
Linear Algebra: Foundations to Frontiers
Notes to LAFF With

MATLAB Version

Margaret E. Myers

Pierce M. van de Geijn

Robert A. van de Geijn

Release Date September 8, 2020

Kindly do not share this PDF

Point others to * http://www.ulaff.net instead

This is a work in progress

http://www.ulaff.net

2

Copyright © 2014, 2015, 2016, 2017, 2018, 2019 by Margaret E. Myers, Pierce M. van de Geijn, and
Robert A. van de Geijn.

10 9 8 7 6 5 4 3 2 1

All rights reserved. No part of this book may be reproduced, stored, or transmitted in any manner
without the written permission of the publisher. For information, contact any of the authors.

No warranties, express or implied, are made by the publisher, authors, and their employers that the
programs contained in this volume are free of error. They should not be relied on as the sole basis to
solve a problem whose incorrect solution could result in injury to person or property. If the programs
are employed in such a manner, it is at the user’s own risk and the publisher, authors, and their
employers disclaim all liability for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.

Library of Congress Cataloging-in-Publication Data not yet available
Draft Edition,
This “Draft Edition” allows this material to be used while we sort out through what mechanism we
will publish the book.

Contents

0. Getting Started 1
0.1. Opening Remarks . 1

0.1.1. Welcome to LAFF . 1
0.1.2. Outline . 3
0.1.3. What You Will Learn . 4

0.2. How to LAFF . 5
0.2.1. When to LAFF . 5
0.2.2. How to Navigate LAFF . 5
0.2.3. Homework and LAFF . 5
0.2.4. Grading and LAFF . 5
0.2.5. Programming and LAFF . 6
0.2.6. Proving and LAFF . 6
0.2.7. Setting Up to LAFF . 7

0.3. Software to LAFF . 7
0.3.1. Why MATLAB . 7
0.3.2. Installing MATLAB . 7
0.3.3. MATLAB Basics . 8

0.4. Enrichments . 8
0.4.1. The Origins of MATLAB . 8

0.5. Wrap Up . 8
0.5.1. Additional Homework . 8
0.5.2. Summary . 9

1. Vectors in Linear Algebra 11
1.1. Opening Remarks . 11

1.1.1. Take Off . 11
1.1.2. Outline Week 1 . 12
1.1.3. What You Will Learn . 13

1.2. What is a Vector? . 14
1.2.1. Notation . 14
1.2.2. Unit Basis Vectors . 16

1.3. Simple Vector Operations . 17
1.3.1. Equality (=), Assignment (:=), and Copy . 17
1.3.2. Vector Addition (ADD) . 18
1.3.3. Scaling (SCAL) . 20
1.3.4. Vector Subtraction . 21

1.4. Advanced Vector Operations . 23
1.4.1. Scaled Vector Addition (AXPY) . 23
1.4.2. Linear Combinations of Vectors . 24
1.4.3. Dot or Inner Product (DOT) . 26

i

ii CONTENTS

1.4.4. Vector Length (NORM2) . 28
1.4.5. Vector Functions . 30
1.4.6. Vector Functions that Map a Vector to a Vector . 32

1.5. LAFF Package Development: Vectors . 35
1.5.1. Starting the Package . 35
1.5.2. A Copy Routine (copy) . 36
1.5.3. A Routine that Scales a Vector (scal) . 36
1.5.4. A Scaled Vector Addition Routine (axpy) . 37
1.5.5. An Inner Product Routine (dot) . 37
1.5.6. A Vector Length Routine (norm2) . 37

1.6. Slicing and Dicing . 38
1.6.1. Slicing and Dicing: Dot Product . 38
1.6.2. Algorithms with Slicing and Redicing: Dot Product . 38
1.6.3. Coding with Slicing and Redicing: Dot Product . 39
1.6.4. Slicing and Dicing: axpy . 40
1.6.5. Algorithms with Slicing and Redicing: axpy . 41
1.6.6. Coding with Slicing and Redicing: axpy . 41

1.7. Enrichment . 42
1.7.1. Learn the Greek Alphabet . 42
1.7.2. Other Norms . 42
1.7.3. Overflow and Underflow . 46
1.7.4. A Bit of History . 46

1.8. Wrap Up . 47
1.8.1. Homework . 47
1.8.2. Summary of Vector Operations . 51
1.8.3. Summary of the Properties of Vector Operations . 51
1.8.4. Summary of the Routines for Vector Operations . 52

2. Linear Transformations and Matrices 53
2.1. Opening Remarks . 53

2.1.1. Rotating in 2D . 53
2.1.2. Outline . 56
2.1.3. What You Will Learn . 57

2.2. Linear Transformations . 58
2.2.1. What Makes Linear Transformations so Special? . 58
2.2.2. What is a Linear Transformation? . 58
2.2.3. Of Linear Transformations and Linear Combinations . 61

2.3. Mathematical Induction . 63
2.3.1. What is the Principle of Mathematical Induction? . 63
2.3.2. Examples . 63

2.4. Representing Linear Transformations as Matrices . 66
2.4.1. From Linear Transformation to Matrix-Vector Multiplication . 66
2.4.2. Practice with Matrix-Vector Multiplication . 69
2.4.3. It Goes Both Ways . 71
2.4.4. Rotations and Reflections, Revisited . 73

2.5. Enrichment . 76
2.5.1. The Importance of the Principle of Mathematical Induction for Programming 76
2.5.2. Puzzles and Paradoxes in Mathematical Induction . 77

2.6. Wrap Up . 77
2.6.1. Homework . 77
2.6.2. Summary . 77

CONTENTS iii

3. Matrix-Vector Operations 81
3.1. Opening Remarks . 81

3.1.1. Timmy Two Space . 81
3.1.2. Outline Week 3 . 82
3.1.3. What You Will Learn . 83

3.2. Special Matrices . 84
3.2.1. The Zero Matrix . 84
3.2.2. The Identity Matrix . 85
3.2.3. Diagonal Matrices . 88
3.2.4. Triangular Matrices . 91
3.2.5. Transpose Matrix . 94
3.2.6. Symmetric Matrices . 97

3.3. Operations with Matrices . 99
3.3.1. Scaling a Matrix . 99
3.3.2. Adding Matrices . 102

3.4. Matrix-Vector Multiplication Algorithms . 105
3.4.1. Via Dot Products . 105
3.4.2. Via AXPY Operations . 108
3.4.3. Compare and Contrast . 110
3.4.4. Cost of Matrix-Vector Multiplication . 111

3.5. Wrap Up . 112
3.5.1. Homework . 112
3.5.2. Summary . 112

4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 117
4.1. Opening Remarks . 117

4.1.1. Predicting the Weather . 117
4.1.2. Outline . 121
4.1.3. What You Will Learn . 122

4.2. Preparation . 123
4.2.1. Partitioned Matrix-Vector Multiplication . 123
4.2.2. Transposing a Partitioned Matrix . 125
4.2.3. Matrix-Vector Multiplication, Again . 129

4.3. Matrix-Vector Multiplication with Special Matrices . 132
4.3.1. Transpose Matrix-Vector Multiplication . 132
4.3.2. Triangular Matrix-Vector Multiplication . 134
4.3.3. Symmetric Matrix-Vector Multiplication . 140

4.4. Matrix-Matrix Multiplication (Product) . 143
4.4.1. Motivation . 143
4.4.2. From Composing Linear Transformations to Matrix-Matrix Multiplication 145
4.4.3. Computing the Matrix-Matrix Product . 145
4.4.4. Special Shapes . 148
4.4.5. Cost . 153

4.5. Enrichment . 154
4.5.1. Markov Chains: Their Application . 154

4.6. Wrap Up . 154
4.6.1. Homework . 154
4.6.2. Summary . 155

5. Matrix-Matrix Multiplication 159
5.1. Opening Remarks . 159

5.1.1. Composing Rotations . 159
5.1.2. Outline . 160
5.1.3. What You Will Learn . 161

5.2. Observations . 162
5.2.1. Partitioned Matrix-Matrix Multiplication . 162

iv CONTENTS

5.2.2. Properties . 163
5.2.3. Transposing a Product of Matrices . 164
5.2.4. Matrix-Matrix Multiplication with Special Matrices . 165

5.3. Algorithms for Computing Matrix-Matrix Multiplication . 169
5.3.1. Lots of Loops . 169
5.3.2. Matrix-Matrix Multiplication by Columns . 171
5.3.3. Matrix-Matrix Multiplication by Rows . 172
5.3.4. Matrix-Matrix Multiplication with Rank-1 Updates . 175

5.4. Enrichment . 177
5.4.1. Slicing and Dicing for Performance . 177
5.4.2. How It is Really Done . 181

5.5. Wrap Up . 183
5.5.1. Homework . 183
5.5.2. Summary . 186

6. Gaussian Elimination 193
6.1. Opening Remarks . 193

6.1.1. Solving Linear Systems . 193
6.1.2. Outline . 194
6.1.3. What You Will Learn . 195

6.2. Gaussian Elimination . 196
6.2.1. Reducing a System of Linear Equations to an Upper Triangular System 196
6.2.2. Appended Matrices . 198
6.2.3. Gauss Transforms . 201
6.2.4. Computing Separately with the Matrix and Right-Hand Side (Forward Substitution) 204
6.2.5. Towards an Algorithm . 205

6.3. Solving Ax = b via LU Factorization . 209
6.3.1. LU factorization (Gaussian elimination) . 209
6.3.2. Solving Lz = b (Forward substitution) . 212
6.3.3. Solving Ux = b (Back substitution) . 214
6.3.4. Putting it all together to solve Ax = b . 218
6.3.5. Cost . 220

6.4. Enrichment . 225
6.4.1. Blocked LU Factorization . 225
6.4.2. How Ordinary Elimination Became Gaussian Elimination . 230

6.5. Wrap Up . 230
6.5.1. Homework . 230
6.5.2. Summary . 230

7. More Gaussian Elimination and Matrix Inversion 237
7.1. Opening Remarks . 237

7.1.1. Introduction . 237
7.1.2. Outline . 238
7.1.3. What You Will Learn . 239

7.2. When Gaussian Elimination Breaks Down . 240
7.2.1. When Gaussian Elimination Works . 240
7.2.2. The Problem . 244
7.2.3. Permutations . 245
7.2.4. Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting) 249
7.2.5. When Gaussian Elimination Fails Altogether . 254

7.3. The Inverse Matrix . 255
7.3.1. Inverse Functions in 1D . 255
7.3.2. Back to Linear Transformations . 255
7.3.3. Simple Examples . 257
7.3.4. More Advanced (but Still Simple) Examples . 261
7.3.5. Properties . 264

CONTENTS v

7.4. Enrichment . 265
7.4.1. Library Routines for LU with Partial Pivoting . 265

7.5. Wrap Up . 266
7.5.1. Homework . 266
7.5.2. Summary . 266

8. More on Matrix Inversion 273
8.1. Opening Remarks . 273

8.1.1. When LU Factorization with Row Pivoting Fails . 273
8.1.2. Outline . 276
8.1.3. What You Will Learn . 277

8.2. Gauss-Jordan Elimination . 278
8.2.1. Solving Ax = b via Gauss-Jordan Elimination . 278
8.2.2. Solving Ax = b via Gauss-Jordan Elimination: Gauss Transforms . 280
8.2.3. Solving Ax = b via Gauss-Jordan Elimination: Multiple Right-Hand Sides 286
8.2.4. Computing A−1 via Gauss-Jordan Elimination . 291
8.2.5. Computing A−1 via Gauss-Jordan Elimination, Alternative . 297
8.2.6. Pivoting . 300
8.2.7. Cost of Matrix Inversion . 300

8.3. (Almost) Never, Ever Invert a Matrix . 302
8.3.1. Solving Ax = b . 302
8.3.2. But... 303

8.4. (Very Important) Enrichment . 304
8.4.1. Symmetric Positive Definite Matrices . 304
8.4.2. Solving Ax = b when A is Symmetric Positive Definite . 305
8.4.3. Other Factorizations . 308
8.4.4. Welcome to the Frontier . 309

8.5. Wrap Up . 310
8.5.1. Homework . 310
8.5.2. Summary . 310

9. Vector Spaces 313
9.1. Opening Remarks . 313

9.1.1. Solvable or not solvable, that’s the question . 313
9.1.2. Outline . 318
9.1.3. What you will learn . 319

9.2. When Systems Don’t Have a Unique Solution . 320
9.2.1. When Solutions Are Not Unique . 320
9.2.2. When Linear Systems Have No Solutions . 321
9.2.3. When Linear Systems Have Many Solutions . 322
9.2.4. What is Going On? . 324
9.2.5. Toward a Systematic Approach to Finding All Solutions . 325

9.3. Review of Sets . 328
9.3.1. Definition and Notation . 328
9.3.2. Examples . 328
9.3.3. Operations with Sets . 329

9.4. Vector Spaces . 331
9.4.1. What is a Vector Space? . 331
9.4.2. Subspaces . 332
9.4.3. The Column Space . 334
9.4.4. The Null Space . 335

9.5. Span, Linear Independence, and Bases . 337
9.5.1. Span . 337
9.5.2. Linear Independence . 339
9.5.3. Bases for Subspaces . 343
9.5.4. The Dimension of a Subspace . 344

vi CONTENTS

9.6. Enrichment . 346
9.6.1. Typesetting algorithms with the FLAME notation . 346

9.7. Wrap Up . 346
9.7.1. Homework . 346
9.7.2. Summary . 346

10. Vector Spaces, Orthogonality, and Linear Least Squares 349
10.1. Opening Remarks . 349

10.1.1. Visualizing Planes, Lines, and Solutions . 349
10.1.2. Outline . 357
10.1.3. What You Will Learn . 358

10.2. How the Row Echelon Form Answers (Almost) Everything . 359
10.2.1. Example . 359
10.2.2. The Important Attributes of a Linear System . 359

10.3. Orthogonal Vectors and Spaces . 364
10.3.1. Orthogonal Vectors . 364
10.3.2. Orthogonal Spaces . 365
10.3.3. Fundamental Spaces . 366

10.4. Approximating a Solution . 369
10.4.1. A Motivating Example . 369
10.4.2. Finding the Best Solution . 372
10.4.3. Why It is Called Linear Least-Squares . 376

10.5. Enrichment . 377
10.5.1. Solving the Normal Equations . 377

10.6. Wrap Up . 378
10.6.1. Homework . 378
10.6.2. Summary . 378

11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 383
11.1. Opening Remarks . 383

11.1.1. Low Rank Approximation . 383
11.1.2. Outline . 384
11.1.3. What You Will Learn . 385

11.2. Projecting a Vector onto a Subspace . 386
11.2.1. Component in the Direction of ... 386
11.2.2. An Application: Rank-1 Approximation . 389
11.2.3. Projection onto a Subspace . 392
11.2.4. An Application: Rank-2 Approximation . 394
11.2.5. An Application: Rank-k Approximation . 396

11.3. Orthonormal Bases . 398
11.3.1. The Unit Basis Vectors, Again . 398
11.3.2. Orthonormal Vectors . 399
11.3.3. Orthogonal Bases . 401
11.3.4. Orthogonal Bases (Alternative Explanation) . 403
11.3.5. The QR Factorization . 406
11.3.6. Solving the Linear Least-Squares Problem via QR Factorization . 407
11.3.7. The QR Factorization (Again) . 408

11.4. Change of Basis . 411
11.4.1. The Unit Basis Vectors, One More Time . 411
11.4.2. Change of Basis . 411

11.5. Singular Value Decomposition . 414
11.5.1. The Best Low Rank Approximation . 414

11.6. Enrichment . 417
11.6.1. The Problem with Computing the QR Factorization . 417
11.6.2. QR Factorization Via Householder Transformations (Reflections) . 417
11.6.3. More on SVD . 417

CONTENTS vii

11.7. Wrap Up . 417
11.7.1. Homework . 417
11.7.2. Summary . 417

12. Eigenvalues, Eigenvectors, and Diagonalization 423
12.1. Opening Remarks . 423

12.1.1. Predicting the Weather, Again . 423
12.1.2. Outline . 426
12.1.3. What You Will Learn . 427

12.2. Getting Started . 428
12.2.1. The Algebraic Eigenvalue Problem . 428
12.2.2. Simple Examples . 429
12.2.3. Diagonalizing . 437
12.2.4. Eigenvalues and Eigenvectors of 3×3 Matrices . 438

12.3. The General Case . 443
12.3.1. Eigenvalues and Eigenvectors of n×n matrices: Special Cases . 443
12.3.2. Eigenvalues of n×n Matrices . 444
12.3.3. Diagonalizing, Again . 446
12.3.4. Properties of Eigenvalues and Eigenvectors . 448

12.4. Practical Methods for Computing Eigenvectors and Eigenvalues . 449
12.4.1. Predicting the Weather, One Last Time . 449
12.4.2. The Power Method . 451
12.4.3. In Preparation for this Week’s Enrichment . 455

12.5. Enrichment . 456
12.5.1. The Inverse Power Method . 456
12.5.2. The Rayleigh Quotient Iteration . 460
12.5.3. More Advanced Techniques . 461

12.6. Wrap Up . 461
12.6.1. Homework . 461
12.6.2. Summary . 461

A. LAFF Routines (FLAME@lab) 465

Index 469

viii CONTENTS

Preface

Linear Algebra: Foundations to Frontiers (LAFF) is an experiment in a number of different dimensions.

• It is a resource that integrates a text, a large number of videos (more than 270 by last count), and hands-on activities.

• It connects hand calculations, mathematical abstractions, and computer programming.

• In encourages you to develop the mathematical theory of linear algebra by posing questions rather than outright stating
theorems and their proofs.

• It introduces you to the frontier of linear algebra software development.

Our hope is that this will enable you to master all the standard topics that are taught in a typical introductory undergraduate
linear algebra course.

Who should LAFF? From our experience offering LAFF as a Massive Open Online Course (MOOC) on * edX, it has become
clear that there are a number of audiences for LAFF.

The Independent Beginner. There were MOOC participants for whom LAFF was their first introduction to linear algebra
beyond the matrix manipulation that is taught in high school. These were individuals who possess a rare talent for self-
learning that is unusual at an early stage in one’s schooling. For them, LAFF was a wonderful playground. Others like
them may similarly benefit from these materials.

The Guide. What we also hope to deliver with LAFF is a resource for someone who is an effective facilitator of learning
(what some would call an instructor) to be used, for example, in a small to medium size classroom setting. While this
individual may or may not have our level of expertise in the domain of linear algebra, what is important is that she/he
knows how to guide and inspire.

The Refresher. At some point, a student or practitioner of mathematics (in engineering, the physical sciences, the social
sciences, business, and many other subjects) realizes that linear algebra is as fundamental as is calculus. This often
happens after the individual has already completed the introductory course on the subject and now he/she realizes it
is time for a refresher. From our experience with the MOOC, LAFF seems to delight this category of learner. We
sequence the material differently from how a typical course on “matrix computations” presents the subject. We focus on
fundamental topics that have practical importance and on raising the participant’s ability to think more abstractly. We
link the material to how one should translate theory into algorithms and implementations. This seemed to appeal even to
MOOC participants who had already taken multiple linear algebra courses and/or already had advanced degrees.

The Graduate Student. This is a subcategory of The Refresher. The material that is incorporated in LAFF are meant in part
to provide the foundation for a more advanced study of linear algebra. The feedback from those MOOC participants who
had already taken linear algebra suggests that LAFF is a good choice for those who want to prepare for a more advanced
course. Robert expects the students who take his graduate course in Numerical Linear Algebra to have the material
covered by LAFF as a background, but not more. A graduate student may also want to study these undergraduate
materials hand-in-hand with Robert’s notes for Linear Algebra: Foundations to Frontiers - Notes on Numerical Linear
algebra, also available from * http://www.ulaff.net.

ix

http://www.edx.org
http://www.ulaff.net

x CONTENTS

If you are still trying to decide whether LAFF is for you, you may want to read some of the * Reviews of LAFF (The MOOC)
on CourseTalk.

A typical college or university offers at least three undergraduate linear algebra courses: Introduction to Linear Algebra;
Linear Algebra and Its Applications; and Numerical Linear Algebra. LAFF aims to be that first course. After mastering this
fundamental knowledge, you will be ready for the other courses, or a graduate course on numerical linear algebra.

https://www.coursetalk.com/edx/ut501x-linear-algebra-foundations-to-frontiers-c2?sort=most_helpful
https://www.coursetalk.com/edx/ut501x-linear-algebra-foundations-to-frontiers-c2?sort=most_helpful

Acknowledgments

LAFF was first introduced as a Massive Open Online Course (MOOC) offered by edX, a non-profit founded by Harvard
University and the Massachusetts Institute of Technology. It was funded by the University of Texas System, an edX partner,
and sponsored by a number of entities of The University of Texas at Austin (UT-Austin): the Department of Computer Science
(UTCS); the Division of Statistics and Scientific Computation (SSC); the Institute for Computational Engineering and Sciences
(ICES); the Texas Advanced Computing Center (TACC); the College of Natural Sciences; and the Office of the Provost. It was
also partially sponsored by the National Science Foundation Award ACI-1148125 titled “SI2-SSI: A Linear Algebra Software
Infrastructure for Sustained Innovation in Computational Chemistry and other Sciences”1, which also supports our research on
how to develop linear algebra software libraries. The course was and is designed and developed by Dr. Maggie Myers and Prof.
Robert van de Geijn based on an introductory undergraduate course, Practical Linear Algebra, offered at UT-Austin.

The Team

Dr. Maggie Myers is a lecturer for the Department of Computer Science and Division of Statistics and Scientific Computing.
She currently teaches undergraduate and graduate courses in Bayesian Statistics. Her research activities range from informal
learning opportunities in mathematics education to formal derivation of linear algebra algorithms. Earlier in her career she
was a senior research scientist with the Charles A. Dana Center and consultant to the Southwest Educational Development
Lab (SEDL). Her partnerships (in marriage and research) with Robert have lasted for decades and seems to have survived the
development of LAFF.

Dr. Robert van de Geijn is a professor of Computer Science and a member of the Institute for Computational Engineering
and Sciences. Prof. van de Geijn is a leading expert in the areas of high-performance computing, linear algebra libraries,
parallel processing, and formal derivation of algorithms. He is the recipient of the 2007-2008 President’s Associates Teaching
Excellence Award from The University of Texas at Austin.

Pierce van de Geijn is one of Robert and Maggie’s three sons. He took a year off from college to help launch the course, as a
full-time volunteer. His motto: “If I weren’t a slave, I wouldn’t even get room and board!”

David R. Rosa Tamsen is an undergraduate research assistant to the project. He developed the laff application that launches
the IPython Notebook server. His technical skills allows this application to execute on a wide range of operating systems. His
gentle bed side manners helped MOOC participants overcome complications as they became familiar with the software.

Josh Blair was our social media director, posting regular updates on Twitter and Facebook. He regularly reviewed progress,
alerting us of missing pieces. (This was a daunting task, given that we were often still writing material as the hour of release
approached.) He also tracked down a miriad of linking errors in this document.

Dr. Erin Byrne and Dr. Grace Kennedy from MathWorks provided invaluable support for MATLAB. * MathWorks gra-
ciously provided free licenses for the partipants during the offering of the course on the edX platform.

Dr. Tze Meng Low developed PictureFLAME and the online Gaussian elimination exercises. He is now a Systems Scientist
at Carnegie Mellon University.

Dr. Ardavan Pedram created the animation of how data moves between memory layers during a high-performance matrix-
matrix multiplication.

1Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation (NSF).

xi

http://www.mathworks.com

xii CONTENTS

Sean Cunningham created the LAFF “sizzler” (introductory video). Sean is the multimedia producer at the Texas Advanced
Computing Center (TACC).

The music for the sizzler was composed by Dr. Victor Eijkhout. Victor is a Research Scientist at TACC. Check him out at *
MacJams.

Chase van de Geijn, Maggie and Robert’s youngest son, produced the “Tour of UTCS” video. He faced a real challenge: we
were running out of time, Robert had laryngitis, and we still didn’t have the right equipment. Yet, as of this writing, the video
already got more than 9.500 views on YouTube!

Sejal Shah of UT-Austin’s Center for Teaching Learning tirelessly helped resolved technical questions, as did Emily Watson
and Jennifer Akana of edX.

Cayetana Garcia and Julie Heiland provided invaluable administrative assistants. When a piece of equipment had to be
ordered, to be used “yesterday”, they managed to make it happen!

It is important to acknowledge the students in Robert’s SSC 329C classes of Fall 2013 and Spring 2014. They were willing
guinnea pigs in this cruel experiment.

Additional support for the first offering (Spring 2014) of LAFF on edX

Jianyu Huang was both a teaching assistant for Robert’s class that ran concurrent with the MOOC and the MOOC itself. Once
Jianyu took charge of the tracking of videos, transcripts, and other materials, our task was greatly lightened.

Woody Austin was a teaching assistant in Fall 2013 for Robert’s class that helped develop many of the materials that became
part of the LAFF. He was also an assistant for the MOOC, contributing IPython Notebooks, proofing materials, and monitoring
the discussion board.

Graduate students Martin Schatz and Tyler Smith helped monitor the discussion board.

In addition to David and Josh, three undergraduate assistants helped with the many tasks that faced us in Spring 2014: Ben
Holder, who implemented “Timmy” based on an exercise by our colleague Prof. Alan Cline for the IPython Notebook in
Week 3. Farhan Daya, Adam Hopkins, Michael Lu, and Nabeel Viran, who monitored the discussion boards and checked
materials.

Thank you all!

Finally, we would like to thank the participants for their enthusiasm and valuable comments. Some enthusiastically forged
ahead as soon as a new week was launched and gave us early feedback. Without them many glitches would have plagued all
participants. Others posed uplifting messages on the discussion board that kept us going. Their patience with our occasional
shortcomings were most appreciated!

http://www.macjams.com/artist/VicDiesel
http://www.macjams.com/artist/VicDiesel

Week 0
Getting Started

0.1 Opening Remarks

0.1.1 Welcome to LAFF

* View at edX

Welcome to UT.5.04x Linear Algebra: Foundations to Frontiers (LAFF), a Massive Open Online Course offered on the edX
platform.

This course is not only designed to teach the standard topics in a typical linear algebra course, but also investigates how to
translate theory into algorithms. Like typical linear algebra courses, we will often start studying operations with small matrices.
In practice, however, one often wants to perform operations with large matrices so we generalize the techniques to formulate
practical algorithms and their implementations. To understand how to create software for solving matrix problems, we must
thoroughly understand the underlying theory of linear algebra. Upon completion, you will grasp basic linear algebra concepts
and get a glimpse of cutting edge research on the development of high-performance linear algebra libraries, which are used
throughout computational science.

What is LAFF? LAFF is an online course on linear algebra that mirrors an undergraduate course taught by the authors through
the Department of Statistics and Data Sciences.

Why is linear algebra important? Linear algebra is generally considered as important a tool for science (including the social
sciences) as is calculus. There is an interesting post on reddit.com that started with the question “What is the point of linear
algebra?”. It generated a flood of comments that are worth reading.

What level does LAFF target? At a typical university, a number of different linear algebra courses are often offered: Intro-
ductory Linear Algebra, Applications of Linear Algebra, and Numerical Methods (which often includes other topics). LAFF
corresponds to the first, introductory course and prepares you for subsequent courses. We added optional ”enrichments” that
also expose you to some of the frontiers of the subject.

Who is the audience for LAFF? Judging by who completed LAFF last year (in Spring 2014), people with very different
kinds of background found the course useful. Participants included novice high school students as well as PhDs with decades
of experience, and every level of education in between. You may want to check out reviews of the course on CourseTalk to see
what former participants are saying.

1

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/aee06a0ad35c4c38991676d23f375b0f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/aee06a0ad35c4c38991676d23f375b0f/1
http://www.reddit.com/r/askscience/comments/2ozkcv/whats_the_point_of_linear_algebra/
http://www.reddit.com/r/askscience/comments/2ozkcv/whats_the_point_of_linear_algebra/
https://www.edx.org/course/linear-algebra-foundations-frontiers-utaustinx-ut-5-02x

Week 0. Getting Started 2

How and what will I learn? Through: short videos, exercises, visualizations, and programming assignments you will study
standard topics in an introductory linear algebra course.

Linear algebra deals with functions of many variables. These many variables are viewed as ”vectors” of numbers. Thus,
we start by discussing vectors. The functions we focus on have special properties: they are ”linear transformations”, which are
extensions of the linear functions you studied in high school algebra. In Week 2 we define linear transformations as well as
investigate and prove properties of these functions. This then allows us to link linear transformations to their representation as
matrices. Next, you discover why multiplying a matrix times a vector or times a matrix is defined the way you may have been
taught in high school. The reason comes from how matrices represent linear transformations. In the first third of the course you
will also learn how to slice and dice matrices into pieces. This extends your concrete knowledge about operations with small
matrices to operations with matrices of any size.

Solving systems of linear equations is a core topic in linear algebra. By the time you encounter this topic, in Week 6, you
will be very comfortable with matrices and vectors. You build on this as you discover practical methods for finding solutions.

In the remainder of the course, you study how to solve linear systems with more or fewer equations than unknowns and find
that there may be one, many, or no solutions. If there is no solution, what is the best approximate solution? The course wraps
up with eigenvalues and eigenvectors.

All along, you not only learn what (the methods), but also why (the theory that underlies the methods).

Will we learn how to program? This is not a course that focuses on teaching you how to program for Matlab or in any
other programming language. We teach just enough about how to program with M-script to support what we want you to learn
about linear algebra. We link abstractions in mathematics to abstractions in code. That is not the same as teaching you how to
program.

Will we see applications? LAFF tries to give you the background so that you can understand the application of linear
algebra rather than focusing on applications themselves. We do use a few simple applications to motivate. We will point you to
applications of linear algebra in some of the “enrichment” sections. We encourage you to share applications that have caught
you interest on the discussion board.

This spring, there are at least two MOOCs offered that do focus on the application of linear algebra:

• Applications of Linear Algebra by Tim Chartier (Davidson College) on edX.

• Coding the Matrix: Linear Algebra through Computer Science Applications by Philip Klein (Brown University) on
Coursera.

We suspect that both courses require an introductory course in linear algebra. Thus, LAFF may prepare you for those “applica-
tion of linear algebra” courses.

Wish You Were Here

* View at edX

Since most of you are not The University of Texas at Austin students, we thought we’d give you a tour of our new building: the
Gates Dell Complex. Want to see more of The University of Texas at Austin? Take the * Virtual Campus Tour.

https://www.edx.org/course/applications-linear-algebra-part-1-davidsonx-d003x-1
https://www.coursera.org/course/matrix
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/aee06a0ad35c4c38991676d23f375b0f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/aee06a0ad35c4c38991676d23f375b0f/1
https://www.utexas.edu/opa/photo/virtual_tour/tourfiles/flash/index_fs.html

0.1. Opening Remarks 3

0.1.2 Outline

Following the “opener” we give the outline for the week:

0.1. Opening Remarks . 1
0.1.1. Welcome to LAFF . 1
0.1.2. Outline . 3
0.1.3. What You Will Learn . 4

0.2. How to LAFF . 5
0.2.1. When to LAFF . 5
0.2.2. How to Navigate LAFF . 5
0.2.3. Homework and LAFF . 5
0.2.4. Grading and LAFF . 5
0.2.5. Programming and LAFF . 6
0.2.6. Proving and LAFF . 6
0.2.7. Setting Up to LAFF . 7

0.3. Software to LAFF . 7
0.3.1. Why MATLAB . 7
0.3.2. Installing MATLAB . 7
0.3.3. MATLAB Basics . 8

0.4. Enrichments . 8
0.4.1. The Origins of MATLAB . 8

0.5. Wrap Up . 8
0.5.1. Additional Homework . 8
0.5.2. Summary . 9

Week 0. Getting Started 4

0.1.3 What You Will Learn

The third unit of the week informs you of what you will learn. This describes the knowledge and skills that you can expect to
acquire. In addition, this provides an opportunity for you to self-assess upon completion of the week.

Upon completion of this week, you should be able to

• Navigate through LAFF on the edX platform.

• Keep track of your homework and progress through LAFF.

• Download and start MATLAB.

• Recognize the structure of a typical week.

0.2. How to LAFF 5

0.2 How to LAFF

0.2.1 When to LAFF

The beauty of an online course is that you get to study when you want, where you want. Still, deadlines tend to keep people
moving forward. To strike a balance between flexibility and structure, we release the material one week at a time and give a
generous yet finite period during which to complete the homeworks.

The course schedule can be found by clicking the * Calendar tab in the edX navigation bar.
Please reference this schedule often as any official changes will appear here.

0.2.2 How to Navigate LAFF

* View at edX

0.2.3 Homework and LAFF

* View at edX
When future weeks become available, you will notice that homework appears both in the notes and in the various units on

the edX platform. Most of the time, the questions will match exactly but sometimes they will be worded slightly differently.
Realize that the edX platform is ever evolving and that at some point we had to make a decision about what features

we would embrace and what features did not fit our format so well. As a result, homework problems have frequently been
(re)phrased in a way that fits both the platform and our course.

Some things you will notice:

• “Open” questions in the text are sometimes rephrased as multiple choice in the units.

• Video answers appear as embedded YouTube, with then a link to the end of the week where the same video, with
captioning and optional download from an alternative source, can be found. This was because edX’s video player could
not (yet) be embedded in answers.

Please be patient with some of these decisions. Our course and the edX platform are both evolving, and sometimes we had
to improvise.

0.2.4 Grading and LAFF

How to grade the course was another decision that required compromise. Our fundamental assumption is that you are taking
this course because you want to learn the material, and that the homework and exams are mostly there to help you along. For
this reason, for the homework, we

• Give you multiple chances to get an answer right;

• Provide you with detailed answers; and

• Allow you to view the answer if you believe it will help you master the material efficiently.

In other words, you get to use the homework in whatever way helps you learn best.

Don’t forget to click on “Check” or you don’t get credit for the exercise!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2018/3b39b7df8cc543259c734c4f1d3f3ed0/
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/767a29af70474e84b4be2dc0a364ed5d/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/767a29af70474e84b4be2dc0a364ed5d/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/767a29af70474e84b4be2dc0a364ed5d/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/767a29af70474e84b4be2dc0a364ed5d/3

Week 0. Getting Started 6

How your progress is measured is another interesting compromise. The homework for each week is worth 5% of the total
points in the course. There are 12 graded weeks, and hence this adds up to 60%. Now, within each week, limitations of the edX
platform did not match with how we wanted to present the course. We very much wanted the homework close to the material
so that the homework helps you along. This means that homeworks are scattered throughout the units and subsections. But the
edX grade book starts with 100 points, and allows only integers to be assigned to subsections within weeks, unless subsections
are equally weighted...

