=n95C8qjMBcI

WEEK 6. NUMERICAL STABILITY 308

6.4.5 Is LU with Partial Pivoting Stable?

YouTube: https://www.youtube.com/watch?v=TdLM41LCma4

The last unit gives a backward error result regarding LU factorization (and, by extention, LU factorization
with pivoting): o o
(A+ AA)=LU with |M| < v,|L||U]|.

The question now is: does this mean that LU factorization with partial pivoting is stable? In other words,
is AA, which we bounded with |AA| < ~,|L||U]|, always small relative to the entries of |A|? The following
exercise gives some insight:

Homework 6.4.5.1 Apply LU with partial pivoting to

Pivot only when necessary.

Solution. Notice that no pivoting is necessary. Eliminating the entries below the diagonal in the first
column yields:
1 0 1
0 1 2
0 -1 2

Eliminating the entries below the diagonal in the second column again does not require pivoting and yields:

10
0 1
0 0

=N

Homework 6.4.5.2 Generalize the insights from the last homework to a n X n matrix. What is the maximal
element growth that is observed?

Solution. Consider

1 00 01
-1 10 01
-1 -1 1 01
A= .
-1 -1 11
-1 -1 |

Notice that no pivoting is necessary when LU factorization with pivoting is performed.

https://www.youtube.com/watch?v=TdLM41LCma4

WEEK 6. NUMERICAL STABILITY 309

Eliminating the entries below the diagonal in the first column yields:

1 0 0 0 1
0 10 0 2
0 -1 1 0 2
0 -1 1 2
0 -1 -1 2

Eliminating the entries below the diagonal in the second column again does not require pivoting and yields:

1 0 0 0 1
01 0 0 2
0 01 0 4
0 0 1 4
0 0 -1 4

Continuing like this for the remaining columns, eliminating the entries below the diagonal leaves us with the
upper triangular matrix

100 --- 0 1
010 --- 0 2
001 -0 4
0 0 e 1 2n72
0 0 s 0 2nd

From these exercises we conclude that even LU factorization with partial pivoting can yield large (expo-
nential) element growth in U.
In practice, this does not seem to happen and LU factorization is considered to be stable.

6.5 Enrichments

6.5.1 Systematic derivation of backward error analyses

Throughout the course, we have pointed out that the FLAME notation facilitates the systematic derivation
of linear algebra algorithms. The papers

« [6] Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis, STAM
Journal on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

o [7] Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses, FLAME
Working Note #33. Aachen Institute for Computational Engineering Sciences, RWTH Aachen. TR
AICES-2008-2. November 2008. (Technical report version of the STAM paper, but with exercises.)

extend this to the systematic derivation of the backward error analysis of algorithms. Other publications
and texts present error analyses on a case-by-case basis (much like we do in these materials) rather than as
a systematic and comprehensive approach.

6.5.2 LU factorization with pivoting can fail in practice

While LU factorization with pivoting is considered to be a numerically stable approach to solving linear
systems, the following paper discusses cases where it may fail in practice:

WEEK 6. NUMERICAL STABILITY 310

o [18] Leslie V. Foster, Gaussian elimination with partial pivoting can fail in practice, STAM Journal on
Matrix Analysis and Applications, 15 (1994), pp. 1354-1362.

Also of interest may be the paper

o [47] Stephen J. Wright, A Collection of Problems for Which {G}aussian Elimination with Partial
Pivoting is Unstable, STAM Journal on Scientific Computing, Vol. 14, No. 1, 1993.

which discusses a number of (not necessarily practical) examples where LU factorization with pivoting
fails.

6.6 Wrap Up

6.6.1 Additional homework

Homework 6.6.1.1 In Units 6.3.1-3 we analyzed how error accumulates when computing a dot product of
x and y of size m in the order indicated by

k= ((((xovo + x1¥1) + x2¥2) + -+) + Xm—1¥m—1)

Let’s illustrate an alternative way of computing the dot product:

e For m = 2:
Kk = Xo¥o + X191

e For m =4:
k= (xo%o + x1%1) + (X2¥2 + X3¢3)

e Form=28:
k= ((xo%o + x1¢1) + (x2%2 + x3%3)) + ((xa®s + x5¢5) + (X6¥6 + X7¢7))

and so forth. Analyze how under the SCM error accumulates and state backward stability results. You may
assume that m is a power of two.

6.6.2 Summary

In our discussions, the set of floating point numbers, F', is the set of all numbers y = p x 3¢ such that
. B=2,
o ft==%.0001 -1 (p has only ¢ (binary) digits), where 6; € {0,1}),
o o = 0iff =0 (the mantissa is normalized), and

. —LS@SU

Definition 6.6.2.1 Machine epsilon (unit roundoff). The machine epsilon (unit roundoff), €pach, is

defined as the smallest positive floating point number y such that the floating point number that represents

1+ x is greater than one. O
fl(expression) = [expression]

equals the result when computing {\rm expression} using floating point computation (rounding or truncating
as every intermediate result is stored). If
K = expression

WEEK 6. NUMERICAL STABILITY 311

in exact arithmetic, then we done the associated floating point result with
K = |expression].

The Standard Computational Model (SCM) assumes that, for any two floating point numbers x and 1,
the basic arithmetic operations satisfy the equality

fi(x op ¢) = (x op ¥)(1 +¢€), |e] < €mach, and op € {+,—,*,/}.
The Alternative Computational Model (ACM) assumes for the basic arithmetic operations that

X op ¥
Alx op v) = T~
Definition 6.6.2.2 Backward stable implementation. Given the mapping f: D — R, where D C R™
is the domain and R C R™ is the range (codomain), let f : D — R be a computer implementation of this
function. We will call f a backward stable (also called "numerically stable") implementation of f on domain
D if for all 2 € D there exists a & "close’ to z such that f(z) = f(). O

|6| S €mach; and op € {+7_7*a/}-

o Conditioning is a property of the problem you are trying to solve. A problem is well-conditioned if a
small change in the input is guaranteed to only result in a small change in the output. A problem is
ill-conditioned if a small change in the input can result in a large change in the output.

e Stability is a property of an implementation. If the implementation, when executed with an input
always yields an output that can be attributed to slightly changed input, then the implementation is
backward stable.

Definition 6.6.2.3 Absolute value of vector and matrix. Given z € R"™ and A € R"™*™,

X0 laoa| oo o]
|a:| _ |X1| and |A| _ |011,1| |041,T1,—1|
il ool lomoral - lomosa]
O
Definition 6.6.2.4 Let A€ {<,<,=,>,>} and z,y € R". Then
lzlalyl HE [xil &l
with ¢ =0,...,n — 1. Similarly, given A and B € R™*"
|Ala[B] it Jaig| &),
withi=0,...,m—1and j=0,...,n— 1. O

Theorem 6.6.2.5 Let A, B € ™", If |A| < |B| then |||}, < |[Blh, || Alloc < B, and || 4]l < B

Consider
T

Xo Yo
X1 1
R = $TZ/ = = (((X0¢0 + X1¢1) + -) + Xn—QZ/)n—Q) + Xn—lwn—b
Xn—2 wn72
Xn—1 1%—1

Under the computational model given in Subsection 6.2.3 the computed result, %, satisfies

— n—1

XiWi €x 6.1{ ’
Z YL+ T+ €

i= j=i

WEEK 6. NUMERICAL STABILITY 312

where ES?) =0 and |e>(k0)|, |e>(kj)|7 \efﬁ)\ < €mach for j=1,...,n—1.

Lemma 6.6.2.6 Lete; € R, 0<i<n—1, nemach < 1, and |€;| < €mach. Then 3 6, € R such that

n—1

H(l + €i)i1 =1+0,,
=0

with |0, < néemach/ (1 — Memach) -
Here the +£1 means that on an individual basis, the term is either used in a multiplication or a division.

For example
(1+e0) (1 +er)™!

might stand for

(1+€0) or (1—|—€1) or 1
(1+€) (1+e€) (14 €)1+ e0)

(I4+€)(1+e) or

so that this lemma can accommodate an analysis that involves a mizture of the Standard and Alternative
Computational Models (SCM and ACM).

Definition 6.6.2.7 For all n > 1 and nepacn < 1, define

Yn = nemach/(l - nemach)'

simplifies to

v

R

Xolbo(l + on) + Xlwl(l + en) +oeee Xn—ld)n—l(l + 92)

T

X0 (1+6,) 0 0 0 Yo
X1 0 (1 + 0”) 0 R 0 ’lﬂl
X2 0 0 (1+9n—1) 0 1/)2
Xn—1 0 0 0 (1 + 02) ¢n—1
xo \ O 0 0 0 Yo
X1 0 Hn O O ¢1
X2 I + 0 0 07,_1 0 @[)2
Xn—1 0 0 0 e 92 wn—l

where |0;] <7, j=2,...,n.
Lemma 6.6.2.8 If n,b > 1 then v, < Yntb and Yn + Vo + Vo < Vntb-
Theorem 6.6.2.9 Let z,y € R™ and let r := 2Ty be computed in the order indicated by

(- ((xo¥o + x1v1) + x2v2) + -+) + Xn—1¥n—1-

Then
k= [xTy] =aT(I+ E("))y.

WEEK 6. NUMERICAL STABILITY 313

Corollary 6.6.2.10 Under the assumptions of Theorem 6.6.2.9 the following relations hold:
R-1B i = (x + &) Ty, where |&| < v, |7],

R-2B & =" (y + &), where |qy| < ylyl;

R-1F i = 2Ty + &, where || < v |z|T|y|.

Theorem 6.6.2.11 Error results for matriz-vector multiplication. Let A € R™*" x € R", y € R™ and

consider the assignment y := Az implemented via dot products as expressed in (6.3.4). Then these equalities
hold:

R-1B § = (A + AA)x, where |AA] < v,|A|.
R-1F § = Az + 6, where || < 7u|Allz].

Theorem 6.6.2.12 Forward error for matrix-matrix multiplication. Let C € R™*" A ¢ R™*F,

and B € RF*™ and consider the assignment C := AB implemented via matriz-vector multiplication. Then
there exists AC' € R™*"™ such that

C' = AB + AC, where |AC| < v |A||B|.
Lemma 6.6.2.13 Letn > 1, \,v € R and x,y € R™. Assume XA # 0 and consider the computation
vi=(a—zTy)/),

Then
A +ND =a— (z+ &)y, where |0\ < 2|\ and |dx| < vy |z|.

Theorem 6.6.2.14 Let L € R™*"™ be a nonsingular lower triangular matriz and let & be the computed result
when executing Figure 6.4.1.1 to solve Lx = y under the computation model from Subsection 6.2.3. Then
there exists a matriz AL such that

(L + AL)Z = y where |AL| < max(7va, vn—1)|L|.

Corollary 6.6.2.15 Let L € R™ ™ be a nonsingular lower triangular matriz and let & be the computed result
when executing Figure 6.4.1.1 to solve Ly =y under the computation model from Subsection 6.2.3. Then
there exists a matriz AL such that

(L+ AL)E = y where |AL| < ~,|L|.

Theorem 6.6.2.16 Backward error of Crout variant for LU factoriztion. Let AVG R”XV" and let
the LU factorization of A be computed via the Crout variant, yielding approximate factors L and U. Then

(A+AA) = LU with |M| <~,|L||U|.

Theorem 6.6.2.17 Let A € R"*™and z,y € R™ with Ax = y. Let & be the approximate solution computed
via the following steps:

o Compute the LU factorization, yielding approximate factors LandU.
e Solve Lz = y, yielding approzimate solution Z.
e Solve Uz = Z, yielding approximate solution .

Then s
(A+M)i =y with [M]< 3y, +77)|LIU].

Theorem 6.6.2.18 Let A and A 4+ AA be nonsingular and

Az =y and (A+ AA)(xz+ &)=y

WEEK 6. NUMERICAL STABILITY 314

then a4
ol %(A) Jar
—1_ [ANEY
ol = T w1
Theorem 6.6.2.19 Let A be nonsingular, || - || be a subordinate norm, and
jag) _ 1
1Al K(A)

Then A+ AA is nonsingular.
An important example that demonstrates how LU with partial pivoting can incur "element growth":

1 00 - 0 1

-1 10 - 0 1

-1 -1 1 -- 0 1
A=)

-1 -1 11

Week 7

Solving Sparse Linear Systems

7.1 Opening Remarks

7.1.1 Where do sparse linear systems come from?

1.1
Peigsarm eqadfions Part |

YouTube: https://www.youtube.com/watch?v=Qq_cQbVQA5Y

Many computational engineering and science applications start with some law of physics that applies to
some physical problem. This is mathematically expressed as a Partial Differential Equation (PDE). We here
will use one of the simplest of PDEs, Poisson’s equation on the domain €2 in two dimensions:

—Au = f.
In two dimensions this is alternatively expressed as

u 0%*u
with Dirichlet boundary condition 99 = 0 (meaning that u(x,y) = 0 on the boundary of domain 2). For
example, the domain may be the square 0 < z,y < 1, 09 its boundary, and the question may be a membrane
with f being some load from, for example, a sound wave.

Since this course does not require a background in the mathematics of PDEs, let’s explain the gist of all
this in layman’s terms.

o We want to find the function u that satisfies the conditions specified by (7.1.1). It is assumed that u
is appropriately differentiable.

e For simplicity, let’s assume the domain is the square with 0 < 2z < 1 and 0 < y < 1 so that the
boundary € is the boundary of this square. We assume that on the boundary the function equals zero.

o It is usually difficult to analytically determine the continuous function u that solves such a "boundary
value problem" (except for very simple examples).

315

https://www.youtube.com/watch?v=Qq_cQbVQA5Y

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 316

e To solve the problem computationally, the problem is "discretized". What this means for our example
is that a mesh is laid over the domain, values for the function u at the mesh points are approximated,
and the operator is approximated. In other words, the continuous domain is viewed as a mesh instead,
as illustrated in Figure 7.1.1.1 (Left). We will assume an N x N mesh of equally spaced points, where
the distance between two adjacent points is h = 1/(/NV 4+ 1). This means the mesh consists of points
{(xi,%j)} with x; = (i+1)h for i =0,1,...,N —1and ¢; = (j+1)h for j =0,1,...,N — 1.

* v.
(X[;Aug (X|17p3) (Xy'ﬂ;) (Xga#’g) U12 Ul3 UI4 UlS l-I-TN
(CTS AT (TN ACRTS vl v vl U] v v v
i-1 i i+1
D ECENECEAECED v vl v U l
4 5 6 7 v
i-N
hI {x‘,,wﬂ G o) oot [ASEE VA SRR VAR TN
<~

h

Figure 7.1.1.1 2D mesh.

e If you do the math, details of which can be found in Subsection 7.4.1, you find that the problem in
(7.1.1) can be approximated with a linear equation at each mesh point:

—u(Xi, Pj—1) — u(Xi—1,¥;) + 4u(xi, ¥5) — (i1, uy) — u(@i, Y1)
2

= f(xi,¥i)-

The values in this equation come from the "five point stencil" illustrated in Figure 7.1.1.1 (Right).

rAM |

Dispart eqeilions Parh 2
Ly
'

YouTube: https://www.youtube.com/watch?v=GvdBA5emnSs

o If we number the values at the grid points, u(x;,%;) in what is called the "natural ordering" as illustrated
in Figure 7.1.1.1 (Middle), then we can write all these insights, together with the boundary condition,
as

—ViiN — Vim1 + 4V — Vg1 — vipn = B2y
or, equivalently,
v = R2p; + VimN 4 Vi1 + Vig1 + VigN
4
with appropriate modifications for the case where i places the point that yielded the equation on the
bottom, left, right, and/or top of the mesh.

https://www.youtube.com/watch?v=GvdBA5emnSs

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 317

1.1
Peigsarm egadlions Part 3

YouTube: https://www.youtube.com/watch?v=VYMbSJAgaUM

All these insights can be put together into a system of linear equations:

dvg —v1 —U4 = h%¢o
—vy +4dvy - —Us = h%¢;
v Hdvy —us —Ug = h?¢y
—vg +4us —v7 = h?¢s3

—Vo +4U4 —Us —Usg

= h?¢y

where ¢; = f(xs,¥;) if (xs,%;) is the point associated with value v;. In matrix notation this becomes

—;l 411 -1 : —1 ©o W0
-1 4 -1 -1 v1 W
-1 4 -1 V2 h2¢2

U3 h?¢s3

-1 | -1 %
(o h=¢4

-1 -1 4 -1 Vs h2¢5

—1 -1 4 -1 Ve h2¢6

-1 -1 4 (Vrd h2¢7

1 4 g h*¢s

This demonstrates how solving the discretized Poisson’s equation boils down to the solution of a linear
system Au = h?f, where A has a distinct sparsity pattern (pattern of nonzeroes).

Homework 7.1.1.1 The observations in this unit suggest the following way of solving (7.1.1):
o Discretize the domain 0 < x,% < 1 by creating an (N + 2) x (N + 2) mesh of points.

e An (N +2) X (N +2) array U holds the values u(x;, ;) plus the boundary around it.

o Create an (N +2) x (N +2) array F' that holds the values f(x;, ;) (plus, for convenience, extra values
that correspond to the boundary).

e Set all values in U to zero. This initializes the last rows and columns to zero, which captures the
boundary condition, and initializes the rest of the values at the mesh points to zero.

o Repeatedly update all interior points with the formula

U(i,j) =

(R* F(i,j) + U(,j—1) + U(i—-1,j) + U(i+1j) + U@Gj+1))/M4
—— —_——— ———— ——— —_———
J(xi,5) u(Xi, Vj-1) u(Xi-1,5) u(Xiv1,¥5) w(Xis Vj+1)

until the values converge.

e Bingo! You have written your first iterative solver for a sparse linear system.

https://www.youtube.com/watch?v=VYMbSJAqaUM

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 318

o Test your solver with the problem where f(x, %) = (a + 8)7? sin(amy) sin(Bmr).