Let us explain how this now in practice works, using Week 1 as an example.

• Homework from Week 1 is worth 5 points towards the 100 point total.

• Week 1 has 6 graded subsections (1.2, 1.3, 1.4, 1.5, 1.6, and 1.8). Some of these subsections have a lot of homework
problems, others have a few. Still, each subsection is worth the same. So, if you get all homework points in Subsection
1.2, then that gives you 1/6 x 5 = 5/6 points towards the total 100 points for the course. Subsection 1.3, which has a
different number of homework problems, also gives you 1/6 x 5 = 5/6 points towards the total 100 points for the course.

Not much we can do about it without totally reformatting the course.
To view your progress, click on “Progress” in the edX navigation bar. If you find out that you missed a homework, scroll

down the page, and you will be able to identify where to go to fix it. Don’t be shy about correcting a missed answer. The
primary goal is to learn.

Some of you will be disappointed that the course is not more rigorously graded, thereby (to you) diminishing the value
of a certificate. The fact is that MOOCs are still evolving. People are experimenting with how to make them serve different
audiences. In our case, we decided to focus on quality material first, with the assumption that for most participants the primary
goal for taking the course is to learn.

Let’s focus on what works, and be patient with what doesn’t!

0.2.5 Programming and LAFF

In this course, we invite you to learn the theory of linear algebra hand-in-hand with the practice of developing a software library.
Programming is about abstracting. It will help us extend our concrete knowledge of how matrix operations work with small

sized matrices to any size matrices. We encourage you, as you engage in LAFF, to take an active part in the abstraction process
by extending what you know and thinking in general terms to construct algorithms and think about their costs.

We will be using the MATLAB tool. In Week 0 we include instructions on how to set up your environment to use these
tools. You do not need any previous programming knowledge or experience. You do not need to know how to program with
MATLAB nor is the purpose of this course to teach you MATLAB. We will use this language in a very targeted way so that you
master just enough of it to be able to use it for our purposes. In the beginning, we will completely talk you through the package
construction. Later we will provide program skeletons and you will be asked to use your knowledge about the slicing and
dicing of matrices for performing the linear algebra operations to fill in commands. We hope that you will come to appreciate,
understand, and, PRODUCE components of a layered library.

We will share our own implementation of this library so you can build implementations of more complex operations. Please
get into the habit of trying on your own before peeking at our solutions. If you encounter any implementation issues try
conferring with others on the discussion boards.

In no time, you will be experiencing the frontier of linear algebra library development. Our FLAME research group prides
itself on writing the most beautiful and among the highest performing code for many linear algebra operations. We will share
this brilliance with you. If you don’t agree you can laugh at us otherwise LAFF with us!

0.2.6 Proving and LAFF

Traditionally, Linear Algebra is a course that develops one’s ability to prove mathematical facts. In this course, we invite you
to expand upon your reasoning skills.

Proofs are first and foremost persuasive arguments. They help us connect, justify, and communicate our ideas. We encourage
you, as you engage in LAFF, to question your developing intuitions and take an active part in the abstraction process by
extending what you know and thinking in general terms.

In the beginning, communicating your ideas in your own words to convince yourself is valuable. However, to convince
others and reveal your thought processes, making your arguments more formal is beneficial. We hope that you will come to
appreciate, understand, and, YES, produce proofs.

0.3. Software to LAFF 7

Users
rvdg

LAFF-2.0xM............................We suggest you place the PDFs for the course notes here. (Download
from the * Course page.) .

Week0.pdf
...

Week12.pdf
Programming

laff............................Subdirectory with a small library that we will use.
util
matvec
matmat
vecvec

Week1...........................Subdirectory for the coding assignments for Week 01.
laff copy.m................. Implementation of a routine that copies one vector to another that you

will write.
...

test copy.m.................Script for testing your implementation of tt laff copy.m.
...

Week12..........................Subdirectory for the coding assignments for Week 12.

...

Figure 1: Directory structure for your LAFF materials. Items in red will be placed into the materials by you. In this example,
we placed LAFF-2.0xM in the home directory Users -> rvdg. You may want to place it on your account’s “Desktop” instead.

Throughout this course, you will be asked to think a little deeper, extending your knowledge of properties of number systems
to new structures that we encounter. Our Always/Sometimes/Never as well as True/False exercises are designed to do this. In
addition to your answer, we urge you to think first, and then write a convincing argument explaining why you selected this
answer. We will share with you, in text and video, our own formal proofs. Please get into the habit of trying on your own before
peeking. Even if your proof differs from ours, remember that there is often more than one way to prove a result. You may want
to discuss your proof with others on the discussion boards.

0.2.7 Setting Up to LAFF

It helps if we all set up our environment in a consistent fashion. The easiest way to accomplish this is to download the file *
LAFF-2.0xM.zip and to “unzip” this in a convenient place. We suggest that you put it either in your home directory or on your
desktop.

Once you unzip the file, you will find a directory LAFF-2.0xM, with subdirectories. I did this in my home directory,
yielding the directory structure in Figure 1.

0.3 Software to LAFF

0.3.1 Why MATLAB

We use MATLAB as a tool because it was invented to support learning about matrix computations. You will find that the syntax
of the language used by MATLAB very closely resembles the mathematical expressions in linear algebra.

0.3.2 Installing MATLAB

For information on how to activite MATLAB for the course, visit * Unit 0.3.2 on the edX platform.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2018/course/
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Summer2015/LAFF-2.0xM.zip
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Summer2015/LAFF-2.0xM.zip
http://mathworks.com
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2018/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/2

Week 0. Getting Started 8

0.3.3 MATLAB Basics

Below you find a few short videos that introduce you to MATLAB. For a more comprehensive tutorial, you may want to visit
* MATLAB Tutorials at MathWorks and clicking “Launch Tutorial”.

HOWEVER, you need very little familiarity with MATLAB in order to learn what we want you to learn about how abstrac-
tion in mathematics is linked to abstraction in algorithms. So, you could just skip these tutorials altogether, and come back to
them if you find you want to know more about MATLAB and its programming language (M-script).

What is MATLAB?

* View at edX

The MATLAB Environment

* View at edX

MATLAB Variables

* View at edX

MATLAB as a Calculator

* View at edX

0.4 Enrichments

0.4.1 The Origins of MATLAB

* View at edX

0.5 Wrap Up

0.5.1 Additional Homework

For a typical week, additional assignments may be given in this unit.

https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html?confirmation_page
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/d9329173d78e4bcfa9d2ac032da56341/3
http://www.mathworks.com/videos/origins-of-matlab-70332.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/46e747ace4b54c94bb04af4c07123931/29465e48e72d4b89941e7c1c903606ab/1

0.5. Wrap Up 9

0.5.2 Summary

You will see that we develop a lot of the theory behind the various topics in linear algebra via a sequence of homework exercises.
At the end of each week, we summarize theorems and insights for easy reference.

Week 0. Getting Started 10

Week 1
Vectors in Linear Algebra

1.1 Opening Remarks

1.1.1 Take Off

”Co-Pilot Roger Murdock (to Captain Clarence Oveur): We have clearance, Clarence.

Captain Oveur: Roger, Roger. What’s our vector, Victor?”

From Airplane. Dir. David Zucker, Jim Abrahams, and Jerry Zucker. Perf. Robert Hays, Julie
Hagerty, Leslie Nielsen, Robert Stack, Lloyd Bridges, Peter Graves, Kareem Abdul-Jabbar, and
Lorna Patterson. Paramount Pictures, 1980. Film.

You can find a video clip by searching “What’s our vector Victor?”

Vectors have direction and length. Vectors are commonly used in aviation where they are routinely provided by air traffic
control to set the course of the plane, providing efficient paths that avoid weather and other aviation traffic as well as assist
disoriented pilots.

Let’s begin with vectors to set our course.

11

Week 1. Vectors in Linear Algebra 12

1.1.2 Outline Week 1

1.1. Opening Remarks . 11
1.1.1. Take Off . 11
1.1.2. Outline Week 1 . 12
1.1.3. What You Will Learn . 13

1.2. What is a Vector? . 14
1.2.1. Notation . 14
1.2.2. Unit Basis Vectors . 16

1.3. Simple Vector Operations . 17
1.3.1. Equality (=), Assignment (:=), and Copy . 17
1.3.2. Vector Addition (ADD) . 18
1.3.3. Scaling (SCAL) . 20
1.3.4. Vector Subtraction . 21

1.4. Advanced Vector Operations . 23
1.4.1. Scaled Vector Addition (AXPY) . 23
1.4.2. Linear Combinations of Vectors . 24
1.4.3. Dot or Inner Product (DOT) . 26
1.4.4. Vector Length (NORM2) . 28
1.4.5. Vector Functions . 30
1.4.6. Vector Functions that Map a Vector to a Vector . 32

1.5. LAFF Package Development: Vectors . 35
1.5.1. Starting the Package . 35
1.5.2. A Copy Routine (copy) . 36
1.5.3. A Routine that Scales a Vector (scal) . 36
1.5.4. A Scaled Vector Addition Routine (axpy) . 37
1.5.5. An Inner Product Routine (dot) . 37
1.5.6. A Vector Length Routine (norm2) . 37

1.6. Slicing and Dicing . 38
1.6.1. Slicing and Dicing: Dot Product . 38
1.6.2. Algorithms with Slicing and Redicing: Dot Product . 38
1.6.3. Coding with Slicing and Redicing: Dot Product . 39
1.6.4. Slicing and Dicing: axpy . 40
1.6.5. Algorithms with Slicing and Redicing: axpy . 41
1.6.6. Coding with Slicing and Redicing: axpy . 41

1.7. Enrichment . 42
1.7.1. Learn the Greek Alphabet . 42
1.7.2. Other Norms . 42
1.7.3. Overflow and Underflow . 46
1.7.4. A Bit of History . 46

1.8. Wrap Up . 47
1.8.1. Homework . 47
1.8.2. Summary of Vector Operations . 51
1.8.3. Summary of the Properties of Vector Operations . 51
1.8.4. Summary of the Routines for Vector Operations . 52

1.1. Opening Remarks 13

1.1.3 What You Will Learn

Upon completion of this week, you should be able to

• Represent quantities that have a magnitude and a direction as vectors.

• Read, write, and interpret vector notations.

• Visualize vectors in R2.

• Perform the vector operations of scaling, addition, dot (inner) product.

• Reason and develop arguments about properties of vectors and operations defined on them.

• Compute the (Euclidean) length of a vector.

• Express the length of a vector in terms of the dot product of that vector with itself.

• Evaluate a vector function.

• Solve simple problems that can be represented with vectors.

• Create code for various vector operations and determine their cost functions in terms of the size of the vectors.

• Gain an awareness of how linear algebra software evolved over time and how our programming assignments fit into this
(enrichment).

• Become aware of overflow and underflow in computer arithmetic (enrichment).

Week 1. Vectors in Linear Algebra 14

1.2 What is a Vector?

1.2.1 Notation

* View at edX

Definition

Definition 1.1 We will call a one-dimensional array of n numbers a vector of size n:

x =


χ0

χ1
...

χn−1

 .

• This is an ordered array. The position in the array is important.

• We will call the ith number the ith component or element.

• We denote the ith component of x by χi. Here χ is the lower case Greek letter pronounced as “kı”. (Learn more about our
notational conventions in Section 1.7.1.)

As a rule, we will use lower case letters to name vectors (e.g., x,y, ...). The “corresponding” Greek lower case letters are
used to name their components.

• We start indexing at 0, as computer scientists do. MATLAB, the tool we will be using to implement our libraries,
naturally starts indexing at 1, as do most mathematicians and physical scientists. You’ll have to get use to this...

• Each number is, at least for now, a real number, which in math notation is written as χi ∈ R (read: “ki sub i (is) in r” or
“ki sub i is an element of the set of all real numbers”).

• The size of the vector is n, the number of components. (Sometimes, people use the words “length” and “size” inter-
changeably. We will see that length also has another meaning and will try to be consistent.)

• We will write x ∈ Rn (read: “x” in “r” “n”) to denote that x is a vector of size n with components in the real numbers,
denoted by the symbol: R. Thus, Rn denotes the set of all vectors of size n with components in R. (Later we will talk
about vectors with components that are complex valued.)

• A vector has a direction and a length:

– Its direction is often visualized by drawing an arrow from the origin to the point (χ0,χ1, . . . ,χn−1), but the arrow
does not necessarily need to start at the origin.

– Its length is given by the Euclidean length of this arrow,√
χ2

0 +χ2
1 + · · ·+χ2

n−1,

It is denoted by ‖x‖2 called the two-norm. Some people also call this the magnitude of the vector.

• A vector does not have a location. Sometimes we will show it starting at the origin, but that is only for convenience. It
will often be more convenient to locate it elsewhere or to move it.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/1

1.2. What is a Vector? 15

Examples

Example 1.2

Consider x =

 4

−3

. Then

• Components 4 and −3 are the first and second compo-
nent, respectively.

• χ0 = 4, χ1 =−3 so that 4 is the component indexed with
0 and −3 the component indexed with 1.

• The vector is of size 2, so x ∈ R2.

Exercises

Homework 1.2.1.1 Consider the following picture:

x

Using the grid for units,

(a) x =

 −2

−3

 (b) x =

 3

−2


(c) x =

 2

−3

 (d) x =

 −3

−2


(e) None of these

Week 1. Vectors in Linear Algebra 16

Homework 1.2.1.2
Consider the following picture:

a

b

c
de

f

g

Using the grid for units,

(a) a =

  (b) b =

 
(c) c =

  (d) d =

 
(e) e =

  (f) f =

 
(g) g =

 

While a vector does not have a location, but has direction and length, vectors are often used to show the direction and length

of movement from one location to another. For example, the vector from point (1,−2) to point (5,1) is the vector

 4

3

. We

might geometrically represent the vector

 4

3

 by an arrow from point (1,−2) to point (5,1).

Homework 1.2.1.3 Write each of the following as a vector:

• The vector represented geometrically in R2 by an arrow from point (−1,2) to point (0,0).

• The vector represented geometrically in R2 by an arrow from point (0,0) to point (−1,2).

• The vector represented geometrically in R3 by an arrow from point (−1,2,4) to point (0,0,1).

• The vector represented geometrically in R3 by an arrow from point (1,0,0) to point (4,2,−1).

1.2.2 Unit Basis Vectors

* View at edX

Definition

Definition 1.3 An important set of vectors is the set of unit basis vectors given by

e j =



0
...

0

1

0
...

0



 j zeroes

←− component indexed by jn− j−1 zeroes

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/f6a00dd4dfa949248b0adb0ae90585b8/2

1.3. Simple Vector Operations 17

where the “1” appears as the component indexed by j. Thus, we get the set {e0,e1, . . . ,en−1} ⊂ Rn given by

e0 =



1

0
...

0

0


, e1 =



0

1
...

0

0


, · · · , en−1 =



0

0
...

0

1


.

In our presentations, any time you encounter the symbol e j, it always refers to the unit basis vector with the “1” in the component
indexed by j.

These vectors are also referred to as the standard basis vectors. Other terms used for these vectors are natural basis and
canonical basis. Indeed, “unit basis vector” appears to be less commonly used. But we will use it anyway!

Homework 1.2.2.1 Which of the following is not a unit basis vector?

(a)


0

0

1

0

 (b)

 0

1

 (c)

 √
2

2√
2

2

 (d)


1

0

0

 (e) None of these are unit basis
vectors.

1.3 Simple Vector Operations

1.3.1 Equality (=), Assignment (:=), and Copy

* View at edX

Definition

Definition 1.4 Two vectors x,y ∈ Rn are equal if all their components are element-wise equal:

x = y if and only if χi = ψi, for all 0≤ i < n.

This means that two vectors are equal if they point in the same direction and are of the same length. They don’t, however,
need to have the same location.

The assignment or copy operation assigns the content of one vector to another vector. In our mathematical notation, we will
denote this by the symbol := (pronounce: becomes). After the assignment, the two vectors are equal to each other.

Algorithm

The following algorithm copies vector x ∈ Rn into vector y ∈ Rn, performing the operation y := x:
ψ0

ψ1
...

ψn−1

 :=


χ0

χ1
...

χn−1



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/1

Week 1. Vectors in Linear Algebra 18

for i = 0, . . . ,n−1

ψi := χi

endfor

Cost

(Notice: we will cost of various operations in more detail in the future.)
Copying one vector to another vector requires 2n memory operations (memops).

• The vector x of length n must be read, requiring n memops and

• the vector y must be written, which accounts for the other n memops.

Homework 1.3.1.1 Decide if the two vectors are equal.

• The vector represented geometrically in R2 by an arrow from point (−1,2) to point (0,0) and the vector
represented geometrically in R2 by an arrow from point (1,−2) to point (2,−1) are equal.

True/False

• The vector represented geometrically in R3 by an arrow from point (1,−1,2) to point (0,0,0) and the vector
represented geometrically in R3 by an arrow from point (1,1,−2) to point (0,2,−4) are equal.

True/False

1.3.2 Vector Addition (ADD)

* View at edX

Definition

Definition 1.5 Vector addition x+ y (sum of vectors) is defined by

x+ y =


χ0

χ1
...

χn−1

+


ψ0

ψ1
...

ψn−1

=


χ0 +ψ0

χ1 +ψ1
...

χn−1 +ψn−1

 .

In other words, the vectors are added element-wise, yielding a new vector of the same size.

Exercises

Homework 1.3.2.1

 −1

2

+

 −3

−2

=

Homework 1.3.2.2

 −3

−2

+

 −1

2

=

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/2

1.3. Simple Vector Operations 19

Homework 1.3.2.3 For x,y ∈ Rn,

x+ y = y+ x.

Always/Sometimes/Never

Homework 1.3.2.4

 −1

2

+

 −3

−2

+

 1

2

=

Homework 1.3.2.5

 −1

2

+

 −3

−2

+

 1

2

=

Homework 1.3.2.6 For x,y,z ∈ Rn, (x+ y)+ z = x+(y+ z). Always/Sometimes/Never

Homework 1.3.2.7

 −1

2

+

 0

0

=

Homework 1.3.2.8 For x ∈ Rn, x+0 = x, where 0 is the zero vector of appropriate size.
Always/Sometimes/Never

Algorithm

The following algorithm assigns the sum of vectors x and y (of size n and stored in arrays x and y) to vector z (of size n and
stored in array z), computing z := x+ y: 

ζ0

ζ1
...

ζn−1

 :=


χ0 +ψ0

χ1 +ψ1
...

χn−1 +ψn−1

 .

for i = 0, . . . ,n−1

ζi := χi +ψi

endfor

Cost

On a computer, real numbers are stored as floating point numbers, and real arithmetic is approximated with floating point
arithmetic. Thus, we count floating point operations (flops): a multiplication or addition each cost one flop.

Vector addition requires 3n memops (x is read, y is read, and the resulting vector is written) and n flops (floating point
additions).

For those who understand “Big-O” notation, the cost of the SCAL operation, which is seen in the next section, is O(n).
However, we tend to want to be more exact than just saying O(n). To us, the coefficient in front of n is important.

Vector addition in sports

View the following video and find out how the “parallelogram method” for vector addition is useful in sports:

http://www.nsf.gov/news/special_reports/football/vectors.jsp

Discussion: Can you find other examples of how vector addition is used in sports?

http://www.nsf.gov/news/special_reports/football/vectors.jsp
http://www.nsf.gov/news/special_reports/football/vectors.jsp

Week 1. Vectors in Linear Algebra 20

1.3.3 Scaling (SCAL)

* View at edX

Definition

Definition 1.6 Multiplying vector x by scalar α yields a new vector, αx, in the same direction as x, but scaled by a factor α.
Scaling a vector by α means each of its components, χi, is multiplied by α:

αx = α


χ0

χ1
...

χn−1

=


αχ0

αχ1
...

αχn−1

 .

Exercises

Homework 1.3.3.1

 −1

2

+

 −1

2

+

 −1

2

=

Homework 1.3.3.2 3

 −1

2

=

Homework 1.3.3.3 Consider the following picture:

a

b

c
d

e

f

g

Which vector equals 2a?; (1/2)a? ; and −(1/2)a?

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/3

1.3. Simple Vector Operations 21

Algorithm

The following algorithm scales a vector x ∈ Rn by α, overwriting x with the result αx:


χ0

χ1
...

χn−1

 :=


αχ0

αχ1
...

αχn−1

 .

for i = 0, . . . ,n−1

χi := αχi

endfor

Cost

Scaling a vector requires n flops and 2n+1 memops. Here, α is only brought in from memory once and kept in a register for
reuse. To fully understand this, you need to know a little bit about computer architecture.

“Among friends” we will simply say that the cost is 2n memops since the one extra memory operation (to bring α in from
memory) is negligible.

1.3.4 Vector Subtraction

* View at edX
Recall the geometric interpretation for adding two vectors, x,y ∈ Rn:

x

y
x+ y

y

x

y+ x

Subtracting y from x is defined as

x− y = x+(−y).

We learned in the last unit that−y is the same as (−1)y which is the same as pointing y in the opposite direction, while keeping
it’s length the same. This allows us to take the parallelogram that we used to illustrate vector addition

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/2fbd39e751554603899d65b73496eb9c/4

Week 1. Vectors in Linear Algebra 22

x

y

x

y

and change it into the equivalent picture

x

−y

x

−y

Since we know how to add two vectors, we can now illustrate x+(−y):

x

−y

x

−y

x+(−y)

Which then means that x− y can be illustrated by

1.4. Advanced Vector Operations 23

x

y

x

y

x− y

Finally, we note that the parallelogram can be used to simulaneously illustrate vector addition and subtraction:

x

y

x

y

x− y

x+ y

(Obviously, you need to be careful to point the vectors in the right direction.)
Now computing x− y when x,y ∈ Rn is a simple matter of subtracting components of y off the corresponding components

of x:

x− y =


χ0

χ1
...

χn−1

−


ψ0

ψ1
...

ψn−1

=


χ0−ψ0

χ1−ψ1
...

χn−1−ψn−1

 .

Homework 1.3.4.1 For x ∈ Rn, x− x = 0.
Always/Sometimes/Never

Homework 1.3.4.2 For x,y ∈ Rn, x− y = y− x.
Always/Sometimes/Never

1.4 Advanced Vector Operations

1.4.1 Scaled Vector Addition (AXPY)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/1

Week 1. Vectors in Linear Algebra 24

Definition

Definition 1.7 One of the most commonly encountered operations when implementing more complex linear algebra operations
is the scaled vector addition, which (given x,y ∈ Rn) computes y := αx+ y:

αx+ y = α


χ0

χ1
...

χn−1

+


ψ0

ψ1
...

ψn−1

=


αχ0 +ψ0

αχ1 +ψ1
...

αχn−1 +ψn−1

 .

It is often referred to as the AXPY operation, which stands for alpha times x plus y. We emphasize that it is typically used in
situations where the output vector overwrites the input vector y.

Algorithm

Obviously, one could copy x into another vector, scale it by α, and then add it to y. Usually, however, vector y is simply updated
one element at a time: 

ψ0

ψ1
...

ψn−1

 :=


αχ0 +ψ0

αχ1 +ψ1
...

αχn−1 +ψn−1

 .

for i = 0, . . . ,n−1

ψi := αχi +ψi

endfor

Cost

In Section 1.3 for many of the operations we discuss the cost in terms of memory operations (memops) and floating point
operations (flops). This is discussed in the text, but not the videos. The reason for this is that we will talk about the cost of
various operations later in a larger context, and include these discussions here more for completely.

Homework 1.4.1.1 What is the cost of an axpy operation?

• How many memops?

• How many flops?

1.4.2 Linear Combinations of Vectors

* View at edX

Discussion

There are few concepts in linear algebra more fundamental than linear combination of vectors.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/2

1.4. Advanced Vector Operations 25

Definition

Definition 1.8 Let u,v ∈ Rm and α,β ∈ R. Then αu+βv is said to be a linear combination of vectors u and v:

αu+βv = α


υ0

υ1
...

υm−1

+β


ν0

ν1
...

νm−1

=


αυ0

αυ1
...

αυm−1

+


βν0

βν1
...

βνm−1

=


αυ0 +βν0

αυ1 +βν1
...

αυm−1 +βνm−1

 .

The scalars α and β are the coefficients used in the linear combination.
More generally, if v0, . . . ,vn−1 ∈ Rm are n vectors and χ0, . . . ,χn−1 ∈ R are n scalars, then χ0v0 +χ1v1 + · · ·+χn−1vn−1 is

a linear combination of the vectors, with coefficients χ0, . . . ,χn−1.

We will often use the summation notation to more concisely write such a linear combination:

χ0v0 +χ1v1 + · · ·+χn−1vn−1 =
n−1

∑
j=0

χ jv j.

Homework 1.4.2.1

3


2

4

−1

0

+2


1

0

1

0

=

Homework 1.4.2.2

−3


1

0

0

+2


0

1

0

+4


0

0

1

=

Homework 1.4.2.3 Find α, β, γ such that

α


1

0

0

+β


0

1

0

+ γ


0

0

1

=


2

−1

3


α = β = γ =

Algorithm

Given v0, . . . ,vn−1 ∈ Rm and χ0, . . . ,χn−1 ∈ R the linear combination w = χ0v0 +χ1v1 + · · ·+χn−1vn−1 can be computed by
first setting the result vector w to the zero vector of size m, and then performing n AXPY operations:

w = 0 (the zero vector of size m)

for j = 0, . . . ,n−1

w := χ jv j +w

endfor

The axpy operation computed y := αx+ y. In our algorithm, χ j takes the place of α, v j the place of x, and w the place of y.

Week 1. Vectors in Linear Algebra 26

Cost

We noted that computing w = χ0v0 +χ1v1 + · · ·χn−1vn−1 can be implementated as n AXPY operations. This suggests that the
cost is n times the cost of an AXPY operation with vectors of size m: n× (2m) = 2mn flops and (approximately) n× (3m)
memops.

However, one can actually do better. The vector w is updated repeatedly. If this vector stays in the L1 cache of a computer,
then it needs not be repeatedly loaded from memory, and the cost becomes m memops (to load w into the cache) and then
for each AXPY operation (approximately) m memops (to read v j (ignoring the cost of reading χ j). Then, once w has been
completely updated, it can be written back to memory. So, the total cost related to accessing memory becomes m+n×m+m =
(n+2)m≈ mn memops.

An important example

Example 1.9 Given any x ∈ Rn with x =


χ0

χ1
...

χn−1

, this vector can always be written as the linear combination

of the unit basis vectors given by

x =


χ0

χ1
...

χn−1

= χ0



1

0
...

0

0


+χ1



0

1
...

0

0


+ · · ·+χn−1



0

0
...

0

1


= χ0e0 +χ1e1 + · · ·+χn−1en−1 =

n−1

∑
i=0

χiei.

Shortly, this will become really important as we make the connection between linear combinations of vectors,
linear transformations, and matrices.

1.4.3 Dot or Inner Product (DOT)

* View at edX

Definition

The other commonly encountered operation is the dot (inner) product. It is defined by

dot(x,y) =
n−1

∑
i=0

χiψi = χ0ψ0 +χ1ψ1 + · · ·+χn−1ψn−1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/3

1.4. Advanced Vector Operations 27

Alternative notation

We will often write

xT y = dot(x,y) =


χ0

χ1
...

χn−1



T 
ψ0

ψ1
...

ψn−1



=
(

χ0 χ1 · · · χn−1

)


ψ0

ψ1
...

ψn−1

= χ0ψ0 +χ1ψ1 + · · ·+χn−1ψn−1

for reasons that will become clear later in the course.

Exercises

Homework 1.4.3.1


2

5

−6

1


T



1

1

1

1

1

1


=

Homework 1.4.3.2


2

5

−6

1


T 

1

1

1

1

=

Homework 1.4.3.3


1

1

1

1


T 

2

5

−6

1

=

Homework 1.4.3.4 For x,y ∈ Rn, xT y = yT x.
Always/Sometimes/Never

Homework 1.4.3.5


1

1

1

1


T 


2

5

−6

1

+


1

2

3

4



=

Week 1. Vectors in Linear Algebra 28

Homework 1.4.3.6


1

1

1

1


T 

2

5

−6

1

+


1

1

1

1


T 

1

2

3

4

=

Homework 1.4.3.7




2

5

−6

1

+


1

2

3

4




T 

1

0

0

2

=

Homework 1.4.3.8 For x,y,z ∈ Rn, xT (y+ z) = xT y+ xT z.
Always/Sometimes/Never

Homework 1.4.3.9 For x,y,z ∈ Rn, (x+ y)T z = xT z+ yT z.
Always/Sometimes/Never

Homework 1.4.3.10 For x,y ∈ Rn, (x+ y)T (x+ y) = xT x+2xT y+ yT y.
Always/Sometimes/Never

Homework 1.4.3.11 Let x,y ∈ Rn. When xT y = 0, x or y is a zero vector.
Always/Sometimes/Never

Homework 1.4.3.12 For x ∈ Rn, eT
i x = xT ei = χi, where χi equals the ith component of x.

Always/Sometimes/Never

Algorithm

An algorithm for the DOT operation is given by

α := 0

for i = 0, . . . ,n−1

α := χiψi +α

endfor

Cost

Homework 1.4.3.13 What is the cost of a dot product with vectors of size n?

1.4.4 Vector Length (NORM2)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/4

1.4. Advanced Vector Operations 29

Definition

Let x ∈ Rn. Then the (Euclidean) length of a vector x (the two-norm) is given by

‖x‖2 =
√

χ2
0 +χ2

1 + · · ·+χ2
n−1 =

√
n−1

∑
i=0

χ2
i .

Here ‖x‖2 notation stands for “the two norm of x”, which is another way of saying “the length of x”.

A vector of length one is said to be a unit vector.

Exercises

Homework 1.4.4.1 Compute the lengths of the following vectors:

(a)


0

0

0

 (b)


1/2

1/2

1/2

1/2

 (c)


1

−2

2

 (d)



0

0

1

0

0



Homework 1.4.4.2 Let x ∈ Rn. The length of x is less than zero: x‖2 < 0.
Always/Sometimes/Never

Homework 1.4.4.3 If x is a unit vector then x is a unit basis vector.
TRUE/FALSE

Homework 1.4.4.4 If x is a unit basis vector then x is a unit vector.
TRUE/FALSE

Homework 1.4.4.5 If x and y are perpendicular (orthogonal) then xT y = 0.
TRUE/FALSE

Hint: Consider the picture

x y

x+ y

Week 1. Vectors in Linear Algebra 30

Homework 1.4.4.6 Let x,y ∈ Rn be nonzero vectors and let the angle between them equal θ. Then

cosθ =
xT y

‖x‖2‖y‖2
.

Always/Sometimes/Never

Hint: Consider the picture and the “Law of Cosines” that you learned in high school. (Or look up this law!)

x

y θ

y− x

Homework 1.4.4.7 Let x,y ∈ Rn be nonzero vectors. Then xT y = 0 if and only if x and y are orthogonal (perpen-
dicular).

True/False

Algorithm

Clearly, ‖x‖2 =
√

xT x, so that the DOT operation can be used to compute this length.

Cost

If computed with a dot product, it requires approximately n memops and 2n flops.

1.4.5 Vector Functions

* View at edX
Last week, we saw a number of examples where a function, f , takes in one or more scalars and/or vectors, and outputs a

vector (where a scalar can be thought of as a special case of a vector, with unit size). These are all examples of vector-valued
functions (or vector functions for short).

Definition

A vector(-valued) function is a mathematical functions of one or more scalars and/or vectors whose output is a vector.

Examples

Example 1.10

f (α,β) =

 α+β

α−β

 so that f (−2,1) =

 −2+1

−2−1

=

 −1

−3

 .

Example 1.11

f (α,


χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

 so that f (−2,


1

2

3

) =


1+(−2)

2+(−2)

3+(−2)

=


−1

0

1

 .

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/5

1.4. Advanced Vector Operations 31

Example 1.12 The AXPY and DOT vector functions are other functions that we have already encountered.

Example 1.13

f (


χ0

χ1

χ2

) =

 χ0 +χ1

χ1 +χ2

 so that f (


1

2

3

) =

 1+2

2+3

=

 3

5

 .

Exercises

Homework 1.4.5.1 If f (α,


χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

, find

• f (1,


6

2

3

) =

• f (α,


0

0

0

) =

• f (0,


χ0

χ1

χ2

) =

• f (β,


χ0

χ1

χ2

) =

• α f (β,


χ0

χ1

χ2

) =

• f (β,α


χ0

χ1

χ2

) =

• f (α,


χ0

χ1

χ2

+


ψ0

ψ1

ψ2

) =

• f (α,


χ0

χ1

χ2

)+ f (α,


ψ0

ψ1

ψ2

) =

Week 1. Vectors in Linear Algebra 32

1.4.6 Vector Functions that Map a Vector to a Vector

* View at edX

Now, we can talk about such functions in general as being a function from one vector to another vector. After all, we can
take all inputs, make one vector with the separate inputs as the elements or subvectors of that vector, and make that the input
for a new function that has the same net effect.

Example 1.14 Instead of

f (α,β) =

 α+β

α−β

 so that f (−2,1) =

 −2+1

−2−1

=

 −1

−3



we can define

g(

 α

β

) =

 α+β

α−β

 so that g(

 −2

1

) =

 −2+1

−2−1

=

 −1

−3



Example 1.15 Instead of

f (α,


χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

 so that f (−2,


1

2

3

) =


1+(−2)

2+(−2)

3+(−2)

=


−1

0

1

 ,

we can define

g(


α
χ0

χ1

χ2



) = g(


α

χ0

χ1

χ2

) =


χ0 +α

χ1 +α

χ2 +α

 so that g(


−2

1

2

3

) =


1+(−2)

2+(−2)

3+(−2)

=


−1

0

1

 .

The bottom line is that we can focus on vector functions that map a vector of size n into a vector of size m, which is written
as

f : Rn→ Rm.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/de9876de14394df395423b596b7884d4/6

1.4. Advanced Vector Operations 33

Exercises

Homework 1.4.6.1 If f (


χ0

χ1

χ2

) =


χ0 +1

χ1 +2

χ2 +3

, evaluate

• f (


6

2

3

) =

• f (


0

0

0

) =

• f (2


χ0

χ1

χ2

) =

• 2 f (


χ0

χ1

χ2

) =

• f (α


χ0

χ1

χ2

) =

• α f (


χ0

χ1

χ2

) =

• f (


χ0

χ1

χ2

+


ψ0

ψ1

ψ2

) =

• f (


χ0

χ1

χ2

)+ f (


ψ0

ψ1

ψ2

) =

Week 1. Vectors in Linear Algebra 34

Homework 1.4.6.2 If f (


χ0

χ1

χ2

) =


χ0

χ0 +χ1

χ0 +χ1 +χ2

, evaluate

• f (


6

2

3

) =

• f (


0

0

0

) =

• f (2


χ0

χ1

χ2

) =

• 2 f (


χ0

χ1

χ2

) =

• f (α


χ0

χ1

χ2

) =

• α f (


χ0

χ1

χ2

) =

• f (


χ0

χ1

χ2

+


ψ0

ψ1

ψ2

) =

• f (


χ0

χ1

χ2

)+ f (


ψ0

ψ1

ψ2

) =

Homework 1.4.6.3 If f : Rn→ Rm, then
f (0) = 0.

Always/Sometimes/Never

Homework 1.4.6.4 If f : Rn→ Rm, λ ∈ R, and x ∈ Rn, then

f (λx) = λ f (x).

Always/Sometimes/Never

1.5. LAFF Package Development: Vectors 35

Homework 1.4.6.5 If f : Rn→ Rm and x,y ∈ Rn, then

f (x+ y) = f (x)+ f (y).

Always/Sometimes/Never

1.5 LAFF Package Development: Vectors

1.5.1 Starting the Package

In this course, we will explore and use a rudimentary dense linear algebra software library. The hope is that by linking the
abstractions in linear algebra to abstractions (functions) in software, a deeper understanding of the material will be the result.

We will be using the MATLAB interactive environment by MATHWORKS® for our exercises. MATLAB is a high-level
language and interactive environment that started as a simple interactive “laboratory” for experimenting with linear algebra. It
has since grown into a powerful tool for technical computing that is widely used in academia and industry.

For our Spring 2017 offering of LAFF on the edX platform, MATHWORKS® has again graceously made temporary licenses
available for the participants. Instructions on how to install and use MATLAB can be found in Section 0.3.

The way we code can be easily translated into other languages. For example, as part of our FLAME research project we
developed a library called libflame. Even though we coded it in the C programming language, it still closely resembles the
MATLAB code that you will write and the library that you will use.

A library of vector-vector routines

The functionality of the functions that you will write is also part of the ”laff” library of routines. What this means will become
obvious in subsequent units.

Below is a table of vector functions, and the routines that implement them, that you will be able to use in future weeks.

Operation Abbrev. Definition Function MATLAB Approx. cost

intrinsic flops memops

Vector-vector operations

Copy (COPY) y := x y = laff copy(x, y) y = x 0 2n

Vector scaling (SCAL) x := αx x = laff scal(alpha, x) x = alpha * x n 2n

Scaled addition (AXPY) y := αx+ y y = laff axpy(alpha, x, y) y = alpha * x + y 2n 3n

Dot product (DOT) α := xT y alpha = laff dot(x, y) alpha = x’ * y 2n 2n

Length (NORM2) α := ‖x‖2 alpha = laff norm2(x) alpha = norm2(x) 2n n

A couple of comments:

• The operations we will implement are available already in MATLAB. So why do we write them as routines? Because

1. It helps us connect the abstractions in the mathematics to the abstractions in code; and

2. Implementations in other languages (e.g. C and Fortran) more closely follow how we will implement the operations
as functions/routines.

• In, for example, laff copy, why not make the function

y = laff copy(x)?

1. Often we will want to copy a column vector to a row vector or a row vector to a column vector. By also passing y
into the routine, we indicate whether the output should be a row or a column vector.

2. Implementations in other languages (e.g. C and Fortran) more closely follow how we will implement the operations
as functions/routines.

The way we will program translates almost directly into equivalent routines for the C or Python programming languages.
Now, let’s dive right in! We’ll walk you through it in the next units.

http://www.mathworks.com/products/matlab
http://www.mathworks.com
https://www.edx.org/course/linear-algebra-foundations-frontiers-utaustinx-ut-5-05x
http://www.cs.utexas.edu/users/flame/

Week 1. Vectors in Linear Algebra 36

1.5.2 A Copy Routine (copy)

* View at edX

Homework 1.5.2.1 Implement the function laff copy that copies a vector into another vector. The function is
defined as

function [y out] = laff copy(x, y)

where

• x and y must each be either an n×1 array (column vector) or a 1×n array (row vector);

• y out must be the same kind of vector as y (in other words, if y is a column vector, so is y out and if y is a
row vector, so is y out).

• The function should “transpose” the vector if x and y do not have the same “shape” (if one is a column vector
and the other one is a row vector).

• If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or
column) vector y, the output should be ’FAILED’.

* Additional instructions. If link does not work, open LAFF-2.0xM/1521Instructions.pdf.

* View at edX

1.5.3 A Routine that Scales a Vector (scal)

* View at edX

Homework 1.5.3.1 Implement the function laff scal that scales a vector x by a scalar α. The function is defined
as

function [x out] = laff scal(alpha, x)

where

• x must be either an n×1 array (column vector) or a 1×n array (row vector);

• x out must be the same kind of vector as x; and

• If x or alpha are not a (row or column) vector and scalar, respectively, the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test scal.m.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Notes/1521Instructions.pdf
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/3

1.5. LAFF Package Development: Vectors 37

1.5.4 A Scaled Vector Addition Routine (axpy)

* View at edX

Homework 1.5.4.1 Implement the function laff axpy that computes αx+ y given scalar α and vectors x and y.
The function is defined as

function [y out] = laff axpy(alpha, x, y)

where

• x and y must each be either an n×1 array (column vector) or a 1×n array (row vector);

• y out must be the same kind of vector as y; and

• If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or
column) vector y, the output should be ’FAILED’.

• If alpha is not a scalar, the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test axpy.m.

1.5.5 An Inner Product Routine (dot)

* View at edX

Homework 1.5.5.1 Implement the function laff dot that computes the dot product of vectors x and y. The
function is defined as

function [alpha] = laff dot(x, y)

where

• x and y must each be either an n×1 array (column vector) or a 1×n array (row vector);

• If x and/or y are not vectors or if the size of (row or column) vector x does not match the size of (row or
column) vector y, the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test dot.m.

1.5.6 A Vector Length Routine (norm2)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/a5c372da8f954d77bba11976db91fe2a/6

Week 1. Vectors in Linear Algebra 38

Homework 1.5.6.1 Implement the function laff norm2 that computes the length of vector x. The function is
defined as

function [alpha] = laff norm2(x)

where

• x is an n×1 array (column vector) or a 1×n array (row vector);

• If x is not a vector the output should be ’FAILED’.

Check your implementation with the script in LAFF-2.0xM/Programming/Week01/test norm2.m..

1.6 Slicing and Dicing

1.6.1 Slicing and Dicing: Dot Product

* View at edX

In the video, we justify the following theorem:

Theorem 1.16 Let x,y ∈ Rn and partition (Slice and Dice) these vectors as

x =


x0

x1
...

xN−1

 and y =


y0

y1
...

yN−1

 ,

where xi,yi ∈ Rni with ∑
N−1
i=0 ni = n. Then

xT y = xT
0 y0 + xT

1 y1 + · · ·+ xT
N−1yN−1 =

N−1

∑
i=0

xT
i yi.

1.6.2 Algorithms with Slicing and Redicing: Dot Product

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/2

1.6. Slicing and Dicing 39

Algorithm: [α] := DOT(x,y)

Partition x→

 xT

xB

 , y→

 yT

yB


wherexT and yT have 0 elements

α := 0

while m(xT)< m(x) do

Repartition xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


whereχ1 has 1 row, ψ1 has 1 row

α := χ1×ψ1 +α

Continue with xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

1.6.3 Coding with Slicing and Redicing: Dot Product

* View at edX

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/3

Week 1. Vectors in Linear Algebra 40

There are a number of steps you need to take with MATLAB Online before moving on with this unit. If you do this right,
it will save you a lot of grief for the rest of the course:
When you uploaded LAFF-2.0xM.zip and unzipped it, that directory and all its subdirectories were automatically placed
on the ”path”. In theory, in Unit 1.5.2, you removed LAFF-2.0xM from the path. If not: right-click on that folder, choose
”Remove from path” and choose ”Selected folder and subfolders”. LAFF-2.0xM should now turn from black to gray. Next,
there is a specific set of functions that we do want on the path. To accomplish this

• Expand folder LAFF-2.0xM.

• Expand subfolder Programming.

• Right-click on subfolder laff , choose “Add to path” and choose “Selected folder and subfolders”. laff should
now turn from gray to black. This should be the last time you need to set the path for this course.

Finally, you will want to make LAFF-2.0xM -> Programming -> Week01 your current directory for the Command Win-
dow. You do this by double clicking on LAFF-2.0xM -> Programming -> Week01. To make sure the Command Window
views this directory as the current directory, type “pwd” in the Command Window.

The video illustrates how to do the exercise using a desktop version of MATLAB. Hopefully it will be intuitively obvious
how to do the exercise with MATLAB Online instead. If not, ask questions in the discussion for the unit.

Homework 1.6.3.1 Follow along with the video to implement the routine

Dot unb(x, y).

The “Spark webpage” can be found at

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html

or by opening the file

LAFF-2.0xM → Spark → index.html

that should have been in the LAFF-2.0xM.zip file you downloaded and unzipped as described in Week0 (Unit
0.2.7).

1.6.4 Slicing and Dicing: axpy

* View at edX

In the video, we justify the following theorem:

Theorem 1.17 Let α ∈ R, x,y ∈ Rn, and partition (Slice and Dice) these vectors as

x =


x0

x1
...

xN−1

 and y =


y0

y1
...

yN−1

 ,

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/4

1.6. Slicing and Dicing 41

where xi,yi ∈ Rni with ∑
N−1
i=0 ni = n. Then

αx+ y = α


x0

x1
...

xN−1

+


y0

y1
...

yN−1

=


αx0 + y0

αx1 + y1
...

αxN−1 + yN−1

 .

1.6.5 Algorithms with Slicing and Redicing: axpy

* View at edX

Algorithm: [y] := AXPY(α,x,y)

Partition x→

 xT

xB

 , y→

 yT

yB


wherexT and yT have 0 elements

while m(xT)< m(x) do

Repartition xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


whereχ1 has 1 row, ψ1 has 1 row

ψ1 := α×χ1 +ψ1

Continue with xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

1.6.6 Coding with Slicing and Redicing: axpy

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6

Week 1. Vectors in Linear Algebra 42

Homework 1.6.6.1 Implement the routine

Axpy unb(alpha, x, y).

The “Spark webpage” can be found at

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html

or by opening the file

LAFF-2.0xM → Spark → index.html

that should have been in the LAFF-2.0xM.zip file you downloaded and unzipped as described in Week0 (Unit
0.2.7).

* View at edX

1.7 Enrichment

1.7.1 Learn the Greek Alphabet

In this course, we try to use the letters and symbols we use in a very consistent way, to help communication. As a general rule

• Lowercase Greek letters (α, β, etc.) are used for scalars.

• Lowercase (Roman) letters (a, b, etc) are used for vectors.

• Uppercase (Roman) letters (A, B, etc) are used for matrices.

Exceptions include the letters i, j, k, l, m, and n, which are typically used for integers.
Typically, if we use a given uppercase letter for a matrix, then we use the corresponding lower case letter for its columns

(which can be thought of as vectors) and the corresponding lower case Greek letter for the elements in the matrix. Similarly,
as we have already seen in previous sections, if we start with a given letter to denote a vector, then we use the corresponding
lower case Greek letter for its elements.

Table 1.1 lists how we will use the various letters.

1.7.2 Other Norms

A norm is a function, in our case of a vector in Rn, that maps every vector to a nonnegative real number. The simplest example
is the absolute value of a real number: Given α ∈ R, the absolute value of α, often written as |α|, equals the magnitude of α:

|α|=

 α if α≥ 0

−α otherwise.

Notice that only α = 0 has the property that |α|= 0 and that |α+β| ≤ |α|+ |β|, which is known as the triangle inequality.
Similarly, one can find functions, called norms, that measure the magnitude of vectors. One example is the (Euclidean)

length of a vector, which we call the 2-norm: for x ∈ Rn,

‖x‖2 =

√
n−1

∑
i=0

χ2
i .

Clearly, ‖x‖2 = 0 if and only if x = 0 (the vector of all zeroes). Also, for x,y ∈ Rn, one can show that ‖x+ y‖2 ≤ ‖x‖2 +‖y‖2.
A function ‖ · ‖ : Rn→ R is a norm if and only if the following properties hold for all x,y ∈ Rn:

• ‖x‖ ≥ 0; and

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/7a78687246af4d3788684962136f949b/4a146254415f45d0b278082e4ad4e3a4/6

1.7. Enrichment 43

Matrix Vector Scalar Note

Symbol LATEX Code

A a α \alpha alpha

B b β \beta beta

C c γ \gamma gamma

D d δ \delta delta

E e ε \epsilon epsilon e j = jth unit basis vector.

F f φ \phi phi

G g ξ \xi xi

H h η \eta eta

I Used for identity matrix.

K k κ \kappa kappa

L l λ \lambda lambda

M m µ \mu mu m(·) = row dimension.

N n ν \nu nu ν is shared with V.

n(·) = column dimension.

P p π \pi pi

Q q θ \theta theta

R r ρ \rho rho

S s σ \sigma sigma

T t τ \tau tau

U u υ \upsilon upsilon

V v ν \nu nu ν shared with N.

W w ω \omega omega

X x χ \chi chi

Y y ψ \psi psi

Z z ζ \zeta zeta

Figure 1.1: Correspondence between letters used for matrices (uppercase Roman),vectors (lowercase Roman), and the symbols
used to denote their scalar entries (lowercase Greek letters).

Week 1. Vectors in Linear Algebra 44

• ‖x‖= 0 if and only if x = 0; and

• ‖x+ y‖ ≤ ‖x‖+‖y‖ (the triangle inequality).

The 2-norm (Euclidean length) is a norm.
Are there other norms? The answer is yes:

• The taxi-cab norm, also known as the 1-norm:

‖x‖1 =
n−1

∑
i=0
|χi|.

It is sometimes called the taxi-cab norm because it is the distance, in blocks, that a taxi would need to drive in a city like
New York, where the streets are laid out like a grid.

• For 1≤ p≤ ∞, the p-norm:

‖x‖p =
p

√
n−1

∑
i=0
|χi|p =

(
n−1

∑
i=0
|χi|p

)1/p

.

Notice that the 1-norm and the 2-norm are special cases.

• The ∞-norm:

‖x‖∞ = lim
p→∞

p

√
n−1

∑
i=0
|χi|p =

n−1
max
i=0
|χi|.

The bottom line is that there are many ways of measuring the length of a vector. In this course, we will only be concerned with
the 2-norm.

We will not prove that these are norms, since that, in part, requires one to prove the triangle inequality and then, in turn,
requires a theorem known as the Cauchy-Schwarz inequality. Those interested in seeing proofs related to the results in this unit
are encouraged to investigate norms further.

Example 1.18 The vectors with norm equal to one are often of special interest. Below we plot the points to which

vectors x with ‖x‖2 = 1 point (when those vectors start at the origin, (0,0)). (E.g., the vector

 1

0

 points to the

point (1,0) and that vector has 2-norm equal to one, hence the point is one of the points to be plotted.)

1.7. Enrichment 45

Example 1.19 Similarly, below we plot all points to which vectors x with ‖x‖1 = 1 point (starting at the origin).

Example 1.20 Similarly, below we plot all points to which vectors x with ‖x‖∞ = 1 point.

Example 1.21 Now consider all points to which vectors x with ‖x‖p = 1 point, when 2 < p < ∞. These form a
curve somewhere between the ones corresponding to ‖x‖2 = 1 and ‖x‖∞ = 1:

Week 1. Vectors in Linear Algebra 46

1.7.3 Overflow and Underflow

A detailed discussion of how real numbers are actually stored in a computer (approximations called floating point numbers)
goes beyond the scope of this course. We will periodically expose some relevant properties of floating point numbers througout
the course.

What is import right now is that there is a largest (in magnitude) number that can be stored and a smallest (in magnitude)
number not equal to zero, that can be stored. Try to store a number larger in magnitude than this largest number, and you cause
what is called an overflow. This is often stored as a “Not-A-Number” (NAN). Try to store a number not equal to zero and
smaller in magnitude than this smallest number, and you cause what is called an underflow. An underflow is often set to zero.

Let us focus on overflow. The problem with computing the length (2-norm) of a vector is that it equals the square root of
the sum of the squares of the components. While the answer may not cause an overflow, intermediate results when squaring
components could. Specifically, any component greater in magnitude than the square root of the largest number that can be
stored will overflow when squared.

The solution is to exploit the following observation: Let α > 0. Then

‖x‖2 =

√
n−1

∑
i=0

χ2
i =

√
n−1

∑
i=0

[
α2
(

χi

α

)2
]
=

√
α2

n−1

∑
i=0

(
χi

α

)2
= α

√(
1
α

x
)T (1

α
x
)

Now, we can use the following algorithm to compute the length of vector x:

• Choose α = maxn−1
i=0 |χi|.

• Scale x := x/α.

• Compute ‖x‖2 = α
√

xT x.

Notice that no overflow for intermediate results (when squaring) will happen because all elements are of magnitude less than
or equal to one. Similarly, only values that are very small relative to the final results will underflow because at least one of the
components of x/α equals one.

1.7.4 A Bit of History

The functions that you developed as part of your LAFF library are very similar in functionality to Fortran routines known as
the (level-1) Basic Linear Algebra Subprograms (BLAS) that are commonly used in scientific computing libraries. These were
first proposed in the 1970s and were used in the development of one of the first linear algebra libraries, LINPACK. Classic
references for that work are

• C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear Algebra Subprograms for Fortran Usage,” ACM Trans-
actions on Mathematical Software, 5 (1979) 305–325.

• J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide, SIAM, Philadelphia, 1979.

The style of coding that we use is at the core of our FLAME project and was first published in

• John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn, “FLAME: Formal Linear Algebra
Methods Environment,” ACM Transactions on Mathematical Software, 27 (2001) 422–455.

• Paolo Bientinesi, Enrique S. Quintana-Orti, and Robert A. van de Geijn, “Representing linear algebra algorithms in code:
the FLAME application program interfaces,” ACM Transactions on Mathematical Software, 31 (2005) 27–59.

1.8. Wrap Up 47

1.8 Wrap Up

1.8.1 Homework

Homework 1.8.1.1 Let

x =

 2

−1

 , y =

 α

β−α

 , and x = y.

Indicate which of the following must be true (there may be multiple correct answers):

(a) α = 2

(b) β = (β−α)+α = (−1)+2 = 1

(c) β−α =−1

(d) β−2 =−1

(e) x = 2e0− e1

Week 1. Vectors in Linear Algebra 48

Homework 1.8.1.2 A displacement vector represents the length and direction of an imaginary, shortest, straight
path between two locations. To illustrate this as well as to emphasize the difference between ordered pairs that
represent positions and vectors, we ask you to map a trip we made.
In 2012, we went on a journey to share our research in linear algebra. Below are some displacement vectors to de-
scribe parts of this journey using longitude and latitude. For example, we began our trip in Austin, TX and landed
in San Jose, CA. Austin has coordinates 30◦ 15′ N(orth),97◦ 45′ W(est) and San Jose’s are 37◦ 20′ N,121◦ 54′ W.
(Notice that convention is to report first longitude and then latitude.) If we think of using longitude and latitude
as coordinates in a plane where the first coordinate is position E (positive) or W (negative) and the second co-
ordinate is position N (positive) or S (negative), then Austin’s location is (−97◦ 45′,30◦ 15′) and San Jose’s are
(−121◦ 54′,37◦ 20′). (Here, notice the switch in the order in which the coordinates are given because we now
want to think of E/W as the x coordinate and N/S as the y coordinate.) For our displacement vector for this, our
first component will correspond to the change in the x coordinate, and the second component will be the change in
the second coordinate. For convenience, we extend the notion of vectors so that the components include units as
well as real numbers. Notice that for convenience, we extend the notion of vectors so that the components include
units as well as real numbers (60 minutes (′)= 1 degree(◦). Hence our displacement vector for Austin to San Jose

is

 −24◦ 09′

7◦ 05′

.

After visiting San Jose, we returned to Austin before embarking on a multi-legged excursion. That is, from Austin
we flew to the first city and then from that city to the next, and so forth. In the end, we returned to Austin.
The following is a table of cities and their coordinates:

City Coordinates City Coordinates

London 00◦ 08′ W, 51◦ 30′ N Austin −97◦ 45′ E, 30◦ 15′ N

Pisa 10◦ 21′ E, 43◦ 43′ N Brussels 04◦ 21′ E, 50◦ 51′ N

Valencia 00◦ 23′ E, 39◦ 28′ N Darmstadt 08◦ 39′ E, 49◦ 52′ N

Zürich 08◦ 33′ E, 47◦ 22′ N Krakow 19◦ 56′ E, 50◦ 4′ N

Determine the order in which cities were visited, starting in Austin, given that the legs of the trip (given in order)
had the following displacement vectors: 102◦ 06′

20◦ 36′

→
 04◦ 18′

−00◦ 59′

→
 −00◦ 06′

−02◦ 30′

→
 01◦ 48′

−03◦ 39′

→
 09◦ 35′

06◦ 21′

→
 −20◦ 04′

01◦ 26′

→
 00◦ 31′

−12◦ 02′

→
 −98◦ 08′

−09◦ 13′



1.8. Wrap Up 49

Homework 1.8.1.3 These days, high performance computers are called clusters and consist of many compute
nodes, connected via a communication network. Each node of the cluster is basically equipped with a central
processing unit (CPU), memory chips, a hard disk, and a network card. The nodes can be monitored for average
power consumption (via power sensors) and application activity.
A system administrator monitors the power consumption of a node of such a cluster for an application that executes
for two hours. This yields the following data:

Component Average power (W) Time in use (in hours) Fraction of time in use

CPU 90 1.4 0.7

Memory 30 1.2 0.6

Disk 10 0.6 0.3

Network 15 0.2 0.1

Sensors 5 2.0 1.0

The energy, often measured in KWh, is equal to power times time. Notice that the total energy consumption can
be found using the dot product of the vector of components’ average power and the vector of corresponding time
in use. What is the total energy consumed by this node in KWh? (The power is in Watts (W), so you will want to
convert to Kilowatts (KW).)
Now, let’s set this up as two vectors, x and y. The first records the power consumption for each of the components
and the other for the total time that each of the components is in use:

x =



90

30

10

15

5


and y = 2



0.7

0.6

0.3

0.1

1.0


.

Instead, compute xT y. Think: How do the two ways of computing the answer relate?

Week 1. Vectors in Linear Algebra 50

Homework 1.8.1.4 (Examples from statistics) Linear algebra shows up often when computing with data sets.
In this homework, you find out how dot products can be used to define various sums of values that are often
encountered in statistics.
Assume you observe a random variable and you let those sampled values be represented by χi, i = 0,1,2,3, · · · ,n−
1. We can let x be the vector with components χi and~1 be a vector of size n with components all ones:

x =


χ0

...

χn−1

 , and ~1 =


1
...

1

 .

For any x, the sum of the values of x can be computed using the dot product operation as

• xT x

• ~1T x

• xT~1

The sample mean of a random variable is the sum of the values the random variable takes on divided by the number
of values, n. In other words, if the values the random variable takes on are stored in vector x, then x = 1

n ∑
n−1
i=0 χi.

Using a dot product operation, for all x this can be computed as

• 1
n xT x

• 1
n
~1T x

• (~1T~1)−1(xT~1)

For any x, the sum of the squares of observations stored in (the elements of) a vector, x, can be computed using a
dot product operation as

• xT x

• ~1T x

• xT~1

1.8. Wrap Up 51

1.8.2 Summary of Vector Operations

Vector scaling αx =


αχ0

αχ1
...

αχn−1



Vector addition x+ y =


χ0 +ψ0

χ1 +ψ1
...

χn−1 +ψn−1



Vector subtraction x− y =


χ0−ψ0

χ1−ψ1
...

χn−1−ψn−1



AXPY αx+ y =


αχ0 +ψ0

αχ1 +ψ1
...

αχn−1 +ψn−1


dot (inner) product xT y = ∑

n−1
i=0 χiψi

vector length ‖x‖2 =
√

xT x =
√

∑
n−1
i=0 χiχi

1.8.3 Summary of the Properties of Vector Operations

Vector Addition

• Is commutative. That is, for all vectors x,y ∈ Rn,x+ y = y+ x.

• Is associative. That is, for all vectors x,y,z ∈ Rn,(x+ y)+ z = x+(y+ z).

• Has the zero vector as an identity.

• For all vectors x ∈ Rn,x+0 = 0+ x = x where 0 is the vector of size n with 0 for each component.

• Has an inverse, −x. That is x+(−x) = 0.

The Dot Product of Vectors

• Is commutative. That is, for all vectors x,y ∈ Rn,xT y = yT x.

• Distributes over vector addition. That is, for all vectors x,y,z ∈ Rn,xT (y+ z) = xT y+ xT z and (x+ y)T z = xT z+ yT z.

Partitioned vector operations

For (sub)vectors of appropriate size

•


x0

x1
...

xN−1

+


y0

y1
...

yN−1

=


x0 + y0

x1 + y1
...

xN−1 + yN−1

.

Week 1. Vectors in Linear Algebra 52

•


x0

x1
...

xN−1



T 
y0

y1
...

yN−1

= xT
0 y0 + xT

1 y1 + · · ·+ xT
N−1yN−1 = ∑

N−1
i=0 xT

i yi.

Other Properties

• For x,y ∈ Rn,(x+ y)T (x+ y) = xT x+2xT y+ yT y.

• For x,y ∈ Rn,xT y = 0 if and only if x and y are orthogonal.

• Let x,y ∈ Rn be nonzero vectors and let the angle between them equal θ. Then cos(θ) = xT y/‖x‖2‖y‖2.

• For x ∈ Rn,xT ei = eT
i x = χi where χi equals the ith component of x.

1.8.4 Summary of the Routines for Vector Operations

Operation Abbrev. Definition Function Approx. cost

flops memops

Vector-vector operations

Copy (COPY) y := x laff.copy(x, y) 0 2n

Vector scaling (SCAL) x := αx laff.scal(alpha, x) n 2n

Scaled addition (AXPY) y := αx+ y laff.axpy(alpha, x, y) 2n 3n

Dot product (DOT) α := xT y alpha = laff.dot(x, y) 2n 2n

Length (NORM2) α := ‖x‖2 alpha = laff.norm2(x) 2n n

Week 2
Linear Transformations and Matrices

2.1 Opening Remarks

2.1.1 Rotating in 2D

* View at edX

Let Rθ : R2→ R2 be the function that rotates an input vector through an angle θ:

x
θ

Rθ(x)

Figure 2.1 illustrates some special properties of the rotation. Functions with these properties are called called linear transfor-
mations. Thus, the illustrated rotation in 2D is an example of a linear transformation.

53

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/3ff4cd073e9343469f855d82831e3872/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/3ff4cd073e9343469f855d82831e3872/1

Week 2. Linear Transformations and Matrices 54

x
θ

αx

Rθ(αx)

x

y

x+ y

θ

Rθ(x+ y)

x
θ

Rθ(x)

αRθ(x)

x
θ

Rθ(x)

y

θRθ(y)

Rθ(x)+Rθ(y)

x
θ

Rθ(x)

αx

αRθ(x) = Rθ(αx)

x

y θ

x+ y

θ

Rθ(x)

θRθ(y)

Rθ(x+ y) = Rθ(x)+Rθ(y)

Figure 2.1: The three pictures on the left show that one can scale a vector first and then rotate, or rotate that vector first and
then scale and obtain the same result. The three pictures on the right show that one can add two vectors first and then rotate, or
rotate the two vectors first and then add and obtain the same result.

2.1. Opening Remarks 55

Homework 2.1.1.1 A reflection with respect to a 45 degree line is illustrated by

x

M(x)

Think of the dashed green line as a mirror and M : R2→ R2 as the vector function that maps a vector to its mirror
image. If x,y ∈ R2 and α ∈ R, then M(αx) = αM(x) and M(x+ y) = M(x)+M(y) (in other words, M is a linear
transformation).

True/False

Week 2. Linear Transformations and Matrices 56

2.1.2 Outline

2.1. Opening Remarks . 53
2.1.1. Rotating in 2D . 53
2.1.2. Outline . 56
2.1.3. What You Will Learn . 57

2.2. Linear Transformations . 58
2.2.1. What Makes Linear Transformations so Special? . 58
2.2.2. What is a Linear Transformation? . 58
2.2.3. Of Linear Transformations and Linear Combinations . 61

2.3. Mathematical Induction . 63
2.3.1. What is the Principle of Mathematical Induction? . 63
2.3.2. Examples . 63

2.4. Representing Linear Transformations as Matrices . 66
2.4.1. From Linear Transformation to Matrix-Vector Multiplication . 66
2.4.2. Practice with Matrix-Vector Multiplication . 69
2.4.3. It Goes Both Ways . 71
2.4.4. Rotations and Reflections, Revisited . 73

2.5. Enrichment . 76
2.5.1. The Importance of the Principle of Mathematical Induction for Programming 76
2.5.2. Puzzles and Paradoxes in Mathematical Induction . 77

2.6. Wrap Up . 77
2.6.1. Homework . 77
2.6.2. Summary . 77

2.1. Opening Remarks 57

2.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine if a given vector function is a linear transformation.

• Identify, visualize, and interpret linear transformations.

• Recognize rotations and reflections in 2D as linear transformations of vectors.

• Relate linear transformations and matrix-vector multiplication.

• Understand and exploit how a linear transformation is completely described by how it transforms the unit basis vectors.

• Find the matrix that represents a linear transformation based on how it transforms unit basis vectors.

• Perform matrix-vector multiplication.

• Reason and develop arguments about properties of linear transformations and matrix vector multiplication.

• Read, appreciate, understand, and develop inductive proofs.
(Ideally you will fall in love with them! They are beautiful. They don’t deceive you. You can count on them. You can
build on them. The perfect life companion! But it may not be love at first sight.)

• Make conjectures, understand proofs, and develop arguments about linear transformations.

• Understand the connection between linear transformations and matrix-vector multiplication.

• Solve simple problems related to linear transformations.

Week 2. Linear Transformations and Matrices 58

2.2 Linear Transformations

2.2.1 What Makes Linear Transformations so Special?

* View at edX
Many problems in science and engineering involve vector functions such as: f : Rn→Rm. Given such a function, one often

wishes to do the following:

• Given vector x ∈ Rn, evaluate f (x); or

• Given vector y ∈ Rm, find x such that f (x) = y; or

• Find scalar λ and vector x such that f (x) = λx (only if m = n).

For general vector functions, the last two problems are often especially difficult to solve. As we will see in this course, these
problems become a lot easier for a special class of functions called linear transformations.

For those of you who have taken calculus (especially multivariate calculus), you learned that general functions that map
vectors to vectors and have special properties can locally be approximated with a linear function. Now, we are not going to
discuss what make a function linear, but will just say “it involves linear transformations.” (When m = n = 1 you have likely
seen this when you were taught about “Newton’s Method”) Thus, even when f : Rn→Rm is not a linear transformation, linear
transformations still come into play. This makes understanding linear transformations fundamental to almost all computational
problems in science and engineering, just like calculus is.

But calculus is not a prerequisite for this course, so we won’t talk about this... :-(

2.2.2 What is a Linear Transformation?

* View at edX

Definition

Definition 2.1 A vector function L : Rn→ Rm is said to be a linear transformation, if for all x,y ∈ Rn and α ∈ R

• Transforming a scaled vector is the same as scaling the transformed vector:

L(αx) = αL(x)

• Transforming the sum of two vectors is the same as summing the two transformed vectors:

L(x+ y) = L(x)+L(y)

Examples

Example 2.2 The transformation f (

 χ0

χ1

) =

 χ0 +χ1

χ0

 is a linear transformation.

The way we prove this is to pick arbitrary α ∈ R, x =

 χ0

χ1

, and y =

 ψ0

ψ1

 for which we then show that f (αx) =

α f (x) and f (x+ y) = f (x)+ f (y):

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/2

2.2. Linear Transformations 59

• Show f (αx) = α f (x):

f (αx) = f (α

 χ0

χ1

) = f (

 αχ0

αχ1

) =

 αχ0 +αχ1

αχ0

=

 α(χ0 +χ1)

αχ0


and

α f (x) = α f (

 χ0

χ1

) = α

 χ0 +χ1

χ0

=

 α(χ0 +χ1)

αχ0


Both f (αx) and α f (x) evaluate to the same expression. One can then make this into one continuous sequence of equiva-
lences by rewriting the above as

f (αx) = f (α

 χ0

χ1

) = f (

 αχ0

αχ1

) =

 αχ0 +αχ1

αχ0


=

 α(χ0 +χ1)

αχ0

= α

 χ0 +χ1

χ0

= α f (

 χ0

χ1

) = α f (x).

• Show f (x+ y) = f (x)+ f (y):

f (x+ y) = f (

 χ0

χ1

+

 ψ0

ψ1

) = f (

 χ0 +ψ0

χ1 +ψ1

) =

 (χ0 +ψ0)+(χ1 +ψ1)

χ0 +ψ0


and

f (x)+ f (y). = f (

 χ0

χ1

)+ f (

 ψ0

ψ1

) =

 χ0 +χ1

χ0

+

 ψ0 +ψ1

ψ0


=

 (χ0 +χ1)+(ψ0 +ψ1)

χ0 +ψ0

 .

Both f (x+y) and f (x)+ f (y) evaluate to the same expression since scalar addition is commutative and associative. The
above observations can then be rearranged into the sequence of equivalences

f (x+ y) = f (

 χ0

χ1

+

 ψ0

ψ1

) = f (

 χ0 +ψ0

χ1 +ψ1

)

=

 (χ0 +ψ0)+(χ1 +ψ1)

χ0 +ψ0

=

 (χ0 +χ1)+(ψ0 +ψ1)

χ0 +ψ0


=

 χ0 +χ1

χ0

+

 ψ0 +ψ1

ψ0

= f (

 χ0

χ1

)+ f (

 ψ0

ψ1

) = f (x)+ f (y).

Example 2.3 The transformation f (

 χ

ψ

) =

 χ+ψ

χ+1

 is not a linear transformation.

We will start by trying a few scalars α and a few vectors x and see whether f (αx) = α f (x). If we find even one example
such that f (αx) 6= f (αx) then we have proven that f is not a linear transformation. Likewise, if we find even one pair of vectors
x and y such that f (x+ y) 6= f (x)+ f (y) then we have done the same.