 Hint: if x and y are arrays with the vectors « and y (with entries x; and v;), then mesh(x, y, U)
plots the values in U.

Hint. An outline for a matlab script can be found in Assignments/Week07/matlab/Poisson_ Jacobi_iteration.m.When
you execute the script, in the COMMAND WINDOW enter "RETURN" to advance to the next iteration.

Solution. Assignments/Week07/answers/Poisson_ Jacobi_ iteration.m.When you execute the script, in the
COMMAND WINDOW enter "RETURN" to advance to the next iteration.

Remark 7.1.1.2 In Homework 7.2.1.4 we store the vectors v and f as they appear in Figure 7.1.1.1 as 2D
arrays. This captures the fact that a 2d array of numbers isn’t necessarily a matrix. In this case, it is a
vector that is stored as a 2D array because it better captures how the values to be computed relate to the
physical problem from which they arise.

rAM |

Paisgans egaiticns Part 3
I
|

YouTube: https://www.youtube.com/watch?v=j-ELcgqx3bRo

Remark 7.1.1.3 The point of this launch is that many problems that arise in computational science require
the solution to a system of linear equations Az = b where A is a (very) sparse matrix. Often, the matrix
does not even need to be explicitly formed and stored.

Remark 7.1.1.4 Wilkinson defined a sparse matrix as any matrix with enough zeros that it pays to take
advantage of them.

7.1.2 Overview
e 7.1 Opening
o 7.1.1 Where do sparse linear systems come from?

o 7.1.2 Overview

o 7.1.3 What you will learn
e 7.2 Direct Solution

o 7.2.1 Banded matrices
o 7.2.2 Nested dissection
o 7.2.3 Observations

o 7.3 Iterative Solution

o 7.3.1 Jacobi iteration

o 7.3.2 Gauss-Seidel iteration

o 7.3.3 Convergence of splitting methods
o 7.3.4 Successive Over-Relaxation (SOR)

e 7.4 Enrichments

o 7.4.1 Details!

Assignments/Week07/matlab/Poisson_Jacobi_iteration.m
Assignments/Week07/answers/Poisson_Jacobi_iteration.m
https://www.youtube.com/watch?v=j-ELcqx3bRo

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 319

o 7.4.2 Parallelism in splitting methods
o 7.4.3 Dr. SOR

e 7.5 Wrap Up

o 7.5.1 Additional homework
o 7.5.2 Summary

7.1.3 What you will learn

This week is all about solving nonsingular linear systems with matrices that are sparse (have enough zero
entries that it is worthwhile to exploit them).
Upon completion of this week, you should be able to

« Exploit sparsity when computing the Cholesky factorization and related triangular solves of a banded
matrix.

e Derive the cost for a Cholesky factorization and related triangular solves of a banded matrix.

o Utilize nested dissection to reduce fill-in when computing the Cholesky factorization and related tri-
angular solves of a sparse matrix.

e Connect sparsity patterns in a matrix to the graph that describes that sparsity pattern.

¢ Relate computations over discretized domains to the Jacobi, Gauss-Seidel, Successive Over-Relaxation
(SOR) and Symmetric Successive Over-Relaxation (SSOR) iterations.

o Formulate the Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR) and Symmetric Successive
Over-Relaxation (SSOR) iterations as splitting methods.

e Analyze the convergence of splitting methods.

7.2 Direct Solution

7.2.1 Banded matrices

L B T TT TSRS SRR SR R

r-H
Chalesky Factorizalion of a
tridiaganal materixy

YouTube: https://www.youtube.com/watch?v=UX6Z6q1_prs

It is tempting to simply use a dense linear solver to compute the solution to Ax = b via, for example,
LU or Cholesky factorization, even when A is sparse. This would require O(n?) operations, where n equals
the size of matrix A. What we see in this unit is that we can take advantage of a "banded" structure in the
matrix to greatly reduce the computational cost.

Homework 7.2.1.1 The 1D equivalent of the example from Subsection 7.1.1 is given by the tridiagonal

https://www.youtube.com/watch?v=UX6Z6q1_prs

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS

linear system
2 -1

-1 2

Prove that this linear system is nonsingular.

320

(7.2.1)

Hint. Consider Ax = 0. We need to prove that = 0. If you instead consider the equivalent problem

1 0 0 Y1 0
-1 2 -1 0 0 Yo 0
0 -1 2 -1 - 0 0 Y1 0
0 -1 2 -1 0 Yn2 0
0 -1 2 —1 Yn_1 0
0 0 1 n 0

that introduces two extra variables x_; = 0 and x,, = 0, the problem for all y;, 0 < i < n, becomes

—Xi—1 +2Xx; — Xi+1 = 0.

or, equivalently,

_ Xi—1 Xt

1 2 .
Reason through what would happen if any x; is not equal to zero.

Solution. Building on the hint: Let’s say that x; # 0 while x_1,..

o XimitXipr 1

i B) = §Xi+1
and hence
Xi+1 = 2xi > 0.
Next,
i + Xit2
Xit1 = % = 2X;
and hence

Xite = 4x: —Xi = 3x; > 0.

., Xi—1 are. Then

Continuing this argument, the solution to the recurrence relation is x, = (n — ¢ 4+ 1)x; and you find that

Xn > 0 which is a contradiction.

This course covers topics in a "circular" way, where sometimes we introduce and use results that we won’t
formally cover until later in the course. Here is one such situation. In a later week you will prove these

relevant results involving eigenvalues:

e A symmetric matrix is symmetric positive definite (SPD) if and only if its eigenvalues are positive.

e The Gershgorin Disk Theorem tells us that the matrix in (7.2.1) has nonnegative eigenvalues.

e A matrix is singular if and only if it has zero as an eigenvalue.

These insights, together with Homework 7.2.1.1, tell us that the matrix in (7.2.1) is SPD.

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 321

Homework 7.2.1.2 Compute the Cholesky factor of

4 -2 0 0
-2 5 =2 0

A= 0 —2 10 6

0 0 6 5

Answer.

2 0 0 O

-1 2 0 0

L= 0 -1 3 0

0 0 2 1

Homework 7.2.1.3 Let A € R™*" be tridiagonal and SPD so that

Qo0 Q10
Q1,0 Q1,1 21
A= . (7.2.2)

Ap—2n—-3 Qp_2n-2 Opn_1n-2
Qn_1,n—2 QCQn_1n-1

e Propose a Cholesky factorization algorithm that exploits the structure of this matrix.
o What is the cost? (Count square roots, divides, multiplies, and subtractions.)

o What would have been the (approximate) cost if we had not taken advantage of the tridiagonal struc-
ture?

Solution.

o If you play with a few smaller examples, you can conjecture that the Cholesky factor of (7.2.2) is a
bidiagonal matrix (the main diagonal plus the first subdiagonal). Thus, A = LL translates to

Qo0 Q1,0
Q10 01,1 Q21

Ap-—2n-3 OQp_2np-2 Op_1n-2
Ap—1n—2 Qp—_1n—1

o0 Ao,0 A10
Ao A A1 A2
>\n72,n73 A7172,n72 >\n72,n72)\nfl,n72
)\nfl,nf2)\nfl,nfl)\nfl,nfl
A0,010,0 A0,0A1,0
A1,020,0 A10r0,1 FALIALL AiAg
_ A21 11
- b
*k)\n—Q,n—Q)\n—l,n—Q
)\nfl,n72)\n72,n72)\nfl,n72)\n71,n72

+ Anfl,nfl)\nfl,nfl

where xx = A,_3 n—2An—3 n—2 + An—2n—2An_2 n—2. With this insight, the algorithm that overwrites A

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 322

with its Cholesky factor is given by

fort=0,...,n—2

Qg = Qg

Qg1 = i1/

Qi1 i41 2= O 141 — Q1,416
endfor

Ap—1n—1 = /On—-1n-1

e A cost analysis shows that this requires n square roots, n — 1 divides, n — 1 multiplies, and n — 1
subtracts.

o The cost, had we not taken advantage of the special structure, would have been (approximately) %n?’.

Homework 7.2.1.4 Propose an algorithm for overwriting y with the solution to Az = y for the SPD matrix
in Homework 7.2.1.3.

Solution.

o Use the algorithm from Homework 7.2.1.3 to overwrite A with its Cholesky factor.
e Since A= LLT, we need to solve Lz = y and then L7z = 2.

o Overwriting y with the solution of Lz = y (forward substitution) is accomplished by the following
algorithm (here L had overwritten A):

fori=0,...,n—2

Vi =0y
1/)i+1 = 1/%4—1 - Oéi-s-l,ﬂ/%
endfor

1/Jn71 = 1/Jn71/04n71,n71

o Overwriting y with the solution of Lz = z (where z has overwritten y (back substitution) is
accomplished by the following algorithm (here L had overwritten A):

forn—-1=0,...,1
i =i/
Vi1 =P — Oéi,z'—llffi
endfor
o = o/ 0,0
The last exercises illustrate how special structure (in terms of patterns of zeroes and nonzeroes) can often
be exploited to reduce the cost of factoring a matrix and solving a linear system.

T2.1
Chobisky Factarization of a
barcied malrix

YouTube: https://www.youtube.com/watch?v=kugJ2N1;jC2U

The bandwidth of a matrix is defined as the smallest integer b such that all elements on the jth super-
diagonal and subdiagonal of the matrix equal zero if j > b.

e A diagonal matrix has bandwidth 1.
o A tridiagonal matrix has bandwith 2.

https://www.youtube.com/watch?v=kugJ2NljC2U

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 323

e And so forth.

Let’s see how to take advantage of the zeroes in a matrix with bandwidth b, focusing on SPD matrices.

Definition 7.2.1.1 The half-band width of a symmetric matrix equals the number of subdiagonals beyond
which all the matrix contains only zeroes. For example, a diagonal matrix has half-band width of zero and
a tridiagonal matrix has a half-band width of one. O

Homework 7.2.1.5 Assume the SPD matrix A € R™*™ has a bandwidth of b. Propose a modification of
the right-looking Cholesky factorization from Figure 5.4.3.1

A = Chol-right-looking(A)
Arr | Arr
A—
< Apr | ABr >
ATL is0Ox0
while n(Ary) < n(A)

Ago | a1 Ao
<ATL Arpg) T o ol

a a1 a12
A A 10
BL BR Az | a2 Ago

Q11 = 4/Q11
ag1 = ag/an
Ago := Agg — as1ad; (updating only the lower triangular part)
Aoo ao1 | Aoz
A A
< TL TR) - oy o |l

ABL Apr Az an Ago

endwhile

that takes advantage of the zeroes in the matrix. (You will want to draw yourself a picture.) What is its
approximate cost in flops (when m is large)?

Solution. See the below video.

ek ik Wi oSl

721
Cob of banded Choksky
Faebarizabion

YouTube: https://www.youtube.com/watch?v=AoldARtix5Q

Ponder This 7.2.1.6 Propose a modification of the FLAME notation that allows one to elegantly express
the algorithm you proposed for Homework 7.2.1.5

Ponder This 7.2.1.7 Another way of looking at an SPD matrix A € R"*" with bandwidth & is to block it

T
Ao Alp

T
Ao A Az

A =
An—2,n—3 An—Z,n—Q AT

n—1n—2
Anfl,n72 Anfl,nfl

where, A; ; € R®*® and for simplicity we assume that n is a multiple of b. Propose an algorithm for computing
its Cholesky factorization that exploits this block structure. What special structure do matrices A; 1 ; have?
Can you take advantage of this structure?

Analyze the cost of your proposed algorithm.

https://www.youtube.com/watch?v=AoldARtix5Q

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 324

7.2.2 Nested dissection

7.2
Meshed digsection Part |

YouTube: https://www.youtube.com/watch?v=r1P4Ze7Yqe@

The purpose of the game is to limit fill-in, which happens when zeroes turn into nonzeroes. With an
example that would result from, for example, Poisson’s equation, we will illustrate the basic techniques,
which are known as "nested dissection."

If you consider the mesh that results from the discretization of, for example, a square domain, the
numbering of the mesh points does not need to be according to the "natural ordering" we chose to use before.
As we number the mesh points, we reorder (permute) both the columns of the matrix (which correspond
to the elements v; to be computed) and the equations that tell one how v; is computed from its neighbors.
If we choose a separator, the points highlighted in red in Figure 7.2.2.1 (Top-Left), and order the mesh
points to its left first, then the ones to its right, and finally the points in the separator, we create a pattern
of zeroes, as illustrated in Figure 7.2.2.1 (Top-Right).

01 9 1011 19 2021 ... 24
0
1
vl vl vl vl v
8 of Y24 |Yis| Y9 0
————————— -
UG U? U23 U16 v]7 9
* 10
Uy Usl Vs |Vid Ui 1
¢ 0
UZ U3 UZ] UlZ Ul3
vl vl vl vl v 19
0 1 20 10 11
20
21
24
Figure 7.2.2.1 An illustration of nested dissection.
Homework 7.2.2.1 Consider the SPD matrix
Ao | 0 | A,
A= 0 | Ay | AL
Aoy | A1 | A2

e What special structure does the Cholesky factor of this matrix have?

e How can the different parts of the Cholesky factor be computed in a way that takes advantage of the
zero blocks?

https://www.youtube.com/watch?v=r1P4Ze7Yqe0

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS

o How do you take advantage of the zero pattern when solving with the Cholesky factors?

Solution.

e The Cholesky factor of this matrix has the structure

Loo 0 0
L= 0 | L1 0
Ly | Loy | Lo
e We notice that A = LLT means that
A | 0 | AL Loo| 0 | 0 Lo | 0] 0 \"
0 [An [AL 0 (L1 0 0 [Zu | 0
Asg | Aoy | A Log | Loy | Lo Log | Loy | Lo
LOOL%—‘O 0 *
0 LllL,{l *
Loo LTy | Lot LT, | Loo L%y + Lot LT, + Lao LT,

where the xs indicate "symmetric parts" that don’t play a role. We deduce that the following steps will
yield the Cholesky factor:

o Compute the Cholesky factor of Agp:
Ago = Loo Ly,
overwriting Agg with the result.
o Compute the Cholesky factor of Aj;:
Ay = Ly L1},

overwriting A;; with the result.

o Solve
XL, = Ay

for X, overwriting Aoy with the result. (This is a triangular solve with multiple right-hand sides
in disguise.)

o Solve
XLT = An

for X, overwriting Aoy with the result. (This is a triangular solve with multiple right-hand sides
in disguise.)

o Update the lower triangular part of Ags with
Agg — LogLdy — Loy L.
o Compute the Cholesky factor of Ass:
Agg = Ly L3,
overwriting Ass with the result.

« If we now want to solve Az = y, we can instead first solve Lz = y and then LTz = z. Consider

LOO 0 0 20 Yo
0 | L1 0 21 = hn
Log | Loy | Log z2 Y2

This can be solved via the steps

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS

o Solve Lggzo = yo-
o Solve Li1z1 = 1.

o Solve LQQZQ = Y2 — LQQZO — L2121.

Similarly,
Lio | 0 | L3
0 | LT | Ly
0 0 [L%

can be solved via the steps
T . _
o Solve Lsxa = 2o.
o Solve LT xy = 21 — LT z5.

o Solve LI xg = 20 — LIjzo.

722

Mashed diggection Part 2
o
B

YouTube: https://www.youtube.com/watch?v=mwXOwPRdw7U

Each of the three subdomains that were created in Figure 7.2.2.1 can themselves be reordered by identi-
fying separators. In Figure 7.2.2.2 we illustrate this only for the left and right subdomains. This creates a
recursive structure in the matrix. Hence, the name nested dissection for this approach.

Figure 7.2.2.2 A second level of nested dissection.

https://www.youtube.com/watch?v=mwX0wPRdw7U

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 327

7.2.3 Observations

Through an example, we have illustrated the following insights regarding the direct solution of sparse linear
systems:

e There is a one-to-one correspondence between links in the graph that shows how mesh points are
influenced by other mesh points (connectivity) and nonzeroes in the matrix. If the graph is undirected,
then the sparsity in the matrix is symmetric (provided the unknowns are ordered in the same order as
the equations that relate the unknowns to their neighbors). If the graph is directed, then the matrix
has a nonsymmetric sparsity pattern.

e Renumbering the mesh points is equivalent to correspondingly permuting the columns of the matrix
and the solution vector. Reordering the corresponding equations is equivalent to permuting the rows
of the matrix.

These obervations relate the problem of reducing fill-in to the problem of partitioning the graph by identifying
a separator. The smaller the number of mesh points in the separator (the interface), the smaller the submatrix
that corresponds to it and the less fill-in will occur related to this dissection.

Remark 7.2.3.1 Importantly: one can start with a mesh and manipulate it into a matrix or one can start
with a matrix and have its sparsity pattern prescribe the graph.