Week 2. Linear Transformations and Matrices 60

A vector function f : Rn→ Rm is a linear transformation if for all scalars α and for all vectors x,y ∈ Rn it is that case that

• f (αx) = α f (x) and

• f (x+ y) = f (x)+ f (y).

If there is even one scalar α and vector x ∈Rn such that f (αx) 6= α f (x) or if there is even one pair of vectors x,y ∈Rn such
that f (x+ y) 6= f (x)+ f (y), then the vector function f is not a linear transformation. Thus, in order to show that a vector
function f is not a linear transformation, it suffices to find one such counter example.

Now, let us try a few:

• Let α = 1 and

 χ

ψ

=

 1

1

. Then

f (α

 χ

ψ

) = f (1×

 1

1

) = f (

 1

1

) =

 1+1

1+1

=

 2

2


and

α f (

 χ

ψ

) = 1× f (

 1

1

) = 1×

 1+1

1+1

=

 2

2

 .

For this example, f (αx) = α f (x), but there may still be an example such that f (αx) 6= α f (x).

• Let α = 0 and

 χ

ψ

=

 1

1

. Then

f (α

 χ

ψ

) = f (0×

 1

1

) = f (

 0

0

) =

 0+0

0+1

=

 0

1


and

α f (

 χ

ψ

) = 0× f (

 1

1

) = 0×

 1+1

1+1

=

 0

0

 .

For this example, we have found a case where f (αx) 6= α f (x). Hence, the function is not a linear transformation.

Homework 2.2.2.1 The vector function f (

 χ

ψ

) =

 χψ

χ

 is a linear transformation.

TRUE/FALSE

Homework 2.2.2.2 The vector function f (


χ0

χ1

χ2

) =


χ0 +1

χ1 +2

χ2 +3

 is a linear transformation. (This is the same

function as in Homework 1.4.6.1.)
TRUE/FALSE

Homework 2.2.2.3 The vector function f (


χ0

χ1

χ2

) =


χ0

χ0 +χ1

χ0 +χ1 +χ2

 is a linear transformation. (This is the

same function as in Homework 1.4.6.2.)
TRUE/FALSE

2.2. Linear Transformations 61

Homework 2.2.2.4 If L : Rn→ Rm is a linear transformation, then L(0) = 0.
(Recall that 0 equals a vector with zero components of appropriate size.)

Always/Sometimes/Never

Homework 2.2.2.5 Let f : Rn→ Rm and f (0) 6= 0. Then f is not a linear transformation.
True/False

Homework 2.2.2.6 Let f : Rn→ Rm and f (0) = 0. Then f is a linear transformation.
Always/Sometimes/Never

Homework 2.2.2.7 Find an example of a function f such that f (αx) = α f (x), but for some x,y it is the case that
f (x+ y) 6= f (x)+ f (y). (This is pretty tricky!)

Homework 2.2.2.8 The vector function f (

 χ0

χ1

) =

 χ1

χ0

 is a linear transformation.

TRUE/FALSE

2.2.3 Of Linear Transformations and Linear Combinations

* View at edX
Now that we know what a linear transformation and a linear combination of vectors are, we are ready to start making the

connection between the two with matrix-vector multiplication.

Lemma 2.4 L : Rn→ Rm is a linear transformation if and only if (iff) for all u,v ∈ Rn and α,β ∈ R

L(αu+βv) = αL(u)+βL(v).

Proof:

(⇒) Assume that L : Rn→ Rm is a linear transformation and let u,v∈Rn be arbitrary vectors and α,β∈R be arbitrary scalars.
Then

L(αu+βv)

= <since αu and βv are vectors and L is a linear transformation >

L(αu)+L(βv)

= < since L is a linear transformation >

αL(u)+βL(v)

(⇐) Assume that for all u,v ∈ Rn and all α,β ∈ R it is the case that L(αu+βv) = αL(u)+βL(v). We need to show that

• L(αu) = αL(u).
This follows immediately by setting β = 0.

• L(u+ v) = L(u)+L(v).
This follows immediately by setting α = β = 1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/3

Week 2. Linear Transformations and Matrices 62

* View at edX

Lemma 2.5 Let v0,v1, . . . ,vk−1 ∈ Rn and let L : Rn→ Rm be a linear transformation. Then

L(v0 + v1 + . . .+ vk−1) = L(v0)+L(v1)+ . . .+L(vk−1). (2.1)

While it is tempting to say that this is simply obvious, we are going to prove this rigorously. When one tries to prove a
result for a general k, where k is a natural number, one often uses a “proof by induction”. We are going to give the proof first,
and then we will explain it.

Proof: Proof by induction on k.

Base case: k = 1. For this case, we must show that L(v0) = L(v0). This is trivially true.

Inductive step: Inductive Hypothesis (IH): Assume that the result is true for k = K where K ≥ 1:

L(v0 + v1 + . . .+ vK−1) = L(v0)+L(v1)+ . . .+L(vK−1).

We will show that the result is then also true for k = K +1. In other words, that

L(v0 + v1 + . . .+ vK−1 + vK) = L(v0)+L(v1)+ . . .+L(vK−1)+L(vK).

L(v0 + v1 + . . .+ vK)

= < expose extra term – We know we can do
this, since K ≥ 1 >

L(v0 + v1 + . . .+ vK−1 + vK)

= < associativity of vector addition >

L((v0 + v1 + . . .+ vK−1)+ vK)

= < L is a linear transformation) >

L(v0 + v1 + . . .+ vK−1)+L(vK)

= < Inductive Hypothesis >

L(v0)+L(v1)+ . . .+L(vK−1)+L(vK)

By the Principle of Mathematical Induction the result holds for all k.

The idea is as follows:

• The base case shows that the result is true for k = 1: L(v0) = L(v0).

• The inductive step shows that if the result is true for k = 1, then the result is true for k = 1+1 = 2 so that L(v0 + v1) =
L(v0)+L(v1).

• Since the result is indeed true for k = 1 (as proven by the base case) we now know that the result is also true for k = 2.

• The inductive step also implies that if the result is true for k = 2, then it is also true for k = 3.

• Since we just reasoned that it is true for k = 2, we now know it is also true for k = 3: L(v0 + v1 + v2) = L(v0)+L(v1)+
L(v2).

• And so forth.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/31ad8e97d34c464c9ba58f2fc42272e9/3

2.3. Mathematical Induction 63

2.3 Mathematical Induction

2.3.1 What is the Principle of Mathematical Induction?

* View at edX
The Principle of Mathematical Induction (weak induction) says that if one can show that

• (Base case) a property holds for k = kb; and

• (Inductive step) if it holds for k = K, where K ≥ kb, then it is also holds for k = K +1,

then one can conclude that the property holds for all integers k ≥ kb. Often kb = 0 or kb = 1.
If mathematical induction intimidates you, have a look at in the enrichment for this week (Section 2.5.2) :Puzzles and

Paradoxes in Mathematical Induction”, by Adam Bjorndahl.
Here is Maggie’s take on Induction, extending it beyond the proofs we do.
If you want to prove something holds for all members of a set that can be defined inductively, then you would use mathe-

matical induction. You may recall a set is a collection and as such the order of its members is not important. However, some
sets do have a natural ordering that can be used to describe the membership. This is especially valuable when the set has an
infinite number of members, for example, natural numbers. Sets for which the membership can be described by suggesting
there is a first element (or small group of firsts) then from this first you can create another (or others) then more and more by
applying a rule to get another element in the set are our focus here. If all elements (members) are in the set because they are
either the first (basis) or can be constructed by applying ”The” rule to the first (basis) a finite number of times, then the set can
be inductively defined.

So for us, the set of natural numbers is inductively defined. As a computer scientist you would say 0 is the first and the rule
is to add one to get another element. So 0,1,2,3, . . . are members of the natural numbers. In this way, 10 is a member of natural
numbers because you can find it by adding 1 to 0 ten times to get it.

So, the Principle of Mathematical induction proves that something is true for all of the members of a set that can be defined
inductively. If this set has an infinite number of members, you couldn’t show it is true for each of them individually. The idea
is if it is true for the first(s) and it is true for any constructed member(s) no matter where you are in the list, it must be true for
all. Why? Since we are proving things about natural numbers, the idea is if it is true for 0 and the next constructed, it must
be true for 1 but then its true for 2, and then 3 and 4 and 5 ...and 10 and . . . and 10000 and 10001 , etc (all natural numbers).
This is only because of the special ordering we can put on this set so we can know there is a next one for which it must be true.
People often picture this rule by thinking of climbing a ladder or pushing down dominoes. If you know you started and you
know where ever you are the next will follow then you must make it through all (even if there are an infinite number).

That is why to prove something using the Principle of Mathematical Induction you must show what you are proving holds
at a start and then if it holds (assume it holds up to some point) then it holds for the next constructed element in the set. With
these two parts shown, we know it must hold for all members of this inductively defined set.

You can find many examples of how to prove using PMI as well as many examples of when and why this method of proof
will fail all over the web. Notice it only works for statements about sets ”that can be defined inductively”. Also notice subsets
of natural numbers can often be defined inductively. For example, if I am a mathematician I may start counting at 1. Or I may
decide that the statement holds for natural numbers ≥ 4 so I start my base case at 4.

My last comment in this very long message is that this style of proof extends to other structures that can be defined
inductively (such as trees or special graphs in CS).

2.3.2 Examples

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/2404fb4b47d7484d9945cb1db5a5ee5f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/2404fb4b47d7484d9945cb1db5a5ee5f/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/2404fb4b47d7484d9945cb1db5a5ee5f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/2404fb4b47d7484d9945cb1db5a5ee5f/2

Week 2. Linear Transformations and Matrices 64

Later in this course, we will look at the cost of various operations that involve matrices and vectors. In the analyses, we will
often encounter a cost that involves the expression ∑

n−1
i=0 i. We will now show that

n−1

∑
i=0

i = n(n−1)/2.

Proof:

Base case: n = 1. For this case, we must show that ∑
1−1
i=0 i = 1(0)/2.

∑
1−1
i=0 i

= < Definition of summation>

0

= < arithmetic>

1(0)/2

This proves the base case.

Inductive step: Inductive Hypothesis (IH): Assume that the result is true for n = k where k ≥ 1:

k−1

∑
i=0

i = k(k−1)/2.

We will show that the result is then also true for n = k+1:

(k+1)−1

∑
i=0

i = (k+1)((k+1)−1)/2.

Assume that k ≥ 1. Then
∑
(k+1)−1
i=0 i

= < arithmetic>

∑
k
i=0 i

= < split off last term>

∑
k−1
i=0 i+ k

= < I.H.>

k(k−1)/2+ k.

= < algebra>

(k2− k)/2+2k/2.

= < algebra>

(k2 + k)/2.

= < algebra>

(k+1)k/2.

= < arithmetic>

(k+1)((k+1)−1)/2.

This proves the inductive step.

By the Principle of Mathematical Induction the result holds for all n.

2.3. Mathematical Induction 65

As we become more proficient, we will start combining steps. For now, we give lots of detail to make sure everyone stays on
board.

* View at edX
There is an alternative proof for this result which does not involve mathematical induction. We give this proof now because

it is a convenient way to rederive the result should you need it in the future.

Proof:(alternative)

∑
n−1
i=0 i = 0 + 1 + · · · + (n−2) + (n−1)

∑
n−1
i=0 i = (n−1) + (n−2) + · · · + 1 + 0

2∑
n−1
i=0 i = (n−1) + (n−1) + · · · + (n−1) + (n−1)︸ ︷︷ ︸

n times the term (n−1)

so that 2∑
n−1
i=0 i = n(n−1). Hence ∑

n−1
i=0 i = n(n−1)/2.

For those who don’t like the “· · ·” in the above argument, notice that

2∑
n−1
i=0 i = ∑

n−1
i=0 i+∑

n−1
j=0 j < algebra >

= ∑
n−1
i=0 i+∑

0
j=n−1 j < reverse the order of the summation >

= ∑
n−1
i=0 i+∑

n−1
i=0 (n− i−1) < substituting j = n− i−1 >

= ∑
n−1
i=0 (i+n− i−1) < merge sums >

= ∑
n−1
i=0 (n−1) < algebra >

= n(n−1) < (n−1) is summed n times >.

Hence ∑
n−1
i=0 i = n(n−1)/2.

Homework 2.3.2.1 Let n≥ 1. Then ∑
n
i=1 i = n(n+1)/2.

Always/Sometimes/Never

Homework 2.3.2.2 Let n≥ 1. ∑
n−1
i=0 1 = n.

Always/Sometimes/Never

Homework 2.3.2.3 Let n≥ 1 and x ∈ Rm. Then

n−1

∑
i=0

x = x+ x+ · · ·+ x︸ ︷︷ ︸
n times

= nx

Always/Sometimes/Never

Homework 2.3.2.4 Let n≥ 1. ∑
n−1
i=0 i2 = (n−1)n(2n−1)/6.

Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/2404fb4b47d7484d9945cb1db5a5ee5f/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/2404fb4b47d7484d9945cb1db5a5ee5f/2

Week 2. Linear Transformations and Matrices 66

2.4 Representing Linear Transformations as Matrices

2.4.1 From Linear Transformation to Matrix-Vector Multiplication

* View at edX

Theorem 2.6 Let vo,v1, . . . ,vn−1 ∈ Rn, αo,α1, . . . ,αn−1 ∈ R, and let L : Rn→ Rm be a linear transformation. Then

L(α0v0 +α1v1 + · · ·+αn−1vn−1) = α0L(v0)+α1L(v1)+ · · ·+αn−1L(vn−1). (2.2)

Proof:
L(α0v0 +α1v1 + · · ·+αn−1vn−1)

= < Lemma 2.5: L(v0 + · · ·+ vn−1) = L(v0)+ · · ·+L(vn−1) >

L(α0v0)+L(α1v1)+ · · ·+L(αn−1vn−1)

= <Definition of linear transformation, n times >

α0L(v0)+α1L(v1)+ · · ·+αk−1L(vk−1)+αn−1L(vn−1).

Homework 2.4.1.1 Give an alternative proof for this theorem that mimics the proof by induction for the lemma
that states that L(v0 + · · ·+ vn−1) = L(v0)+ · · ·+L(vn−1).

Homework 2.4.1.2 Let L be a linear transformation such that

L(

 1

0

) =

 3

5

 and L(

 0

1

) =

 2

−1

 .

Then L(

 2

3

) =

For the next three exercises, let L be a linear transformation such that

L(

 1

0

) =

 3

5

 and L(

 1

1

) =

 5

4

 .

Homework 2.4.1.3 L(

 3

3

) =

Homework 2.4.1.4 L(

 −1

0

) =

Homework 2.4.1.5 L(

 2

3

) =

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/a97b0caa357241c280ec5b39a4c0110c/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/a97b0caa357241c280ec5b39a4c0110c/1

2.4. Representing Linear Transformations as Matrices 67

Homework 2.4.1.6 Let L be a linear transformation such that

L(

 1

1

) =

 5

4

 .

Then L(

 3

2

) =

Homework 2.4.1.7 Let L be a linear transformation such that

L(

 1

1

) =

 5

4

 and L(

 2

2

) =

 10

8

 .

Then L(

 3

2

) =

Now we are ready to link linear transformations to matrices and matrix-vector multiplication.
Recall that any vector x ∈ Rn can be written as

x =


χ0

χ1
...

χn−1

= χ0


1

0
...

0


︸ ︷︷ ︸

e0

+χ1


0

1
...

0


︸ ︷︷ ︸

e1

+ · · ·+χn−1


0

0
...

1


︸ ︷︷ ︸

en−1

=
n−1

∑
j=0

χ je j.

Let L : Rn→ Rm be a linear transformation. Given x ∈ Rn, the result of y = L(x) is a vector in Rm. But then

y = L(x) = L

(
n−1

∑
j=0

χ je j.

)
=

n−1

∑
j=0

χ jL(e j) =
n−1

∑
j=0

χ ja j,

where we let a j = L(e j).

The Big Idea. The linear transformation L is completely described by the vectors

a0,a1, . . . ,an−1, where a j = L(e j)

because for any vector x, L(x) = ∑
n−1
j=0 χ ja j.

By arranging these vectors as the columns of a two-dimensional array, which we call the matrix A, we arrive at the obser-
vation that the matrix is simply a representation of the corresponding linear transformation L.

Homework 2.4.1.8 Give the matrix that corresponds to the linear transformation f (

 χ0

χ1

) =

 3χ0−χ1

χ1

.

Homework 2.4.1.9 Give the matrix that corresponds to the linear transformation f (


χ0

χ1

χ2

) =

 3χ0−χ1

χ2

 .

Week 2. Linear Transformations and Matrices 68

If we let

A =


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
. . .

...

αm−1,0 αm−1,1 · · · αm−1,n−1


︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

a0 a1 an−1

so that αi, j equals the ith component of vector a j, then

L(x) = L(
n−1

∑
j=0

χ je j) =
n−1

∑
j=0

L(χ je j) =
n−1

∑
j=0

χ jL(e j) =
n−1

∑
j=0

χ ja j

= χ0a0 +χ1a1 + · · ·+χn−1an−1

= χ0


α0,0

α1,0
...

αm−1,0

+χ1


α0,1

α1,1
...

αm−1,1

+ · · ·+χn−1


α0,n−1

α1,n−1
...

αm−1,n−1



=


χ0α0,0

χ0α1,0
...

χ0αm−1,0

+


χ1α0,1

χ1α1,1
...

χ1αm−1,1

+ · · ·+


χn−1α0,n−1

χn−1α1,n−1
...

χn−1αm−1,n−1



=


χ0α0,0+ χ1α0,1+ · · ·+ χn−1α0,n−1

χ0α1,0+ χ1α1,1+ · · ·+ χn−1α1,n−1
...

...
...

...

χ0αm−1,0+ χ1αm−1,1+ · · ·+ χn−1αm−1,n−1



=


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1



=


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,n−1




χ0

χ1
...

χn−1

= Ax.

Definition 2.7 (Rm×n)
The set of all m×n real valued matrices is denoted by Rm×n.

Thus, A ∈ Rm×n means that A is a real valued matrix of size m×n.

Definition 2.8 (Matrix-vector multiplication or product)

2.4. Representing Linear Transformations as Matrices 69

Let A ∈ Rm×n and x ∈ Rn with

A =


α0,0 α0,0 · · · α0,n−1

α1,0 α1,0 · · · α1,n−1
...

...
...

αm−1,0 αm−1,0 · · · αm−1,n−1

 and x =


χ0

χ1
...

χn−1

 .

then 
α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
. . .

...

αm−1,0 αm−1,1 · · · αm−1,n−1




χ0

χ1
...

χn−1



=


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

 . (2.3)

2.4.2 Practice with Matrix-Vector Multiplication

Homework 2.4.2.1 Compute Ax when A =


−1 0 2

−3 1 −1

−2 −1 2

 and x =


1

0

0

.

Homework 2.4.2.2 Compute Ax when A =


−1 0 2

−3 1 −1

−2 −1 2

 and x =


0

0

1

.

Homework 2.4.2.3 If A is a matrix and e j is a unit basis vector of appropriate length, then Ae j = a j, where a j is
the jth column of matrix A.

Always/Sometimes/Never

Homework 2.4.2.4 If x is a vector and ei is a unit basis vector of appropriate size, then their dot product, eT
i x,

equals the ith entry in x, χi.
Always/Sometimes/Never

Homework 2.4.2.5 Compute
0

0

1


T 

−1 0 2

−3 1 −1

−2 −1 2




1

0

0


=

Week 2. Linear Transformations and Matrices 70

Homework 2.4.2.6 Compute
0

1

0


T 

−1 0 2

−3 1 −1

−2 −1 2




1

0

0


=

Homework 2.4.2.7 Let A be a m×n matrix and αi, j its (i, j) element. Then αi, j = eT
i (Ae j).

Always/Sometimes/Never

Homework 2.4.2.8 Compute

•


2 −1

1 0

−2 3


(−2)

 0

1

=

• (−2)




2 −1

1 0

−2 3


 0

1


=

•


2 −1

1 0

−2 3


 0

1

+

 1

0

=

•


2 −1

1 0

−2 3


 0

1

+


2 −1

1 0

−2 3


 1

0

=

Homework 2.4.2.9 Let A ∈ Rm×n; x,y ∈ Rn; and α ∈ R. Then

• A(αx) = α(Ax).

• A(x+ y) = Ax+Ay.

Always/Sometimes/Never

2.4. Representing Linear Transformations as Matrices 71

Homework 2.4.2.10 You can practice as little or as much as you want!
Some of the following instructions are for the desktop version of Matlab, but it should be pretty easy to figure out
what to do instead with Matlab Online.
Start up Matlab or log on to Matlab Online and change the current directory to Programming/Week02/.

Then type PracticeGemv in the command window and you get to practice all the matrix-vector multiplications
you want! For example, after a bit of practice my window looks like

Practice all you want!

2.4.3 It Goes Both Ways

* View at edX
The last exercise proves that the function that computes matrix-vector multiplication is a linear transformation:

Theorem 2.9 Let L : Rn→ Rm be defined by L(x) = Ax where A ∈ Rm×n. Then L is a linear transformation.

A function f : Rn→ Rm is a linear transformation if and only if it can be written as a matrix-vector multiplication.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/a97b0caa357241c280ec5b39a4c0110c/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/a97b0caa357241c280ec5b39a4c0110c/3

Week 2. Linear Transformations and Matrices 72

Homework 2.4.3.1 Give the linear transformation that corresponds to the matrix 2 1 0 −1

0 0 1 −1

 .

Homework 2.4.3.2 Give the linear transformation that corresponds to the matrix
2 1

0 1

1 0

1 1

 .

Example 2.10 We showed that the function f (

 χ0

χ1

) =

 χ0 +χ1

χ0

 is a linear transformation in an earlier

example. We will now provide an alternate proof of this fact.
We compute a possible matrix, A, that represents this linear transformation. We will then show that f (x) = Ax,
which then means that f is a linear transformation since the above theorem states that matrix-vector multiplications
are linear transformations.
To compute a possible matrix that represents f consider:

f (

 1

0

) =

 1+0

1

=

 1

1

 and f (

 0

1

) =

 0+1

0

=

 1

0

 .

Thus, if f is a linear transformation, then f (x) = Ax where A =

 1 1

1 0

. Now,

Ax =

 1 1

1 0

 χ0

χ1

g =

 χ0 +χ1

χ0

= f (

 χ0

χ1

) = f (x).

Hence f is a linear transformation since f (x) = Ax.

2.4. Representing Linear Transformations as Matrices 73

Example 2.11 In Example 2.3 we showed that the transformation f (

 χ

ψ

) =

 χ+ψ

χ+1

 is not a linear trans-

formation. We now show this again, by computing a possible matrix that represents it, and then showing that it
does not represent it.
To compute a possible matrix that represents f consider:

f (

 1

0

) =

 1+0

1+1

=

 1

2

 and f (

 0

1

) =

 0+1

0+1

=

 1

1

 .

Thus, if f is a linear transformation, then f (x) = Ax where A =

 1 1

2 1

. Now,

Ax =

 1 1

2 1

 χ0

χ1

=

 χ0 +χ1

2χ0 +χ1

 6=
 χ0 +χ1

χ0 +1

= f (

 χ0

χ1

) = f (x).

Hence f is not a linear transformation since f (x) 6= Ax.

The above observations give us a straight-forward, fool-proof way of checking whether a function is a linear transformation.
You compute a possible matrix and then you check if the matrix-vector multiply always yields the same result as evaluating
the function.

Homework 2.4.3.3 Let f be a vector function such that f (

 χ0

χ1

) =

 χ2
0

χ1

 Then

• (a) f is a linear transformation.

• (b) f is not a linear transformation.

• (c) Not enough information is given to determine whether f is a linear transformation.

How do you know?

Homework 2.4.3.4 For each of the following, determine whether it is a linear transformation or not:

• f (


χ0

χ1

χ2

) =


χ0

0

χ2

.

• f (

 χ0

χ1

) =

 χ2
0

0

.

2.4.4 Rotations and Reflections, Revisited

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/a97b0caa357241c280ec5b39a4c0110c/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/a97b0caa357241c280ec5b39a4c0110c/4

Week 2. Linear Transformations and Matrices 74

Recall that in the opener for this week we used a geometric argument to conclude that a rotation Rθ : R2→ R2 is a linear
transformation. We now show how to compute the matrix, A, that represents this rotation.

Given that the transformation is from R2 to R2, we know that the matrix will be a 2×2 matrix. It will take vectors of size
two as input and will produce vectors of size two. We have also learned that the first column of the matrix A will equal Rθ(e0)
and the second column will equal Rθ(e1).

We first determine what vector results when e0 =

 1

0

 is rotated through an angle θ:

 1

0


θ

Rθ(

 1

0

)

cos(θ)

sin(θ)

=

 cos(θ)

sin(θ)



Next, we determine what vector results when e1 =

 0

1

 is rotated through an angle θ:

 0

1



θ

Rθ(

 0

1

) =

 −sin(θ)

cos(θ)



cos(θ)

sin(θ)

2.4. Representing Linear Transformations as Matrices 75

This shows that

Rθ(e0) =

 cos(θ)

sin(θ)

 and Rθ(e1) =

 −sin(θ)

cos(θ)

 .

We conclude that

A =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 .

This means that an arbitrary vector x =

 χ0

χ1

 is transformed into

Rθ(x) = Ax =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 χ0

χ1

=

 cos(θ)χ0− sin(θ)χ1

sin(θ)χ0 + cos(θ)χ1

 .

This is a formula very similar to a formula you may have seen in a precalculus or physics course when discussing change
of coordinates. We will revisit to this later.

Homework 2.4.4.1 A reflection with respect to a 45 degree line is illustrated by

x

M(x)

Again, think of the dashed green line as a mirror and let M : R2→ R2 be the vector function that maps a vector to
its mirror image. Evaluate (by examining the picture)

• M(

 1

0

) =.

• M(

 0

3

) =.

• M(

 1

2

) =.

Week 2. Linear Transformations and Matrices 76

Homework 2.4.4.2 A reflection with respect to a 45 degree line is illustrated by

x

M(x)

Again, think of the dashed green line as a mirror and let M : R2→ R2 be the vector function that maps a vector to
its mirror image. Compute the matrix that represents M (by examining the picture).

2.5 Enrichment

2.5.1 The Importance of the Principle of Mathematical Induction for Programming

* View at edX
Read the ACM Turing Lecture 1972 (Turing Award acceptance speech) by Edsger W. Dijkstra:

The Humble Programmer.

Now, to see how the foundations we teach in this class can take you to the frontier of computer science, I encourage you to
download (for free)

The Science of Programming Matrix Computations

Skip the first chapter. Go directly to the second chapter. For now, read ONLY that chapter!

Here are the major points as they relate to this class:

• Last week, we introduced you to a notation for expressing algorithms that builds on slicing and dicing vectors.

• This week, we introduced you to the Principle of Mathematical Induction.

• In Chapter 2 of “The Science of Programming Matrix Computations”, we

– Show how Mathematical Induction is related to computations by a loop.
– How one can use Mathematical Induction to prove the correctness of a loop.

(No more debugging! You prove it correct like you prove a theorem to be true.)
– show how one can systematically derive algorithms to be correct. As Dijkstra said:

Today [back in 1972, but still in 2014] a usual technique is to make a program and then to test it. But:
program testing can be a very effective way to show the presence of bugs, but is hopelessly inadequate
for showing their absence. The only effective way to raise the confidence level of a program significantly
is to give a convincing proof of its correctness. But one should not first make the program and then
prove its correctness, because then the requirement of providing the proof would only increase the poor
programmer’s burden. On the contrary: the programmer should let correctness proof and program grow
hand in hand.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/5fdbe413213c490ebc18c3a41cb31064/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/b39776b93e54417bbd359e40b15dbfed/5fdbe413213c490ebc18c3a41cb31064/1
http://www.cs.utexas.edu/~EWD/ewd03xx/EWD340.PDF
http://www.lulu.com/shop/enrique-s-quintana-ort%C3%AD/the-science-of-programming-matrix-computations/ebook/product-17418498.html

2.6. Wrap Up 77

To our knowledge, for more complex programs that involve loops, we are unique in having made this comment of
Dijkstra’s practical. (We have practical libraries with hundreds of thousands of lines of code that have been derived
to be correct.)

Teaching you these techniques as part of this course would take the course in a very different direction. So, if this interests you,
you should pursue this further on your own.

2.5.2 Puzzles and Paradoxes in Mathematical Induction

Read the article “Puzzles and Paradoxes in Mathematical Induction” by Adam Bjorndahl.

2.6 Wrap Up

2.6.1 Homework

Homework 2.6.1.1 Suppose a professor decides to assign grades based on two exams and a final. Either all three
exams (worth 100 points each) are equally weighted or the final is double weighted to replace one of the exams to
benefit the student. The records indicate each score on the first exam as χ0, the score on the second as χ1, and the
score on the final as χ2. The professor transforms these scores and looks for the maximum entry. The following
describes the linear transformation:

l(


χ0

χ1

χ2

) =


χ0 +χ1 +χ2

χ0 +2χ2

χ1 +2χ2


What is the matrix that corresponds to this linear transformation?

If a student’s scores are


68

80

95

, what is the transformed score?

2.6.2 Summary

A linear transformation is a vector function that has the following two properties:

• Transforming a scaled vector is the same as scaling the transformed vector:

L(αx) = αL(x)

• Transforming the sum of two vectors is the same as summing the two transformed vectors:

L(x+ y) = L(x)+L(y)

L : Rn→ Rm is a linear transformation if and only if (iff) for all u,v ∈ Rn and α,β ∈ R

L(αu+βv) = αL(u)+βL(v).

If L : Rn→ Rm is a linear transformation, then

L(β0x0 +β1x1 + · · ·+βk−1xk−1) = β0L(x0)+β1L(x1)+ · · ·+βk−1L(xk−1).

A vector function L : Rn → Rm is a linear transformation if and only if it can be represented by an m× n matrix, which is a
very special two dimensional array of numbers (elements).

http://www.math.cornell.edu/~mec/2008-2009/ABjorndahl/ppmi.pdf

Week 2. Linear Transformations and Matrices 78

The set of all real valued m×n matrices is denoted by Rm×n.

Let A is the matrix that represents L : Rn→ Rm, x ∈ Rn, and let

A =
(

a0 a1 · · · an−1

)
(a j equals the jth column of A)

=


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

 (αi, j equals the (i, j) element of A).

x =


χ0

χ1
...

χn−1


Then

• A ∈ Rm×n.

• a j = L(e j) = Ae j (the jth column of A is the vector that results from transforming the unit basis vector e j).

• L(x) = L(∑n−1
j=0 χ je j) = ∑

n−1
j=0 L(χ je j) = ∑

n−1
j=0 χ jL(e j) = ∑

n−1
j=0 χ ja j.

•
Ax = L(x)

=
(

a0 a1 · · · an−1

)


χ0

χ1
...

χn−1


= χ0a0 +χ1a1 + · · ·+χn−1an−1

= χ0


α0,0

α1,0
...

αm−1,0

+χ1


α0,1

α1,1
...

αm−1,1

+ · · ·+χn−1


α0,n−1

α1,n−1
...

αm−1,n−1



=


χ0α0,0 +χ1α0,1 + · · ·+χn−1α0,n−1

χ0α1,0 +χ1α1,1 + · · ·+χn−1α1,n−1
...

χ0αm−1,0 +χ1αm−1,1 + · · ·+χn−1αm−1,n−1



=


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1




χ0

χ1
...

χn−1

 .

How to check if a vector function is a linear transformation:

• Check if f (0) = 0. If it isn’t, it is not a linear transformation.

2.6. Wrap Up 79

• If f (0) = 0 then either:

– Prove it is or isn’t a linear transformation from the definition:

* Find an example where f (αx) 6= α f (x) or f (x+ y) 6= f (x)+ f (y). In this case the function is not a linear
transformation; or

* Prove that f (αx) = α f (x) and f (x+ y) = f (x)+ f (y) for all α,x,y.

or

– Compute the possible matrix A that represents it and see if f (x) = Ax. If it is equal, it is a linear transformation. If
it is not, it is not a linear transformation.

Mathematical induction is a powerful proof technique about natural numbers. (There are more general forms of mathematical
induction that we will not need in our course.)

The following results about summations will be used in future weeks:

• ∑
n−1
i=0 i = n(n−1)/2≈ n2/2.

• ∑
n
i=1 i = n(n+1)/2≈ n2/2.

• ∑
n−1
i=0 i2 = (n−1)n(2n−1)/6≈ 1

3 n3.

Week 2. Linear Transformations and Matrices 80

Week 3
Matrix-Vector Operations

3.1 Opening Remarks

3.1.1 Timmy Two Space

* View at edX

Homework 3.1.1.1 Click on the below link to open a browser window with the “Timmy Two Space” exercise.
This exercise was suggested to us by our colleague Prof. Alan Cline. It was first implemented using an IPython
Notebook by Ben Holder. During the Spring 2014 offering of LAFF on the edX platform, one of the partici-
pants, Ed McCardell, rewrote the activity as * Timmy! on the web. (If this link does not work, open
LAFF-2.0xM/Timmy/index.html).
If you get really frustrated, here is a hint:

* View at edX

81

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Timmy/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1

Week 3. Matrix-Vector Operations 82

3.1.2 Outline Week 3

3.1. Opening Remarks . 81
3.1.1. Timmy Two Space . 81
3.1.2. Outline Week 3 . 82
3.1.3. What You Will Learn . 83

3.2. Special Matrices . 84
3.2.1. The Zero Matrix . 84
3.2.2. The Identity Matrix . 85
3.2.3. Diagonal Matrices . 88
3.2.4. Triangular Matrices . 91
3.2.5. Transpose Matrix . 94
3.2.6. Symmetric Matrices . 97

3.3. Operations with Matrices . 99
3.3.1. Scaling a Matrix . 99
3.3.2. Adding Matrices . 102

3.4. Matrix-Vector Multiplication Algorithms . 105
3.4.1. Via Dot Products . 105
3.4.2. Via AXPY Operations . 108
3.4.3. Compare and Contrast . 110
3.4.4. Cost of Matrix-Vector Multiplication . 111

3.5. Wrap Up . 112
3.5.1. Homework . 112
3.5.2. Summary . 112

3.1. Opening Remarks 83

3.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Recognize matrix-vector multiplication as a linear combination of the columns of the matrix.

• Given a linear transformation, determine the matrix that represents it.

• Given a matrix, determine the linear transformation that it represents.

• Connect special linear transformations to special matrices.

• Identify special matrices such as the zero matrix, the identity matrix, diagonal matrices, triangular matrices, and sym-
metric matrices.

• Transpose a matrix.

• Scale and add matrices.

• Exploit properties of special matrices.

• Extrapolate from concrete computation to algorithms for matrix-vector multiplication.

• Partition (slice and dice) matrices with and without special properties.

• Use partitioned matrices and vectors to represent algorithms for matrix-vector multiplication.

• Use partitioned matrices and vectors to represent algorithms in code.

Week 3. Matrix-Vector Operations 84

3.2 Special Matrices

3.2.1 The Zero Matrix

* View at edX

Homework 3.2.1.1 Let L0 : Rn→ Rm be the function defined for every x ∈ Rn as L0(x) = 0, where 0 denotes the
zero vector “of appropriate size”. L0 is a linear transformation.

True/False

We will denote the matrix that represents L0 by 0, where we typically know what its row and column sizes are from context
(in this case, 0 ∈ Rm×n). If it is not obvious, we may use a subscript (0m×n) to indicate its size, that is, m rows and n columns.

By the definition of a matrix, the jth column of matrix 0 is given by L0(e j) = 0 (a vector with m zero components). Thus,
the matrix that represents L0, which we will call the zero matrix, is given by the m×n matrix

0 =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

It is easy to check that for any x ∈ Rn, 0m×nxn = 0m.

Definition 3.1 A matrix A ∈ Rm×n equals the m×n zero matrix if all of its elements equal zero.

Througout this course, we will use the number 0 to indicate a scalar, vector, or matrix of “appropriate size”.

In Figure 3.1, we give an algorithm that, given an m× n matrix A, sets it to zero. Notice that it exposes columns one at a
time, setting the exposed column to zero.

MATLAB provides the function “zeros” that returns a zero matrix of indicated size. Your are going to write your own, to
helps you understand the material.

Make sure that the path to the laff subdirectory is added in MATLAB, so that the various routines form the laff library that
we are about to use will be found by MATLAB. How to do this was discussed in Unit 1.6.3.

Homework 3.2.1.2 With the FLAME API for MATLAB (FLAME@lab) implement the algorithm in Figure 3.1.
You will use the function laff zerov(x), which returns a zero vector of the same size and shape (column or
row) as input vector x. Since you are still getting used to programming with M-script and FLAME@lab, you may
want to follow the instructions in this video:

* View at edX
Some links that will come in handy:

• * Spark
(alternatively, open the file * LAFF-2.0xM/Spark/index.html)

• * PictureFLAME
(alternatively, open the file * LAFF-2.0xM/PictureFLAME/PictureFLAME.html)

You will need these in many future exercises. Bookmark them!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/PictureFLAME/PictureFLAME.html

3.2. Special Matrices 85

Algorithm: [A] := SET TO ZERO(A)

Partition A→
(

AL AR

)
whereAL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
wherea1 has 1 column

a1 := 0 (Set the current column to zero)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
endwhile

Figure 3.1: Algorithm for setting matrix A to the zero matrix.

Homework 3.2.1.3 In the MATLAB Command Window, type

A = zeros(5,4)

What is the result?

Homework 3.2.1.4 Apply the zero matrix to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy disappears into the origin.

3. Timmy becomes a line on the x-axis.

4. Timmy becomes a line on the y-axis.

5. Timmy doesn’t change at all.

3.2.2 The Identity Matrix

* View at edX

Homework 3.2.2.1 Let LI : Rn→Rn be the function defined for every x ∈Rn as LI(x) = x. LI is a linear transfor-
mation.

True/False

We will denote the matrix that represents LI by the letter I (capital “I”) and call it the identity matrix. Usually, the size of
the identity matrix is obvious from context. If not, we may use a subscript, In, to indicate the size, that is: a matrix that has n
rows and n columns (and is hence a “square matrix”).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2

Week 3. Matrix-Vector Operations 86

Again, by the definition of a matrix, the jth column of I is given by LI(e j) = e j. Thus, the identity matrix is given by

I =
(

e0 e1 · · · en−1

)
=


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Here, and frequently in the future, we use vertical lines to indicate a partitioning of a matrix into its columns. (Slicing and
dicing again!) It is easy to check that Ix = x.

Definition 3.2 A matrix I ∈ Rn×n equals the n×n identity matrix if all its elements equal zero, except for the elements on the
diagonal, which all equal one.

The diagonal of a matrix A consists of the entries α0,0, α1,1, etc. In other words, all elements αi,i.

Througout this course, we will use the capital letter I to indicate an identity matrix “of appropriate size”.

We now motivate an algorithm that, given an n×n matrix A, sets it to the identity matrix.
We’ll start by trying to closely mirror the Set to zero algorithm from the previous unit:

Algorithm: [A] := SET TO IDENTITY(A)

Partition A→
(

AL AR

)
whereAL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
wherea1 has 1 column

a1 := e j (Set the current column to the correct unit basis vector)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
endwhile

The problem is that our notation doesn’t keep track of the column index, j. Another problem is that we don’t have a routine to
set a vector to the jth unit basis vector.

To overcome this, we recognize that the jth column of A, which in our algorithm above appears as a1, and the jth unit basis
vector can each be partitioned into three parts:

a1 = a j =


a01

α11

a21

 and e j =


0

1

0

 ,

where the 0’s refer to vectors of zeroes of appropriate size. To then set a1 (= a j) to the unit basis vector, we can make the
assignments

a01 := 0

3.2. Special Matrices 87

α11 := 1
a21 := 0

The algorithm in Figure 3.2 very naturally exposes exactly these parts of the current column.

Algorithm: [A] := SET TO IDENTITY(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

set current column to appropriate unit basis vector

a01 := 0 set a01’s components to zero

α11 := 1

a21 := 0 set a21’s components to zero

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 3.2: Algorithm for setting matrix A to the identity matrix.

Why is it guaranteed that α11 refers to the diagonal element of the current column?

Answer: AT L starts as a 0×0 matrix, and is expanded by a row and a column in every iteration. Hence, it is always square.
This guarantees that α11 is on the diagonal.

MATLAB provides the routine “eye” that returns an identity matrix of indicated size. But we will write our own.

Week 3. Matrix-Vector Operations 88

Homework 3.2.2.2 With the FLAME API for MATLAB (FLAME@lab) implement the algorithm in Figure 3.2.
You will use the functions laff zerov(x) and laff onev(x), which return a zero vector and vector of all
ones of the same size and shape (column or row) as input vector x, respectively. Try it yourself! (Hint: in Spark,
you will want to pick Direction TL->BR.) Feel free to look at the below video if you get stuck.
Some links that will come in handy:

• * Spark
(alternatively, open the file * LAFF-2.0xM/Spark/index.html)

• * PictureFLAME
(alternatively, open the file * LAFF-2.0xM/PictureFLAME/PictureFLAME.html)

You will need these in many future exercises. Bookmark them!

* View at edX

Homework 3.2.2.3 In the MATLAB Command Window, type

A = eye(4,4)

What is the result?

Homework 3.2.2.4 Apply the identity matrix to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy disappears into the origin.

3. Timmy becomes a line on the x-axis.

4. Timmy becomes a line on the y-axis.

5. Timmy doesn’t change at all.

Homework 3.2.2.5 The trace of a matrix equals the sum of the diagonal elements. What is the trace of the identity
I ∈ Rn×n?

3.2.3 Diagonal Matrices

* View at edX
Let LD : Rn→ Rn be the function defined for every x ∈ Rn as

L(


χ0

χ1
...

χn−1

) =


δ0χ0

δ1χ1
...

δn−1χn−1

),

where δ0, . . . ,δn−1 are constants.
Here, we will denote the matrix that represents LD by the letter D. Once again, by the definition of a matrix, the jth column

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/PictureFLAME/PictureFLAME.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/3

3.2. Special Matrices 89

of D is given by

LD(e j) = LD(



0
...

0

1

0
...

0


) =



δ0×0
...

δ j−1×0

δ j×1

δ j+1×0
...

δn−1×0


=



0
...

0

δ j×1

0
...

0


= δ j



0
...

0

1

0
...

0


= δ je j.

This means that

D =
(

δ0e0 δ1e1 · · · δn−1en−1

)
=


δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δn−1

 .

Definition 3.3 A matrix A ∈ Rn×n is said to be diagonal if αi, j = 0 for all i 6= j so that

A =


α0,0 0 · · · 0

0 α1,1 · · · 0
...

...
. . .

...

0 0 · · · αn−1,n−1

 .

Homework 3.2.3.1 Let A =


3 0 0

0 −1 0

0 0 2

 and x =


2

1

−2

. Evaluate Ax.

Homework 3.2.3.2 Let D =


2 0 0

0 −3 0

0 0 −1

. What linear transformation, L, does this matrix represent? In

particular, answer the following questions:

• L : Rn→ Rm. What are m and n?

• A linear transformation can be described by how it transforms the unit basis vectors:

L(e0) =


 ;L(e1) =


 ;L(e2) =




• L(


χ0

χ1

χ2

) =




An algorithm that sets a given square matrix A to a diagonal matrix that has as its ith diagonal entry the ith entry of vector
x ig given in Figure 3.3.

Week 3. Matrix-Vector Operations 90

Algorithm: [A] := SET TO DIAGONAL MATRIX(A,x)

Partition A→

 AT L AT R

ABL ABR

 , x→

 xT

xB


whereAT L is 0×0, xT has 0 elements

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2


whereα11 is 1×1, χ1 is a scalar

a01 := 0

α11 := χ1

a21 := 0

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2


endwhile

Figure 3.3: Algorithm that sets A to a diagonal matrix with the entries of x on its diagonal.

Homework 3.2.3.3 Implement a function

[A out] = DiagonalMatrix unb(A, x)

based on Figure 3.3.

Homework 3.2.3.4 In the MATLAB Command Window, type

x = [-1; 2; -3]
A = diag(x)

What is the result?

In linear algebra an element-wise vector-vector product is not a meaningful operation: when x,y ∈ Rn the product xy has
no meaning. However, MATLAB has an “element-wise multiplication” operator “.*’’. Try

x = [-1; 2; -3]
y = [1; -1; 2]
x .* y
diag(x) * y

Conclude that element-wise multiplication by a vector is the same as multiplication by a diagonal matrix with diagonal
elements equal to the elements of that vector.

3.2. Special Matrices 91

Homework 3.2.3.5 Apply the diagonal matrix

 −1 0

0 2

 to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy is rotated.

3. Timmy doesn’t change at all.

4. Timmy is flipped with respect to the vertical axis.

5. Timmy is stretched by a factor two in the vertical direction.

Homework 3.2.3.6 Compute the trace of

 −1 0

0 2

.

3.2.4 Triangular Matrices

* View at edX

Homework 3.2.4.1 Let LU : R3 → R3 be defined as LU (


χ0

χ1

χ2

) =


2χ0−χ1 +χ2

3χ1−χ2

−2χ2

. We have proven for

similar functions that they are linear transformations, so we will skip that part. What matrix, U , represents this
linear transformation?

A matrix like U in the above practice is called a triangular matrix. In particular, it is an upper triangular matrix.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/4

Week 3. Matrix-Vector Operations 92

The following defines a number of different special cases of triangular matrices:

Definition 3.4 (Triangular matrix)
A matrix A ∈ Rn×n is said to be

lower
triangular αi, j = 0 if i < j



α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1


strictly
lower
triangular αi, j = 0 if i≤ j



0 0 · · · 0 0

α1,0 0 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 0 0

αn−1,0 αn−1,1 · · · αn−1,n−2 0


unit
lower
triangular αi, j =

 0 if i < j

1 if i = j



1 0 · · · 0 0

α1,0 1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 1 0

αn−1,0 αn−1,1 · · · αn−1,n−2 1



upper
triangular αi, j = 0 if i > j



α0,0 α0,1 · · · α0,n−2 α0,n−1

0 α1,1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · αn−2,n−2 αn−2,n−1

0 0 · · · 0 αn−1,n−1


strictly
upper
triangular αi, j = 0 if i≥ j



0 α0,1 · · · α0,n−2 α0,n−1

0 0 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 0 αn−2,n−1

0 0 · · · 0 0


unit
upper
triangular αi, j =

 0 if i > j

1 if i = j



1 α0,1 · · · α0,n−2 α0,n−1

0 1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 1 αn−2,n−1

0 0 · · · 0 1


If a matrix is either lower or upper triangular, it is said to be triangular.

Homework 3.2.4.2 A matrix that is both lower and upper triangular is, in fact, a diagonal matrix.
Always/Sometimes/Never

Homework 3.2.4.3 A matrix that is both strictly lower and strictly upper triangular is, in fact, a zero matrix.
Always/Sometimes/Never

The algorithm in Figure 3.4 sets a given matrix A ∈ Rn×n to its lower triangular part (zeroing the elements above the
diagonal).

Homework 3.2.4.4 In the above algorithm you could have replaced a01 := 0 with aT
12 := 0.

Always/Sometimes/Never

3.2. Special Matrices 93

Algorithm: [A] := SET TO LOWER TRIANGULAR MATRIX(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

set the elements of the current column above the diagonal to zero

a01 := 0 set a01’s components to zero

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 3.4: Algorithm for making a matrix A a lower triangular matrix by setting the entries above the diagonal to zero.

Homework 3.2.4.5 Consider the following algorithm.

Algorithm: [A] := SET TO ??? TRIANGULAR MATRIX(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

?????

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Change the ????? in the above algorithm so that it sets A to its

• Upper triangular part. (Set to upper triangular matrix unb)

• Strictly upper triangular part. (Set to strictly upper triangular matrix unb)

• Unit upper triangular part. (Set to unit upper triangular matrix unb)

• Strictly lower triangular part. (Set to strictly lower triangular matrix unb)

• Unit lower triangular part. (Set to unit lower triangular matrix unb)

Week 3. Matrix-Vector Operations 94

The MATLAB functions tril and triu, when given an n× n matrix A, return the lower and upper triangular parts of A,
respectively. The strictly lower and strictly upper triangular parts of A can be extracted by the calls tril(A, -1) and triu(
A, 1), respectively. We now write our own routines that sets the appropriate entries in a matrix to zero.

Homework 3.2.4.6 Implement functions for each of the algorithms from the last homework. In other words,
implement functions that, given a matrix A, return a matrix equal to

• the upper triangular part. (Set to upper triangular matrix)

• the strictly upper triangular part. (Set to strictly upper triangular matrix)

• the unit upper triangular part. (Set to unit upper triangular matrix)

• strictly lower triangular part. (Set to strictly lower triangular matrix)

• unit lower triangular part. (Set to unit lower triangular matrix)

(Implement as many as you enjoy implementing. Then move on.)

Homework 3.2.4.7 In MATLAB try this:

A = [1,2,3;4,5,6;7,8,9]
tril(A)
tril(A, -1)
tril(A, -1) + eye(size(A))
triu(A)
triu(A, 1)
triu(A, 1) + eye(size(A))

Homework 3.2.4.8 Apply

 1 1

0 1

 to Timmy Two Space. What happens to Timmy?

1. Timmy shifts off the grid.

2. Timmy becomes a line on the x-axis.

3. Timmy becomes a line on the y-axis.

4. Timmy is skewed to the right.

5. Timmy doesn’t change at all.

3.2.5 Transpose Matrix

* View at edX

Definition 3.5 Let A ∈Rm×n and B ∈Rn×m. Then B is said to be the transpose of A if, for 0≤ i < m and 0≤ j < n, β j,i = αi, j.
The transpose of a matrix A is denoted by AT so that B = AT .

We have already used T to indicate a row vector, which is consistent with the above definition: it is a column vector that
has been transposed.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/5

3.2. Special Matrices 95

Homework 3.2.5.1 Let A =


−1 0 2 1

2 −1 1 2

3 1 −1 3

 and x =


−1

2

4

. What are AT and xT ?

Clearly, (AT)T = A.

Notice that the columns of matrix A become the rows of matrix AT . Similarly, the rows of matrix A become the columns of
matrix AT .

The following algorithm sets a given matrix B ∈ Rn×m to the transpose of a given matrix A ∈ Rm×n:

Algorithm: [B] := TRANSPOSE(A,B)

Partition A→
(

AL AR

)
, B→

 BT

BB


whereAL has 0 columns, BT has 0 rows

while n(AL)< n(A) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 BT

BB

→


B0

bT
1

B2


wherea1 has 1 column, b1 has 1 row

bT
1 := aT

1 (Set the current row of B to the current col-
umn of A)

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 BT

BB

←


B0

bT
1

B2


endwhile

The T in bT
1 is part of indicating that bT

1 is a row. The T in aT
1 in the assignment changes the column vector a1 into a row

vector so that it can be assigned to bT
1 .

Week 3. Matrix-Vector Operations 96

Homework 3.2.5.2 Consider the following algorithm.

Algorithm: [B] := TRANSPOSE ALTERNATIVE(A,B)

Partition A→

 AT

AB

 , B→
(

BL BR

)
whereAT has 0 rows, BL has 0 columns

while m(AT)< m(A) do

Repartition

 AT

AB

→


A0

aT
1

A2

 ,
(

BL BR

)
→
(

B0 b1 B2

)
wherea1 has 1 row, b1 has 1 column

Continue with

 AT

AB

←


A0

aT
1

A2

 ,
(

BL BR

)
←
(

B0 b1 B2

)
endwhile

Modify the above algorithm so that it copies rows of A into columns of B.

Homework 3.2.5.3 Implement functions

• Transpose unb(A, B)

• Transpose alternative unb(A, B)

Homework 3.2.5.4 The transpose of a lower triangular matrix is an upper triangular matrix.
Always/Sometimes/Never

Homework 3.2.5.5 The transpose of a strictly upper triangular matrix is a strictly lower triangular matrix.
Always/Sometimes/Never

Homework 3.2.5.6 The transpose of the identity is the identity.
Always/Sometimes/Never

Homework 3.2.5.7 Evaluate

•

 0 1

1 0

T

=

•

 0 1

−1 0

T

=

3.2. Special Matrices 97

Homework 3.2.5.8 If A = AT then A = I (the identity).
True/False

3.2.6 Symmetric Matrices

* View at edX
A matrix A ∈ Rn×n is said to be symmetric if A = AT .

In other words, if A ∈ Rn×n is symmetric, then αi, j = α j,i for all 0≤ i, j < n. Another way of expressing this is that

A =



α0,0 α0,1 · · · α0,n−2 α0,n−1

α0,1 α1,1 · · · α1,n−2 α1,n−1
...

...
. . .

...
...

α0,n−2 α1,n−2 · · · αn−2,n−2 αn−2,n−1

α0,n−1 α1,n−1 · · · αn−2,n−1 αn−1,n−1


and

A =



α0,0 α1,0 · · · αn−2,0 αn−1,0

α1,0 α1,1 · · · αn−2,1 αn−1,1
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 αn−1,n−2

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1


.

Homework 3.2.6.1 Assume the below matrices are symmetric. Fill in the remaining elements.
2 � −1

−2 1 −3

� � −1

 ;


2 � �

−2 1 �

−1 3 −1

 ;


2 1 −1

� 1 −3

� � −1

 .

Homework 3.2.6.2 A triangular matrix that is also symmetric is, in fact, a diagonal matrix. Always/Some-
times/Never

The nice thing about symmetric matrices is that only approximately half of the entries need to be stored. Often, only the
lower triangular or only the upper triangular part of a symmetric matrix is stored. Indeed: Let A be symmetric, let L be the
lower triangular matrix stored in the lower triangular part of A, and let L̃ is the strictly lower triangular matrix stored in the
strictly lower triangular part of A. Then A = L+ L̃T :

A =



α0,0 α1,0 · · · αn−2,0 αn−1,0

α1,0 α1,1 · · · αn−2,1 αn−1,1

...
...

. . .
...

...

αn−2,0 αn−2,1 · · · αn−2,n−2 αn−1,n−2

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1



=



α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1


+



0 α1,0 · · · αn−2,0 αn−1,0

0 0 · · · αn−2,1 αn−1,1

...
...

. . .
...

...

0 0 · · · 0 αn−1,n−2

0 0 · · · 0 0



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/6

Week 3. Matrix-Vector Operations 98

=



α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1


+



0 0 · · · 0 0

α1,0 0 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 0 0

αn−1,0 αn−1,1 · · · αn−1,n−2 0



T

.

Let A be symmetric and assume that A = L+ L̃T as discussed above. Assume that only L is stored in A and that we would
like to also set the upper triangular parts of A to their correct values (in other words, set the strictly upper triangular part of A to
L̃). The following algorithm performs this operation, which we will call “symmetrizing” A:

Algorithm: [A] := SYMMETRIZE FROM LOWER TRIANGLE(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

(set a01’s components to their symmetric parts below the diagonal)

a01 := (aT
10)

T

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Homework 3.2.6.3 In the above algorithm one can replace a01 := aT
10 by aT

12 = a21.
Always/Sometimes/Never

3.3. Operations with Matrices 99

Homework 3.2.6.4 Consider the following algorithm.

Algorithm: [A] := SYMMETRIZE FROM UPPER TRIANGLE(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

?????

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

What commands need to be introduced between the lines in order to “symmetrize” A assuming that only its upper
triangular part is stored initially.

Homework 3.2.6.5 Implement functions

• Symmetrize from lower triangle unb(A, B)

• Symmetrize from upper triangle unb(A, B)

3.3 Operations with Matrices

3.3.1 Scaling a Matrix

* View at edX

Theorem 3.6 Let LA : Rn→ Rm be a linear transformation and, for all x ∈ Rn, define the function LB : Rn→ Rm by LB(x) =
βLA(x), where β is a scalar. Then LB(x) is a linear transformation.

Homework 3.3.1.1 Prove the above theorem.

Let A be the matrix that represents LA. Then, for all x ∈ Rn, β(Ax) = βLA(x) = LB(x). Since LB is a linear transformation,
there should be a matrix B such that, for all x ∈ Rn, Bx = LB(x) = β(Ax). Recall that b j = Be j, the jth column of B. Thus,
b j = Be j = β(Ae j) = βa j, where a j equals the jth column of A. We conclude that B is computed from A by scaling each column
by β. But that simply means that each element of B is scaled by β.

The above motivates the following definition.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/9f3a56a18bcc4f43b6eb162eb0777fa9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/9f3a56a18bcc4f43b6eb162eb0777fa9/1

Week 3. Matrix-Vector Operations 100

If A ∈ Rm×n and β ∈ R, then

β


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

=


βα0,0 βα0,1 · · · βα0,n−1

βα1,0 βα1,1 · · · βα1,n−1
...

...
...

βαm−1,0 βαm−1,1 · · · βαm−1,n−1

 .

An alternative motivation for this definition is to consider

β(Ax) = β


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1



=


β(α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1)

β(α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1)
...

...
...

...

β(αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1)



=


βα0,0χ0+ βα0,1χ1+ · · ·+ βα0,n−1χn−1

βα1,0χ0+ βα1,1χ1+ · · ·+ βα1,n−1χn−1
...

...
...

...

βαm−1,0χ0+ βαm−1,1χ1+ · · ·+ βαm−1,n−1χn−1



=


βα0,0 βα0,1 · · · βα0,n−1

βα1,0 βα1,1 · · · βα1,n−1
...

...
. . .

...

βαm−1,0 βαm−1,1 · · · βαm−1,n−1




χ0

χ1
...

χn−1

= (βA)x.

Since, by design, β(Ax) = (βA)x we can drop the parentheses and write βAx (which also equals A(βx) since L(x) = Ax is a
linear transformation).

Given matrices β ∈ R and A ∈ Rm×n, the following algorithm scales A by β.

3.3. Operations with Matrices 101

Algorithm: [A] := SCALE MATRIX(β,A)

Partition A→
(

AL AR

)
whereAL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
wherea1 has 1 column

a1 := βa1 (Scale the current column of A)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
endwhile

Homework 3.3.1.2 Consider the following algorithm.

Algorithm: [A] := SCALE MATRIX ALTERNATIVE(β,A)

Partition A→

 AT

AB


whereAT has 0 rows

while m(AT)< m(A) do

Repartition

 AT

AB

→


A0

aT
1

A2


wherea1 has 1 row

?????

Continue with

 AT

AB

←


A0

aT
1

A2


endwhile

What update will scale A one row at a time?

With MATLAB, when beta is a scalar and A is a matrix, the simple command beta * A will scale A by alpha.

Homework 3.3.1.3 Implement function Scale matrix unb(beta, A).

Week 3. Matrix-Vector Operations 102

Homework 3.3.1.4

* View at edX
Let A ∈ Rn×n be a symmetric matrix and β ∈ R a scalar, βA is symmetric.

Always/Sometimes/Never

Homework 3.3.1.5

* View at edX
Let A ∈ Rn×n be a lower triangular matrix and β ∈ R a scalar, βA is a lower triangular matrix.

Always/Sometimes/Never

Homework 3.3.1.6 Let A ∈ Rn×n be a diagonal matrix and β ∈ R a scalar, βA is a diagonal matrix.
Always/Sometimes/Never

Homework 3.3.1.7 Let A ∈ Rm×n be a matrix and β ∈ R a scalar, (βA)T = βAT .
Always/Sometimes/Never

3.3.2 Adding Matrices

* View at edX

Homework 3.3.2.1 The sum of two linear transformations is a linear transformation. More formally: Let LA :
Rn→Rm and LB :Rn→Rm be two linear transformations. Let LC :Rn→Rm be defined by LC(x) = LA(x)+LB(x).
LC is a linear transformation.

Always/Sometimes/Never

Now, let A, B, and C be the matrices that represent LA, LB, and LC in the above theorem, respectively. Then, for all x ∈ Rn,
Cx = LC(x) = LA(x)+LB(x). What does c j, the jth column of C, equal?

c j =Ce j = LC(e j) = LA(e j)+LB(e j) = Ae j +Be j = a j +b j,

where a j, b j, and c j equal the jth columns of A, B, and C, respectively. Thus, the jth column of C equals the sum of the
corresponding columns of A and B. That simply means that each element of C equals the sum of the corresponding elements of
A and B.

If A,B ∈ Rm×n, then

A+B =


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

+


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

βm−1,0 βm−1,1 · · · βm−1,n−1



=


α0,0 +β0,0 α0,1 +β0,1 · · · α0,n−1 +β0,n−1

α1,0 +β1,0 α1,1 +β1,1 · · · α1,n−1 +β1,n−1
...

...
...

αm−1,0 +βm−1,0 αm−1,1 +βm−1,1 · · · αm−1,n−1 +βm−1,n−1

 .

Given matrices A,B ∈ Rm×n, the following algorithm adds B to A.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/2

3.3. Operations with Matrices 103

Algorithm: [A] := ADD MATRICES(A,B)

Partition A→
(

AL AR

)
, B→

(
BL BR

)
whereAL has 0 columns, BL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,
(

BL BR

)
→
(

B0 b1 B2

)
wherea1 has 1 column, b1 has 1 column

a1 := a1 +b1 (Add the current column of B to the current column of A)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,
(

BL BR

)
←
(

B0 b1 B2

)
endwhile

Homework 3.3.2.2 Consider the following algorithm.

Algorithm: [A] := ADD MATRICES ALTERNATIVE(A,B)

Partition A→

 AT

AB

 , B→

 BT

BB


whereAT has 0 rows, BT has 0 rows

while m(AT)< m(A) do

Repartition

 AT

AB

→


A0

aT
1

A2

 ,

 BT

BB

→


B0

bT
1

B2


wherea1 has 1 row, b1 has 1 row

Continue with

 AT

AB

←


A0

aT
1

A2

 ,

 BT

BB

←


B0

bT
1

B2


endwhile

What update will add B to A one row at a time, overwriting A with the result?

When A and B are created as matrices of the same size, MATLAB adds two matrices with the simple command A + B .
We’ll just use that when we need it!

Week 3. Matrix-Vector Operations 104

Try this! In MATLAB execute

A = [1,2;3,4;5,6]
B = [-1,2;3,-4;5,6]
C = A + B

Homework 3.3.2.3 Let A,B ∈ Rm×n. A+B = B+A.
Always/Sometimes/Never

Homework 3.3.2.4 Let A,B,C ∈ Rm×n. (A+B)+C = A+(B+C).
Always/Sometimes/Never

Homework 3.3.2.5 Let A,B ∈ Rm×n and γ ∈ R. γ(A+B) = γA+ γB.
Always/Sometimes/Never

Homework 3.3.2.6 Let A ∈ Rm×n and β,γ ∈ R. (β+ γ)A = βA+ γA.
Always/Sometimes/Never

Homework 3.3.2.7 Let A,B ∈ Rn×n. (A+B)T = AT +BT .
Always/Sometimes/Never

Homework 3.3.2.8 Let A,B ∈ Rn×n be symmetric matrices. A+B is symmetric.
Always/Sometimes/Never

Homework 3.3.2.9 Let A,B ∈ Rn×n be symmetric matrices. A−B is symmetric.
Always/Sometimes/Never

Homework 3.3.2.10 Let A,B ∈ Rn×n be symmetric matrices and α,β ∈ R. αA+βB is symmetric.
Always/Sometimes/Never

Homework 3.3.2.11 Let A,B ∈ Rn×n.

If A and B are lower triangular matrices then A+B is lower triangular.
True/False

If A and B are strictly lower triangular matrices then A+B is strictly lower triangular.
True/False

If A and B are unit lower triangular matrices then A+B is unit lower triangular.
True/False

If A and B are upper triangular matrices then A+B is upper triangular.
True/False

If A and B are strictly upper triangular matrices then A+B is strictly upper triangular.
True/False

If A and B are unit upper triangular matrices then A+B is unit upper triangular.
True/False

3.4. Matrix-Vector Multiplication Algorithms 105

Homework 3.3.2.12 Let A,B ∈ Rn×n.

If A and B are lower triangular matrices then A−B is lower triangular.
True/False

If A and B are strictly lower triangular matrices then A−B is strictly lower triangular. True/False

If A and B are unit lower triangular matrices then A−B is strictly lower triangular. True/False

If A and B are upper triangular matrices then A−B is upper triangular. True/False

If A and B are strictly upper triangular matrices then A−B is strictly upper triangular. True/False

If A and B are unit upper triangular matrices then A−B is unit upper triangular. True/False

3.4 Matrix-Vector Multiplication Algorithms

3.4.1 Via Dot Products

* View at edX

Motivation

Recall that if y = Ax, where A ∈ Rm×n, x ∈ Rn, and y ∈ Rm, then

y =


ψ0

ψ1
...

ψm−1

=


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

 .

If one looks at a typical row,

αi,0χ0+ αi,1χ1+ · · ·+ αi,n−1χn−1

one notices that this is just the dot product of vectors

ãi =


αi,0

αi,1
...

αi,n−1

 and x =


χ0

χ1
...

χn−1

 .

In other words, the dot product of the ith row of A, viewed as a column vector, with the vector x, which one can visualize as

ψ0
...

ψi
...

ψm−1


=



α0,0 α0,1 · · · α0,n−1
...

...
...

αi,0 αi,1 · · · αi,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1




χ0

χ1
...

χn−1



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/1

Week 3. Matrix-Vector Operations 106

The above argument starts to expain why we write the dot product of vectors x and y as xT y.

Example 3.7 Let A =


−1 0 2

2 −1 1

3 1 −1

 and x =


−1

2

1

. Then

Ax =


−1 0 2

2 −1 1

3 1 −1



−1

2

1

=



(
−1 0 2

)
−1

2

1


(

2 −1 1
)

−1

2

1


(

3 1 −1
)

−1

2

1





=




−1

0

2


T 

−1

2

1




2

−1

1


T 

−1

2

1




3

1

−1


T 

−1

2

1





=


(−1)(−1)+(0)(2)+(2)(1)

(2)(−1)+(−1)(2)+(1)(1)

(3)(−1)+(1)(2)+(−1)(1)

=


3

−3

−2



Algorithm (traditional notation)

An algorithm for computing y := Ax+ y (notice that we add the result of Ax to y) via dot products is given by

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

ψi := ψi +αi, jχ j

endfor

endfor

If initially y = 0, then it computes y := Ax.

Now, let us revisit the fact that the matrix-vector multiply can be computed as dot products of the rows of A with the vector

3.4. Matrix-Vector Multiplication Algorithms 107

x. Think of the matrix A as individual rows:

A =


ãT

0

ãT
1
...

ãT
m−1

 ,

where ãi is the (column) vector which, when transposed, becomes the ith row of the matrix. Then

Ax =


ãT

0

ãT
1
...

ãT
m−1

x =


ãT

0 x

ãT
1 x
...

ãT
m−1x

 ,

which is exactly what we reasoned before. To emphasize this, the algorithm can then be annotated as follows:

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

ψi := ψi +αi, jχ j

endfor

ψi := ψi + ãT
i x

endfor

Algorithm (FLAME notation)

We now present the algorithm that casts matrix-vector multiplication in terms of dot products using the FLAME notation with
which you became familiar earlier this week:

Algorithm: y := MVMULT N UNB VAR1(A,x,y)

Partition A→

 AT

AB

 , y→

 yT

yB


whereAT is 0×n and yT is 0×1

while m(AT)< m(A) do

Repartition

 AT

AB

→


A0

aT
1

A2

 ,

 yT

yB

→


y0

ψ1

y2


wherea1 is a row

ψ1 := aT
1 x+ψ1

Continue with
 AT

AB

←


A0

aT
1

A2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Week 3. Matrix-Vector Operations 108

Homework 3.4.1.1 Implement function Mvmult n unb var1(A, x, y).

3.4.2 Via AXPY Operations

* View at edX

Motivation

Note that, by definition,

Ax =


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

=

χ0


α0,0

α1,0
...

αm−1,0

+χ1


α0,1

α1,1
...

αm−1,1

+ · · ·+χn−1


α0,n−1

α1,n−1
...

αm−1,n−1

 .

Example 3.8 Let A =


−1 0 2

2 −1 1

3 1 −1

 and x =


−1

2

1

. Then

Ax =


−1 0 2

2 −1 1

3 1 −1



−1

2

1

= (−1)


−1

2

3

+(2)


0

−1

1

+(1)


2

1

−1



=


(−1)(−1)

(−1)(2)

(−1)(3)

+


(2)(0)

(2)(−1)

(2)(1)

+


(1)(2)

(1)(1)

(1)(−1)



=


(−1)(−1)+(0)(2)+(2)(1)

(2)(−1)+(−1)(2)+(1)(1)

(3)(−1)+(1)(2)+(−1)(1)

=


3

−3

−2



Algorithm (traditional notation)

The above suggests the alternative algorithm for computing y := Ax+ y given by

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/2

3.4. Matrix-Vector Multiplication Algorithms 109

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

ψi := ψi +αi, jχ j

endfor

endfor

If we let a j denote the vector that equals the jth column of A, then

A =
(

a0 a1 · · · an−1

)

and

Ax = χ0


α0,0

α1,0
...

αm−1,0


︸ ︷︷ ︸

a0

+χ1


α0,1

α1,1
...