7.3 Iterative Solution

7.3.1 Jacobi iteration

Akt ik Wi e SEtale] K- by

.1
Jacokd Theration Part |

YouTube: https://www.youtube.com/watch?v=0Mbxk1ihIFo
Let’s review what we saw in Subsection 7.1.1. The linear system Au = f

dvg —vy —Uy = h%¢o
—vy +4vp o —Us = h*¢,
—vp +4vy vz —Ug = h%¢,

—Ug +4U3 —U7 = h2¢3

—vg +dvy —vs —Ug = h2¢4

https://www.youtube.com/watch?v=OMbxk1ihIFo

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 328

which can be written in matrix form as

4 -1 -1

-1 4 -1 ~1 vo h2 o
-1 4 -1 ~1 U1 h2é1
1 4 -1 (%) h2¢2
U3 h?¢s

-1 4 -1 -1
Uy h2p4
-1 -1 4 -1 vs | = | Rh3¢s
-1 -1 4 -1 Vg h2¢)6
-1 -1 4 (¥%rd h2¢)7
_1 4 Us h?ps

was solved by repeatedly updating

o — h2¢i +vin + Vi1 + Vig1 + VigN
;=
4

modified appropriately for points adjacent to the boundary. Let’s label the value of v; during the kth
(k)

iteration with v;”’ and state the algorithm more explicitly as

for £k =0,..., convergence
fort=0,..., NxN—-1
ot = (h2; + 0y + o) + o) +uly) /4
endfor
endfor

again, modified appropriately for points adjacent to the boundary. The superscripts are there to emphasize
the iteration during which a value is updated. In practice, only the values for iteration k£ and k + 1 need to
be stored. We can also capture the algorithm with a vector and matrix as

4Uék+1) = ng) +U£k> +h%gg
g = +og?) +og?) +h2¢,
gl = e +of +og) +h2¢s
4U§k+1) = Uék) +U;k) +h2¢3

4’Uik+1) = U(()k) +’Uék> —’Uék) +h2¢4

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS

which can be written in matrix form as

k+1
4 o
) U§k+1)
k+1
i
4 U3
4 U4k+1
4 Uék+1)
4 (k+1)
4 Y
. U§k+1)
k+1
Ug
0 1 1 o)
1) h=o
U1 h2¢
0 1 (x))
1 U%k) h ¢2
Us h2¢s
vikj h=¢4
1 o) h26ps
1 0 o) h2¢s
6 2
1 (%) h?¢q
L h2¢s
0 o _

Tl

TJacehi Theratin

YouTube: https://www.youtube.com/watch?v=7rDvET9_nek
How can we capture this more generally?

o We wish to solve Az = y.

329

(7.3.1)

We write A as the difference of its diagonal, M = D, and the negative of its off-diagonal part, N = D—A

so that
A=D-(D—A)=M - N.

In our example, M = 4] and N = 41 — A.

« We then notice that

Ax =y
can be rewritten as
(M—-N)z=y
or, equivalently,
Mx = Nz +y.

If you think about it carefully, this captures (7.3.1) for our example. Finally,
r=MYNz+y).

https://www.youtube.com/watch?v=7rDvET9_nek

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 330

o If we now let 2(®) be the values of our vector z in the current step. Then the values after all elements
have been updated are given by the vector

D = MY (Nz®) 4y,

« All we now need is an initial guess for the solution, z(°), and we are ready to iteratively solve the linear
system by computing V), 2 etc., until we (approximately) reach a fixed point where g+ =
M=YNz®) 4 y) ~ x(*),

The described method, where M equals the diagonal of A and N = D — A, is known as the Jacobi
iteration.

Remark 7.3.1.1 The important observation is that the computation involves a matrix-vector multiplication
with a sparse matrix, N = D — A, and a solve with a diagonal matrix, M = D.

7.3.2 Gauss-Seidel iteration

T3z

Ganski-Treiche] [eralion

YouTube: https://www.youtube.com/watch?v=ufMUhO1vDew
A variation on the Jacobi iteration is the Gauss-Seidel iteration. It recognizes that since values at points
are updated in some order, if a neighboring value has already been updated earlier in the current step, then
you might as well use that updated value. For our example from Subsection 7.1.1 this is captured by the
algorithm
for £ =0,..., convergence
fort=0,..., NxN -1
o) L (12, 41D 4D 4 o) 0

— i— +1
endfor
endfor
modified appropriately for points adjacent to the boundary. This algorithm exploits the fact that vgﬁjrvl) and

U&J{D have already been computed by the time UEkH) is updated. Once again, the superscripts are there

to emphasize the iteration during which a value is updated. In practice, the superscripts can be dropped
because of the order in which the computation happens.

Homework 7.3.2.1 Modify the code for Homework 7.1.1.1 (what you now know as the Jacobi iteration)
to implement the Gauss-Seidel iteration.

Solution. Assignments/Week07/answers/Poisson_ GS__iteration.m.

When you execute the script, in the COMMAND WINDOW enter "RETURN" to advance to the next
iteration.

You may also want to observe the Jacobi and Gauss-Seidel iterations in action side-by-side in Assign-
ments/Week07 /answers /Poisson__Jacobi_vs_ GS__iteration.m.

https://www.youtube.com/watch?v=ufMUhO1vDew
Assignments/Week07/answers/Poisson_GS_iteration.m
Assignments/Week07/answers/Poisson_Jacobi_vs_GS_iteration.m
Assignments/Week07/answers/Poisson_Jacobi_vs_GS_iteration.m

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS

331

Homework 7.3.2.2 Here we repeat (7.3.1) for Jacobi’s iteration applied to the example in Subsection 7.1.1:

k+1
4 o
A U§k+1)
k+1
4
4 U3
! U?ii)
' P
4 Ye
. U;k+1)
EF1
Ug
(k)
0 1 Ch) h2¢
10 1 1 ok 50
10 1 1 olP Z2¢1
10 1 0 N
]] 1 S B KR
v4k h=¢4
= 1 0 1 vék) | h2¢s
1 1 01 o) h?¢g
1 10 @ h2¢
U&k) 7
vg .
Modify this to reflect the Gauss-Seidel iteration.
Solution.
(k+1)
4 Yo
(k1)
-1 4 U%k+1)
-4 U%k+1)
-1 4 Vs
1 4 U4k+1
-1 -1 4 U£k+1)
-1 -1 4 (k1)
-1 1 4 Ye
LD
-1 4 7kr+1
Us
0 1 1 U(()k) 26
0 1 1 vk 50
0 1 1 () e
Yo h2 o
0 1 (k) 9
0 1 1 U3 h ¢3
U4k h2(;54
= 0 1 Uék) T | h2¢s
01 L h?pg
0 U?k) hz¢7
7
o R T

(7.3.2)

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 332

This homework suggests the following:

e We wish to solve Ax = y.
We write symmetric A as
A= (D-L) — (L"),
——— —~—
M N

where —L equals the strictly lower triangular part of A and D is its diagonal.

« We then notice that
Ax =y

can be rewritten as
(D-L-LMz=y

or, equivalently,
(D—L)yx=L"z+y.

If you think about it carefully, this captures (7.3.2) for our example. Finally,
= (D-L) YLz +v).

o If we now let z(*) be the values of our vector z in the current step. Then the values after all elements
have been updated are given by the vector

2D = (D — L) Y (L™ +).

Homework 7.3.2.3 When the Gauss-Seidel iteration is used to solve Ax = y, where A € R"*" it computes
entries of z(**1) in the forward order X(()kH), X(1k+1), ... If A=D — L — L7, this is captured by

(D — L)zt = L7204y, (7.3.3)

Modify (7.3.3) to yield a "reverse' Gauss-Seidel method that computes the entries of vector 2 1) in the
(k+1) (k+1)

n—1 1 Xn—2 s++-

order y

Solution. The reverse order is given by bekjll), ngk_gl), This corresponds to the splitting M = D — LT

and N = L so that
(D — LTz) = LgF) 4y,

Homework 7.3.2.4 A "symmetric" Gauss-Seidel iteration to solve symmetric Az = y, where A € R"*"™,
alternates between computing entries in forward and reverse order. In other words, if A = Mp — N for the
forward Gauss-Seidel method and A = Mr — Ny for the reverse Gauss-Seidel method, then

Mpz®*+3) = Npz® 4y
MRx(k“) = NR:c(’”%) +vy
constitutes one iteration of this symmetric Gauss-Seidel iteration. Determine M and N such that
Mz®*+D) = Nz 4y

equals one iteration of the symmetric Gauss-Seidel iteration.
(You may want to follow the hint...)

Hint.
o From this unit and the last homework, we know that Mz = (D — L), Np = LT, Mg = (D — LT), and
Np = L.

e Show that
(D — LTz®) = (D — L)'LT2™ + (I + L(D — L) Y)y.

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 333

e Show that I + L(D — L)~ =D(D — L)%
e Use these insights to determine M and N.

Solution.

o From this unit and the last homework, we know that Mz = (D — L), Np = LT, Mr = (D — LT), and
Nr=1L.

e Show that
(D —LT)a® Y = (D — L)' LT2™ + (I + L(D — L))y.

We show this by substituting Mg and Ng:
(D — LT)x(k+1) — Lzk+3) +y
and then substituting in for x(k“‘%), Mp and Np:
(D — LT)a® D = L((D — L)' LT2® + y) + y.
Multiplying out the right-hand side and factoring out y yields the desired result.

e Show that I + L(D — L)™' =D(D — L)%
We show this by noting that

I+ L(D—-1L)"!

(D:—L)(D—L)*lJrL(D—L)*l =
(D-L+L)Y(D-L)"' =
D(D — L)1,

e Use these insights to determine M and N.
We now notice that
(D —L)2® Y = (D — L) 'LT2™ + (I + L(D - L) Yy
can be rewritten as (Someone check this... My brain hurts.)
(D — LT)2%) = (D — L)'L"2™ + D(D - L)y

(D—-L)DY(D—-L") 2% = (D-L)D'L(D - L) 'LT ™) 1y
M N

7.3.3 Convergence of splitting methods

i3
Caroargance of splifling
mathads Park |

YouTube: https://www.youtube.com/watch?v=L6PZhc-G7cE

https://www.youtube.com/watch?v=L6PZhc-G7cE

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 334

The Jacobi and Gauss-Seidel iterations can be generalized as follows. Split matrix A = M — N where M
is nonsingular. Now,
(M =N)z=y
is equivalent to
Mx=Nx+y
and

r=MNz+y).

This is an example of a fixed-point equation: Plug x into M ~!(Nx + y) and the result is again x. The
iteration is then created by viewing the vector on the left as the next approximation to the solution given
the current approximation x on the right:

) = MY (Nz®) +y).

Let A= (D—L—-U) where —L, D, and —U are the strictly lower triangular, diagonal, and strictly upper
triangular parts of A.

o For the Jacobi iteration, M = D and N = (L + U).
o For the Gauss-Seidel iteration, M = (D — L) and N = U.

In practice, M is not inverted. Instead, the iteration is implemented as
Ma*+) = Nz®) 4y

with which we emphasize that we solve with M rather than inverting it.

Homework 7.3.3.1 Why are the choices of M and N used by the Jacobi iteration and Gauss-Seidel iteration
convenient?

Solution. Both methods have two advantages:

« The multiplication Nu(*) can exploit sparsity in the original matrix A.

o Solving with M is relatively cheap. In the case of the Jacobi iteration (M = D) it is trivial. In the case
of the Gauss-Seidel iteration (M = (D — L)), the lower triangular system inherits the sparsity pattern
of the corresponding part of A.

Homework 7.3.3.2 Let A = M — N be a splitting of matrix A. Let *+1) = M~1(Nz®) 4 4). Show that

2*HD = 2) 4 A1) where (B = y — Az,

Solution.
x®) 4 p=1p (k)

z®) 4 M~y — Az(R)

z®) £ M~y — (M — N)z*))

z®) Mty — M~ (M — N)x*)

z®) L Mty — (I — M~'N)z®)

M=YNz®) 4 y)

This last exercise provides an important link between iterative refinement, discussed in Subsection 5.3.7,
and splitting methods. Let us revisit this, using the notation from this section.

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 335

If Az =y and 2 is a (current) approximation to z, then
P — gy~ A

is the (current) residual. If we solve

Ase®) = (k)
or, equivalently, compute

dr = A1)
then

z=2® + &

is the solution to Az = y. Now, if we merely compute an approximation,
&® a A=)

then
2FHD = (k) 4 g (k)

is merely a (hopefully better) approximation to . If M ~ A then
& = M) & A7)

So, the better M approximates A, the faster we can expect z(*) to converge to .

With this in mind, we notice that if A= D — L — U, where D, —L, and —U equals its diagonal, strictly
lower triangular, and strictly upper triangular part, and we split A = M — N, then M = D — L is a better
approximation to matrix A than is M = D.

Ponder This 7.3.3.3 Given these insights, why might the symmetric Gauss-Seidel method discussed in
Homework 7.3.2.4 have benefits over the regular Gauss-Seidel method?

Loosely speaking, a sequence of numbers, x(*) is said to converge to the number Y if Ix*®) — x| eventually
becomes arbitrarily close to zero. This is written as

lim X(k) =X.

k— o0
A sequence of vectors, z(*), converges to the vector z if for some norm || - ||

lim [z — z|| = 0.
k— oo

Because of the equivalence of norms, if the sequence converges in one norm, it converges in all norms. In
particular, it means it converges in the co-norm, which means that max; | ng) — Xi| converges to zero, and
hence for all entries | XZ(-k) — xi| eventually becomes arbitrarily small. Finally, a sequence of matrices, A,
converges to the matrix A if for some norm || - ||
lim [|[A® — A].
k—o0
Again, if it converges for one norm, it converges for all norms and the individual elements of A*) converge
to the corresponding elements of A.

Let’s now look at the convergence of splitting methods. If = solves Az = y and z(®) is the sequence of
vectors generated starting with (%), then

Mx Nx+vy

so that
M(z* Y —) = N(2® — z)

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 336

or, equivalently,
2D — g = (M7IN) (2™ —).

This, in turn, means that
x(k-‘rl) —r= (M—lN)k-‘rl (x(O) _ :L')

If || - || is a vector norm and its induced matrix norm, then
lz® T —]| = (M N —)| < [MTIN]F[© — a.

Hence, if |[M~'N| < 1 in that norm, then lim; o, |[M~'N||* = 0 and hence 2*) converges to 2. We
summarize this in the following theorem:

Theorem 7.3.3.1 Let A € R"™ ™ be nonsingular and x,y € R™ so that Ax = y. Let A= M — N be a
splitting of A, 2% be given (an initial guess), and 21 = MY (N2®) +4). If IM~'N| < 1 for some
matriz norm induced by the || - || vector norm, then z*) will converge to the solution x.

Because of the equivalence of matrix norms, if we can find any matrix norm |||-||| such that ||| M ~IN||| < 1,
the sequence of vectors converges.

Ponder This 7.3.3.4 Contemplate the finer points of the last argument about the convergence of (M ~!N)?

THEFEFPTSePr gy TEO) S STy R S

33
Commrgance of splitfing
mathads Parl 2

YouTube: https://www.youtube.com/watch?v=uv8cMeR9u_U

Understanding the following observation will have to wait until after we cover eigenvalues and eigenvec-
tors, later in the course. For splitting methods, it is the spectral radius of a matrix (the magnitude of the
eigenvalue with largest magnitude), p(B), that often gives us insight into whether the method converges.
This, once again, requires us to use a result from a future week in this course: It can be shown that for all
B € R™*™ and € > 0 there exists a norm ||| - ||| 5, such that |||B|||g.e < p(B) + ¢. What this means is that
if we can show that p(M~1N) < 1, then the splitting method converges for the given matrix A.

Homework 7.3.3.5 Given nonsingular A € R™*", what splitting A = M — N will give the fastest convergence
to the solution of Az = y?

Solution. M = A and N = 0. Then, regardless of the initial vector (),
e = MY Nz®) = A7 (02 +y) = A1y

Thus, convergence occurs after a single iteration.

Carmrgence of splifting
mathads Part 3

YouTube: https://www.youtube.com/watch?v=1Klsk@qdCu@

https://www.youtube.com/watch?v=uv8cMeR9u_U
https://www.youtube.com/watch?v=lKlsk0qdCu0

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 337

7.3.4 Successive Over-Relaxation (SOR)

YouTube: https://www.youtube.com/watch?v=t9B19z7HPTQ

Recall that if A = D — L — U where —L, D, and —U are the strictly lower triangular, diagonal, and
strictly upper triangular parts of A, then the Gauss-Seidel iteration for solving Az = y can be expressed as

z*+) = (D — L)Y (Ux + y) or, equivalently, ngﬂ) solves
i—1 n—1
k k k
Zam‘)é 4 Oli,ixl(' = Z ai,jxg-)+ 4.
=0 j=it1
where any term involving a zero is skipped. We label this XEkH) with XiGS (1 in our subsequent discussion.

What if we pick our next value a bit further:

k+1 GS (k+1 k
I () P

where w > 1. This is known as over-relaxation. Then

as(k+1) _ L k1) _ 1—w (k)

3 w 1 w 1
and
- Lokt 1=w SN
k1
S an [T - L0 - 3 v
=0 j=it+1
or, equivalently,
i—1 1 1 w n—1
k+1) k+1 - k k)
Zai,ng‘ + ;ai,ixz(»)= T%JXE = Z i + .
7=0 Jj=t+1

A= <1D—L) _ (H"D+U>,
w w

M N

This is equivalent to splitting

an iteration known as successive over-relaxation (SOR). The idea now is that the relaxation parameter w
can often be chosen to improve (reduce) the spectral radius of M ~'N, thus accelerating convergence.

We continue with A = D — L — U, where —L, D, and —U are the strictly lower triangular, diagonal, and
strictly upper triangular parts of A. Building on SOR where

A= <1D—L> — <1_WD+U>7
w w

Mp Np

where the F' stands for "Forward." Now, an alternative would be to compute the elements of x in reverse
order, using the latest available values. This is equivalent to splitting

A= <1DU> - <1“’D+L>,
w w

Mg Ngr

https://www.youtube.com/watch?v=t9Bl9z7HPTQ

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 338

where the R stands for "Reverse." The symmetric successive over-relaxation (SSOR) iteration combines the
"forward" SOR with a "reverse' SOR, much like the symmetric Gauss-Seidel does:

x(k+%) _ M;l(NFx(k)+y)
o+ MEI(NRx(k+%)+y),

This can be expressed as splitting A = M — N. The details are a bit messy, and we will skip them.

7.4 Enrichments

7.4.1 Details!

To solve the problem computationally the problem is again discretized. Relating back to the problem of the
membrane on the unit square in the previous section, this means that the continuous domain is viewed as a
mesh instead, as illustrated in Figure 7.4.1.1.

? 3 V.
(xn,'!’g (x.vw_;) (xp%) (x;"f}s) Ulz Ul3 U14 UIS H-TN
[(CTY KCRTS ACATN RCATN) CABEASETR BT v v v
i-1 i i+]
»
e Cepw)| v (o) ’U4 Us ’U6 ’U7 Ul
i-N
hI (x[,,wﬁ Gorto), Gt Geoto) CABKASEAREA
—

h

Figure 7.4.1.1 2D mesh.