αm−1,1


︸ ︷︷ ︸

a1

+ · · ·+χn−1


α0,n−1

α1,n−1
...

αm−1,n−1


︸ ︷︷ ︸

an−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1.

This is emphasized by annotating the algorithm as follows:

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

ψi := ψi +αi, jχ j

endfor

y := χ ja j + y

endfor

Algorithm (FLAME notation)

Here is the algorithm that casts matrix-vector multiplication in terms of AXPYs using the FLAME notation:

Week 3. Matrix-Vector Operations 110

Algorithm: y := MVMULT N UNB VAR2(A,x,y)

Partition A→
(

AL AR

)
, x→

 xT

xB


whereAL is m×0 and xT is 0×1

while m(xT)< m(x) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 xT

xB

→


x0

χ1

x2


wherea1 is a column

y := χ1a1 + y

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 xT

xB

←


x0

χ1

x2


endwhile

Homework 3.4.2.1 Implement function Mvmult n unb var2(A, x, y).
(Hint: use the function laff dots(x, y, alpha) that updates α := xT y+α.)

3.4.3 Compare and Contrast

* View at edX

Motivation

It is always useful to compare and contrast different algorithms for the same operation.

Algorithms (traditional notation)

Let us put the two algorithms that compute y := Ax+ y via “double nested loops” next to each other:

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

ψi := ψi +αi, jχ j

endfor

endfor

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

ψi := ψi +αi, jχ j

endfor

endfor

On the left is the algorithm based on the AXPY operation and on the right the one based on the dot product. Notice that these
loops differ only in that the order of the two loops are interchanged. This is known as “interchanging loops” and is sometimes
used by compilers to optimize nested loops. In the enrichment section of this week we will discuss why you may prefer one
ordering of the loops over another.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/3

3.4. Matrix-Vector Multiplication Algorithms 111

The above explains, in part, why we chose to look at y := Ax+ y rather than y := Ax. For y := Ax+ y, the two algorithms
differ only in the order in which the loops appear. To compute y := Ax, one would have to initialize each component of
y to zero, ψi := 0. Depending on where in the algorithm that happens, transforming an algorithm that computes y := Ax
elements of y at a time (the inner loop implements a dot product) into an algorithm that computes with columns of A (the
inner loop implements an AXPY operation) gets trickier.

Algorithms (FLAME notation)

Now let us place the two algorithms presented using the FLAME notation next to each other:

Algorithm: y := MVMULT N UNB VAR1(A,x,y)

Partition A→

 AT

AB

 , y→

 yT

yB


where AT is 0×n and yT is 0×1

while m(AT)< m(A) do
Repartition

 AT

AB

→


A0

aT
1

A2

 ,

 yT

yB

→


y0

ψ1

y2


ψ1 := aT

1 x+ψ1

Continue with

 AT

AB

←


A0

aT
1

A2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := MVMULT N UNB VAR2(A,x,y)

Partition A→
(

AL AR

)
, x→

 xT

xB


where AL is m×0 and xT is 0×1

while m(xT)< m(x) do
Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 xT

xB

→


x0

χ1

x2


y := χ1a1 + y

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 xT

xB

←


x0

χ1

x2


endwhile

The algorithm on the left clearly accesses the matrix by rows while the algorithm on the right accesses it by columns. Again,
this is important to note, and will be discussed in enrichment for this week.

3.4.4 Cost of Matrix-Vector Multiplication

* View at edX
Consider y := Ax+ y, where A ∈ Rm×n:

y =


ψ0

ψ1
...

ψm−1

=


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1+ ψ0

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1+ ψ2
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1+ ψm−1

 .

Notice that there is a multiply and an add for every element of A. Since A has m×n = mn elements, y := Ax+ y, requires mn
multiplies and mn adds, for a total of 2mn floating point operations (flops). This count is the same regardless of the order of the
loops (i.e., regardless of whether the matrix-vector multiply is organized by computing dot operations with the rows or axpy
operations with the columns).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/4

Week 3. Matrix-Vector Operations 112

3.5 Wrap Up

3.5.1 Homework

No additional homework this week. You have done enough...

3.5.2 Summary

Special Matrices

Name Represents linear transformation Has entries

Zero matrix, 0m×n ∈ Rm×n L0 : Rn→ Rm

L0(x) = 0 for all x
0 = 0m×n =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



Identity matrix, I ∈ Rn×n LI : Rn→ Rn

LI(x) = x for all x
I = In×n =


1 0 · · · 0

0 1 · · · 0
...

.
...

0 0 · · · 1



Diagonal matrix, D ∈ Rn×n LD : Rn→ Rn

if y = LD(x) then ψi = δiχi
D =


δ0 0 · · · 0

0 δ1 · · · 0
...

.
...

0 0 · · · δn−1



3.5. Wrap Up 113

Triangular matrices

A ∈ Rn×n is said to be... if ...

lower
triangular αi, j = 0 if i < j



α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1


strictly
lower
triangular αi, j = 0 if i≤ j



0 0 · · · 0 0

α1,0 0 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 0 0

αn−1,0 αn−1,1 · · · αn−1,n−2 0


unit
lower
triangular αi, j =

 0 if i < j

1 if i = j



1 0 · · · 0 0

α1,0 1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 1 0

αn−1,0 αn−1,1 · · · αn−1,n−2 1



upper
triangular αi, j = 0 if i > j



α0,0 α0,1 · · · α0,n−2 α0,n−1

0 α1,1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · αn−2,n−2 αn−2,n−1

0 0 · · · 0 αn−1,n−1


strictly
upper
triangular αi, j = 0 if i≥ j



0 α0,1 · · · α0,n−2 α0,n−1

0 0 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 0 αn−2,n−1

0 0 · · · 0 0


unit
upper
triangular αi, j =

 0 if i > j

1 if i = j



1 α0,1 · · · α0,n−2 α0,n−1

0 1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 1 αn−2,n−1

0 0 · · · 0 1



Transpose matrix



α0,0 α0,1 · · · α0,n−2 α0,n−1

α1,0 α1,1 · · · α1,n−2 α1,n−1
...

...
...

...

αm−2,0 αm−2,1 · · · αm−2,n−2 αm−2,n−1

αm−1,0 αm−1,1 · · · αm−1,n−2 αm−1,n−1



T

=



α0,0 α1,0 · · · αm−2,0 αm−1,0

α0,1 α1,1 · · · αm−2,1 αm−1,1
...

...
...

...

α0,n−2 α1,n−2 · · · αm−2,n−2 αm−1,n−2

α0,n−1 α1,n−1 · · · αm−2,n−1 αm−1,n−1



Week 3. Matrix-Vector Operations 114

Symmetric matrix

Matrix A ∈ Rn×n is symmetric if and only if A = AT :

A =



α0,0 α0,1 · · · α0,n−2 α0,n−1

α1,0 α1,1 · · · α1,n−2 α1,n−1
...

...
...

...

αn−2,0 αn−2,1 · · · αn−2,n−2 αn−2,n−1

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1


=



α0,0 α1,0 · · · αn−2,0 αn−1,0

α0,1 α1,1 · · · αn−2,1 αn−1,1
...

...
. . .

...
...

α0,n−2 α1,n−2 · · · αn−2,n−2 αn−1,n−2

α0,n−1 α1,n−1 · · · αn−2,n−1 αn−1,n−1


= AT

Scaling a matrix

Let β ∈ R and A ∈ Rm×n. Then

βA = β

(
a0 a1 · · · an−1

)
=
(

βa0 βa1 · · · βan−1

)

= β


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

=


βα0,0 βα0,1 · · · βα0,n−1

βα1,0 βα1,1 · · · βα1,n−1
...

...
...

βαm−1,0 βαm−1,1 · · · βαm−1,n−1


Adding matrices

Let A,B ∈ Rm×n. Then

A+B =
(

a0 a1 · · · an−1

)
+
(

b0 b1 · · · bn−1

)
=
(

a0 +b0 a1 +b1 · · · an−1 +bn−1

)

=


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

+


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

βm−1,0 βm−1,1 · · · βm−1,n−1



=


α0,0 +β0,0 α0,1 +β0,1 · · · α0,n−1 +β0,n−1

α1,0 +β1,0 α1,1 +β1,1 · · · α1,n−1 +β1,n−1
...

...
...

αm−1,0 +βm−1,0 αm−1,1 +βm−1,1 · · · αm−1,n−1 +βm−1,n−1


• Matrix addition commutes: A+B = B+A.

• Matrix addition is associative: (A+B)+C = A+(B+C).

• (A+B)T = AT +BT .

Matrix-vector multiplication

Ax =


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,n−1




χ0

χ1
...

χn−1

=


α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1



3.5. Wrap Up 115

=
(

a0 a1 · · · an−1

)


χ0

χ1
...

χn−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1

=


ãT

0

ãT
1
...

ãT
m−1

x =


ãT

0 x

ãT
1 x
...

ãT
m−1x



Week 3. Matrix-Vector Operations 116

Week 4
From Matrix-Vector Multiplication to
Matrix-Matrix Multiplication

There are a LOT of programming assignments this week.

• They are meant to help clarify “slicing and dicing”.

• They show that the right abstractions in the mathematics, when reflected in how we program, allow one to implement
algorithms very quickly.

• They help you understand special properties of matrices.

Practice as much as you think will benefit your understanding of the material. There is no need to do them all!

4.1 Opening Remarks

4.1.1 Predicting the Weather

* View at edX
The following table tells us how the weather for any day (e.g., today) predicts the weather for the next day (e.g., tomorrow):

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

This table is interpreted as follows: If today is rainy, then the probability that it will be cloudy tomorrow is 0.6, etc.

117

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 118

Homework 4.1.1.1 If today is cloudy, what is the probability that tomorrow is

• sunny?

• cloudy?

• rainy?

* View at edX

Homework 4.1.1.2 If today is sunny, what is the probability that the day after tomorrow is sunny? cloudy? rainy?

Try this! If today is cloudy, what is the probability that a week from today it is sunny? cloudy? rainy?
Think about this for at most two minutes, and then look at the answer.

* View at edX
When things get messy, it helps to introduce some notation.

• Let χ
(k)
s denote the probability that it will be sunny k days from now (on day k).

• Let χ
(k)
c denote the probability that it will be cloudy k days from now.

• Let χ
(k)
r denote the probability that it will be rainy k days from now.

The discussion so far motivate the equations

χ
(k+1)
s = 0.4×χ

(k)
s + 0.3×χ

(k)
c + 0.1×χ

(k)
r

χ
(k+1)
c = 0.4×χ

(k)
s + 0.3×χ

(k)
c + 0.6×χ

(k)
r

χ
(k+1)
r = 0.2×χ

(k)
s + 0.4×χ

(k)
c + 0.3×χ

(k)
r .

The probabilities that denote what the weather may be on day k and the table that summarizes the probabilities are often
represented as a (state) vector, x(k), and (transition) matrix, P, respectively:

x(k) =


χ
(k)
s

χ
(k)
c

χ
(k)
r

 and P =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3

 .

The transition from day k to day k+1 is then written as the matrix-vector product (multiplication)
χ
(k+1)
s

χ
(k+1)
c

χ
(k+1)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(k)
s

χ
(k)
c

χ
(k)
r


or x(k+1) = Px(k), which is simply a more compact representation (way of writing) the system of linear equations.

What this demonstrates is that matrix-vector multiplication can also be used to compactly write a set of simultaneous linear
equations.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1

4.1. Opening Remarks 119

Assume again that today is cloudy so that the probability that it is sunny, cloudy, or rainy today is 0, 1, and 0, respectively:

x(0) =


χ
(0)
s

χ
(0)
c

χ
(0)
r

=


0

1

0

 .

(If we KNOW today is cloudy, then the probability that is is sunny today is zero, etc.)

Ah! Our friend the unit basis vector reappears!

Then the vector of probabilities for tomorrow’s weather, x(1), is given by
χ
(1)
s

χ
(1)
c

χ
(1)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0

1

0



=


0.4×0 + 0.3×1 + 0.1×0

0.4×0 + 0.3×1 + 0.6×0

0.2×0 + 0.4×1 + 0.3×0

=


0.3

0.3

0.4

 .

Ah! Pe1 = p1, where p1 is the second column in matrix P. You should not be surprised!

The vector of probabilities for the day after tomorrow, x(2), is given by
χ
(2)
s

χ
(2)
c

χ
(2)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(1)
s

χ
(1)
c

χ
(1)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.3

0.3

0.4



=


0.4×0.3 + 0.3×0.3 + 0.1×0.4

0.4×0.3 + 0.3×0.3 + 0.6×0.4

0.2×0.3 + 0.4×0.3 + 0.3×0.4

=


0.25

0.45

0.30

 .

Repeating this process (preferrably using Python rather than by hand), we can find the probabilities for the weather for the
next seven days, under the assumption that today is cloudy:

k

0 1 2 3 4 5 6 7

x(k) =


0

1

0




0.3

0.3

0.4




0.25

0.45

0.30




0.265

0.415

0.320




0.2625

0.4225

0.3150




0.26325

0.42075

0.31600




0.26312

0.42112

0.31575




0.26316

0.42104

0.31580



* View at edX

Homework 4.1.1.3 Follow the instructions in the above video

* View at edX
We could build a table that tells us how to predict the weather for the day after tomorrow from the weather today:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 120

Today

sunny cloudy rainy

Day after
Tomorrow

sunny

cloudy

rainy

One way you can do this is to observe that
χ
(2)
s

χ
(2)
c

χ
(2)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(1)
s

χ
(1)
c

χ
(1)
r



=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r


= Q


χ
(0)
s

χ
(0)
c

χ
(0)
r

 ,

where Q is the transition matrix that tells us how the weather today predicts the weather the day after tomorrow. (Well, actually,
we don’t yet know that applying a matrix to a vector twice is a linear transformation... We’ll learn that later this week.)

Now, just like P is simply the matrix of values from the original table that showed how the weather tomorrow is predicted
from today’s weather, Q is the matrix of values for the above table.

Homework 4.1.1.4 Given

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

fill in the following table, which predicts the weather the day after tomorrow given the weather today:

Today

sunny cloudy rainy

Day after
Tomorrow

sunny

cloudy

rainy

Now here is the hard part: Do so without using your knowledge about how to perform a matrix-matrix multipli-
cation, since you won’t learn about that until later this week... May we suggest that you instead use MATLAB to
perform the necessary calculations.

4.1. Opening Remarks 121

4.1.2 Outline

4.1. Opening Remarks . 117
4.1.1. Predicting the Weather . 117
4.1.2. Outline . 121
4.1.3. What You Will Learn . 122

4.2. Preparation . 123
4.2.1. Partitioned Matrix-Vector Multiplication . 123
4.2.2. Transposing a Partitioned Matrix . 125
4.2.3. Matrix-Vector Multiplication, Again . 129

4.3. Matrix-Vector Multiplication with Special Matrices . 132
4.3.1. Transpose Matrix-Vector Multiplication . 132
4.3.2. Triangular Matrix-Vector Multiplication . 134
4.3.3. Symmetric Matrix-Vector Multiplication . 140

4.4. Matrix-Matrix Multiplication (Product) . 143
4.4.1. Motivation . 143
4.4.2. From Composing Linear Transformations to Matrix-Matrix Multiplication 145
4.4.3. Computing the Matrix-Matrix Product . 145
4.4.4. Special Shapes . 148
4.4.5. Cost . 153

4.5. Enrichment . 154
4.5.1. Markov Chains: Their Application . 154

4.6. Wrap Up . 154
4.6.1. Homework . 154
4.6.2. Summary . 155

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 122

4.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Apply matrix vector multiplication to predict the probability of future states in a Markov process.

• Make use of partitioning to perform matrix vector multiplication.

• Transpose a partitioned matrix.

• Partition conformally, ensuring that the size of the matrices and vectors match so that matrix-vector multiplication works.

• Take advantage of special structures to perform matrix-vector multiplication with triangular and symmetric matrices.

• Express and implement various matrix-vector multiplication algorithms using the FLAME notation and FlamePy.

• Make connections between the composition of linear transformations and matrix-matrix multiplication.

• Compute a matrix-matrix multiplication.

• Recognize scalars and column/row vectors as special cases of matrices.

• Compute common vector-vector and matrix-vector operations as special cases of matrix-matrix multiplication.

• Compute an outer product xyT as a special case of matrix-matrix multiplication and recognize that

– The rows of the resulting matrix are scalar multiples of yT .

– The columns of the resulting matrix are scalar multiples of x.

4.2. Preparation 123

4.2 Preparation

4.2.1 Partitioned Matrix-Vector Multiplication

* View at edX

Motivation

Consider

A =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

=



−1 2 4 1 0

1 0 −1 −2 1

2 −1 3 1 2

1 2 3 4 3

−1 −2 0 1 2


,

x =


x0

χ1

x2

=



1

2

3

4

5


, and y =


y0

ψ1

y2

 ,

where y0,y2 ∈ R2. Then y = Ax means that

y =


y0

ψ1

y2

=


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22




x0

χ1

x2

=


A00x0 + a01χ1 + A02x2

aT
10x0 + α11χ1 + aT

12x2

A20x0 + a21χ1 + A22x2



=



 −1 2

1 0

 1

2

 +

 4

−1

3 +

 1 0

−2 1

 4

5


(

2 −1
) 1

2

 +
(

3
)

3 +
(

1 2
) 4

5

 1 2

−1 −2

 1

2

 +

 3

0

3 +

 4 3

1 2

 4

5




=



 (−1)× (1)+(2)× (2)

(1)× (1)+(0)× (2)

+

 (4)× (3)

(−1)× (3)

+

 (1)× (4)+(0)× (5)

(−2)× (4)+(1)× (5)


(2)× (1)+(−1)× (2)+ (3)× (3)+ (1)× (4)+(2)× (5) (1)× (1)+(2)× (2)

(−1)× (1)+(−2)× (2)

+

 (3)×3

(0)×3

+

 (4)× (4)+(3)× (5)

(1)× (4)+(2)× (5)




=

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 124



(−1)× (1)+(2)× (2)+(4)× (3)+(1)× (4)+(0)× (5)

(1)× (1)+(0)× (2)+(−1)× (3)+(−2)× (4)+(1)× (5)

(2)× (1)+(−1)× (2)+(3)× (3)+(1)× (4)+(2)× (5)

(1)× (1)+(2)× (2)+(3)× (3)+(4)× (4)+(3)× (5)

(−1)× (1)+(−2)× (2)+(0)× (3)+(1)× (4)+(2)× (5)


=



19

−5

23

45

9


Homework 4.2.1.1 Consider

A =



−1 2 4 1 0

1 0 −1 −2 1

2 −1 3 1 2

1 2 3 4 3

−1 −2 0 1 2


and x =



1

2

3

4

5


,

and partition these into submatrices (regions) as follows:
A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 and


x0

χ1

x2

 ,

where A00 ∈ R3x3, x0 ∈ R3, α11 is a scalar, and χ1 is a scalar. Show with lines how A and x are partitioned:

−1 2 4 1 0

1 0 −1 −2 1

2 −1 3 1 2

1 2 3 4 3

−1 −2 0 1 2





1

2

3

4

5


.

Homework 4.2.1.2 With the partitioning of matrices A and x in the above exercise, repeat the partitioned matrix-
vector multiplication, similar to how this unit started.

Theory

Let A ∈ Rm×n, x ∈ Rn, and y ∈ Rm. Partition

A =


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
. . .

...

AM−1,0 AM−1,1 · · · AM−1,N−1

 , x =


x0

x1
...

xN−1

 , and y =


y0

y1
...

yM−1


where

• m = m0 +m1 + · · ·+mM−1,

• mi ≥ 0 for i = 0, . . . ,M−1,

• n = n0 +n1 + · · ·+nN−1,

• n j ≥ 0 for j = 0, . . . ,N−1, and

4.2. Preparation 125

• Ai, j ∈ Rmi×n j , x j ∈ Rn j , and yi ∈ Rmi .

If y = Ax then 
A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
. . .

...

AM−1,0 AM−1,1 · · · AM−1,N−1




x0

x1
...

xN−1



=


A0,0x0 +A0,1x1 + · · ·+A0,N−1xN−1

A1,0x0 +A1,1x1 + · · ·+A1,N−1xN−1
...

AM−1,0x0 +AM−1,1x1 + · · ·+AM−1,N−1xN−1

 .

In other words,

yi =
N−1

∑
j=0

Ai, jx j.

This is intuitively true and messy to prove carefully. Therefore we will not give its proof, relying on the many examples we
will encounter in subsequent units instead.

If one partitions matrix A, vector x, and vector y into blocks, and one makes sure the dimensions match up, then blocked
matrix-vector multiplication proceeds exactly as does a regular matrix-vector multiplication except that individual multi-
plications of scalars commute while (in general) individual multiplications with matrix and vector blocks (submatrices and
subvectors) do not.

The labeling of the submatrices and subvectors in this unit was carefully chosen to convey information. Consider

A =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


The letters that are used convey information about the shapes. For example, for a01 and a21 the use of a lowercase Roman
letter indicates they are column vectors while the T s in aT

10 and aT
12 indicate that they are row vectors. Symbols α11 and χ1

indicate these are scalars. We will use these conventions consistently to enhance readability.

Notice that the partitioning of matrix A and vectors x and y has to be “conformal”. The simplest way to understand this is
that matrix-vector multiplication only works if the sizes of matrices and vectors being multiply match. So, a partitioning
of A, x, and y, when performing a given operation, is conformal if the suboperations with submatrices and subvectors that
are encountered make sense.

4.2.2 Transposing a Partitioned Matrix

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/2

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 126

Motivation

Consider 
1 −1 3 2

2 −2 1 0

0 −4 3 2


T

=


 1 −1 3

2 −2 1

  2

0


(

0 −4 3
) (

2
)


T

=



 1 −1 3

2 −2 1

T (
0 −4 3

)T

 2

0

T (
2
)T



=




1 2

−1 −2

3 1




0

−4

3


(

2 0
) (

2
)

=


1 2 0

−1 −2 −4

3 1 3

2 0 2

 .

This example illustrates a general rule: When transposing a partitioned matrix (matrix partitioned into submatrices), you
transpose the matrix of blocks, and then you transpose each block.

Homework 4.2.2.1 Show, step-by-step, how to transpose
1 −1 3 2

2 −2 1 0

0 −4 3 2



Theory

Let A ∈ Rm×n be partitioned as follows:

A =


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,N−1

 ,

where Ai, j ∈ Rmi×n j . Then

AT =


AT

0,0 AT
1,0 · · · AT

M−1,0

AT
0,1 AT

1,1 · · · AT
M−1,1

...
...

...

AT
0,N−1 AT

1,N−1 · · · AT
M−1,N−1

 .

Transposing a partitioned matrix means that you view each submatrix as if it is a scalar, and you then transpose the matrix
as if it is a matrix of scalars. But then you recognize that each of those scalars is actually a submatrix and you also transpose
that submatrix.

4.2. Preparation 127

Special cases

We now discuss a number of special cases that you may encounter.

Each submatrix is a scalar. If

A =


α0,0 α0,1 · · · α0,N−1

α1,0 α1,1 · · · α1,N−1
...

...
...

αM−1,0 αM−1,1 · · · αM−1,N−1


then

AT =


αT

0,0 αT
1,0 · · · αT

M−1,0

αT
0,1 αT

1,1 · · · αT
M−1,1

...
...

...

αT
0,N−1 αT

1,N−1 · · · αT
M−1N−1

=


α0,0 α1,0 · · · αM−1,0

α0,1 α1,1 · · · αM−1,1
...

...
...

α0,N−1 α1,N−1 · · · αM−1,N−1

 .

This is because the transpose of a scalar is just that scalar.

The matrix is partitioned by rows. If

A =


ãT

0

ãT
1
...

ãT
m−1

 ,

where each ãT
i is a row of A, then

AT =


ãT

0

ãT
1
...

ãT
m−1



T

=
((

ãT
0
)T (

ãT
1
)T · · ·

(
ãT

m−1
)T
)
=
(

ã0 ã1 · · · ãm−1

)
.

This shows that rows of A, ãT
i , become columns of AT : ãi.

The matrix is partitioned by columns. If

A =
(

a0 a1 · · · an−1

)
,

where each a j is a column of A, then

AT =
(

a0 a1 · · · an−1

)T
=


aT

0

aT
1
...

aT
n−1

 .

This shows that columns of A, a j, become rows of AT : aT
j .

2×2 blocked partitioning. If

A =

 AT L AT R

ABL ABR

 ,

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 128

then

AT =

 AT
T L AT

BL

AT
T R AT

BR

 .

3×3 blocked partitioning. If

A =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

then

AT =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


T

=


AT

00
(
aT

10
)T AT

20

aT
01 αT

11 aT
21

AT
02

(
aT

12
)T AT

22

=


AT

00 a10 AT
20

aT
01 α11 aT

21

AT
02 a12 AT

22

 .

Anyway, you get the idea!!!

4.2. Preparation 129

Homework 4.2.2.2 Transpose the following matrices:

1.
(

3
)

2.


3

1

1

8


3.
(

3 1 1 8
)

4.


1 2 3 4

5 6 7 8

9 10 11 12



5.


1 5 9

2 6 10

3 7 11

4 8 12



6.


1 2 3 4

5 6 7 8

9 10 11 12



7.




1 2 3 4

5 6 7 8

9 10 11 12


T

For any matrix A ∈ Rm×n,
AT T

= (AT)T = A

4.2.3 Matrix-Vector Multiplication, Again

* View at edX

Motivation

In the next few units, we will modify the matrix-vector multiplication algorithms from last week so that they can take advantage
of matrices with special structure (e.g., triangular or symmetric matrices).

Now, what makes a triangular or symmetric matrix special? For one thing, it is square. For another, it only requires one
triangle of a matrix to be stored. It was for this reason that we ended up with “algorithm skeletons” that looked like the one in
Figure 4.1 when we presented algorithms for “triangularizing” or “symmetrizing” a matrix.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/3

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 130

Algorithm: [A] := ALGORITHM SKELETON(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 4.1: Code skeleton for algorithms when matrices are triangular or symmetric.

Now, consider a typical partitioning of a matrix that is encountered in such an algorithm:


A00 a01 A02

aT
10 α01 aT

12

A20 a21 A22

=



× × × × × ×
× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×


,

where each × represents an entry in the matrix (in this case 6×6). If, for example, the matrix is lower triangular,


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

=



× 0 0 0 0 0

× × 0 0 0 0

× × × 0 0 0

× × × × 0 0

× × × × × 0

× × × × × ×


,

4.2. Preparation 131

Algorithm: y := MVMULT N UNB VAR1B(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := aT
10x0 +α11χ1 +aT

12x2 +ψ1

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := MVMULT N UNB VAR2B(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1a21 + y2

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.2: Alternative algorithms for matrix-vector multiplication.

then a01 = 0, A02 = 0, and aT
12 = 0. (Remember: the “0” is a matrix or vector “of appropriate size”.) If instead the matrix is

symmetric with only the lower triangular part stored, then a01 =
(
aT

10
)T

= a10, A02 = AT
20, and aT

12 = aT
21.

The above observation leads us to express the matrix-vector multiplication algorithms for computing y := Ax+ y given in
Figure 4.2. Note:

• For the left algorithm, what was previously the “current” row in matrix A, aT
1 , is now viewed as consisting of three parts:

aT
1 =

(
aT

10 α11 aT
12

)
while the vector x is now also partitioned into three parts:

x =


x0

χ1

x1

 .

As we saw in the first week, the partitioned dot product becomes

aT
1 x =

(
aT

10 α11 aT
12

)
x0

χ1

x1

= aT
10x0 +α11χ1 +aT

12x2,

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 132

which explains why the update

ψ1 := aT
1 x+ψ1

is now

ψ1 := aT
10x0 +α11χ1 +aT

12x2 +ψ1.

• Similar, for the algorithm on the right, based on the matrix-vector multiplication algorithm that uses the AXPY operations,
we note that

y := χ1a1 + y

is replaced by 
y0

ψ1

y2

 := χ1


a01

α11

a21

+


y0

ψ1

y2


which equals 

y0

ψ1

y2

 :=


χ1a01 + y0

χ1α11 +ψ1

χ1a21 + y2

 .

This explains the update

y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1a21 + y2.

Now, for matrix-vector multiplication y := Ax+ y, it is not beneficial to break the computation up in this way. Typically, a dot
product is more efficient than multiple operations with the subvectors. Similarly, typically one AXPY is more efficient then
multiple AXPYs. But the observations in this unit lay the foundation for modifying the algorithms to take advantage of special
structure in the matrix, later this week.

Homework 4.2.3.1 Implement routines

• [y out] = Mvmult n unb var1B(A, x, y); and

• [y out] = Mvmult n unb var2B(A, x, y)

that compute y := Ax+ y via the algorithms in Figure 4.2.

4.3 Matrix-Vector Multiplication with Special Matrices

4.3.1 Transpose Matrix-Vector Multiplication

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/1

4.3. Matrix-Vector Multiplication with Special Matrices 133

Algorithm: y := MVMULT T UNB VAR1(A,x,y)

Partition A→
(

AL AR

)
, y→

 yT

yB


where AL is m×0 and yT is 0×1

while m(yT)< m(y) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 yT

yB

→


y0

ψ1

y2


ψ1 := aT

1 x+ψ1

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := MVMULT T UNB VAR2(A,x,y)

Partition A→

 AT

AB

 , x→

 xT

xB


where AT is 0×n and xT is 0×1

while m(AT)< m(A) do

Repartition AT

AB

→


A0

aT
1

A2

 ,

 xT

xB

→


x0

χ1

x2


y := χ1a1 + y

Continue with AT

AB

←


A0

aT
1

A2

 ,

 xT

xB

←


x0

χ1

x2


endwhile

Figure 4.3: Algorithms for computing y := AT x+ y.

Motivation

Let A =


1 −2 0

2 −1 1

1 2 3

 and x =


−1

2

−3

. Then

AT x =


1 −2 0

2 −1 1

1 2 3


T 

−1

2

−3

=


1 2 1

−2 −1 2

0 1 3



−1

2

−3

=


0

−6

−7

 .

The thing to notice is that what was a column in A becomes a row in AT .

Algorithms

Let us consider how to compute y := AT x+ y.
It would be possible to explicitly transpose matrix A into a new matrix B (using, for example, the transpose function you

wrote in Week 3) and to then compute y := Bx+ y. This approach has at least two drawbacks:

• You will need space for the matrix B. Computational scientists tend to push the limits of available memory, and hence
are always hesitant to use large amounts of space that isn’t absolutely necessary.

• Transposing A into B takes time. A matrix-vector multiplication requires 2mn flops. Transposing a matrix requires 2mn
memops (mn reads from memory and mn writes to memory). Memory operations are very slow relative to floating point
operations... So, you will spend all your time transposing the matrix.

Now, the motivation for this unit suggest that we can simply use columns of A for the dot products in the dot product based
algorithm for y := Ax+y. This suggests the algorithm in FLAME notation in Figure 4.3 (left). Alternatively, one can exploit the

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 134

fact that columns in A become rows of AT to change the algorithm for computing y := Ax+ y that is based on AXPY operations
into an algorithm for computing y := AT x+ y, as shown in Figure 4.3 (right).

Implementation

Homework 4.3.1.1 Implement the routines

• [y out] = Mvmult t unb var1(A, x, y); and

• [y out] = Mvmult t unb var2(A, x, y)

that compute y := AT x+ y via the algorithms in Figure 4.3.

Homework 4.3.1.2 Implementations achieve better performance (finish faster) if one accesses data consecutively
in memory. Now, most scientific computing codes store matrices in “column-major order” which means that the
first column of a matrix is stored consecutively in memory, then the second column, and so forth. Now, this means
that an algorithm that accesses a matrix by columns tends to be faster than an algorithm that accesses a matrix by
rows. That, in turn, means that when one is presented with more than one algorithm, one should pick the algorithm
that accesses the matrix by columns.
Our FLAME notation makes it easy to recognize algorithms that access the matrix by columns.

• For the matrix-vector multiplication y := Ax+y, would you recommend the algorithm that uses dot products
or the algorithm that uses axpy operations?

• For the matrix-vector multiplication y :=AT x+y, would you recommend the algorithm that uses dot products
or the algorithm that uses axpy operations?

The point of this last exercise is to make you aware of the fact that knowing more than one algorithm can give you a
performance edge. (Useful if you pay $30 million for a supercomputer and you want to get the most out of its use.)

4.3.2 Triangular Matrix-Vector Multiplication

* View at edX

Motivation

Let U ∈ Rn×n be an upper triangular matrix and x ∈ Rn be a vector. Consider

Ux =


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22




x0

χ1

x2

=



−1 2 4 1 0

0 0 −1 −2 1

0 0 3 1 2

0 0 0 4 3

0 0 0 0 2





1

2

3

4

5



=



?

? 0

0

T  1

2

+(3)(3)+

 1

2

T  4

5


?

?


=



?

?

(3)(3)+

 1

2

T  4

5


?

?


,

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/2

4.3. Matrix-Vector Multiplication with Special Matrices 135

where ?s indicate components of the result that aren’t important in our discussion right now. We notice that uT
10 = 0 (a vector

of two zeroes) and hence we need not compute with it.

Theory

If

U →

 UT L UT R

UBL UBR

=


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

 ,

where UT L and U00 are square matrices. Then

• UBL = 0, uT
10 = 0, U20 = 0, and u21 = 0, where 0 indicates a matrix or vector of the appropriate dimensions.

• UT L and UBR are upper triangular matrices.

We will just state this as “intuitively obvious”.
Similarly, if

L→

 LT L LT R

LBL LBR

=


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

 ,

where LT L and L00 are square matrices, then

• LT R = 0, l01 = 0, L02 = 0, and lT
12 = 0, where 0 indicates a matrix or vector of the appropriate dimensions.

• LT L and LBR are lower triangular matrices.

Algorithms

Let us start by focusing on y :=Ux+ y, where U is upper triangular. The algorithms from the previous section can be restated
as in Figure 4.4, replacing A by U . Now, notice the parts in gray. Since uT

10 = 0 and u21 = 0, those computations need not be
performed! Bingo, we have two algorithms that take advantage of the zeroes below the diagonal. We probably should explain
the names of the routines:

TRMVP UN UNB VAR1: Triangular matrix-vector multiply plus (y), with upper triangular matrix that is not trans-
posed, unblocked variant 1.

(Yes, a bit convoluted, but such is life.)

Homework 4.3.2.1 Write routines

• [y out] = Trmvp un unb var1 (U, x, y); and

• [y out] = Trmvp un unb var2(U, x, y)

that implement the algorithms in Figure 4.4 that compute y :=Ux+ y.