In that figure, v; equals, for example, the displacement from rest of the point on the membrane.
Now, let ¢; be the value of f(z,y) at the mesh point i. One can approximate

OPu(x,y) _ulx—h,y) —2u(z,y) + u(z+ h,y)

0x? h?

and
Pu(r,y) ulz,y—h)—=2u(z,y) +u(z,y+h)

o2 h?

so that o2 52
u U
o2 aiyg = f(ma y)

becomes

—u(z —h - h — —h - h
u(z ,y>+2u}ff’y) uethy) | ety)HUh(f’y) YT _ oy

or, equivalently,

—u(x — h,y) —u(z,y —h)+4u(x,y) —u(x+h,y) —u(z,y + h)
h2

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 339

If (z,y) corresponds to the point ¢ in a mesh where the interior points form an N x N grid, this translates
to the system of linear equations

2
—Vi—N — Vi—1 +4V; — Vip1 — Vign = h7¢;.

This can be rewritten as)
_ h¢; +vi—N + Vi—1 +Vip1 + VigN

%

4
or
4U0 —U1 —U4 :h2¢0
—vg +dv; —vy —Us = h?¢y
—vp +4vy vz —Ug = h%¢,
—vg +4us —v7 = h%¢3
- +4dvg —wvs —vUg = h%¢,
(%1
In matrix notation this becomes
—11 411 ~1 : ~1 ©o W0
-1 4 -1 —1 Y1 W21
1 4 . V2 h2 o
—1 4 -1 -1 % ﬁfh%?’
() h 4
-1 -1 4 -1 vs | = | h%¢s |- (7.4.1)
-1 -1 4 -1 Vg h2 g
—1 -1 4 (Vrd h2¢7
1 4 Us h? g

This demonstrates how solving the discretized Poisson’s equation boils down to the solution of a linear
system Au = h?f, where A has a distinct sparsity pattern (pattern of nonzeros).

7.4.2 Parallelism in splitting methods

One of the advantages of, for example, the Jacobi iteration over the Gauss-Seidel iteration is that the values
at all mesh points can be updated simultaneously. This comes at the expense of slower convergence to the
solution.

There is actually quite a bit of parallelism to be exploited in the Gauss-Seidel iteration as well. Consider
our example of a mesh on a square domain as illustrated by

8 R T TS TR T TH AT TR
oo o] G Tl o
U‘EO) U;O) ,UéO) U-(IO) U‘(tl) vg()) ,UéO) U-(IO) 'U‘(‘]) Ugl) ,UéO) U-(;O)
'Uél) U](O) Ur_(,()) U;O 'Uél) Ul(l) v;O) ,U;O) USZ) Ul(l) vg]) US(O)

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 340

o First 'u(()l) is computed from v%o) and ’UJ(\?).

e Second, simultaneously,

1)

o vy’ can be computed from v

o ’Ug\}) can be computed from v

(()1), véo), and v](\?l_l.

(()1), vg\%rl, and vég\),.

e Third, simultaneously,

o U;l) can be computed from U§1)7 véo), and Ug\?lQ.

o Ug\}l_l can be computed from U%l), ’U?\;), and Ug\%_w and Ug])\),H.

° US\); can be computed from vg\}), and vgj\), ey and vé?\),_

(1) (1)
1 N

o AND véz) can be computed from v;’ and vy , which starts a new "wave."

What we notice is that taking the opportunity to update when data is ready creates wavefronts through the
mesh, where each wavefront corresponds to computation related to a different iteration.

Alternatively, extra parallelism can be achieved by ordering the mesh points using what is called a red-
black ordering. Again focusing on our example of a mesh placed on a domain, the idea is to partition the
mesh points into two groups, where each group consists of points that are not adjacent in the mesh: the red
points and the black points.

TRIPA IR I TR IR T TR SRR NI
vf, o U;lf v V0 Ug’ o0 U}(;P vf, o0 U;ZF 0
iR AL T A A N IV L TR T ol o oot
U(EIP 0O vlaf o o0 Ué]f o0 U;lP_ e vél)’T}(z’ e

The iteration then proceeds by alternating between (simultaneously) updating all values at the red points
and (simultaneously) updating all values at the black points, always using the most updated values.

7.4.3 Dr. SOR

Aok Rl Sl tial 1= K- Py

T4.3
Divid Ying

YouTube: https://www.youtube.com/watch?v=WDsF7gaj4E4

SOR was first proposed in 1950 by David M. Young and Stanley P. Frankel. David Young (1923-2008)
was a colleague of ours at UT-Austin. His vanity license plate read "Dr. SOR."

https://www.youtube.com/watch?v=WDsF7gaj4E4

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 341

7.5 Wrap Up

7.5.1 Additional homework

Homework 7.5.1.1 In Subsection 7.3.4 we discussed SOR and SSOR. Research how to choose the relaxation
parameter w and then modify your implementation of Gauss-Seidel from Homework 7.3.2.1 to investigate
the benefits.

7.5.2 Summary
Let A € R™*" be tridiagonal and SPD so that

Qo0 Q1,0
Q1o 011 Qg1

Qp—2n—-3 OQp_2n—-2 Qp_1n—2
Ap—1,n—2 On—_1n-1

Then its Cholesky factor is given by

0,0
Ao Al

An—2,n—3 An—?,n—Q
/\n—l,n—Z)\n—l,n—l

An algorithm for computing it is given by

fort=0,...,n—2

Qg 1= /g

Qit1,i = i1/ G

QU 1,i41 2= Qg1 i+1 — Ot 1,041,
endfor

Ap—_1n—1 = y/On—-1n-1

It requires n square roots, n — 1 divides, n — 1 multiplies, and n — 1 subtracts. An algorithm for overwriting
y with the solution to Az =y given its Cholesky factor is given by

o Overwrite y with the solution of Lz = y (forward substitution) is accomplished by the following
algorithm (here L has overwritten A):

fori=0,...,n—2

i =i/
Vi1 = Vip1 — Qi1
endfor

1/%4 = ¢n71/0¢n71,n71

« Overwriting y with the solution of L7z = z, (where z has overwritten y (back substitution).

fori=n—-1,...,1

Vi =i/

Wit == i1 — o115
endfor

Yo =g/

WEEK 7. SOLVING SPARSE LINEAR SYSTEMS 342

Definition 7.5.2.1 The half-band width of a symmetric matrix equals the number of subdiagonals beyond
which all the matrix contains only zeroes. For example, a diagonal matrix has half-band width of zero and
a tridiagonal matrix has a half-band width of one. %
Nested dissection: a hierarchical partitioning of the graph that captures the sparsity of a matrix in an
effort to reorder the rows and columns of that matrix so as to reduce fill-in (the overwriting of zeroes in the
matrix with nonzeroes).

Splitting methods: The system of linear equations Az = y, splitting methods view A as A = M — N
and then, given an initial approximation (%), create a sequence of approximations, z*) that under mild
conditions converge to x by solving

Mz*+D = Ng®)

or, equivalently, computing
) = MY (N2 ® 4 p).

This method converges to x if for some norm || - - - ||
|[M~IN| < 1.

Given A = D — L — U where —L, D, and —U equal the strictly lower triangular, diagonal, and strictly
upper triangular parts of A, commonly used splitting methods are

o Jacobi iteration: A= D — (L+7U) .
~~ ——

M N
¢ Gauss-Seidel iteration: A= D—-L — U .
N—— ~~
M N

1 1-
o Successive Over-Relaxation (SOR): A = —D—-L — (“D+U) , Where w is the relaxation
w w
M N
parameter.

o Symmetric Successive Over-Relaxation (SSOR).

Week 8

Descent Methods

8.1 Opening

8.1.1 Solving linear systems by solving a minimization problem

1.1
Sateng knear dyshamy by soiving a

minimizatien probdem Porl 2
=

YouTube: https://www.youtube.com/watch?v=—-WEfBpj1Ts

Consider the quadratic polynomial
1
fx) = §Oé><2 - Bx-

Finding the value X that minimizes this polynomial can be accomplished via the steps:

o Compute the derivative and set it to zero:
f'(X)=ax-p=0.
We notice that computing X is equivalent to solving the linear system (of one equation)
ax = .

o It is a minimum if & > 0 (the quadratic polynomial is concaved up).

Obviously, you can turn this around: in order to solve a = 8 where a > 0, we can instead minimize the
polynomial

fx) = %ax2 - Bx.

This course does not have multivariate calculus as a prerequisite, so we will walk you through the basic
results we will employ. We will focus on finding a solution to Az = b where A is symmetric positive definite
(SPD). (In our discussions we will just focus on real-valued problems). Now, if

1

flx) = ixTAx — 27D,

343

https://www.youtube.com/watch?v=--WEfBpj1Ts

WEEK 8. DESCENT METHODS 344

then its gradient equals
Vf(x)= Az —b.

The function f(z) is minimized (when A is SPD) when its gradient equals zero, which allows us to compute
the vector for which the function achieves its minimum. The basic insight is that in order to solve AZ = b
we can instead find the vector Z that minimizes the function f(z) = J27 Az — 27b.

TE EEEPR T TSrer e SRy S STTEy Ty S

1.1
Sateng bnear dyshamy By solving @

minimezetien problem Port |

YouTube: https://www.youtube.com/watch?v=rh9GhwU1ful

Theorem 8.1.1.1 Let A be SPD and assume that AT = b. Then the vector T minimizes the function
f(@) = 327 Az — 27Tb.

Proof. This proof does not employ multivariate calculus!

Let AZ =b. Then
f(x)
= < definition of f(z) >

%xTA:c —zTh

= <AZ=b>
%xTAx — 2T Az

= < algebra >

~ 1+ 0 1 4
%xTAx—xTAx—i— 3 TAx—ixTAx

0
= < factor out >
%(m -)T Az - 7) - %ﬁfTAﬁf.

Since zT AZ is independent of x, and A is SPD, this is clearly minimized when z = Z. |

8.1.2 Overview
e 8.1 Opening
o 8.1.1 Solving linear systems by solving a minimization problem

o 8.1.2 Overview
o 8.1.3 What you will learn

e 8.2 Search directions

o 8.2.1 Basics of descent methods

o 8.2.2 Toward practical descent methods
o 8.2.3 Relation to Splitting Methods

o 8.2.4 Method of Steepest Descent

o 8.2.5 Preconditioning
e 8.3 The Conjugate Gradient Method

o 8.3.1 A-conjugate directions

https://www.youtube.com/watch?v=rh9GhwU1fuU

WEEK 8. DESCENT METHODS 345

o 8.3.2 Existence of A-conjugate search directions

o 8.3.3 Conjugate Gradient Method Basics

o 8.3.4 Technical details

o 8.3.5 Practical Conjugate Gradient Method algorithm
o 8.3.6 Final touches for the Conjugate Gradient Method

e 8.4 Enrichments

o 8.4.1 Conjugate Gradient Method: Variations on a theme
e 85 Wrap Up

o 8.5.1 Additional homework

o 8.5.2 Summary

8.1.3 What you will learn

This week, you are introduced to additional techniques for solving sparse linear systems (or any linear system
where computing a matrix-vector multiplication with the matrix is cheap). We discuss descent methods in
general and the Conjugate Gradient Method in particular, which is the most important member of this
family of algorithms.

Upon completion of this week, you should be able to

o Relate solving a linear system of equations Ax = b, where A is symmetric positive definite (SPD), to
finding the minimum of the function f(z) = 327 Az + 27'b.

e Solve Ax = b via descent methods including the Conjugate Gradient Method.

o FExploit properties of A-conjugate search directions to morph the Method of Steepest Descent into a
practical Conjugate Gradient Method.

e Recognize that while in exact arithmetic the Conjugate Gradient Method solves Ax = b in a finite
number of iterations, in practice it is an iterative method due to error introduced by floating point
arithmetic.

o Accelerate the Method of Steepest Descent and Conjugate Gradient Method by applying a precondi-
tioner implicitly defines a new problem with the same solution and better condition number.

8.2 Search directions

8.2.1 Basics of descent methods

£.2.1
Daszant methads Part |

YouTube: https://www.youtube.com/watch?v=V7Cvihzs-n4

Remark 8.2.1.1 In the video, the quadratic polynomial pictured takes on the value —ZAZ at T and that
minimum is below the x-axis. This does not change the conclusions that are drawn in the video.

https://www.youtube.com/watch?v=V7Cvihzs-n4

WEEK 8. DESCENT METHODS 346

The basic idea behind a descent method is that at the kth iteration one has an approximation to x,
) and one would like to create a better approximation, z(**1). To do so, the method picks a search
direction, p*), and chooses the next approximation by taking a step from the current approximate solution
in the direction of p®):

g* D = 2B 4 p(),

In other words, one searches for a minimum along a line defined by the current iterate, z(*), and the
search direction, p(*). One then picks oy, so that, preferrably, f(z*+1) < f(x(®)). This is summarized in
Figure 8.2.1.2.

Given: A,b,z
0 = p— Azx©®
k:=0
while 7(F) #£ 0
p¥) ;= next direction
D) = 20 4 app(R) for some scalar oy,
rtD) = p — Ag(ktD)
k=k+1
endwhile

Figure 8.2.1.2 Outline for a descent method.

To this goal, typically, an exact descent method picks «a; to exactly minimize the function along the
line from the current approximate solution in the direction of p(*).

£.2.1
Duszent metheds Part 2

YouTube: https://www.youtube.com/watch?v=01S1x130Ac8
Now,
f(x(kJrl))
= <zt =g 4 g pk) >
Fa® + agp®)
= < evaluate >
1 (z® + Oékp(k))T A (2™ + agp®) — (z2®) + akp(’“))T b
= < multiply out >
%x(k) T Az® 4 qpp®™ T Az®) 4 %a%p(k)TAp(k) — M Th _ qpB Tp
= < rearrange >
BT Ap(k) _ ()T 4 %aip(k)TAp(k) + app® T Az’ — o p) Tp
= < substitute f(z(®)) and factor out common terms >
F@®) + 1a2p0 T Aph) 4 agp®) T (Ax®) — p)
= < substitute 7®) and commute to expose polynomial in cy,
%p(k)TAp(k)ozi —pMTr®) oy 4 f k),

1
2

where %) = b — Az(®) is the residual. This is a quadratic polynomial in the scalar oy (since this is the
only free variable).

https://www.youtube.com/watch?v=O1Slxl3oAc8

WEEK 8. DESCENT METHODS 347

£.2.1
Duscunt metheds Part 3

YouTube: https://www.youtube.com/watch?v=SA_VrhP7EZg

Minimizing

1
2
exactly requires the deriviative with respect to aj to be zero:

Pty = Lpo T gpm002 0T 00, 4 pa®)

k k
0= df (2 + app™) _ pIT 4R gy — p Ty ()

dak
Hence, for a given choice of py
(k) T (k)
_pr (k+1) _ . (F) (k)
oy = ST Ap(E) and =z =\ + app\™.

provides the next approximation to the solution. This leaves us with the question of how to pick the search
directions {p©,pM .. }.
A basic decent method based on these ideas is given in Figure 8.2.1.3.

Given: A,b,z
r© :=p— A2

k:=0
while %) #£ 0
pF) .= next direction

k)T, . (k
oy = Pt
rtD) = p — Ag(ktD)
ki=k+1
endwhile

Figure 8.2.1.3 Basic descent method.

Homework 8.2.1.1 The cost of an iterative method is a combination of how many iterations it takes to
convergence and the cost per iteration. For the loop in Figure 8.2.1.3, count the number of matrix-vector
multiplications, dot products, and "axpy" operations (not counting the cost of determining the next descent
direction).
Solution.
() T (%)

Uk = ST A 1 mvmult, 2 dot products

e+ = 2B £ p®) 1 axpy

rtD) = p — Ag(ktD) 1 mvmult

Total: 2 matrix-vector multiplies (mvmults), 2 dot products, 1 axpy.

https://www.youtube.com/watch?v=SA_VrhP7EZg

WEEK 8. DESCENT METHODS 348

8.2.2 Toward practical descent methods

B.2.2
Terwards proctical desoent
mathads Park |

YouTube: https://www.youtube.com/watch?v=aBTI_EEQNKE

Even though matrices are often highly sparse, a major part of the cost of solving Ax = b via descent
methods is in the matrix-vector multiplication (a cost that is proportional to the number of nonzeroes in the
matrix). For this reason, reducing the number of these is an important part of the design of the algorithm.
Homework 8.2.2.1 Let

rk) =p— Az®)
P+ — A (etD)

Show that
rtD) — 2 (B) _ o) Ap®),
Solution.
rEHD) = — Ag(+D)
= <r®)=p—Az® >
rE+D) — (k) 4 Ag(R) — Ag(k+1)
= < rearrange, factor >
rkt1) = p(k) — A(g(tD) — (k)
= gD — g0 4 g8 s
D) — p®) g Ap(®)
Alternatively:

D) = p — Agk+D)

= <zt = z®) 4 o pk) >
D = b — Az 4 aypR)

= < distribute >
D = — Az®) — qy ApF)

= < definition of r®) >
D) — 09— gy Ap(®)

822
Torwdirds prochicsl desont
malhads Park 2

YouTube: https://www.youtube.com/watch?v=j00GS9mTgd8

With the insights from this last homework, we can reformulate our basic descent method into one with
only one matrix-vector multiplication, as illustrated in Figure 8.2.2.1.

https://www.youtube.com/watch?v=aBTI_EEQNKE
https://www.youtube.com/watch?v=j00GS9mTgd8

WEEK 8. DESCENT METHODS 349

Given: A,b,z(© Given: A,b,z© Given: A,b,z(©
r0 =p— Az r0 :=p— Az® r0 =p— Az
k:=0 k=20 k=0
while 7(¥) £ 0 while 7(¥) £ 0 while r(*) £ 0
p®) = next direction p®) .= next direction p¥) .= next direction
q® = Ap()
BT Tk pR TRk
Ak "= LT Ap) Ok "= LT Ap) Ok = LT q®
p(E+1) . Ap(ktD) ptD) = (B — o Ap(k) ptD) = (k) _ (k)
k := k + lendwhile k=k+1 k=k+1
endwhile
endwhile

Figure 8.2.2.1 Left: Basic descent method from last unit. Middle: Minor modification that recasts the
computation of the residual r**t1) as an update of the previous residual »(*). Right: modification that
reduces the number of matrix-vector multiplications by introducing temporary vector ¢*).

Homework 8.2.2.2 For loops in the algorithm in Figure 8.2.2.1 (Right), count the number of matrix-vector
multiplications, dot products, and "axpy" operations (not counting the cost of determining the next descent
direction).

Solution.
gF) = Ap() 1 mvmult
P T ()
A = ST 2 dot products

206+1) Z:): xgk) + ap® 1 axpy
rk+1) = () —) laxpy

Total: 1 mvmults, 2 dot products, 2 axpys

822
Torwards prachicsl desoent
malhads Park 2

YouTube: https://www.youtube.com/watch?v=0GqV_hfaxJA

We finish our discussion regarding basic descent methods by observing that we don’t need to keep the
history of vectors, z(®), p(¥) | +(¥) () "and scalar a;, that were computed as long as they are not needed to
compute the next search direction, leaving us with the algorithm

Given: A b x
r:=b— Ax
while r(*) £ 0
p:= next direction
q:= A;)
Q= iTq
r:=x+ ap
ri=Tr—aqaq
endwhile

3

Figure 8.2.2.2 The algorithm from Figure 8.2.2.1 (Right) storing only the most current vectors and scalar.

https://www.youtube.com/watch?v=OGqV_hfaxJA

WEEK 8. DESCENT METHODS 350

8.2.3 Relation to Splitting Methods

YouTube: https://www.youtube.com/watch?v=ifwailOB1EI

Let us pick some really simple search directions in the right-most algorithm in Homework 8.2.2.2: p(¥) =
€i modn, Which cycles through the standard basis vectors.

Homework 8.2.3.1 For the right-most algorithm in Homework 8.2.2.2, show that if p(®) = ey, then

n—1 n—1
1 0 1 0 ! 0
Xf)):x(())+7 ﬂo_zao,ng') = 50—2040%5‘)
Q0,0 = 0,0 =1

Solution.
i p(o) = €9.
o pOT AP =el'Aeg = ag o (the (0,0) element in A, not to be mistaken for ag).
O — A0

o pOTrO) = eT'(b— Az(©)) = el'b — el Az = By — al'2(®)| where @} denotes the kth row of A.

(0) T,.(0) _ 3T
o 21 =20 4 qpp® = 20 4 %eo =z 4 %eo. This means that only the first element

of z(®) changes, and it changes to

n—1 n—1
1 0 1 0 1 0
X =x) + — 50*2040,]%5-) =— 50*2040,3‘)(5»)
a0 = : Qo,0 =

This looks familiar...

YouTube: https://www.youtube.com/watch?v=karx3stbVdE
Careful contemplation of the last homework reveals that this is exactly how the first element in vector
Z, Xo, is changed in the Gauss-Seidel method!

Ponder This 8.2.3.2 Continue the above argument to show that this choice of descent directions yields the
Gauss-Seidel iteration.

https://www.youtube.com/watch?v=ifwailOB1EI
https://www.youtube.com/watch?v=karx3stbVdE

WEEK 8. DESCENT METHODS 351

8.2.4 Method of Steepest Descent

£.2.4

Method of Sleapeil Descent
|

YouTube: https://www.youtube.com/watch?v=t0gAd10hIwc

For a function f : R™ — R that we are trying to minimize, for a given z, the direction in which the
function most rapidly increases in value at x is given by its gradient,

Vix).
Thus, the direction in which it decreases most rapidly is
=V f(x).
For our function)
fz) = inAx — 2T

this direction of steepest descent is given by
—Vf(x)=—(Az —b) = b— Ax,

which we recognize as the residual. Thus, recalling that () = b — Az(*) | the direction of steepest descent
at z(F) is given by p(®¥) = r(*) = b — Az(*), These insights motivate the algorithms in Figure 8.2.4.1.

Given: A,b,z© Given: Abx
7 :=p— A2 k:=0
k=0 r:=b— Ax
while 7(F) #£ 0 while r # 0
pk) =) p:=r
g = Ap(®) q:= A]T)
k)T, (k [d
Qf = ﬁskiﬁik; o %
(VN (S BN () v=x+ap
Pk = p(B) _ g q(R) ri=r—aq
k=k+1 ki=k+1
endwhile

endwhile

Figure 8.2.4.1 Steepest descent algorithm, with indices and without indices.

8.2.5 Preconditioning

L T T T T SRR SR R R

3.2.5
Praconditicning

YouTube: https://www.youtube.com/watch?v=1i-83HdtrI1M

https://www.youtube.com/watch?v=tOqAd1OhIwc
https://www.youtube.com/watch?v=i-83HdtrI1M

WEEK 8. DESCENT METHODS 352

For a general (appropriately differential) nonlinear function f(x), using the direction of steepest descent as
the search direction is often a reasonable choice. For our problem, especially if A is relatively ill-conditioned,
we can do better.

Here is the idea: Let A = QXQ” be the SVD of SPD matrix A (or, equivalently for SPD matrices,
its spectral decomposition, which we will discuss in (((Unresolved xref, reference "chapter09-shur-spectral-
decomposition"; check spelling or use "provisional" attribute)))). Then

fz) = %xTAx — 2Ty = %ZETQEQTw —27QQ".

Using the change of basis y = Q7x and b= QTb, then

9(y) = %yTZy —y"b.

How this relates to the convergence of the Method of Steepest Descent is discussed (informally) in the
video. The key insight is that if xK(A) = 0g/0,—1 (the ratio between the largest and smallest eigenvalues or,
equivalently, the ratio between the largest and smallest singular value) is large, then convergence can take
many iterations.

What would happen if instead 09 = --- = 0,,_1? Then A = QXQ” is the SVD/Spectral decomposition
of Aand A = Q(0oI)QT. If we then perform the Method of Steepest Descent with (the transformed vector
z) and b (the transformed right-hand side), then

e

0 O T (g
y©) — T 0

y© — Ly

y® = ooy ~)

which is the solution to ool = b. Thus, the iteration converges in one step. The point we are trying to
(informally) make is that if A is well-conditioned, then the Method of Steepest Descent converges faster.

Now, Az = b is equivalent to M ~'Axz = M~1'b. Hence, one can define a new problem with the same
solution and, hopefully, a better condition number by letting A = M~*A and b = M ~'b. A better condition
number results if M ~ A since then M ~'A ~ A='A ~ I. A constraint is that M should be chosen so that
solving with it is easy/cheap. The matrix M is called a preconditioner.

A problem is that, in our discussion of descent methods, we restrict ourselves to the case where the
matrix is SPD. Generally speaking, M ~'A will not be SPD. To fix this, choose M =~ A to be SPD and
let M = Ly LT, equal its Cholesky factorization. If A = LLT is the Cholesky factorization of A, then
L;} AL&T ~ L;V}LLTL]QT ~ I. With this, we can transform our linear system Az = b in to one that has the
same solution:

Ly ALy, Lz = Ly'b .
~~ ~—~—

z b

We note that A is SPD and hence one can apply the Method of Steepest Descent to AZ = b, where
A= L;}ALMT, = L%z, and b= LX/[lb. Once the method converges to the solution Z, one can transform
that solution of this back to solution of the original problem by solving L,z = #. If M is chosen carefully,
K(LX/[IALX/[T) can be greatly improved. The best choice would be M = A, of course, but that is not realistic.
The point is that in our case where A is SPD, ideally the preconditioner should be SPD.

Some careful rearrangement takes the method of steepest descent on the transformed problem to the
much simpler preconditioned algorithm on the right in Figure 8.2.5.1.

WEEK 8. DESCENT METHODS 353

Given: A,b,z),

Given: A,b,z© M = LLT Given: A,b,z M
A=L71AL"T
b=L""'b
7#(0) — [T 2(0)
70 .= p— Az®
r0 . =p— Azx©® ko= r0) .—p— A0
k=0 while #*) #£ 0 k=0
while r(*) #£ 0 5K = (k) while r*) #£ 0
p) = (k) Gg®) = Apk) pF) = M1y (k)
q® = Apk) - R TR g .= Ap®)
 p T) k= B T4k L pm T
Ok '= ST g Flet1) . — jgk) + agp) Ok = T q®
2R+ x((]k) + ap® Fh+D) = 50 _ 5, 6(k) 2k x?’f) + agp®)
r+1) = (k) _ gy (k) LB+ — [T 7(k+1) rE+D) = p(B) — (R
k=k+1
k=k+1 endwhile k=k+1
endwhile endwhile

Figure 8.2.5.1 Left: method of steepest descent. Middle: method of steepest descent with transformed
problem. Right: preconditioned method of steepest descent. It can be checked that the z(*) computed by
the middle algorithm is exactly the z(*) computed by the one on the right. Of course, the computation
zF+1) = L=Tz(#+1) peeds only be done once, after convergence, in the algorithm in the middle. We state it
this way to facilitate Homework 8.2.5.1.

Homework 8.2.5.1 Show that the algorithm in Figure 8.2.5.1 (Middle) computes the same values for z (k)
as does the algorithm to its right.

Hint. You will want to do a prove by induction. To start, conjecture a relationship between #(*) and r*)
and then prove that that relationship, and the relationship z*) = =T 2(*) hold for all k, where r*) and z(*)
are as computed by the algorithm on the right.

Solution 1. Notice that A = L=YAL~T implies that ALT = L~'A. We will show that for all k > 0
o 7F) = [T (k)
o 7R = [~1p(k)
o pB) = LTpk)
o O =
via a proof by induction.

e Base case: kK =0.

o 70 ig initialized as #(© := LT 29,
o 0
= < algorithm on left >
b— Az
= < initialization of b and 7(© >
L~ — ALT 20
= < initialization of A >
L' — L1 Az©®
= < factor out and initialization of r(® >
L_lfr(o)

WEEK 8. DESCENT METHODS

o p
= < initialization in algorithm >

Y I O
L~

= < from right algorithm: +*) = Mp®*) and M = LLT >

L 1LLTp®
= <L 'L=1>
= LTp(O)_

(@] &0
= < middle algorithm >
I;(O) T 7(0)
$0) T Ap(0)
= < pO = LTpO ete. >
(LT pO)T [=1,.(0)
(LTp(O))TL—lAL—TLTp(O)
= < transpose and cancel >
(0) T .(0)
PO T Ap0)
= < right algorithm >
Qg.

354

o Inductive Step: Assume that %) = LTz(®) 7k = [=1p(K) 5() = LTp*) and &, = ai. Show that

UL — [T p(k4) k) = [=Lp(h]) 51 — LTp04D and gy — gy

) F(k+1)
= middle algorithm
")+ agpt)
= < LH. >
LT2®) 4 o, LTp*)
= < factor out; right algorithm >
LT g (k+1)
o fFlk+1)
= < middle algorithm >
k) — Gy, Ap)
= < LH. >
L) — LY AL-TLTpk)
= < L=TLT = I; factor out; right algorithmn >

L-1p(k+1)
o]3(164-1)
= < middle algorithm >
f(k+1)
= <kt = [olpttl)
L—lr(k+1)

= < from right algorithm: r*+1) = Mp*+1) and M = LLT >

L*lLLTp(kJrl)
= <L'L=1I>
— [T+

WEEK 8. DESCENT METHODS 355

o (g4l
= < middle algorithm >
I;(k+1)T7;(lc+1)
PR+ T Ap(k+1)
= < pktD) = LTp+1) ete. >
(LTp(k+1))TL—1T(k+1)
(LTp(k+1))TL—lAL—TLTp(kJrl)
= < transpose and cancel >
(k+1) T .(k+1)
p(FFD T Ap(k+1)
= < right algorithm >

Ay

e By the Principle of Mathematical Induction the result holds.
Solution 2 (Constructive solution). Let’s start with the algorithm in the middle:

Given: A,b,z2),
M =LL"

5(R) T (k)
Ok “= s TR
Fle+1) . a}gk) + agp)
FHD) = 7 (R) — G, g(F)
2D — [T 7(k+1)
k=k+1

endwhile

We now notice that A = L~'AL~7 and we can substitute this into the algorithm:

Given: A,b,z0),

k=

while #*) #£ 0
pk) = (k)
G*) = L7TAL"Tpk)
- 5(5) T (k)
Ak = T
Fk+1) . — 53[(116) + agp)
D) = 7 (R) — G, g(F)
2B+ — [=T 7(k+1)
kE=k+1

endwhile

Next, we notice that ¥t = L=Tz(*k+1) or equivalently,

k) — Tk

WEEK 8. DESCENT METHODS

We substitute that

Now, we exploit that b =
Az®)y = 1

Given: A,b,z,
M=LLT

b=L""b

LTz = [T2(0)

7O = p— LTALTLT2(0)

k:=0

while 7(*) £ 0
P = k)
" =Lt AL=TpH)
TR
Ak 2= I TR
LT+ .= [T (k) 4 G, pk)
Fle+1) . — 5(k) _ @kg(k)
2+ — [=T 7(k+1)
k:=k+1

endwhile

Given: A,b,z,
M = LL"

L~ %=L
L~ .= [~
k=0
while L=17(F) £ 0

ﬁ(k) = [—1p(k)

G = L7TAL=Tpk)

5(k) T —1,.(k)
~ . D T
Ok *= TEm Tg®

L—l,r(k-i-l) = L_l’l"(k) _ &kq(k)
k=k+1
endwhile

L(b— Az(0)

or, equivalently

Given: A,b,z,

M=LL"

b=L"1

7 =b— L~

1 Az(0)

k:=0

while 7(¥)

#0
P = k)
q® =L TAL=Tp*)
- 509) T ()
Ok *= G T5E)
21— x?k) + apL-Tpk)
T(k+1> — 76 _ g, g%

k=k+1

endwhile

L~'b and #®) equals the residual b— Az = [~
(k) Substituting these insights in gives us

or, equivalently

Now choose p*) = LTp*¥) so that AL~Tp*) becomes Ap™*):

Given: A,b,z©
M=LLT

7 = p— Az

k=0

while r*) £ 0
p) = LT L1k
G = L1 Ap®)
- L (LTp(k))TLflT(k:)
Ok = TR m) TR
z* D = () 4 5, L=TLTpk*)
pEt1) = (k) _ G, Lgk)
k=k+1

endwhile

or, equivalently

- L PALT LTz ™)

Given: A,b,z,
M=LL"

70 =p— Az

k:=0

while r(®) #£ 0
pk) = L1k
q® =Lt AL=Tp%)

~(k)T 7 —1_(k
z*D = (k) 4 5, LT k)
D) = p(B) _ 5, Lgk)
k=k+1

endwhile

Given: A,b,z,

M=LLT

70 = p— Az

k=0

while r*) £ 0
p(k) = Mﬁlr(k)
q(k) = L_lAp(k)
- (k) T (k)
Qg - (k)TL

)
x<k+1> = 2 4 ap®
ptD) = (k) _ 5, Lgk)
k:=k+1
endwhile

:L_

356

l(b_

WEEK 8. DESCENT METHODS 357

Finally, if we choose L§*) = ¢*) and @, = oy, we end up with

Given: A,b,z0),
M =LL"
70 = p— Az(®
k=0
while 7(F) £ 0
p(k) = Mﬁlr(k)
qg® = Apk)
(k) T (k)
Ak "= LT gy
D = (k) gy p(F)
pED = o (B) _ g q(R)
k=k+1
endwhile

8.3 The Conjugate Gradient Method

8.3.1 A-conjugate directions

3.0

A-gonpagite directicng Part |

YouTube: https://www.youtube.com/watch?v=9-SyyJveoXuU

Let’s start our generic descent method algorithm with z(®) = 0. Here we do not use the temporary vector
q¢® = Ap(¥) so that later we can emphasize how to cast the Conjugate Gradient Method in terms of as few

matrix-vector multiplication as possible (one to be exact).

Given: Ab Given: Ab

x(o) = 0 T = 0

r©) = b — Az (= b) r:=>0

k:=0

while 7(®) £ 0 while r # 0
p(F) .= next direction p := next direction

(k) T (k) R PTT

qf 1= 7p(k)TAp(k) o = pTAp
x(k+1) = x(k) + akp(k) xri=x+ ap
r(k+1) = T(k) — aAp(k) rTi=r— O[Ap
k:=k+1

endwhile endwhile

Figure 8.3.1.1 Generic descent algorithm started with 2(®) = 0. Left: with indices. Right: without indices.

Now, since z(®) = 0, clearly
2*) = qop@ 4. ayp®).
Thus, 2+ € Span(p(®, ..., p*).
It would be nice if after the kth iteration

(k+1)y _ :
T = min x 8.3.1
f() 2€Span(p(®...p) f(z) (8.3.1)

https://www.youtube.com/watch?v=9-SyyJv0XuU

WEEK 8. DESCENT METHODS 358

and the search directions were linearly independent. Then, the resulting descent method, in exact arithmetic,
is guaranteed to complete in at most n iterations, This is because then

Span(p®, ..., p"~V)y =R"

so that
fa™) =

in z) = min f(z
z€Span(p(®,...,p(n—1) f(@) zER" /()
and hence Az(™ = b.
Unfortunately, the Method of Steepest Descent does not have this property. The next approximation to
the solution, z(**1) minimizes f(z) where z is constrained to be on the line 2*) + ap®). Because in each
step f(z*tD) < f (x(k))_, a slightly stronger result holds: It also minimizes f(x) where x is constrained to be

on the union of lines) + ap¥), j =0,..., k. However, unless we pick the search directions very carefully,
that is not the same as it minimizing over all vectors in Span(p(o), e ,p(k)).