Homework 4.3.2.2 Modify the algorithms in Figure 4.5 so that they compute y := Lx+ y, where L is a lower
triangular matrix: (Just strike out the parts that evaluate to zero. We suggest you do this homework in conjunction
with the next one.)

Homework 4.3.2.3 Write the functions

• [y out] = Trmvp ln unb var1 (L, x, y); and

• [y out] = Trmvp ln unb var2(L, x, y)

that implement thenalgorithms for computing y := Lx+ y from Homework 4.3.2.2.

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 136

Algorithm: y := TRMVP UN UNB VAR1(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := uT
10x0+ υ11χ1 +uT

12x2 +ψ1

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP UN UNB VAR2(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1u01 + y0

ψ1 := χ1υ11 +ψ1

y2 := χ1u21 + y2

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.4: Algorithms for computing y :=Ux+ y, where U is upper triangular.

Homework 4.3.2.4 Modify the algorithms in Figure 4.6 to compute x := Ux, where U is an upper triangular
matrix. You may not use y. You have to overwrite x without using work space. Hint: Think carefully about the
order in which elements of x are computed and overwritten. You may want to do this exercise hand-in-hand with
the implementation in the next homework.

Homework 4.3.2.5 Write routines

• [x out] = Trmv un unb var1 (U, x); and

• [x out] = Trmv un unb var2(U, x)

that implement the algorithms for computing x :=Ux from Homework 4.3.2.4.

Homework 4.3.2.6 Modify the algorithms in Figure 4.7 to compute x := Lx, where L is a lower triangular matrix.
You may not use y. You have to overwrite x without using work space. Hint: Think carefully about the order
in which elements of x are computed and overwritten. This question is VERY tricky... You may want to do this
exercise hand-in-hand with the implementation in the next homework.

4.3. Matrix-Vector Multiplication with Special Matrices 137

Algorithm: y := TRMVP LN UNB VAR1(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := lT
10x0 +λ11χ1 + lT

12x2 +ψ1

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP LN UNB VAR2(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1l01 + y0

ψ1 := χ1λ11 +ψ1

y2 := χ1l21 + y2

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.5: Algorithms to be used in Homework 4.3.2.2.

Homework 4.3.2.7 Write routines

• [y out] = Trmv ln unb var1 (L, x); and

• [y out] = Trmv ln unb var2(L, x)

that implement the algorithms from Homework 4.3.2.6 for computing x := Lx.

Homework 4.3.2.8 Develop algorithms for computing y :=UT x+ y and y := LT x+ y, where U and L are respec-
tively upper triangular and lower triangular. Do not explicitly transpose matrices U and L. Write routines

• [y out] = Trmvp ut unb var1 (U, x, y); and

• [y out] = Trmvp ut unb var2(U, x, y)

• [y out] = Trmvp lt unb var1 (L, x, y); and

• [y out] = Trmvp ln unb var2(L, x, y)

that implement these algorithms.

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 138

Algorithm: y := TRMVP UN UNB VAR1(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := uT
10x0+ υ11χ1 +uT

12x2 +ψ1

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP UN UNB VAR2(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1u01 + y0

ψ1 := χ1υ11 +ψ1

y2 := χ1u21 + y2

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.6: Algorithms to be used in Homework 4.3.2.4.

Homework 4.3.2.9 Develop algorithms for computing x := UT x and x := LT x, where U and L are respectively
upper triangular and lower triangular. Do not explicitly transpose matrices U and L. Write routines

• [y out] = Trmv ut unb var1 (U, x); and

• [y out] = Trmv ut unb var2(U, x)

• [y out] = Trmv lt unb var1 (L, x); and

• [y out] = Trmv ln unb var2(L, x)

that implement these algorithms.

Cost

Let us analyze the algorithms for computing y :=Ux+ y. (The analysis of all the other algorithms is very similar.)
For the dot product based algorithm, the cost is in the update ψ1 := υ11χ1 +uT

12x2 +ψ1 which is typically computed in two
steps:

• ψ1 := υ11χ1 +ψ1; followed by

• a dot product ψ1 := uT
12x2 +ψ1.

4.3. Matrix-Vector Multiplication with Special Matrices 139

Algorithm: y := TRMVP LN UNB VAR1(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := lT
10x0 +λ11χ1 + lT

12x2 +ψ1

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP LN UNB VAR2(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1l01 + y0

ψ1 := χ1λ11 +ψ1

y2 := χ1l21 + y2

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.7: Algorithms to be used in Homework 4.3.2.6.

Now, during the first iteration, uT
12 and x2 are of length n−1, so that that iteration requires 2(n−1)+2 = 2n flops for the first

step. During the kth iteration (starting with k = 0), uT
12 and x2 are of length (n−k−1) so that the cost of that iteration is 2(n−k)

flops. Thus, if A is an n×n matrix, then the total cost is given by

n−1

∑
k=0

[2(n− k)] = 2
n−1

∑
k=0

(n− k) = 2(n+(n−1)+ · · ·+1) = 2
n

∑
k=1

k = 2(n+1)n/2.

flops. (Recall that we proved in the second week that ∑
n
i=1 i = n(n+1)

2 .)

Homework 4.3.2.10 Compute the cost, in flops, of the algorithm for computing y := Lx+ y that uses AXPY s.

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 140

Homework 4.3.2.11 As hinted at before: Implementations achieve better performance (finish faster) if one ac-
cesses data consecutively in memory. Now, most scientific computing codes store matrices in “column-major
order” which means that the first column of a matrix is stored consecutively in memory, then the second column,
and so forth. Now, this means that an algorithm that accesses a matrix by columns tends to be faster than an
algorithm that accesses a matrix by rows. That, in turn, means that when one is presented with more than one
algorithm, one should pick the algorithm that accesses the matrix by columns.
Our FLAME notation makes it easy to recognize algorithms that access the matrix by columns. For example, in
this unit, if the algorithm accesses submatrix a01 or a21 then it accesses columns. If it accesses submatrix aT

10 or
aT

12, then it accesses the matrix by rows.
For each of these, which algorithm accesses the matrix by columns:

• For y :=Ux+ y, TRSVP UN UNB VAR1 or TRSVP UN UNB VAR2?
Does the better algorithm use a dot or an axpy?

• For y := Lx+ y, TRSVP LN UNB VAR1 or TRSVP LN UNB VAR2?
Does the better algorithm use a dot or an axpy?

• For y :=UT x+ y, TRSVP UT UNB VAR1 or TRSVP UT UNB VAR2?
Does the better algorithm use a dot or an axpy?

• For y := LT x+ y, TRSVP LT UNB VAR1 or TRSVP LT UNB VAR2?
Does the better algorithm use a dot or an axpy?

4.3.3 Symmetric Matrix-Vector Multiplication

* View at edX

Motivation

Consider


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,=



−1 2 4 1 0

2 0 −1 −2 1

4 −1 3 1 2

1 −2 1 4 3

0 1 2 3 2


.

Here we purposely chose the matrix on the right to be symmetric. We notice that aT
10 = a01, AT

20 = A02, and aT
12 = a21. A

moment of reflection will convince you that this is a general principle, when A00 is square. Moreover, notice that A00 and A22
are then symmetric as well.

Theory

Consider

A =

 AT L AT R

ABL ABR

=


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

where AT L and A00 are square matrices. If A is symmetric then

• AT L, ABR, A00, and A22 are symmetric;

• aT
10 = aT

01 and aT
12 = aT

21; and

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/3

4.3. Matrix-Vector Multiplication with Special Matrices 141

Algorithm: y := SYMV U UNB VAR1(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 :=

aT
01︷︸︸︷

aT
10 x0 +α11χ1 +aT

12x2 +ψ1

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := SYMV U UNB VAR2(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1 a21︸︷︷︸
a12

+ y2

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.8: Algorithms for computing y := Ax+ y where A is symmetric, where only the upper triangular part of A is stored.

• A20 = AT
02.

We will just state this as “intuitively obvious”.

Algorithms

Consider computing y := Ax+y where A is a symmetric matrix. Since the upper and lower triangular part of a symmetric matrix
are simply the transpose of each other, it is only necessary to store half the matrix: only the upper triangular part or only the
lower triangular part. In Figure 4.8 we repeat the algorithms for matrix-vector multiplication from an earlier unit, and annotate
them for the case where A is symmetric and only stored in the upper triangle. The change is simple: a10 and a21 are not stored
and thus

• For the left algorithm, the update ψ1 := aT
10x0+α11χ1+aT

12x2+ψ1 must be changed to ψ1 := aT
01x0+α11χ1+aT

12x2+ψ1.

• For the algorithm on the right, the update y2 := χ1a21 + y2 must be changed to y2 := χ1a12 + y2 (or, more precisely,
y2 := χ1(aT

12)
T + y2 since aT

12 is the label for part of a row).

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 142

Algorithm: y := SYMV L UNB VAR1(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := aT
10x0 +α11χ1 +aT

12x2 +ψ1

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := SYMV L UNB VAR2(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1a21 + y2

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.9: Algorithms for Homework 4.3.3.2

Homework 4.3.3.1 Write routines

• [y out] = Symv u unb var1 (A, x, y); and

• [y out] = Symv u unb var2(A, x, y)

that implement the algorithms in Figure 4.8.

Homework 4.3.3.2 Modify the algorithms in Figure 4.9 to compute y := Ax+y, where A is symmetric and stored
in the lower triangular part of matrix. You may want to do this in conjunction with the next exercise.

Homework 4.3.3.3 Write routines

• [y out] = Symv l unb var1 (A, x, y); and

• [y out] = Symv l unb var2(A, x, y)

that implement the algorithms from the previous homework.

4.4. Matrix-Matrix Multiplication (Product) 143

Homework 4.3.3.4 Challenge question! As hinted at before: Implementations achieve better performance (finish
faster) if one accesses data consecutively in memory. Now, most scientific computing codes store matrices in
“column-major order” which means that the first column of a matrix is stored consecutively in memory, then the
second column, and so forth. Now, this means that an algorithm that accesses a matrix by columns tends to be
faster than an algorithm that accesses a matrix by rows. That, in turn, means that when one is presented with more
than one algorithm, one should pick the algorithm that accesses the matrix by columns. Our FLAME notation
makes it easy to recognize algorithms that access the matrix by columns.
The problem with the algorithms in this unit is that all of them access both part of a row AND part of a column.
So, your challenge is to devise an algorithm for computing y := Ax+ y where A is symmetric and only stored in
one half of the matrix that only accesses parts of columns. We will call these “variant 3”. Then, write routines

• [y out] = Symv u unb var3 (A, x, y); and

• [y out] = Symv l unb var3(A, x, y)

Hint: (Let’s focus on the case where only the lower triangular part of A is stored.)

• If A is symmetric, then A = L+ L̂T where L is the lower triangular part of A and L̂ is the strictly lower
triangular part of A.

• Identify an algorithm for y := Lx+ y that accesses matrix A by columns.

• Identify an algorithm for y := L̂T x+ y that accesses matrix A by columns.

• You now have two loops that together compute y := Ax+ y = (L+ L̂T)x+ y = Lx+ L̂T x+ y.

• Can you “merge” the loops into one loop?

4.4 Matrix-Matrix Multiplication (Product)

4.4.1 Motivation

* View at edX

The first unit of the week, in which we discussed a simple model for prediction the weather, finished with the following
exercise:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 144

Given

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

fill in the following table, which predicts the weather the day after tomorrow given the weather today:

Today

sunny cloudy rainy

Day after
Tomorrow

sunny

cloudy

rainy

Now here is the hard part: Do so without using your knowledge about how to perform a matrix-matrix multiplication, since
you won’t learn about that until later this week...

The entries in the table turn out to be the entries in the transition matrix Q that was described just above the exercise:
χ
(2)
s

χ
(2)
c

χ
(2)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(1)
s

χ
(1)
c

χ
(1)
r



=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r


= Q


χ
(0)
s

χ
(0)
c

χ
(0)
r

 ,

Now, those of you who remembered from, for example, some other course that
0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r




=




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





χ
(0)
s

χ
(0)
c

χ
(0)
r


would recognize that

Q =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3

 .

And, if you then remembered how to perform a matrix-matrix multiplication (or you did P * P in Python), you would have
deduced that

Q =


0.3 0.25 0.25

0.4 0.45 0.4

0.3 0.3 0.35

 .

4.4. Matrix-Matrix Multiplication (Product) 145

These then become the entries in the table. If you knew all the above, well, GOOD FOR YOU!
However, there are all kinds of issues that one really should discuss. How do you know such a matrix exists? Why is

matrix-matrix multiplication defined this way? We answer that in the next few units.

4.4.2 From Composing Linear Transformations to Matrix-Matrix Multiplication

* View at edX

Homework 4.4.2.1 Let LA : Rk→Rm and LB : Rn→Rk both be linear transformations and, for all x ∈Rn, define
the function LC : Rn→ Rm by LC(x) = LA(LB(x)). LC(x) is a linear transformations.

Always/Sometimes/Never

Now, let linear transformations LA, LB, and LC be represented by matrices A∈Rm×k, B∈Rk×n, and C ∈Rm×n, respectively.
(You know such matrices exist since LA, LB, and LC are linear transformations.) Then Cx = LC(x) = LA(LB(x)) = A(Bx).

The matrix-matrix multiplication (product) is defined as the matrix C such that, for all vectors x, Cx = A(B(x)). The
notation used to denote that matrix is C = A×B or, equivalently, C = AB. The operation AB is called a matrix-matrix
multiplication or product.

If A is mA× nA matrix, B is mB× nB matrix, and C is mC× nC matrix, then for C = AB to hold it must be the case that
mC = mA, nC = nB, and nA = mB. Usually, the integers m and n are used for the sizes of C: C ∈ Rm×n and k is used for the
“other size”: A ∈ Rm×k and B ∈ Rk×n:

m

?

6

C

n
� -

= m

?

6

A

k� -

k

?

6

B

n
� -

Homework 4.4.2.2 Let A ∈ Rm×n. AT A is well-defined. (By well-defined we mean that AT A makes sense. In this
particular case this means that the dimensions of AT and A are such that AT A can be computed.)

Always/Sometimes/Never

Homework 4.4.2.3 Let A ∈ Rm×n. AAT is well-defined.
Always/Sometimes/Never

4.4.3 Computing the Matrix-Matrix Product

* View at edX
The question now becomes how to compute C given matrices A and B. For this, we are going to use and abuse the unit basis

vectors e j.
Consider the following. Let

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/3

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 146

• C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n; and

• C = AB; and

• LC : Rn→ Rm equal the linear transformation such that LC(x) =Cx; and

• LA : Rk→ Rm equal the linear transformation such that LA(x) = Ax.

• LB : Rn→ Rk equal the linear transformation such that LB(x) = Bx; and

• e j denote the jth unit basis vector; and

• c j denote the jth column of C; and

• b j denote the jth column of B.

Then

c j =Ce j = LC(e j) = LA(LB(e j)) = LA(Be j) = LA(b j) = Ab j.

From this we learn that

If C = AB then the jth column of C, c j, equals Ab j, where b j is the jth column of B.

Since by now you should be very comfortable with partitioning matrices by columns, we can summarize this as

(
c0 c1 · · · cn−1

)
=C = AB = A

(
b0 b1 · · · bn−1

)
=
(

Ab0 Ab1 · · · Abn−1

)
.

Now, let’s expose the elements of C, A, and B.

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
...

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 , A =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,k−1

 ,

and B =


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

...

βk−1,0 βk−1,1 · · · βk−1,n−1

 .

We are going to show that

γi, j =
k−1

∑
p=0

αi,pβp, j,

which you may have learned in a high school algebra course.

4.4. Matrix-Matrix Multiplication (Product) 147

We reasoned that c j = Ab j:

γ0, j

γ1, j
...

γi, j
...

γm−1, j


=



α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

...

αi,0 αi,1 · · · αi,k−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,k−1




β0, j

β1, j
...

βk−1, j

 .

Here we highlight the ith element of c j, γi, j, and the ith row of A. We recall that the ith element of Ax equals the dot product of
the ith row of A with the vector x. Thus, γi, j equals the dot product of the ith row of A with the vector b j:

γi, j =
k−1

∑
p=0

αi,pβp, j.

Let A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rm×n. Then the matrix-matrix multiplication (product) C = AB is computed by

γi, j =
k−1

∑
p=0

αi,pβp, j = αi,0β0, j +αi,1β1, j + · · ·+αi,k−1βk−1, j.

As a result of this definition Cx = A(Bx) = (AB)x and can drop the parentheses, unless they are useful for clarity: Cx = ABx
and C = AB.

Homework 4.4.3.1 Compute

Q = P×P =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3



We emphasize that for matrix-matrix multiplication to be a legal operations, the row and column dimensions of the matrices
must obey certain constraints. Whenever we talk about dimensions being conformal, we mean that the dimensions are such
that the encountered matrix multiplications are valid operations.

Homework 4.4.3.2 Let A =


2 0 1

−1 1 0

1 3 1

−1 1 1

 and B =


2 1 2 1

0 1 0 1

1 0 1 0

. Compute

• AB =

• BA =

Homework 4.4.3.3 Let A ∈ Rm×k and B ∈ Rk×n and AB = BA. A and B are square matrices.
Always/Sometimes/Never

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 148

Homework 4.4.3.4 Let A ∈ Rm×k and B ∈ Rk×n.

AB = BA.

Always/Sometimes/Never

Homework 4.4.3.5 Let A,B ∈ Rn×n. AB = BA.
Always/Sometimes/Never

Homework 4.4.3.6 A2 is defined as AA. Similarly Ak = AA · · ·A︸ ︷︷ ︸
k occurrences of A

. Consistent with this, A0 = I so that

Ak = Ak−1A for k > 0.
Ak is well-defined only if A is a square matrix.

True/False

Homework 4.4.3.7 Let A,B,C be matrix “of appropriate size” so that (AB)C is well defined. A(BC) is well
defined.

Always/Sometimes/Never

4.4.4 Special Shapes

* View at edX
We now show that if one treats scalars, column vectors, and row vectors as special cases of matrices, then many (all?)

operations we encountered previously become simply special cases of matrix-matrix multiplication. In the below discussion,
consider C = AB where C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n.

m = n = k = 1 (scalar multiplication)

1 ?6C

1�-
= 1 ?6A

1�-

1 ?6B

1�-

In this case, all three matrices are actually scalars:(
γ0,0

)
=
(

α0,0

)(
β0,0

)
=
(

α0,0β0,0

)
so that matrix-matrix multiplication becomes scalar multiplication.

Homework 4.4.4.1 Let A =
(

4
)

and B =
(

3
)

. Then AB = .

n = 1,k = 1 (SCAL)

m

?

6

C

1�-

= m

?

6

A

1�-

1 ?6B

1�-

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/4

4.4. Matrix-Matrix Multiplication (Product) 149

Now the matrices look like
γ0,0

γ1,0
...

γm−1,0

=


α0,0

α1,0
...

αm−1,0


(

β0,0

)
=


α0,0β0,0

α1,0β0,0
...

αm−1,0β0,0

=


β0,0α0,0

β0,0α1,0
...

β0,0αm−1,0

= β0,0


α0,0

α1,0
...

αm−1,0

 .

In other words, C and A are vectors, B is a scalar, and the matrix-matrix multiplication becomes scaling of a vector.

Homework 4.4.4.2 Let A =


1

−3

2

 and B =
(

4
)

. Then AB = .

m = 1,k = 1 (SCAL)

1 ?6 C

n
� -

= 1 ?6A

1�-

1 ?6 B

n
� -

Now the matrices look like(
γ0,0 γ0,1 · · · γ0,n−1

)
=

(
α0,0

)(
β0,0 β0,1 · · · β0,n−1

)
= α0,0

(
β0,0 β0,1 · · · β0,n−1

)
=

(
α0,0β0,0 α0,0β0,1 · · · α0,0β0,n−1

)
.

In other words, C and B are just row vectors and A is a scalar. The vector C is computed by scaling the row vector B by the
scalar A.

Homework 4.4.4.3 Let A =
(

4
)

and B =
(

1 −3 2
)

. Then AB = .

m = 1,n = 1 (DOT)

1 ?6C

1�-
= 1 ?6 A

k� -

k

?

6

B

1�-

The matrices look like

(
γ0,0

)
=
(

α0,0 α0,1 · · · α0,k−1

)


β0,0

β1,0
...

βk−1,0

=
k−1

∑
p=0

α0,pβp,0.

In other words, C is a scalar that is computed by taking the dot product of the one row that is A and the one column that is B.

Homework 4.4.4.4 Let A =
(

1 −3 2
)

and B =


2

−1

0

. Then AB =

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 150

k = 1 (outer product)

m

?

6

C

n
� -

= m

?

6

A

1�-

1 ?6 B

n
� -


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
. . .

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 =


α0,0

α1,0
...

αm−1,0



(
β0,0 β0,1 · · · β0,n−1

)

=


α0,0β0,0 α0,0β0,1 · · · α0,0β0,n−1

α1,0β0,0 α1,0β0,1 · · · α1,0β0,n−1
...

...
. . .

...

αm−1,0β0,0 αm−1,0β0,1 · · · αm−1,0β0,n−1



Homework 4.4.4.5 Let A =


1

−3

2

 and B =
(
−1 −2

)
. Then AB =

4.4. Matrix-Matrix Multiplication (Product) 151

Homework 4.4.4.6 Let a =


1

−3

2

 and bT =
(
−1 −2

)
and C = abT . Partition C by columns and by rows:

C =
(

c0 c1

)
and C =


c̃T

0

c̃T
1

c̃T
2


Then

• c0 = (−1)


1

−3

2

=


(−1)× (1)

(−1)×(−3)

(−1)× (2)

 True/False

• c1 = (−2)


1

−3

2

=


(−2)× (1)

(−2)×(−3)

(−2)× (2)

 True/False

• C =


(−1)× (1) (−2)× (1)

(−1)×(−3) (−2)×(−3)

(−1)× (2) (−2)× (2)

 True/False

• c̃T
0 = (1)

(
−1 −2

)
=
(

(1)×(−1) (1)×(−2)
)

True/False

• c̃T
1 = (−3)

(
−1 −2

)
=
(

(−3)×(−1) (−3)×(−2)
)

True/False

• c̃T
2 = (2)

(
−1 −2

)
=
(

(2)×(−1) (2)×(−2)
)

True/False

• C =


(−1)× (1) (−2)× (1)

(−1)×(−3) (−2)×(−3)

(−1)× (2) (−2)× (2)

 True/False

Homework 4.4.4.7 Fill in the boxes:
�
�
�
�


(

2 −1 3
)
=


4 � �
−2 � �

2 � �
6 � �



Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 152

Homework 4.4.4.8 Fill in the boxes:
2

−1

1

3


(
� � �

)
=


4 −2 6

� � �
� � �
� � �



n = 1 (matrix-vector product)

m

?

6

C

1�-

= m

?

6

A

k� -

k

?

6

B

1�-


γ0,0

γ1,0
...

γm−1,0

 =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
. . .

...

αm−1,0 αm−1,1 · · · αm−1,k−1




β0,0

β1,0
...

βk−1,0


We have studied this special case in great detail. To emphasize how it relates to have matrix-matrix multiplication is computed,
consider the following: 

γ0,0
...

γi,0
...

γm−1,0


=



α0,0 α0,1 · · · α0,k−1
...

...
. . .

...

αi,0 αi,1 · · · αi,k−1
...

...
. . .

...

αm−1,0 αm−1,1 · · · αm−1,k−1




β0,0

β1,0
...

βk−1,0



m = 1 (row vector-matrix product)

1 ?6 C

n
� -

= 1 ?6 A

k� -

k

?

6

B

n
� -

(
γ0,0 γ0,1 · · · γ0,n−1

)
=

(
α0,0 α0,1 · · · α0,k−1

)


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
. . .

...

βk−1,0 βk−1,1 · · · βk−1,n−1



4.4. Matrix-Matrix Multiplication (Product) 153

so that γ0, j = ∑
k−1
p=0 α0,pβp, j. To emphasize how it relates to have matrix-matrix multiplication is computed, consider the

following: (
γ0,0 · · · γ0, j · · · γ0,n−1

)

=
(

α0,0 α0,1 · · · α0,k−1

)


β0,0 · · · β0, j · · · β0,n−1

β1,0 · · · β1, j · · · β1,n−1
...

...
...

βk−1,0 · · · βk−1, j · · · βk−1,n−1

 .

Homework 4.4.4.9 Let A =
(

0 1 0
)

and B =


1 −2 2

4 2 0

1 2 3

. Then AB =

Homework 4.4.4.10 Let ei ∈ Rm equal the ith unit basis vector and A ∈ Rm×n. Then eT
i A = ǎT

i , the ith row of A.
Always/Sometimes/Never

Homework 4.4.4.11 Get as much practice as you want with the MATLAB script in

LAFF-2.0xM/Programming/Week04/PracticeGemm.m

If you understand how to perform a matrix-matrix multipli-
cation, then you know how to perform all other operations
with matrices and vectors that we have encountered so far.

4.4.5 Cost

* View at edX
Consider the matrix-matrix multiplication C = AB where C ∈Rm×n, A∈Rm×k, and B∈Rk×n. Let us examine what the cost

of this operation is:

• We argued that, by definition, the jth column of C, c j, is computed by the matrix-vector multiplication Ab j, where b j is
the jth column of B.

• Last week we learned that a matrix-vector multiplication of a m× k matrix times a vector of size k requires 2mk floating
point operations (flops).

• C has n columns (since it is a m×n matrix.).

Putting all these observations together yields a cost of

n× (2mk) = 2mnk flops.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/5

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 154

Try this! Recall that the dot product of two vectors of size k requires (approximately) 2k flops. We learned in the
previous units that if C = AB then γi, j equals the dot product of the ith row of A and the jth column of B. Use this
to give an alternative justification that a matrix multiplication requires 2mnk flops.

4.5 Enrichment

4.5.1 Markov Chains: Their Application

Matrices have many “real world” applications. As we have seen this week, one noteworthy use is connected to Markov
chains. There are many, many examples of the use of Markov chains. You can find a brief look at some significant appli-
cations in THE FIVE GREATEST APPLICATIONS OF MARKOV CHAINS by Philipp von Hilgers and Amy N. Langville.
(http://langvillea.people.cofc.edu/MCapps7.pdf).

4.6 Wrap Up

4.6.1 Homework

Homework 4.6.1.1 Let A ∈ Rm×n and x ∈ Rn. Then (Ax)T = xT AT .
Always/Sometimes/Never

Homework 4.6.1.2 Our laff library has a routine

laff gemv(trans, alpha, A, x, beta, y)

that has the following property

• laff gemv(’No transpose’, alpha, A, x, beta, y) computes y := αAx+βy.

• laff gemv(’Transpose’, alpha, A, x, beta, y) computes y := αAT x+βy.

The routine works regardless of whether x and/or y are column and/or row vectors.
Our library does NOT include a routine to compute yT := xT A. What call could you use to compute yT := xT A if
yT is stored in yt and xT in xt?

• laff gemv(’No transpose’, 1.0, A, xt, 0.0, yt).

• laff gemv(’No transpose’, 1.0, A, xt, 1.0, yt).

• laff gemv(’Transpose’, 1.0, A, xt, 1.0, yt).

• laff gemv(’Transpose’, 1.0, A, xt, 0.0, yt).

Homework 4.6.1.3 Let A =

 1 −1

1 −1

. Compute

• A2 =

• A3 =

• For k > 1, Ak =

http://langvillea.people.cofc.edu/MCapps7.pdf

4.6. Wrap Up 155

Homework 4.6.1.4 Let A =

 0 1

1 0

.

• A2 =

• A3 =

• For n≥ 0, A2n =

• For n≥ 0, A2n+1 =

Homework 4.6.1.5 Let A =

 0 −1

1 0

.

• A2 =

• A3 =

• For n≥ 0, A4n =

• For n≥ 0, A4n+1 =

Homework 4.6.1.6 Let A be a square matrix. If AA = 0 (the zero matrix) then A is a zero matrix. (AA is often
written as A2.)

True/False

Homework 4.6.1.7 There exists a real valued matrix A such that A2 =−I. (Recall: I is the identity)
True/False

Homework 4.6.1.8 There exists a matrix A that is not diagonal such that A2 = I.
True/False

4.6.2 Summary

Partitioned matrix-vector multiplication


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
. . .

...

AM−1,0 AM−1,1 · · · AM−1,N−1




x0

x1
...

xN−1

=


A0,0x0 +A0,1x1 + · · ·+A0,N−1xN−1

A1,0x0 +A1,1x1 + · · ·+A1,N−1xN−1
...

AM−1,0x0 +AM−1,1x1 + · · ·+AM−1,N−1xN−1

 .

Transposing a partitioned matrix


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,N−1



T

=


AT

0,0 AT
1,0 · · · AT

M−1,0

AT
0,1 AT

1,1 · · · AT
M−1,1

...
...

...

AT
0,N−1 AT

1,N−1 · · · AT
M−1,N−1

 .

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 156

Composing linear transformations

Let LA : Rk → Rm and LB : Rn→ Rk both be linear transformations and, for all x ∈ Rn, define the function LC : Rn→ Rm by
LC(x) = LA(LB(x)). Then LC(x) is a linear transformations.

Matrix-matrix multiplication

AB = A
(

b0 b1 · · · bn−1

)
=
(

Ab0 Ab1 · · · Abn−1

)
.

If

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
...

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 , A =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,k−1

 ,

and B =


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

...

βk−1,0 βk−1,1 · · · βk−1,n−1

 .

then C = AB means that γi, j = ∑
k−1
p=0 αi,pβp, j.

A table of matrix-matrix multiplications with matrices of special shape is given at the end of this week.

Outer product

Let x ∈ Rm and y ∈ Rn. Then the outer product of x and y is given by xyT . Notice that this yields an m×n matrix:

xyT =


χ0

χ1
...

χm−1




ψ0

ψ1
...

ψn−1



T

=


χ0

χ1
...

χm−1


(

ψ0 ψ1 · · · ψn−1

)

=


χ0ψ0 χ0ψ1 · · · χ0ψn−1

χ1ψ0 χ1ψ1 · · · χ1ψn−1
...

...
...

χm−1ψ0 χm−1ψ1 · · · χm−1ψn−1

 .

4.6. Wrap Up 157

m n k Shape Comment

1 1 1 1 ?6C

1�-
= 1 ?6A

1�-

1 ?6B

1�- Scalar multiplication

m 1 1 m

?

6

C

1�-

= m

?

6

A

1�-

1 ?6B

1�-

Vector times scalar = scalar
times vector

1 n 1 1 ?6 C

n
� -

= 1 ?6A

1�-

1 ?6 B

n
� -

Scalar times row vector

1 1 k
1 ?6C

1�-
= 1 ?6 A

k� -

k

?

6

B

1�-

Dot product (with row and col-
umn)

m n 1 m

?

6

C

n
� -

= m

?

6

A

1�-

1 ?6 B

n
� -

Outer product

m 1 k m

?

6

C

1�-

= m

?

6

A

k� -

k

?

6

B

1�-

Matrix-vector multiplication

1 n k
1 ?6 C

n
� -

= 1 ?6 A

k� -

k

?

6

B

n
� -

Row vector times matrix multi-
ply

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 158

LAFF routines

O
pe

ra
tio

n
A

bb
re

v.
D

efi
ni

tio
n

Fu
nc

tio
n

A
pp

ro
x.

co
st

la
ff

flo
ps

m
em

op
s

Ve
ct

or
-v

ec
to

r
op

er
at

io
ns

C
op

y
(C

O
P

Y
)

y
:=

x
co
py
(
x,

y
)

0
2n

V
ec

to
rs

ca
lin

g
(S

C
A

L
)

x
:=

α
x

sc
al
(
al
ph
a,

x
)

n
2n

V
ec

to
rs

ca
lin

g
(S

C
A

L
)

x
:=

x/
α

in
vs
ca
l(

al
ph
a,

x
)

n
2n

Sc
al

ed
ad

di
tio

n
(A

X
P

Y
)

y
:=

α
x+

y
ax
py
(
al
ph
a,

x,
y
)

2n
3n

D
ot

pr
od

uc
t(

D
O

T
)

α
:=

xT
y

al
ph
a
=
do
t(

x,
y
)

2n
2n

D
ot

pr
od

uc
t(

D
O

T
S)

α
:=

xT
y+

α
do
ts
(
x,

y,
al
ph
a
)

2n
2n

L
en

gt
h

(N
O

R
M

2)
α

:=
‖x
‖ 2

al
ph
a
=
no
rm
2(

x
)

2n
n

M
at

ri
x-

ve
ct

or
op

er
at

io
ns

G
en

er
al

m
at

ri
x-

ve
ct

or
y

:=
α

A
x+

β
y

ge
mv
(
’N
o
tr
an
sp
os
e’
,
al
ph
a,

A,
x,

be
ta
,
y
)

2m
n

m
n

m
ul

tip
lic

at
io

n
(G

E
M

V
)

y
:=

α
A

T
x+

β
y

ge
mv
(
‘T
ra
ns
po
se
’,

al
ph
a,

A,
x,

be
ta
,
y
)

2m
n

m
n

R
an

k-
1

up
da

te
(G

E
R

)
A

:=
α

xy
T
+

A
ge
r(

al
ph
a,

x,
y,

A
)

2m
n

m
n

Week 5
Matrix-Matrix Multiplication

5.1 Opening Remarks

5.1.1 Composing Rotations

* View at edX

Homework 5.1.1.1 Which of the following statements are true:

•

 cos(ρ+σ+ τ)

sin(ρ+σ+ τ)

=

 cos(τ) −sin(τ)

sin(τ) cos(τ)

 cos(ρ+σ)

sin(ρ+σ)


True/False

•

 cos(ρ+σ+ τ)

sin(ρ+σ+ τ)

=

 cos(τ) −sin(τ)

sin(τ) cos(τ)

 cosρcosσ− sinρsinσ

sinρcosσ+ cosρsinσ.