&.2.1
Duszanl Mmethads Parl 2

YouTube: https://www.youtube.com/watch?v=38uNP7zjdv8
We can write (8.3.1) more concisely: Let

P (pO O k))

be the matrix that holds the history of all search directions so far (as its columns) . Then, letting

Qo
ak—1) — ,
Ap—1
we notice that
&%)
2R — (p® .. plk=D) : o (8.3.2)
Ap—1

Homework 8.3.1.1 Let p'*) be a new search direction that is linearly independent of the columns of P*~1)
which themselves are linearly independent. Show that

MIN, e §pan(p©) . pk-1) peoy f(x) = miny f(PFy)

= min, [Lyd PE-DTAPE-Dy, — oI p=D T}
T
+¢1y(’{p(k71) Ap) + %wp(k) T Apk) — wlp(k)Tb} ,

where y = (1220) € RFHL,
1

Hint.
z € Span(pl®, ..., p*=1 p(R)y

if and only if there exists

_(Yo k+1 _ (k—1) (k) < Yo >
= eR h that z = (P —.
Y (") suc at x (‘p) "

https://www.youtube.com/watch?v=j8uNP7zjdv8

WEEK 8. DESCENT METHODS 359

Solution.

minwESpan(p(U),...,p(kfl),p(k‘)) f(x)
= < equivalent formulation >

min, f((PED | p®)) y)

= < partition y = Yo

U1

min, f((P®=D | p®)) (11/2))

>

= < instantiate f >

i [¢ [00 0y ()] a0 ()
- [(PO | 50) (z}j)rl, _

= < multiply out >

miny, [5 [yf PEDT 4+ up®T] A [PEDyg 41 p®] — yf PEDTh — 4pypR o]

= < multiply out some more >
min, [y PO T APG—D o 1 oy PO—DT 4ptt)
+3utp® T Aph) — yT PED Ty — B T
= < rearrange >
min, {%ygp(k—l)TAP(k—l)yo T PB=DTh 4 gy p=1)" Ap(k)
+30ip® T Ap*) — 4y pW Tp] |

331

A-gonpegale direclicng Parl 3

YouTube: https://www.youtube.com/watch?v=5eNmr776GJY
Now, if
p(k—l)TAp(k) =0

then
MMz eSpan(p(©),...,ptk=1) p(k) f(z)
= < from before >

min, | 3yf PO-DTAPEDy, — T ey
+ gy PEDT AR 4 Ly2p® T Apk) — 4y p*)]

0
= < remove zero term >

min, |3y PO-DTAPEDy, — T ey
+ 50ipF T ApK) — g p) Tp]
= < split into two terms that can be minimized separately >
miny, |3y PEDT AP Dy, — oy PEDTb] 4 ming, [Sutp® T Ap®) — yp®) To]
= < recognize first set of terms as f(P*~yy) >
MiN, cgpan(p) . pe-1y f(2) +ming, [397p" T Ap*) — 4y p*) Tp] .

https://www.youtube.com/watch?v=5eNmr776GJY

WEEK 8. DESCENT METHODS 360

The minimizing 1) is given by
p(k) Ty
VL= T Ay
p T Ap
If we pick p®) = p*) and ay, = ¢, then
gF+) = pE=Dyo 4 4 p® = app@ 4 -+ a1 p*F D 4 ap®) =) 4y p®).

A sequence of such directions is said to be A-conjugate.

Definition 8.3.1.2 A-conjugate directions. Let A be SPD. A sequence p(® ..., p~1) € R" such that
pT Ap() = 0 if and only if j # i is said to be A-conjugate.

[|

A-gonpagate direclicnsg Part 4

YouTube: https://www.youtube.com/watch?v=70t6zgeMHs8

Homework 8.3.1.2 Let A € R"*" be SPD.

ALWAYS/SOMETIMES/NEVER: The the columns of P € R"** are A-conjugate if and only if PT AP =
D where D is diagonal and has positive values on its diagonal.
Answer. ALWAYS

Now prove it.

Solution.
PTAP
= < partition P by columns >
(po| | pra)TA(po |- | pe-1)
= < transpose >

pg
| A(po | peer)
P
= < multiply out >
T
Do
: (Apo |- | Ape-1)
pgfl
= < multiply out >
piApo | pFAp™ || pfApr
P BT Ape [p®T Ap® | p®T Ap,
Pi1Apo | pi_ Ap™ |- | pl Apka
= < multiply out >
b Apo 0 0
0 pBIT ApE) | 0
0 R PP o e

which is a diagonal matrix and its diagonal elements are positive since $ A $ is SPD.

https://www.youtube.com/watch?v=70t6zgeMHs8

WEEK 8. DESCENT METHODS 361

Homework 8.3.1.3 Let A € R™*" be SPD and the columns of P € R"** be A-conjugate.
ALWAYS/SOMETIMES/NEVER: The columns of P are linearly independent.
Answer. ALWAYS
Now prove it!
Solution. We employ a proof by contradiction. Suppose the columns of P are not linearly independent.
Then there exists y # 0 such that Py = 0. Let D = PTAP. From the last homework we know that D is
diagonal and has positive diagonal elements. But then

0

= <Py=0>
(Py)" A(Py)

= < multiply out >
yT PT APy

= <P'AP=D>
y" Dy

> < D is SPD >
07

which is a contradiction. Hence, the columns of P are linearly independent.
The above observations leaves us with a descent method that picks the search directions to be A-conjugate,
given in Figure 8.3.1.3.

Given: A,b

() =0

r@ =p

k:=0

while 7(¥) £ 0
Choose p®) such that p® T AP*=1) = 0 and p®) Tr(k) £ 0

k)T, (k

oy = Lot
p*HD = () 4 g p(R)
pEFD = o (B) _ g Ap(R)
k=k+1

endwhile

Figure 8.3.1.3 Basic method that chooses the search directions to be A-conjugate.

Remark 8.3.1.4 The important observation is that if p(®), ..., p*) are chosen to be A-conjugate, then z(*+1)
minimizes not only

F® + ap)

but also
min f(z).
xz€Span(p(®),...,p(k—1))

8.3.2 Existence of A-conjugate search directions

L T STy T g S TSR SR A

3.3.1

A-fonpegile dirgclicng Parl 4

https://www.youtube.com/watch?v=yXfR71mJ64w

WEEK 8. DESCENT METHODS 362

YouTube: https://www.youtube.com/watch?v=yXfR71mJ64w

The big question left dangling at the end of the last unit was whether there exists a direction p(¥) that
is A-orthogonal to all previous search directions and that is not orthogonal to r(*). Let us examine this:

« Assume that all prior search directions p(®, ..., p*=1) were A-conjugate.

« Consider all vectors p € R" that are A-conjugate to p®,...,p*~. A vector p has this property if
and only if p L Span(A4p®, ... Ap(k=1).

o For p L Span(Ap®, ..., Ap*=1)) we notice that
pTT(k) _ pT(b _ A(E(k)) _ pT(b _ Ap(kfl)a(kfl))

where we recall from (8.3.2) that

Qo
PE=D — (pO .o p=D) and oD =
k-1
o Ifall vectors p that are A-conjugate to p(?, ..., p*~1 are orthogonal to the current residual, p” r*) = 0

for all p with P*~DT Ap = 0, then
0=p"b—pAP* Vg1 — T for all p L Span(Ap(O), . ApPTY)),

Let’s think about this: b is orthogonal to all vectors that are orthogonal to Span(Ap(O), . ,Ap(pfl)).
This means that
be Spaun(Ap(O)7 . ,Ap(k_l)).

e Hence b = AP*~1 2 for some z € R¥. Tt also means that z = P*~1 2 solves Az = b.

« We conclude that our method must already have found the solution since z(¥) minimizes f(x) over all
vectors in Span(p®, ..., p*~1). Thus Az*) = b and r*) = 0.

We conclude that there exist descent methods that leverage A-conjugate search directions as described in
Figure 8.3.1.3. The question now is how to find a new A-conjugate search direction at every step.

8.3.3 Conjugate Gradient Method Basics

ik, Bl iyl

3.3.3
Conjugate Gradient Mathad
Bagi2s

YouTube: https://www.youtube.com/watch?v=0WnTq1PIFnQ

The idea behind the Conjugate Gradient Method is that in the current iteration we have an approxima-
tion, z(®) to the solution to Az = b. By construction, since z(®) = 0,

= aop(o) + [+ akilp(kfl)'

https://www.youtube.com/watch?v=OWnTq1PIFnQ

WEEK 8. DESCENT METHODS 363

Also, the residual
(k)
b— Az®)
b— A(agp® + - + ag_1pE~D)

b— aoAp(O) [ak—lAp(k_l)

=D oy Ap(R—D),

If #®) =0, then we know that z(*) solves Az = b, and we are done.
Assume that (%) = 0. The question now is "How should we construct a new p'*) that is A-conjugate to
the previous search directions and so that p®) Tr(*) =£ 07" Here are some thoughts:

o We like the direction of steepest descent, r*) = b — Az(¥) | because it is the direction in which f(z)
decreases most quickly.

e Let us chose p*) to be the vector that is A-conjugate to p(®, ..., p*=1 and closest to the direction of
steepest descent, r(*):

[p%) = r®))y = I

min —plla.
pLSpan(Ap(0) ... Ap(k—1))

This yields the algorithm in Figure 8.3.3.1.

Given: Ab
20 =0
r@ .=p
k=0
while 7(F) £ 0
if k=0
pF) = r(©
else
p*) minimizes MiN, | pan(Ap©),..., Apt—1) ||7“(k) —pll2
endif
T
Qk = T ap)
2D = () 4 o p(F)
rEtD) = (B) — o Ap(F)
k=k+1
endwhile

Figure 8.3.3.1 Basic Conjugate Gradient Method.

8.3.4 Technical details

This unit is probably the most technically difficult unit in the course. We give the details here for complete-
ness, but you will likely live a happy and productive research life without worrying about them too much...
The important part is the final observation: that the next search direction computed by the Conjugate
Graduate Method is a linear combination of the current residual (the direction of steepest descent) and the
last search direction.

WEEK 8. DESCENT METHODS 364

&3.5

Tachnigal dabails Pard |

YouTube: https://www.youtube.com/watch?v=15MoVhNsXYU

Let’s look more carefully at p*) that satisfies

(k) R, = i (k)
riF) — = min Y — .
I P2 Sl ey I Pl

Notice that
rF) =+ p(k)

where v is the orthogonal projection of 7(*) onto Span(Ap©), ..., Apk=1)

17 = vll2 = min 17— wll

weSpan(Ap(9) ... Ap(k—1))
which can also be formulated as v = AP*~D () where

[r®) — APE=D,(R))|, = m%{;lc [r®) — APE=D 4|y,
zE

This can be recognized as a standard linear least squares problem. This allows us to make a few important
observations:

335
Technical dabsils Part 2

YouTube: https://www.youtube.com/watch?v=yelFuJixbHQ

Theorem 8.3.4.1 In Figure 8.3.3.1,
o PE=1)T.(k) — (.

e Span(p©@, ..., p*=D) = Span(r®, ..., r*=1) = Span(b, Ab,..., A*~1b).
Proof.

e Proving that
pl=DTyk) =,

starts by considering that
F(P*Dy)

F(PE=D)TAPE=Dy) — (PE=Dy)Th

y (P(kfl) TAP(kfl))y _ yTP(kfl) Ty

N|—

is minimized by yo that satisfies

(P(krfl) TAP(kfl))yO _ P(krfl) Tb.

https://www.youtube.com/watch?v=i5MoVhNsXYU
https://www.youtube.com/watch?v=ye1FuJixbHQ

WEEK 8. DESCENT METHODS 365

Since £*) minimizes
f(@)

min
z€Span(p©),...,p(k—1))

we conclude that z = P~y But then

0= pk—DTp _ (P(kq)TAx(k)) — plk=1)T (biAx(k)> — pl=1)T (k).

« Show that Span(p(®,...,p*=D) = Span(r(®,...,r*=1) = Span(b, Ab, ..., A*~b).
Proof by induction on k.
o Base case: k= 1.
The result clearly holds since p(®) = r(0) = p,

o Inductive Hypothesis: Assume the result holds for n < k.
Show that the result holds for k =n + 1.

W Ifk=n+1then r#=1) = () = (=1 _ o Ap(»=1) By LH.

("= ¢ Span(b, Ab, ..., A" 1b)

and

p" =Y € Span(b, Ab, ..., A" D).
But then

Ap"~Y) e Span(Ab, A%, ..., A™b)
and hence

(™ e Span(b, Ab, A%, ..., A™b).
B p™ =7 — APy, and hence
p™ € Span(b, Ab, A%, ..., A™b)
since
(™ e Span(b, Ab, A%b, ..., A™b)

and
AP" 1y € Span(Ab, A%b, ..., A™b).
o We complete the inductive step by noting that all three subspaces have the same dimension and
hence must be the same subspace.

o By the Principle of Mathematical Induction, the result holds.

|
Definition 8.3.4.2 Krylov subspace. The subspace
K1 (A,b) = Span(b, Ab, ..., A*~1b)
is known as the order-k Krylov subspace. O

The next technical detail regards the residuals that are computed by the Conjugate Gradient Method.
They are mutually orthogonal, and hence we, once again, conclude that the method must compute the
solution (in exact arithmetic) in at most n iterations. It will also play an important role in reducing the
number of matrix-vector multiplications needed to implement the final version of the Conjugate Gradient
Method.

Theorem 8.3.4.3 The residual vectors r®) are mutually orthogonal.

WEEK 8. DESCENT METHODS

Proof. In Theorem 8.3.4.1 we established that
Span(p®, ..., p¥ =) = Span(r®,. .. r=Y)

and hence ‘
Span(r(o), .. 7/]0(]_1)) C Spa’n(p(o)’ ... ’p(k?—l)) —
for j < k. Hence r) = P:=Dt0) for some vector t) € R*. Then

PR TLG) — (BT plh=1)4(G) —

Since this holds for all k£ and j < k, the desired result is established.
Next comes the most important result. We established that

pB) — (k) _ g pli=1) ,(k=1)

where z(%) solves

min ||r® — AP*=Dz]|,.
z€RF

366

(8.3.3)

What we are going to show is that in fact the next search direction equals a linear combination of the current

residual and the previous search direction.

Theorem 8.3.4.4 For k > 1, the search directions generated by the Conjugate Gradient Method satisfy

P8 = k) 4oy (k=)

for some constant .

Proof. This proof has a lot of very technical details. No harm done if you only pay cursory attention to

those details.

143 k—1 20 k k—1 k—1
t = that r =7r that
Partition Z() < C) and recall tha (k) () Yk]Ap() so tha

1

p)
= < (833) >
rk) _ Ap—1) ,(k—1)
— < Z(k_l) e ZO >
1
r®) — APK=2) 7 4 ¢ Aph=D)
= <>
) — (AP®=2 20 4 ¢ (r®) — D) fay,_4)
= <>
(1- 585)r® + (Clr(’“‘” ~ AP(k_2)Zo)
- Op—1
s(k)
= <>

(1 _ ci) rk) 4 (k).
A —1

We notice that *) and s(*) are orthogonal. Hence

P = (1 L&) HCTERWRCTE

Ap—1

and minimizing p(k) means minimizing the two separate parts. Since r#) is fixed, this means minimizing

|s*)||3. An examination of s*) exposes that

s = SU ke gpe2), G (TUH) _ Ap(k*Q)wO)

Ok—1 Qk—1

WEEK 8. DESCENT METHODS 367

where wo = —(ag—1/(1)z0. We recall that

(k=1) _

| pF |y = min v =1 — Ap]
ON

pLSpan(p(F=2))

and hence we conclude that s;, is a vector the direction of p*~1). Since we are only interested in the direction
of p®), $1_ is not relevant. The upshot of this lengthy analysis is that

A —1

P = k) 4oy (b1

|
This implies that while the Conjugate Gradient Method is an A-conjugate method and hence leverages
a "memory" of all previous search directions,
(k)y — ;
') = min x),
y) JcESpan(pm),...,p(k*l))f()

only the last search direction is needed to compute the current one. This reduces the cost of computing the
current search direction and means we don’t have to store all previous ones.

Aok ik Wi e Btial 1= K- -y

334
Tachnical dabails: a really big

chieai]
—
&

YouTube: https://www.youtube.com/watch?v=jHBK10QEQ1s

Remark 8.3.4.5 This is a very, very, very big deal...

8.3.5 Practical Conjugate Gradient Method algorithm

Aok Rl il

B35
Practical Conjugahe Gradient
Mathad algarithm

YouTube: https://www.youtube.com/watch?v=FVWgZKJQjz0
We have noted that p®) = r*) 4 4, p* =1 Since p(¥) is A-conjugate to p*~1) we find that

pEDT ApF) — p(=DT g (8) 4 (k=1 T g (k=1)

so that
e = —pH=DT Ap(B) fp (k=) T g (k=)

This yields the first practical instantiation of the Conjugate Gradient method, given in Figure 8.3.5.1.

https://www.youtube.com/watch?v=jHBK1OQE01s
https://www.youtube.com/watch?v=FVWgZKJQjz0

WEEK 8. DESCENT METHODS 368

Given: Ab
20 =0
r@.=p
k:=0
while 7(¥) #£ 0
if k=0
pk) = (0)
else
e 1= —pB=DT A (k) [p(E=1)T gp(k=1)
pk) = p(k) 4~ (k=)
endif
T
A = PRI T Ap(E)
e = (k) 4 gy p(k)

pt1) = (k) _ o) Ap(k)
k=k+1
endwhile
Figure 8.3.5.1 Conjugate Gradient Method.

Homework 8.3.5.1 In Figure 8.3.5.1 we compute

o pk) Typ(k)
BT BT ApR)
Show that an alternative formula for a4 is given by
T
U= LT Aph)-

Hint. Use the fact that p*) = () 4 ~,p(=1) and the fact that r*) is orthogonal to all previous search
directions to show that p®) Tp(k) = (k) Tp(k)

Solution. We need to show that p(*¥) Tp(k) = (k) Tp(k)

p®) T (k)

<r®) 4y plh=b) >
+ ,ykp(kfl))Tr(k)
= < distribute >
Tp(k) 4 o pk=D T (k)

= <k DTk >
k)T (k)

Z

(r

k

~

r(

(
r
The last homework justifies the refined Conjugate Gradient Method in Figure 8.3.5.2 (Left).

WEEK 8. DESCENT METHODS 369

Given: A,b
Given: A,b z© =0
x(o) =0 ’I"(O) :=b
0 .—p k:=0
k=0 while r(*) £ 0
while r(*) £ 0 if k=0
if k=0 ptk) =70
p(k) — 7’(0) elSe
else Vi i= (W TpR)) /(p (=) Ty (k=1))
Vi = —(p* DT ArR)) /(pk =D T Ap(k=1)) p®*) = (B oy (k=1
p) = (k) 4, p=1) endif
endif =
P (0) T (k) Ok T A
Uk = P T A e = () 4 qyp®)
24D = 2(B) 4 (k) r+D) = (B) — o Ap(F)
r+1) = (]) oy Ap(k) ki=k+1
k=k+1 endwhile
endwhile

Figure 8.3.5.2 Alternative Conjugate Gradient Method algorithms.

Homework 8.3.5.2 For the Conjugate Gradient Method discussed so far,
e Show that
r(R) T (k) — _Olk—l’l“(k)TApk_l.

e Show that
p(k—l)TAp(k—l) _ T(k—l)Tr(k—l)/ak_l.

Hint. Recall that
T(k) — lr(kfl) — O{k_lAp(kil)- (8.3.4)

and rewrite (8.3.4) as
Aph=D — (pb=D) _ 0y s,

and recall that in the previous iteration

pE=1) — p(k=1) pE=2),

— Yk-1

Solution.
rET (k) — ()T, (k=1) _ Oék—ﬂ“(k) T Apk—1 = —Oék_ﬂ“(k) T pph1.

k=D T gpk=1)

(=1 — o pE=2)T Ap(k=1)

(k=) T gy (k1)

r(kil) T(T(kfl) —_ T(k))/ak-fl

r(k—l)TT(k—l)/ak_L
From the last homework we conclude that

Ve = —(p(k_l)TAT(k))/(p(k_l)TAp(k_l)) — T(k) Tr(k)/’f‘(k_l)T’l“(k_l).

This is summarized in on the right in Figure 8.3.5.2.

WEEK 8. DESCENT METHODS 370

8.3.6 Final touches for the Conjugate Gradient Method

3.3.5
Conjugahe Gradient Malhod,
logce ity

YouTube: https://www.youtube.com/watch?v=f3rLky6mIA4

We finish our discussion of the Conjugate Gradient Method by revisiting the stopping criteria and pre-
conditioning.

8.3.6.1 Stopping criteria

In theory, the Conjugate Gradient Method requires at most n iterations to achieve the condition where the
residual is zero so that z(*) equals the exact solution. In practice, it is an iterative method due to the error
introduced by floating point arithmetic. For this reason, the iteration proceeds while |||y > emacn||bl2
and some maximum number of iterations is not yet performed.

8.3.6.2 Preconditioning

In Subsection 8.2.5 we noted that the method of steepest Descent can be greatly accelerated by employing
a preconditioner. The Conjugate Gradient Method can be greatly accelerated. While in theory the method
requires at most n iterations when A is m X n, in practice a preconditioned Conjugate Gradient Method
requires very few iterations.

Homework 8.3.6.1 Add preconditioning to the algorithm in Figure 8.3.5.2 (right).
Solution. To add preconditioning to
Ar=b

we pick a SPD preconditioner M = LLT and instead solve the equivalent problem

L'AL™T L7z = L7'b,
T

https://www.youtube.com/watch?v=f3rLky6mIA4

WEEK 8. DESCENT METHODS 371

This changes the algorithm in Figure 8.3.5.2 (right) to

Given: A,b,M =LLT

k=
while #(*) £ 0
ifk=0
p) = 7#(0)
else
A 1= (f(k)Tf(k))/(f(k—l)Tf(k—l))
) = 7 k) 4 5, 51
endif
- 70 T (k)
Xk *= FE T ApR
gD = 5(R) 4§50
D) = F(R) _ 5, Apk)
k=k+1
endwhile

Now, much like we did in the constructive solution to Homework 8.2.5.1 we now morph this into an
algorithm that more directly computes z(**1). We start by substituting

A=LTALT, 70 = [T 50) — [=100 5k) — [Tk

which yields o
Given: A,b,M = LLT
LTz .=
L1 .= [—1p
k:=0 3
while L=1r(*) £ 0
if k=0
ETp(k) — [[~1,(0)
else
’~Yk = ((E—lr(k))Tﬂ—lr(k))/(i/—lr(k—l))Ti/—lr(k—l))
iTp(k) = i_lr(k) + rN}/kijp(k_l)

endif
< (L= 1p(0)T | =1,.00)
Ofk = (LTpNTL-TAL-TLTp®
LT p(k+1) .— [T (k) +dkLTp(k)
L 1p(k+1) = [-1p(F) _ dki_li_lAi_Ti_TiTp(k)
k=k+1
endwhile

WEEK 8. DESCENT METHODS 372

If we now simplify and manipulate various parts of this algorithm we get

Given: A,b,M = LLT
2 =0
r©@ .=y
k:=0
while 7(F) £ 0
if k=0
pF) = A—1(0)
else
:Yk — (T(k)TMflr(k))/(r(kfl) TMflr(kfl))
p(k) = M~ 1pk) ¢ :Ykp(kfl)
i i S
k1) = 2 (F) @kp(k)
r+D) = (B) — G Ap)
ki=k+1
endwhile

Finally, we avoid the recomputing of M ~'r®*) and Ap(*) by introducing z*) and ¢(*):

Given: A,b,M =LLT

2@ =0
r0 .=y
k:=0

while 7(F) £ 0
20 = pp1p(R)
if k=0
pk) = 2(0)
else
A = (r(k)TZ(k))/(T(kfl)TZ(kfl))

p(k) = Z(k) + :)/k_p(kfl)
endif
g = Ap®)
r(R) T (k)

O = JmTem
T(k""l) = fr(k) — qu(k)

k=k+1
endwhile

(Obviously, there are a few other things that can be done to avoid unnecessary recomputations of 7*) 7 z(¥))

8.4 Enrichments

8.4.1 Conjugate Gradient Method: Variations on a theme

Many variations on the Conjugate Gradient Method exist, which are employed in different situations. A
concise summary of these, including suggestions as to which one to use when, can be found in

 [2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra,
Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst, Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, STAM Press, 1993. [PDF |

http://www.netlib.org/templates/templates.pdf

WEEK 8. DESCENT METHODS 373

8.5 Wrap Up

8.5.1 Additional homework

Homework 8.5.1.1 When using iterative methods, the matrices are typically very sparse. The question
then is how to store a sparse matrix and how to perform a matrix-vector multiplication with it. One popular
way is known as compressed row storage that involves three arrays:

1D array nzA (nonzero A) which stores the nonzero elements of matrix A. In this array, first all
nonzero elements of the first row are stored, then the second row, etc. It has size nnzeroes (number
of nonzeroes).

1D array ir which is an integer array of size n + 1 such that ir(1) equals the index in array nzA
where the first element of the first row is stored. ir(2) then gives the index where the first element
of the second row is stored, and so forth. ir(n+1) equals nnzeroes + 1. Having this entry is
convenient when you implement a matrix-vector multiplication with array nzA.

1D array 1ic of size nnzeroes which holds the column indices of the corresponding elements in array
nzA.

. Write a function

[nzA, ir, ic] = Create_Poisson_problem_nzA(N)

that creates the matrix A in this sparse format.

. Write a function

y = SparseMvMult(nzA, ir, ic, x)

that computes y = Ax with the matrix A stored in the sparse format.

8.5.2 Summary

Given a function f: R™ — R, its gradient is given by

2L()
9Xo
2

Viz) =

5 .
aan— 1 (I)

V f(z) equals the direction in which the function f increases most rapidly at the point z and —V f(x) equals
the direction of steepest descent (the direction in which the function f decreases most rapidly at the point

In this summary, we will assume that A € R"*™ is symmetric positive definite (SPD) and

1

flx) = §xTAx —2Th.
The gradient of this function equals
Vf(x)=Ax—b
and Z minimizes the function if and only if
Az =b.
If 2(®) is an approximation to Z then r*) = b — Az(®) equals the corresponding residual. Notice that

rF) = —V f(x®) and hence r*) is the direction of steepest descent .

WEEK 8. DESCENT METHODS

374

A prototypical descent method is given by

Given :4, b, 2
0 =p— Az

k:=0

while r(*) £ 0
p¥) ;= next direction
2D = 20 4 p(F) for some scalar oy,
plet) = p — AgktD)
k=k+1
endwhile

Here p® is the "current" search direction and in each iteration we create the next approximation to z, z(**1),

along the line z(®) 4+ ap®),

If 2(*+1) minimizes along that line, the method is an exact descent method and

P T ()

U= T Ap®)

so that a prototypical exact descent method is given by

Once ay, is determined,

Given: A,b,z©
0 =p— Az

k:=0
while (%) £ 0
p(k) := next direction

. (k) T (k)
A = W
x(k+1) = x(k) _|_ akp(k)
D) .= p — Ag(+D)
k:=k+1
endwhile

D)) o ApR),

which saves a matrix-vector multiplication when incorporated into the prototypical exact descent method:

Given: A, b,z

r0 = p— Az(©®

k=0

while 7(F) #£ 0
p¥) := next direction
q® = Ap()

(k) T (k)
._ P T
Qg = P T g(®)

zEHD = (k) 4 gy p*)
Pt = (k) _ qp q(F)
ki=k+1

endwhile

WEEK 8. DESCENT METHODS 375

The steepest descent algorithm chooses p(¥) = —V f(z(®)) = b — Ax*) = (k).

Given: A,b,z©
70 = p— Az©®
k=0
while 7(F) #£ 0
pk) = (k)
g = Ap(k)
o - B

gD = (k) 4 gy p)
pE+D) = p(B) _ qp q(F)
ki=k+1

endwhile

Convergence can be greatly accelerated by incorporating a preconditioner, M, where, ideally, M =~ A is
SPD and solving Mz = y is easy (cheap).

Given: A,b,z M
(0 =p— Azx®
k:=0
while 7(F) #£ 0
p®) = N1y (F)
qg® = Ap®)

(B) T (k)
. D s
Ak = LT g™

a0 = (k) gy p(F)
p(k1) i () _ g oK)
k=k+1

endwhile

Definition 8.5.2.1 A-conjugate directions. Let A be SPD. A sequence p(©, ... p =1 € R” such that
pDTAp() = 0 if and only if j # 4 is said to be A-conjugate. O

The columns of P € R"** are A-conjugate if and only if PT AP = D where D is diagonal and has positive
values on its diagonal.

A-conjugate vectors are linearly independent.

A descent method that chooses the search directions to be A-conjugate will find the solution of Ax = b,
where A € R™*™ is SPD, in at most n iterations:

Given: A,b
z© =0
0 =p
k=0
while 7(F) #£ 0
Choose p®) such that p®) T AP*=1) = 0 and p®) Trk) £
k)T, (k
oy = Lot
x(k?"!‘l) = x(k) _|_ akp(k)
pFD = p(B) _ g Ap(R)
k=k+1
endwhile

The Conjugate Gradient Method chooses the search direction to equal the vector p*) that is A-conjugate

WEEK 8. DESCENT METHODS 376

to all previous search directions and is closest to the direction of steepest descent:

Given: A,b
(0 =0
r0 .=p
k=0
while (*) £ 0
ifk=0
pF) = r(©
else
p*) minimizes MiN, | pan(Ap©),..., Apt—1)) ||7“(k) —pll2
endif
T
Q1= W T Ap0)
D = () 4 o p(F)
rEtD) = (B) — o Ap(F)

endwhile

yeery

The various vectors that appear in the Conjugate Gradient Method have the following properties: If
P(pfl) = (p(o) e p(k_l)) then

. PE-DT,HR)
« Span(p®,...,p*) = Span(r®, ..., r*7D) = Span(b, 4b, ..., A*'b).
e The residual vectors r*) are mutually orthogonal.

e Fork>1

p8) = (k) (k1)

Definition 8.5.2.2 Krylov subspace. The subspace
K1 (A,b) = Span(b, Ab, ..., A*~1b)

is known as the order-k Krylov subspace. O
Alternative Conjugate Gradient Methods are given by

Given: Ab
Given: A,b 70 .=
z© =0 #0).—p
rO = kim0
k:=0 while r®) £ 0
while r(*) £ 0 if k=0
if k=0 pk) = 7(0)
p®) = else
else v = (T(k) TT(k))/(,r(k—l)TT(k-—l))
= = (PP T Ar®) (ph =D T Ap(k=1)) p®) = r®) 4y p(e=)
p®) = r®) 4y ph=D) endif
endif TR
ROEMO Ak 1= ST 450
Ok "= LT Ap® gD = g (0) 4 gy p(k)
a*)=) 4y p®) P+ i () _ g Ap(R)
() =) — ay Ap®) ki=k+1
ki=k+1 endwhile
endwhile

A practical stopping criteria for the Conjugate Gradient Method is to proceed while ||7*)||o < €mach|b]2
and some maximum number of iterations is not yet performed.

DESCENT METHODS 377

The Conjugate Gradient Method can be accelerated by incorporating a preconditioned, M, where M ~ A
is SDP.

Part 111

The Algebraic Eigenvalue Problem

378

Week 9

Eigenvalues and Eigenvectors

To be released Wednesday April 1.

379

Week 10

Practical Solution of the Hermitian Eigen-
value Problem

To be released Wednesday April 8.

380

Week 11

The QR Algorithm: Computing the SVD

To be released Wednesday April 15.

381

Week 12

Attaining High Performance

To be released Wednesday April 22.

382

Appendix A

Are you ready?

We have created a document "Advanced Linear Algebra: Are You Ready?" that a learner can use to self-assess
their readiness for a course on numerical linear algebra.

383

ALAFF-pretest.html

Appendix B

Notation

B.0.1 Householder notation

Alston Householder introduced the convention of labeling matrices with upper case Roman letters (A, B,
etc.), vectors with lower case Roman letters (a, b, etc.), and scalars with lower case Greek letters (a, S,
etc.). When exposing columns or rows of a matrix, the columns of that matrix are usually labeled with the
corresponding Roman lower case letter, and the the individual elements of a matrix or vector are usually
labeled with "the corresponding Greek lower case letter," which we can capture with the triplets {4, a, a},

{B,b, 5}, etc.
Q0,0 Qo1 Qpn—1
1,0 11 a1n—1
A=(ao|ar| | anr)=
Am—-1,0 | Om—-1,1 | *°" | Om—1,n—1
and
X0
X1
T = . ,
Xm—1

where o and x is the lower case Greek letters "alpha" and "chi," respectively. You will also notice that in
this course we start indexing at zero. We mostly adopt this convention (exceptions include ¢, j, p, m, n, and
k, which usually denote integer scalars.)

384

Appendix C

Knowledge from Numerical Analysis

Typically, an undergraduate numerical analysis course is considered a prerequisite for a graduate level course
on numerical linear algebra. There are, however, relatively few concepts from such a course that are needed
to be successful in this course. In this appendix, we very briefly discuss some of these concepts.

C.0.1 Cost of basic linear algebra operations

C.0.2 Catastrophic cancellation

Recall that if
X2+ Bx+7=0

then the quadratic formula gives the largest root of this quadratic equation:
_ BV -y
X=——7 —
Example C.0.2.1 We use the quadratic equation in the exact order indicated by the parentheses in

. -8+ [[521[471}“ |

truncating every expression within square brackets to three significant digits, to solve

X*+25x +79 =0

[-25+] [[25%—[4]}]]} _ [[—25+ [\/M}]}

X = 2 2

[25+£¢@]]] _ [[—25+24»91} = [=%1] = —0.05.

2

Now, if you do this to the full precision of a typical calculator, the answer is instead approximately
—0.040064. The relative error we incurred is, approximately, 0.01/0.04 = 0.25.

What is going on here? The problem comes from the fact that there is error in the 24.9 that is encountered
after the square root is taken. Since that number is close in magnitude, but of opposite sign to the —25 to
which it is added, the result of —25 + 24.9 is mostly error.

This is known as catastrophic cancelation: adding two nearly equal numbers of opposite sign, at least
one of which has some error in it related to roundoff, yields a result with large relative error.

Now, one can use an alternative formula to compute the root:

VR _ 54 F ol 8- Pk
2 2 N/

385

APPENDIX C. KNOWLEDGE FROM NUMERICAL ANALYSIS 386

which yields
2y
X=———F——.
B -1
Carrying out the computations, rounding intermediate results, yields —.0401. The relative error is now

0.00004,/0.040064 ~ .001. It avoids catastrophic cancellation because now the two numbers of nearly equal
magnitude are added instead. ([l

Remark C.0.2.2 The point is: if possible, avoid creating small intermediate results that amplify into a
large relative error in the final result.

Notice that in this example it is not inherently the case that a small relative change in the input is
amplified into a large relative change in the output (as is the case when solving a linear system with a poorly
conditioned matrix). The problem is with the standard formula that was used. Later we will see that this
is an example of an unstable algorithm.

Appendix D

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://www.fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to any manual or other work, in
any medium, that contains a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use
that work under the conditions stated herein. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify
or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document

387

http://www.fsf.org/

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 388

may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XY7Z in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”™) To “Preserve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have
is void and has no effect on the meaning of this License.

2. VERBATIM COPYING. You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 389

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution and modifi-

cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

= =5 U 0

Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 390

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties — for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with other documents released
under this License, under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection consisting of the Document and
other documents released under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 391

7. AGGREGATION WITH INDEPENDENT WORKS. A compilation of the Document or its
derivatives with other separate and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION. Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is
void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software Foundation may publish new,
revised versions of the GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to

http://www.gnu.org/copyleft/

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 392

edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor
Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on
the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Docu-
ment.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first
published under this License somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use this License in a document
you have written, include a copy of the License in the document and put the following copyright and license
notices just after the title page:

Copyright (C) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with... Texts. line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

8]
[9]
[10]
[11]
[12]
[13]

[14]

Ed Anderson, Zhaojun Bai, James Demmel, Jack J. Dongarra, Jeremy DuCroz, Ann Greenbaum, Sven
Hammarling, Alan E. McKenney, Susan Ostrouchov, and Danny Sorensen, LAPACK Users’ Guide,
SIAM, Philadelphia, 1992.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra,
Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst, Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM Press, 1993. [PDF |

Paolo Bientinesi, Inderjit S. Dhillon, Robert A. van de Geijn, A Parallel Figensolver for Dense Sym-
metric Matrices Based on Multiple Relatively Robust Representations, STAM Journal on Scientific
Computing, 2005

Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Orti, Robert A. van de
Geijn, The science of deriving dense linear algebra algorithms, ACM Transactions on Mathematical
Software (TOMS), 2005.

Paolo Bientinesi, Enrique S. Quintana-Orti, Robert A. van de Geijn, Representing linear algebra al-
gorithms in code: the FLAME application program interfaces, ACM Transactions on Mathematical
Software (TOMS), 2005

Paolo Bientinesi, Robert A. van de Geijn, Goal-Oriented and Modular Stability Analysis, STAM Journal
on Matrix Analysis and Applications , Volume 32 Issue 1, February 2011.

Paolo Bientinesi, Robert A. van de Geijn, The Science of Deriving Stability Analyses, FLAME Working
Note #33. Aachen Institute for Computational Engineering Sciences, RWTH Aachen. TR AICES-
2008-2. November 2008.

Christian Bischof and Charles Van Loan, The WY Representation for Products of Householder Matri-
ces, STAM Journal on Scientific and Statistical Computing, Vol. 8, No. 1, 1987.

Basic Linear Algebra Subprograms - A Quick Reference Guide, University of Tennessee, Oak Ridge
National Laboratory, Numerical Algorithms Groiup Ltd.

Barry A. Cipra, The Best of the 20th Century: Editors Name Top 10 Algorithms, SIAM News, Volume
33, Number 4, 2000. Available from https://archive.siam.org/pdf/news/637.pdf.

A K. Cline, C.B. Moler, G.W. Stewart, and J.H. Wilkinson, An estimate for the condition number of
a matriz, SIAM J. Numer. Anal., 16 (1979).

Inderjit S. Dhillon and Beresford N. Parlett, Multiple Representations to Compute Orthogonal Figen-
vectors of Symmetric Tridiagonal Matrices, Lin. Alg. Appl., Vol. 387, 2004.

Jack J. Dongarra, Jeremy DuCroz, Ann Greenbaum, Sven Hammarling, Alan E. McKenney, Susan
Ostrouchov, and Danny Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, 1992.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff, A Set of Level 3 Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, Vol. 16, No. 1, pp. 1-17, March
1990.

393

http://www.netlib.org/templates/templates.pdf
https://archive.siam.org/pdf/news/637.pdf

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 394

[15]

[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]

[30]

[31]

[32]
[33]
[34]

35]

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson, An Eztended Set of
{FORTRAN} Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.
14, No. 1, pp. 1-17, March 1988.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK Users’ Guide, Society for
Industrial and Applied Mathematics, 1979.

Victor Eijkhout, Introduction to High-Performance Scientific Computing, lulu.com. http://pages.tacc.
utexas.edu/~eijkhout/istc/istc.html

Leslie V. Foster, Gaussian elimination with partial pivoting can fail in practice, SIAM Journal on
Matrix Analysis and Applications, 15, 1994.

Gene H. Golub and Charles F. Van Loan, Matriz Computations, Fourth Edition, Johns Hopkins Press,
2013.

Brian C. Gunter, Robert A. van de Geijn, Parallel out-of-core computation and updating of the QR
factorization, ACM Transactions on Mathematical Software (TOMS), 2005.

N. Higham, A Survey of Condition Number Estimates for Triangular Matrices, STAM Review, 1987.

C. G. J. Jacobi, Uber ein leichtes Verfahren, die in der Theorie der Si kular-stérungen vorkommenden
Gleichungen numerisch aufzuldsen, Crelle’s Journal 30, 51-94, 1846.

Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Orti, Robert van de Geijn, Field G. Van Zee,
Accumulating Householder transformations, revisited, ACM Transactions on Mathematical Software,
Vol. 32, No 2, 2006.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprograms for
Fortran Usage, ACM Transactions on Mathematical Software, Vol. 5, No. 3, pp. 308-323, Sept. 1979.

Per-Gunnar Martinsson, Gregorio Quintana-Orti, Nathan Heavner, Robert van de Geijn, Householder
QR Factorization With Randomization for Column Pivoting (HQRRP), STAM Journal on Scientific
Computing, Vol. 39, Issue 2, 2017.

Margaret E. Myers, Pierce M. van de Geijn, and Robert A. van de Geijn, Linear Algebra: Foundations
to Frontiers - Notes to LAFF With, self-published at ulaff.net, 2014.

Margaret E. Myers and Robert A. van de Geijn, Linear Algebra: Foundations to Frontiers, ulaff.net,
2014. A Massive Open Online Course offered on edX.

Margaret E. Myers and Robert A. van de Geijn, LA FF-On Programming for Correctness, self-published
at ulaff.net, 2017.

Margaret E. Myers and Robert A. van de Geijn, LAFF-On Programming for Correctness, A Massive
Open Online Course offered on edX.

J. Novembre, T. Johnson, K. Bryc, Z. Kutalik, A.R. Boyko, A. Auton, A. Indap, K.S. King, S.
Bergmann, M.. Nelson, M. Stephens, C.D. Bustamante, Genes mirror geography within Europe, Nature,
2008

Devangi N. Parikh, Margaret E. Myers, Richard Vuduc, Robert A. van de Geijn, A Simple Methodology
for Computing Families of Algorithms, FLAME Working Note #87, The University of Texas at Austin,
Department of Computer Science, Technical Report TR-18-06. arXiv:1808.07832.

C. Puglisi, Modification of the Householder method based on the compact WY representation, STAM
Journal on Scientific Computing, Vol. 13, 1992.

Gregorio Quintana-Orti, Xioabai Sun, and Christof H. Bischof, A BLAS-3 version of the QR factor-
ization with column pivoting, STAM Journal on Scientific Computing, 19, 1998.

Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson, Parallel Matriz Multiplication: A
Systematic Journey, STAM Journal on Scientific Computing, Volume 38, Issue 6, 2016.

Robert Schreiber and Charles Van Loan, A Storage-Efficient WY Representation for Products of House-

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
http://ulaff.net
http://ulaff.net
http://edx.org
http://ulaff.net
http://edx.org
https://arxiv.org/abs/1808.07832

APPENDIX D. GNU FREE DOCUMENTATION LICENSE 395

[36]
[37]
[38]
[39]
[40]
[41]

[42]
[43]

[44]

[45]

[46]
[47]

48]
[49]
[50]

[51]

[52]

53]

holder Transformations, SIAM Journal on Scientific and Statistical Computing, Vol. 10, No. 1, 1989.
Jonathon Shlens, A Tutorial on Principal Component Analysis, arxiv 1404.1100, 2014.
G.W. Stewart, Matrixz Algorithms, Volume I: Basic Decompositions, STAM Press, 2001.

Robert van de Geijn and Kazushige Goto, BLAS (Basic Linear Algebra Subprograms), Encyclopedia
of Parallel Computing, Part 2, pp. 157-164, 2011. If you don’t have access, you may want to read an
advanced draft.

Robert van de Geijn and Maggie Myers, Advanced Linear Algebra: Are you ready?, http://www.cs.
utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html, 2020.

Robert van de Geijn, Margaret Myers, and Devangi N. Parikh, LAFF-On Programming for High
Performance, ulaff.net, 2019.

Robert van de Geijn and Jerrell Watts, SUMMA: Scalable Universal Matriz Multiplication Algorithm,
Concurrency: Practice and Experience, Volume 9, Number 4, 1997.

Field G. Van Zee, libflame: The Complete Reference, http://www.lulu.com, 2009. [free PDF |

Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Orti, Restructuring the Tridiagonal and
Bidiagonal QR Algorithms for Performance, ACM Transactions on Mathematical Software (TOMS),
Vol. 40, No. 3, 2014. Available free from http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
Journal Publication #33. Click on the title of the paper.

Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Orti, Restructuring the Tridiagonal and
Bidiagonal QR Algorithms for Performance. ACM Transactions on Mathematical Software (TOMS)
, 2014. Available free from http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html Journal Publi-
cation #33. Click on the title of the paper.

Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Orti, G. Joseph Elizondo, Fami-
lies of Algorithms for Reducing a Matriz to Condensed Form. ACM Transactions on Mathemati-
cal Software (TOMS) , Vol, No. 1, 2012. Available free from http://www.cs.utexas.edu/~flame/web/
FLAMEPublications.html Journal Publication #26. Click on the title of the paper.

H. F. Walker, Implementation of the GMRES method using Householder transformations, STAM Jour-
nal on Scientific and Statistical Computing, Vol. 9, No. 1, 1988.

Stephen J. Wright, A Collection of Problems for Which {G}aussian Elimination with Partial Pivoting
is Unstable, STAM Journal on Scientific Computing, Vol. 14, No. 1, 1993.

BLAS-like Library Instantiation Software Framework, GitHub repository.
BLIS typed interface, https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md.

Kazushige Goto and Robert van de Geijn, Anatomy of High-Performance Matrixz Multiplication, ACM
Transactions on Mathematical Software, Vol. 34, No. 3: Article 12, May 2008.

Tyler Michael Smith, Bradley Lowery, Julien Langou, Robert A. van de Geijn, A Tight I/O Lower
Bound for Matrixz Multiplication, arxiv.org:1702.02017v2, 2019. (To appear in ACM Transactions on
Mathematical Software.)

Field G. Van Zee and Tyler M. Smith, Implementing High-performance Complex Matriz Multiplication
via the 3M and JM Methods, ACM Transactions on Mathematical Software, Vol. 44, No. 1, pp.
7:1-7:36, July 2017.

Field G. Van Zee and Robert A. van de Geijn, BLIS: A Framework for Rapidly Instantiating BLAS
Functionality, ACM Journal on Mathematical Software, Vol. 41, No. 3, June 2015. You can access

this article for free by visiting the Science of High-Performance Computing group webpage and clicking
on the title of Journal Article 39.

https://arxiv.org/abs/1404.1100
http://www.cs.utexas.edu/users/flame/pubs/BLAS.pdf
http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html
http://www.cs.utexas.edu/users/flame/laff/alaff/ALAFF-pretest.html
http://ulaff.net
http://www.lulu.com
https://github.com/flame/libflame/blob/master/docs/libflame/libflame.pdf
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://github.com/flame/blis
https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md
https://arxiv.org/abs/1702.02017v2
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html

Index

(Euclidean) length, 70 Cholesky factor, 246

I, 36 Cholesky factorization, 183, 210

[-], 280 Cholesky factorization theorem, 246, 271
€mach, 144 Classical Gram-Schmidt, 133

fi(), 280 complex conjugate, 15

Yn, 292, 312 complex product, 69

oo-norm (vector), 70 condition number, 64, 73, 185, 205
oo-norm, vector, 25 conjugate, 15, 69

k(A), 64, 73 conjugate (of matrix), 72

maxi(-), 236 conjugate (of vector), 70

A, 41 conjugate of a matrix, 41

z, 79 conjugate transpose (of matrix), 72

—, 15 conjugate transpose (of vector), 70

6;, 291, 312 consistent matrix norm, 59, 73

|-, 15 cost of basic linear algebra operations, 385
€5, 83

descent methods, 343

direction of maximal magnification, 64
distance, 15

dot product, 70, 79

p-norm (vector), 70
p-norm, matrix, 45
p-norm, vector, 26
I-norm (vector), 70
1-norm, vector, 24
2-norm (vector), 70
2-norm, matrix, 46
2-norm, vector, 21

elementary elementary pivot matrix, 199
equivalence style proof, 18

Euclidean distance, 15

exact descent method, 346

absolute value, 14, 15, 69 fill-in. 324

ACM, 281 fixed-point equation, 334
Alternative Computational Model, 281 FLAME notation. 98

axpy, 244 floating point numbers, 275

forward substitution, 214

backward stable implementation, 283 Frobenius norm, 39, 72
Basic Linear Algebra Subprograms, 251
BLAS, 251 Gauss transform, 225
blocked algorithm, 166 Gaussian elimination, 213
Gaussian elimination with row exchanges, 229
catastrophic cancellation, 385 gradient, 344
Cauchy-Schwarz inequality, 21, 22 Gram-Schmidt orthogonalization, 133
CGS, 133
Cholesky decomposition, 210 Hermitian, 42

396

INDEX

Hermitian Positive Definite, 183, 245
Hermitian positive definite, 245
Hermitian transpose, 21, 41
Hermitian transpose (of matrix), 72
Hermitian transpose (of vector), 70
homogeneity (of absolute value), 15
homogeneity (of matrix norm), 38, 72
homogeneity (of vector norm), 20, 70
Householder reflector, 149, 172
Householder transformation, 149, 172
HPD, 183, 245

identity matrix, 35

induced matrix norm, 42, 43
infinity norm, 25

inner product, 70, 79

Krylov subspace, 365, 376

left pseudo inverse, 182

left pseudo-inverse, 75

left singular vector, 98, 125

Legendre polynomials, 129

linear least squares, 175

linear transformation, 34

LLS, 175

LU decomposition, 210, 221, 228, 266

LU factorization, 210, 213, 221, 228, 266

LU factorization - existence, 221, 266

LU factorization algorithm (bordered), 225

LU factorization algorithm (left-looking), 223

LU factorization algorithm (right-looking), 218

LU factorization with complete pivoting, 244

LU factorization with partial pivoting, 236

LU factorization with partial pivoting
(right-looking algorithm), 236

LU factorization with pivoting, 229

machine epsilon, 144, 278, 279, 310
magnitude, 15

matrix, 34, 35

matrix 1-norm, 72

matrix 2-norm, 46, 72

matrix co-norm, 72

matrix p-norm, 45

matrix norm, 38, 72

matrix norm, 2-norm, 46

matrix norm, p-norm, 45

matrix norm, consistent, 59, 73
matrix norm, Frobenius, 39
matrix norm, induced, 42, 43
matrix norm, submultiplicative, 58, 59, 73
matrix norm, subordinate, 59, 73

397

matrix p-norm, 72

matrix-vector multiplication, 35
Method of Normal Equations, 181
method of normal equations, 177

natural ordering, 316
nested dissection, 326
norm, 10

norm, Frobenius, 39

norm, infinity, 25

norm, matrix, 38, 72
norm, vector, 20, 70
normal equations, 177, 181
numerical stability, 273

orthogonal matrix, 85
orthogonal projection, 75
orthogonal vectors, 79
orthonormal matrix, 83
orthonormal vectors, 83
over-relaxation, 337

parent functions, 128

partial pivoting, 230, 236

pivot, 229

pivot element, 229

positive definite, 245

positive definiteness (of absolute value), 15
positive defnitenessx (of matrix norm), 38, 72
positive defnitenessx (of vector norm), 20, 70
precondition, 254

principal leading submatrix, 221, 266

pseudo inverse, 182, 184

pseudo-inverse, 75

QR decomposition, 127

QR Decomposition Theorem, 136, 171

QR factorization, 127

QR factorization with column pivoting, 198, 199

Rank Revealing QR, 198
reflector, 149, 172

residual, 11

right pseudo inverse, 182
right singular vector, 98, 125
rotation, 89

rowl pivoting, 230

RRQR, 198

SCM, 280

separator, 324

Singular Value Decomposition, 74, 76
singular vector, 98, 125

solving triangular systems, 239

INDEX

SOR, 337

sparse linear system, 315

stability, 273

standard basis vector, 34, 70

Standard Computational Model, 280
submultiplicative matrix norm, 58, 59, 73
subordinate matrix norm, 59, 73
successive over-relaxation, 337

SVD, 74, 76

symmetric positive definite, 245, 271

transpose, 40

transpose (of matrix), 72

transpose (of vector), 70

triangle inequality (for absolute value)), 15
triangle inequality (for matrix norms)), 38, 72
triangle inequality (for vector norms)), 20, 70
triangular system, 239

unit ball, 26, 70

unit roundoff, 278, 279, 310
unit roundoff error, 144
unitary matrix, 85, 124

Vandermonde matrix, 128
vector 1-norm, 24, 70
vector 2-norm, 21, 70
vector co-norm, 25, 70
vector p-norm, 70

vector p-norm, 26

vector norm, 20, 70
vector norm, 1-norm, 24
vector norm, 2-norm, 21
vector norm, oo-norm, 25
vector norm, p-norm, 26

398

Colophon
This article was authored in, and produced with, PreTeXt.

	Acknowledgements
	Preface
	Getting Started
	Orthogonality
	Norms
	The Singular Value Decomposition
	The QR Decomposition
	Linear Least Squares

	Solving Linear Systems
	The LU and Cholesky Factorizations
	Numerical Stability
	Solving Sparse Linear Systems
	Descent Methods

	The Algebraic Eigenvalue Problem
	Eigenvalues and Eigenvectors
	Practical Solution of the Hermitian Eigenvalue Problem
	The QR Algorithm: Computing the SVD
	Attaining High Performance
	Are you ready?
	Notation
	Knowledge from Numerical Analysis
	GNU Free Documentation License
	References
	Index