True/False

•
cos(ρ+σ+ τ) = cos(τ)(cosρcosσ− sinρsinσ)− sin(τ)(sinρcosσ+ cosρsinσ)

sin(ρ+σ+ τ) = sin(τ)(cosρcosσ− sinρsinσ)+ cos(τ)(sinρcosσ+ cosρsinσ)

True/False

159

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/7bb08d8be9564c03b5c28e9465e5bfa9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/7bb08d8be9564c03b5c28e9465e5bfa9/1

Week 5. Matrix-Matrix Multiplication 160

5.1.2 Outline

5.1. Opening Remarks . 159
5.1.1. Composing Rotations . 159
5.1.2. Outline . 160
5.1.3. What You Will Learn . 161

5.2. Observations . 162
5.2.1. Partitioned Matrix-Matrix Multiplication . 162
5.2.2. Properties . 163
5.2.3. Transposing a Product of Matrices . 164
5.2.4. Matrix-Matrix Multiplication with Special Matrices . 165

5.3. Algorithms for Computing Matrix-Matrix Multiplication . 169
5.3.1. Lots of Loops . 169
5.3.2. Matrix-Matrix Multiplication by Columns . 171
5.3.3. Matrix-Matrix Multiplication by Rows . 172
5.3.4. Matrix-Matrix Multiplication with Rank-1 Updates . 175

5.4. Enrichment . 177
5.4.1. Slicing and Dicing for Performance . 177
5.4.2. How It is Really Done . 181

5.5. Wrap Up . 183
5.5.1. Homework . 183
5.5.2. Summary . 186

5.1. Opening Remarks 161

5.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Recognize that matrix-matrix multiplication is not commutative.

• Relate composing rotations to matrix-matrix multiplication.

• Fluently compute a matrix-matrix multiplication.

• Perform matrix-matrix multiplication with partitioned matrices.

• Identify, apply, and prove properties of matrix-matrix multiplication, such as (AB)T = BT AT .

• Exploit special structure of matrices to perform matrix-matrix multiplication with special matrices, such as identity,
triangular, and diagonal matrices.

• Identify whether or not matrix-matrix multiplication preserves special properties in matrices, such as symmetric and
triangular structure.

• Express a matrix-matrix multiplication in terms of matrix-vector multiplications, row vector times matrix multiplications,
and rank-1 updates.

• Appreciate how partitioned matrix-matrix multiplication enables high performance. (Optional, as part of the enrichment.)

Week 5. Matrix-Matrix Multiplication 162

5.2 Observations

5.2.1 Partitioned Matrix-Matrix Multiplication

* View at edX

Theorem 5.1 Let C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n. Let

• m = m0 +m1 + · · ·mM−1, mi ≥ 0 for i = 0, . . . ,M−1;

• n = n0 +n1 + · · ·nN−1, n j ≥ 0 for j = 0, . . . ,N−1; and

• k = k0 + k1 + · · ·kK−1, kp ≥ 0 for p = 0, . . . ,K−1.

Partition

C =


C0,0 C0,1 · · · C0,N−1

C1,0 C1,1 · · · C1,N−1

...
...

. . .
...

CM−1,0 CM−1,1 · · · CM−1,N−1

 ,A =


A0,0 A0,1 · · · A0,K−1

A1,0 A1,1 · · · A1,K−1

...
...

. . .
...

AM−1,0 AM−1,1 · · · AM−1,K−1

 ,

and B =


B0,0 B0,1 · · · B0,N−1

B1,0 B1,1 · · · B1,N−1

...
...

. . .
...

BK−1,0 BK−1,1 · · · BK−1,N−1

 ,

with Ci, j ∈ Rmi×n j , Ai,p ∈ Rmi×kp , and Bp, j ∈ Rkp×n j . Then Ci, j = ∑
K−1
p=0 Ai,pBp, j.

If one partitions matrices C, A, and B into blocks, and one makes sure the dimensions match up, then blocked matrix-
matrix multiplication proceeds exactly as does a regular matrix-matrix multiplication except that individual multiplications
of scalars commute while (in general) individual multiplications with matrix blocks (submatrices) do not.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/00c33ff1e57545bb8f642fa35ddaf520/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/00c33ff1e57545bb8f642fa35ddaf520/1

5.2. Observations 163

Example 5.2 Consider

A =


−1 2 4 1

1 0 −1 −2

2 −1 3 1

1 2 3 4

 ,B =


−2 2 −3

0 1 −1

−2 −1 0

4 0 1

 , and AB =


−2 −4 2

−8 3 −5

−6 0 −4

8 1 −1

 :

If

A0 =


−1 2

1 0

2 −1

1 2

 ,A1 =


4 1

−1 −2

3 1

3 4

 ,B0

 −2 2 −3

0 1 −1

 , and B1 =

 −2 −1 0

4 0 1

 .

Then

AB =
(

A0 A1

) B0

B1

= A0B0 +A1B1 :


−1 2 4 1

1 0 −1 −2

2 −1 3 1

1 2 3 4


︸ ︷︷ ︸

A


−2 2 −3

0 1 −1

−2 −1 0

4 0 1


︸ ︷︷ ︸

B

=


−1 2

1 0

2 −1

1 2


︸ ︷︷ ︸

A0

 −2 2 −3

0 1 −1


︸ ︷︷ ︸

B0

+


4 1

−1 −2

3 1

3 4


︸ ︷︷ ︸

A1

 −2 −1 0

4 0 1


︸ ︷︷ ︸

B1

=


2 0 1

−2 2 −3

−4 3 −5

−2 4 −5


︸ ︷︷ ︸

A0B0

+


−4 −4 1

−6 1 −2

−2 −3 1

10 −3 4


︸ ︷︷ ︸

A1B1

=


−2 −4 2

−8 3 −5

−6 0 −4

8 1 −1


︸ ︷︷ ︸

AB

.

5.2.2 Properties

No video for this unit.

Week 5. Matrix-Matrix Multiplication 164

Is matrix-matrix multiplication associative?

Homework 5.2.2.1 Let A =

 0 1

1 0

, B =

 0 2 −1

1 1 0

, and C =


0 1

1 2

1 −1

. Compute

• AB =

• (AB)C =

• BC =

• A(BC) =

Homework 5.2.2.2 Let A ∈ Rm×n, B ∈ Rn×k, and C ∈ Rk×l . (AB)C = A(BC).
Always/Sometimes/Never

If you conclude that (AB)C = A(BC), then we can simply write ABC since lack of parenthesis does not cause confusion
about the order in which the multiplication needs to be performed.

In a previous week, we argued that eT
i (Ae j) equals αi, j, the (i, j) element of A. We can now write that as αi, j = eT

i Ae j,
since we can drop parentheses.

Is matrix-matrix multiplication distributive?

Homework 5.2.2.3 Let A =

 0 1

1 0

, B =

 2 −1

1 0

, and C =

 −1 1

0 1

. Compute

• A(B+C) =.

• AB+AC =.

• (A+B)C =.

• AC+BC =.

Homework 5.2.2.4 Let A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rk×n. A(B+C) = AB+AC.
Always/Sometimes/Never

Homework 5.2.2.5 If A ∈ Rm×k, B ∈ Rm×k, and C ∈ Rk×n, then (A+B)C = AC+BC.
True/False

5.2.3 Transposing a Product of Matrices

No video for this unit.

5.2. Observations 165

Homework 5.2.3.1 Let A =


2 0 1

−1 1 0

1 3 1

−1 1 1

 and B =


2 1 2 1

0 1 0 1

1 0 1 0

. Compute

• AT A =

• AAT =

• (AB)T =

• AT BT =

• BT AT =

Homework 5.2.3.2 Let A ∈ Rm×k and B ∈ Rk×n. (AB)T = BT AT .
Always/Sometimes/Never

Homework 5.2.3.3 Let A, B, and C be conformal matrices so that ABC is well-defined. Then (ABC)T =CT BT AT .
Always/Sometimes/Never

5.2.4 Matrix-Matrix Multiplication with Special Matrices

No video for this unit.

Multiplication with an identity matrix

Homework 5.2.4.1 Compute

•

 1 −2 −1

2 0 2




1

0

0

=

•

 1 −2 −1

2 0 2




0

1

0

=

•

 1 −2 −1

2 0 2




0

0

1

=

•

 1 −2 −1

2 0 2




1 0 0

0 1 0

0 0 1

=

•


1 −2 −1

2 0 2

−1 3 −1




1 0 0

0 1 0

0 0 1

=

Week 5. Matrix-Matrix Multiplication 166

Homework 5.2.4.2 Compute

•


1 0 0

0 1 0

0 0 1




1

2

−1

=

•


1 0 0

0 1 0

0 0 1



−2

0

3

=

•


1 0 0

0 1 0

0 0 1



−1

2

−1

=

•


1 0 0

0 1 0

0 0 1




1 −2 −1

2 0 2

−1 3 −1

=

Homework 5.2.4.3 Let A ∈ Rm×n and let I denote the identity matrix of appropriate size. AI = IA = A.
Always/Sometimes/Never

Multiplication with a diagonal matrix

Homework 5.2.4.4 Compute

•

 1 −2 −1

2 0 2




2

0

0

=

•

 1 −2 −1

2 0 2




0

−1

0

=

•

 1 −2 −1

2 0 2




0

0

−3

=

•

 1 −2 −1

2 0 2




2 0 0

0 −1 0

0 0 −3

=

5.2. Observations 167

Homework 5.2.4.5 Compute

•


2 0 0

0 −1 0

0 0 −3




1

2

−1

=

•


2 0 0

0 −1 0

0 0 −3



−2

0

3

=

•


2 0 0

0 −1 0

0 0 −3



−1

2

−1

=

•


2 0 0

0 −1 0

0 0 −3




1 −2 −1

2 0 2

−1 3 −1

=

Homework 5.2.4.6 Let A ∈ Rm×n and let D denote the diagonal matrix with diagonal elements δ0,δ1, · · · ,δn−1.
Partition A by columns: A =

(
a0 a1 · · · an−1

)
.

AD =
(

δ0a0 δ1a1 · · · δn−1an−1

)
.

Always/Sometimes/Never

Homework 5.2.4.7 Let A ∈ Rm×n and let D denote the diagonal matrix with diagonal elements δ0,δ1, · · · ,δm−1.

Partition A by rows: A =


ãT

0

ãT
1
...

ãT
m−1

.

DA =


δ0ãT

0

δ1ãT
1

...

δm−1ãT
m−1

 .

Always/Sometimes/Never

Triangular matrices

Homework 5.2.4.8 Compute


1 −1 −2

0 2 3

0 0 1



−2 1 −1

0 1 2

0 0 1

=

Week 5. Matrix-Matrix Multiplication 168

Homework 5.2.4.9 Compute the following, using what you know about partitioned matrix-matrix multiplication:
1 −1 −2

0 2 3

0 0 1



−2 1 −1

0 1 2

0 0 1

=

Homework 5.2.4.10 Let U,R ∈ Rn×n be upper triangular matrices. UR is an upper triangular matrix.
Always/Sometimes/Never

Homework 5.2.4.11 The product of an n× n lower triangular matrix times an n× n lower triangular matrix is a
lower triangular matrix.

Always/Sometimes/Never

Homework 5.2.4.12 The product of an n× n lower triangular matrix times an n× n upper triangular matrix is a
diagonal matrix.

Always/Sometimes/Never

Symmetric matrices

Homework 5.2.4.13 Let A ∈ Rm×n. AT A is symmetric.
Always/Sometimes/Never

Homework 5.2.4.14 Evaluate

•


−1

1

2

(−1 1 2
)
=

•


2

0

−1

(2 0 −1
)
=

•


−1 2

1 0

2 −1


 −1 1 2

2 0 −1

=

•


1

−2

2

(1 −2 2
)
=

•


−1 2 1

1 0 −2

2 −1 2



−1 1 2

2 0 −1

1 −2 2

=

Homework 5.2.4.15 Let x ∈ Rn. The outer product xxT is symmetric.
Always/Sometimes/Never

Homework 5.2.4.16 Let A ∈ Rn×n be symmetric and x ∈ Rn. A+ xxT is symmetric.
Always/Sometimes/Never

5.3. Algorithms for Computing Matrix-Matrix Multiplication 169

Homework 5.2.4.17 Let A ∈ Rm×n. Then AAT is symmetric. (In your reasoning, we want you to use insights
from previous homeworks.)

Always/Sometimes/Never

Homework 5.2.4.18 Let A,B ∈ Rn×n be symmetric matrices. AB is symmetric.
Always/Sometimes/Never

A generalization of A+ xxT with symmetric A and vector x, is given by

A := αxxT +A,

where α is a scalar. This is known as a symmetric rank-1 update.
The last exercise motivates the fact that the result itself is symmetric. The reason for the name “rank-1 update” will become
clear later in the course, when we will see that a matrix that results from an outer product, yxT , has rank at most equal to
one.
This operation is sufficiently important that it is included in the laff library as function

[y out] = laff syr(alpha, x, A)

which updates A := αxxT +A.

5.3 Algorithms for Computing Matrix-Matrix Multiplication

5.3.1 Lots of Loops

* View at edX
In Theorem 5.1, partition C into elements (scalars), and A and B by rows and columns, respectively. In other words, let

M = m, mi = 1, i = 0, . . . ,m−1; N = n, n j = 1, j = 0, . . . ,n−1; and K = 1, k0 = k. Then
γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
. . .

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 ,A =


ãT

0

ãT
1
...

ãT
m−1

 , and B =
(

b0 b1 · · · bn−1

)

so that

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
. . .

...

γm−1,0 γm−1,1 · · · γm−1,n−1

=


ãT

0

ãT
1
...

ãT
m−1


(

b0 b1 · · · bn−1

)

=


ãT

0 b0 ãT
0 b1 · · · ãT

0 bn−1

ãT
1 b0 ãT

1 b1 · · · ãT
1 bn−1

...
...

. . .
...

ãT
m−1b0 ãT

m−1b1 · · · ãT
m−1bn−1

 .

As expected, γi, j = ãT
i b j: the dot product of the ith row of A with the jth column of B.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/1

Week 5. Matrix-Matrix Multiplication 170

Example 5.3


−1 2 4

1 0 −1

2 −1 3



−2 2

0 1

−2 −1

 =



(
−1 2 4

)
−2

0

−2

 (
−1 2 4

)
2

1

−1


(

1 0 −1
)

−2

0

−2

 (
1 0 −1

)
2

1

−1


(

2 −1 3
)

−2

0

−2

 (
2 −1 3

)
2

1

−1





=


−6 −4

0 3

−10 0



This motivates the following two algorithms for computing C = AB+C. In both, the outer two loops visit all elements γi, j
of C, and the inner loop updates a given γi, j with the dot product of the ith row of A and the jth column of B. They differ in that
the first updates C one column at a time (the outer loop is over the columns of C and B) while the second updates C one row at
a time (the outer loop is over the rows of C and A).

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

γi, j := ãT
i b j + γi, j

endfor

endfor

or

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

γi, j := ãT
i b j + γi, j

endfor

endfor

5.3. Algorithms for Computing Matrix-Matrix Multiplication 171

Homework 5.3.1.1 Consider the MATLAB function

f u n c t i o n [C out] = MatMatMult (A, B , C)

[m, n] = s i z e (C) ;
[m A , k] = s i z e (A) ;
[m B , n B] = s i z e (B) ;

f o r j = 1 : n
f o r i = 1 :m

f o r p = 1 : k
C(i , j) = A(i , p) * B(p , j) + C(i , j) ;

end
end

end

• Download the files MatMatMult.m and test MatMatMult.m into, for example,

LAFF-2.0xM -> Programming -> Week5

(creating the directory if necessary).

• Examine the script test MatMatMult.m and then execute it in the MATLAB Command Window:
test MatMatMult.

• Now, exchange the order of the loops:

f o r j = 1 : n
f o r p = 1 : k

f o r i = 1 :m
C(i , j) = A(i , p) * B(p , j) + C(i , j) ;

end
end

end

save the result, and execute test MatMatMult again. What do you notice?

• How may different ways can you order the “triple-nested loop”?

• Try them all and observe how the result of executing test MatMatMult does or does not change.

5.3.2 Matrix-Matrix Multiplication by Columns

* View at edX

Homework 5.3.2.1 Let A and B be matrices and AB be well-defined and let B have at least four columns. If the
first and fourth columns of B are the same, then the first and fourth columns of AB are the same.

Always/Sometimes/Never

Homework 5.3.2.2 Let A and B be matrices and AB be well-defined and let A have at least four columns. If the
first and fourth columns of A are the same, then the first and fourth columns of AB are the same.

Always/Sometimes/Never

In Theorem 5.1 let us partition C and B by columns and not partition A. In other words, let M = 1, m0 = m; N = n, n j = 1,
j = 0, . . . ,n−1; and K = 1, k0 = k. Then

C =
(

c0 c1 · · · cn−1

)
and B =

(
b0 b1 · · · bn−1

)

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week5Algorithms/MatMatMult.m
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week5Algorithms/test_MatMatMult.m
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/2

Week 5. Matrix-Matrix Multiplication 172

so that (
c0 c1 · · · cn−1

)
=C = AB = A

(
b0 b1 · · · bn−1

)
=
(

Ab0 Ab1 · · · Abn−1

)
.

Homework 5.3.2.3

•


1 −2 2

−1 2 1

0 1 2



−1

2

1

=

•


1 −2 2

−1 2 1

0 1 2



−1 0

2 1

1 −1

=

•


1 −2 2

−1 2 1

0 1 2



−1 0 1

2 1 −1

1 −1 2

=

Example 5.4
−1 2 4

1 0 −1

2 −1 3



−2 2

0 1

−2 −1

 =



−1 2 4

1 0 −1

2 −1 3



−2

0

−2



−1 2 4

1 0 −1

2 −1 3




2

1

−1




=


−6 −4

0 3

−10 0



By moving the loop indexed by j to the outside in the algorithm for computing C = AB+C we observe that

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c j := Ab j + c j

endfor

or

for j = 0, . . . ,n−1

for p = 0, . . . ,k−1

for i = 0, . . . ,m−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c j := Ab j + c j

endfor

Exchanging the order of the two inner-most loops merely means we are using a different algorithm (dot product vs. AXPY) for
the matrix-vector multiplication c j := Ab j + c j.

An algorithm that computes C = AB+C one column at a time, represented with FLAME notation, is given in Figure 5.1

Homework 5.3.2.4 Implement the routine

[C out] = Gemm unb var1(A, B, C)

based on the algorithm in Figure 5.1.

5.3.3 Matrix-Matrix Multiplication by Rows

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/3

5.3. Algorithms for Computing Matrix-Matrix Multiplication 173

Algorithm: C := GEMM UNB VAR1(A,B,C)

Partition B→
(

BL BR

)
, C→

(
CL CR

)
whereBL has 0 columns, CL has 0 columns

while n(BL)< n(B) do

Repartition(
BL BR

)
→
(

B0 b1 B2

)
,
(

CL CR

)
→
(

C0 c1 C2

)
whereb1 has 1 column, c1 has 1 column

c1 := Ab1 + c1

Continue with(
BL BR

)
←
(

B0 b1 B2

)
,
(

CL CR

)
←
(

C0 c1 C2

)
endwhile

Figure 5.1: Algorithm for C = AB+C, computing C one column at a time.

Homework 5.3.3.1 Let A and B be matrices and AB be well-defined and let A have at least four rows. If the first
and fourth rows of A are the same, then the first and fourth rows of AB are the same.

Always/Sometimes/Never

In Theorem 5.1 partition C and A by rows and do not partition B. In other words, let M = m, mi = 1, i = 0, . . . ,m−1; N = 1,
n0 = n; and K = 1, k0 = k. Then

C =


c̃T

0

c̃T
1
...

c̃T
m−1

 and A =


ãT

0

ãT
1
...

ãT
m−1



so that


c̃T

0

c̃T
1
...

c̃T
m−1

=C = AB =


ãT

0

ãT
1
...

ãT
m−1

B =


ãT

0 B

ãT
1 B
...

ãT
m−1B

 .

This shows how C can be computed one row at a time.

Week 5. Matrix-Matrix Multiplication 174

Example 5.5


−1 2 4

1 0 −1

2 −1 3



−2 2

0 1

−2 −1

=



(
−1 2 4

)
−2 2

0 1

−2 −1


(

1 0 −1
)

−2 2

0 1

−2 −1


(

2 −1 3
)

−2 2

0 1

−2 −1





=


−6 −4

0 3

−10 0



In the algorithm for computing C = AB+C the loop indexed by i can be moved to the outside so that

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c̃T

i := ãT
i B+ c̃T

i

endfor

or

for i = 0, . . . ,m−1

for p = 0, . . . ,k−1

for j = 0, . . . ,n−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c̃T

i := ãT
i B+ c̃T

i

endfor

An algorithm that computes C = AB+C row at a time, represented with FLAME notation, is given in Figure 5.2.

Homework 5.3.3.2

•


1 −2 2



−1 0 1

2 1 −1

1 −1 2

=

•


1 −2 2

−1 2 1



−1 0 1

2 1 −1

1 −1 2

=

•


1 −2 2

−1 2 1

0 1 2



−1 0 1

2 1 −1

1 −1 2

=

Homework 5.3.3.3 Implement the routine

[C out] = Gemm unb var2(A, B, C)

based on the algorithm in Figure 5.2.

5.3. Algorithms for Computing Matrix-Matrix Multiplication 175

Algorithm: C := GEMM UNB VAR2(A,B,C)

Partition A→

 AT

AB

 , C→

 CT

CB


whereAT has 0 rows, CT has 0 rows

while m(AT)< m(A) do

Repartition AT

AB

→


A0

aT
1

A2

 ,

 CT

CB

→


C0

cT
1

C2


wherea1 has 1 row, c1 has 1 row

cT
1 := aT

1 B+ cT
1

Continue with AT

AB

←


A0

aT
1

A2

 ,

 CT

CB

←


C0

cT
1

C2


endwhile

Figure 5.2: Algorithm for C = AB+C, computing C one row at a time.

5.3.4 Matrix-Matrix Multiplication with Rank-1 Updates

* View at edX
In Theorem 5.1 partition A and B by columns and rows, respectively, and do not partition C. In other words, let M = 1,

m0 = m; N = 1, n0 = n; and K = k, kp = 1, p = 0, . . . ,k−1. Then

A =
(

a0 a1 · · · ak−1

)
and B =


b̃T

0

b̃T
1
...

b̃T
k−1


so that

C = AB =
(

a0 a1 · · · ak−1

)


b̃T
0

b̃T
1
...

b̃T
k−1

= a0b̃T
0 +a1b̃T

1 + · · ·+ak−1b̃T
k−1.

Notice that each term apb̃T
p is an outer product of ap and b̃p. Thus, if we start with C := 0, the zero matrix, then we can compute

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c9c2df852cbd4699bc6097272af2aca3/4

Week 5. Matrix-Matrix Multiplication 176

C := AB+C as

C := ak−1b̃T
k−1 +(· · ·+(apb̃T

p +(· · ·+(a1b̃T
1 +(a0b̃T

0 +C)) · · ·)) · · ·),

which illustrates that C := AB can be computed by first setting C to zero, and then repeatedly updating it with rank-1 updates.

Example 5.6 
−1 2 4

1 0 −1

2 −1 3



−2 2

0 1

−2 −1



=


−1

1

2

(−2 2
)
+


2

0

−1

(0 1
)
+


4

−1

3

(−2 −1
)

=


2 −2

−2 2

−4 4

+


0 2

0 0

0 −1

+


−8 −4

2 1

−6 −3

=


−6 −4

0 3

−10 0



In the algorithm for computing C := AB+C the loop indexed by p can be moved to the outside so that

for p = 0, . . . ,k−1

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


C := apb̃T

p +C

endfor

or

for p = 0, . . . ,k−1

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


C := apb̃T

p +C

endfor

An algorithm that computes C = AB+C with rank-1 updates, represented with FLAME notation, is given in Figure 5.3.

Homework 5.3.4.1

•


1

−1

0



−1 0 1

=

•


−2

2

1


 2 1 −1

=

•


2

1

2




1 −1 2

=

•


1 −2 2

−1 2 1

0 1 2



−1 0 1

2 1 −1

1 −1 2

=

5.4. Enrichment 177

Algorithm: C := GEMM UNB VAR3(A,B,C)

Partition A→
(

AL AR

)
, B→

 BT

BB


whereAL has 0 columns, BT has 0 rows

while n(AL)< n(A) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 BT

BB

→


B0

bT
1

B2


wherea1 has 1 column, b1 has 1 row

C := a1bT
1 +C

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 BT

BB

←


B0

bT
1

B2


endwhile

Figure 5.3: Algorithm for C = AB+C, computing C via rank-1 updates.

Homework 5.3.4.2 Implement the routine

[C out] = Gemm unb var2(A, B, C)

based on the algorithm in Figure 5.3.

5.4 Enrichment

5.4.1 Slicing and Dicing for Performance

* View at edX

Computer Architecture (Very) Basics

A highly simplified description of a processor is given below.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/1

Week 5. Matrix-Matrix Multiplication 178

Yes, it is very, very simplified. For example, these days one tends to talk about “cores” and there are multiple cores on a
computer chip. But this simple view of what a processor is will serve our purposes just fine.

At the heart of the processor is the Central Processing Unit (CPU). It is where the computing happens. For us, the important
parts of the CPU are the Floating Point Unit (FPU), where floating point computations are performed, and the registers, where
data with which the FPU computes must reside. A typical processor will have 16-64 registers. In addition to this, a typical
processor has a small amount of memory on the chip, called the Level-1 (L1) Cache. The L1 cache can typically hold 16Kbytes
(about 16,000 bytes) or 32Kbytes. The L1 cache is fast memory, fast enough to keep up with the FPU as it computes.

Additional memory is available “off chip”. There is the Level-2 (L2) Cache and Main Memory. The L2 cache is slower than
the L1 cache, but not as slow as main memory. To put things in perspective: in the time it takes to bring a floating point number
from main memory onto the processor, the FPU can perform 50-100 floating point computations. Memory is very slow. (There
might be an L3 cache, but let’s not worry about that.) Thus, where in these different layers of the hierarchy of memory data
exists greatly affects how fast computation can be performed, since waiting for the data may become the dominating factor.
Understanding this memory hierarchy is important.

Here is how to view the memory as a pyramid:

At the top, there are the registers. For computation to happen, data must be in registers. Below it are the L1 and L2 caches. At
the bottom, main memory. Below that layer, there may be further layers, like disk storage.

Now, the name of the game is to keep data in the faster memory layers to overcome the slowness of main memory. Notice
that computation can also hide the “latency” to memory: one can overlap computation and the fetching of data.

Vector-Vector Computations Let’s consider performing the dot product operation α := xT y, with vectors x,y∈Rn that reside
in main memory.

5.4. Enrichment 179

Notice that inherently the components of the vectors must be loaded into registers at some point of the computation, requiring
2n memory operations (memops). The scalar α can be stored in a register as the computation proceeds, so that it only needs
to be written to main memory once, at the end of the computation. This one memop can be ignored relative to the 2n memops
required to fetch the vectors. Along the way, (approximately) 2n flops are performed: an add and a multiply for each pair of
components of x and y.

The problem is that the ratio of memops to flops is 2n/2n = 1/1. Since memops are extremely slow, the cost is in moving
the data, not in the actual computation itself. Yes, there is cache memory in between, but if the data starts in main memory, this
is of no use: there isn’t any reuse of the components of the vectors.

The problem is worse for the AXPY operation, y := αx+ y:

Here the components of the vectors x and y must be read from main memory, and the result y must be written back to main
memory, for a total of 3n memops. The scalar α can be kept in a register, and therefore reading it from main memory is
insignificant. The computation requires 2n flops, yielding a ratio of 3 memops for every 2 flops.

Matrix-Vector Computations Now, let’s examine how matrix-vector multiplication, y := Ax+ y, fares. For our analysis, we
will assume a square n×n matrix A. All operands start in main memory.

Week 5. Matrix-Matrix Multiplication 180

Now, inherently, all n×n elements of A must be read from main memory, requiring n2 memops. Inherently, for each element
of A only two flops are performed: an add and a multiply, for a total of 2n2 flops. There is an opportunity to bring components
of x and/or y into cache memory and/or registers, and reuse them there for many computations. For example, if y is computed
via dot products of rows of A with the vector x, the vector x can be brought into cache memory and reused many times. The
component of y being computed can then be kept in a registers during the computation of the dot product. For this reason, we
ignore the cost of reading and writing the vectors. Still, the ratio of memops to flops is approximately n2/2n2 = 1/2. This is
only slightly better than the ratio for dot and AXPY.

The story is worse for a rank-1 update, A := xyT +A. Again, for our analysis, we will assume a square n×n matrix A. All
operands start in main memory.

Now, inherently, all n× n elements of A must be read from main memory, requiring n2 memops. But now, after having been
updated, each element must also be written back to memory, for another n2 memops. Inherently, for each element of A only
two flops are performed: an add and a multiply, for a total of 2n2 flops. Again, there is an opportunity to bring components of
x and/or y into cache memory and/or registers, and reuse them there for many computations. Again, for this reason we ignore
the cost of reading the vectors. Still, the ratio of memops to flops is approximately 2n2/2n2 = 1/1.

Matrix-Matrix Computations Finally, let’s examine how matrix-matrix multiplication, C := AB+C, overcomes the memory
bottleneck. For our analysis, we will assume all matrices are square n×n matrices and all operands start in main memory.

5.4. Enrichment 181

Now, inherently, all elements of the three matrices must be read at least once from main memory, requiring 3n2 memops, and
C must be written at least once back to main memory, for another n2 memops. We saw that a matrix-matrix multiplication
requires a total of 2n3 flops. If this can be achieved, then the ratio of memops to flops becomes 4n2/2n3 = 2/n. If n is large
enough, the cost of accessing memory can be overcome. To achieve this, all three matrices must be brought into cache memory,
the computation performed while the data is in cache memory, and then the result written out to main memory.

The problem is that the matrices typically are too big to fit in, for example, the L1 cache. To overcome this limitation,
we can use our insight that matrices can be partitioned, and matrix-matrix multiplication can be performed with submatrices
(blocks).

This way, near-peak performance can be achieved.
To achieve very high performance, one has to know how to partition the matrices more carefully, and arrange the operations

in a very careful order. But the above describes the fundamental ideas.

5.4.2 How It is Really Done

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/2

Week 5. Matrix-Matrix Multiplication 182

Measuring Performance There are two attributes of a processor that affect the rate at which it can compute: its clock rate,
which is typically measured in GHz (billions of cycles per second) and the number of floating point computations that it can
perform per cycle. Multiply these two numbers together, and you get the rate at which floating point computations can be
performed, measured in GFLOPS/sec (billions of floating point operations per second). The below graph reports performance
obtained on a laptop of ours. The details of the processor are not important for this descussion, since the performance is typical.

Along the x-axis, the matrix sizes m = n = k are reported. Along the y-axis performance is reported in GFLOPS/sec. The
important thing is that the top of the graph represents the peak of the processor, so that it is easy to judge what percent of peak
is attained.

The blue line represents a basic implementation with a triple-nested loop. When the matrices are small, the data fits in the
L2 cache, and performance is (somewhat) better. As the problem sizes increase, memory becomes more and more a bottleneck.
Pathetic performance is achieved. The red line is a careful implementation that also blocks for better cache reuse. Obviously,
considerable improvement is achieved.

Try It Yourself!

* View at edX
If you know how to program in C and have access to a computer that runs the Linux operating system, you may want to try

the exercise on the following wiki page:

https://github.com/flame/how-to-optimize-gemm/wiki

Others may still learn something by having a look without trying it themselves.
No, we do not have time to help you with this exercise... You can ask each other questions online, but we cannot help

you with this... We are just too busy with the MOOC right now...

Further Reading

• Kazushige Goto is famous for his implementation of matrix-matrix multiplication. The following New York Times article
on his work may amuse you:

Writing the Fastest Code, by Hand, for Fun: A Human Computer Keeps ..

• An article that describes his approach to matrix-matrix multiplication is

Kazushige Goto, Robert A. van de Geijn.
Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software (TOMS), 2008.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/2
https://github.com/flame/how-to-optimize-gemm/wiki
http://www.nytimes.com/2005/11/28/technology/28super.html?scp=1&sq=Kazushige%20Goto&st=cse

5.5. Wrap Up 183

It can be downloaded for free by first going to the FLAME publication webpage and clicking on Journal Publication #11.
We believe you will be happy to find that you can understand at least the high level issues in that paper.

The following animation of how the memory hierarchy is utilized in Goto’s approach may help clarify the above paper:

* View at edX

• A more recent paper that takes the insights further is

Field G. Van Zee, Robert A. van de Geijn.
BLIS: A Framework for Rapid Instantiation of BLAS Functionality.
ACM Transactions on Mathematical Software.
(to appear)

It is also available from the FLAME publication webpage by clicking on Journal Publication #33.

• A paper that then extends these techniques to what are considered “many-core” architectures is

Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee.
Anatomy of High-Performance Many-Threaded Matrix Multiplication.
International Parallel and Distributed Processing Symposium 2014. (to appear)

It is also available from the FLAME publication webpage by clicking on Conference Publication #35. Around 90% of
peak on 60 cores running 240 threads... At the risk of being accused of bragging, this is quite exceptional.

Notice that two of these papers have not even been published in print yet. You have arrived at the frontier of National Science
Foundation (NSF) sponsored research, after only five weeks.

5.5 Wrap Up

5.5.1 Homework

For all of the below homeworks, only consider matrices that have real valued elements.

Homework 5.5.1.1 Let A and B be matrices and AB be well-defined. (AB)2 = A2B2.
Always/Sometimes/Never

Homework 5.5.1.2 Let A be symmetric. A2 is symmetric.
Always/Sometimes/Never

Homework 5.5.1.3 Let A,B ∈ Rn×n both be symmetric. AB is symmetric.
Always/Sometimes/Never

Homework 5.5.1.4 Let A,B ∈ Rn×n both be symmetric. A2−B2 is symmetric.
Always/Sometimes/Never

Homework 5.5.1.5 Let A,B ∈ Rn×n both be symmetric. (A+B)(A−B) is symmetric.
Always/Sometimes/Never

Homework 5.5.1.6 Let A,B ∈ Rn×n both be symmetric. ABA is symmetric.
Always/Sometimes/Never

Homework 5.5.1.7 Let A,B ∈ Rn×n both be symmetric. ABAB is symmetric.
Always/Sometimes/Never

http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html#J11
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9fc355378f26481282ffa7961b74b402/c78ce0ba3206468c8629ae2817746439/2
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html#J33
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html#J11

Week 5. Matrix-Matrix Multiplication 184

Homework 5.5.1.8 Let A be symmetric. AT A = AAT .
Always/Sometimes/Never

Homework 5.5.1.9 If A =


1

0

1

0

 then AT A = AAT .

True/False

Homework 5.5.1.10 Propose an algorithm for computing C := UR where C, U , and R are all upper triangular
matrices by completing the below algorithm.

Algorithm: [C] := TRTRMM UU UNB VAR1(U,R,C)

Partition U →

 UT L UT R

UBL UBR

 , R→

 RT L RT R

RBL RBR

 , C→

 CT L CT R

CBL CBR


whereUT L is 0×0, RT L is 0×0, CT L is 0×0

while m(UT L)< m(U) do

Repartition UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 RT L RT R

RBL RBR

→


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22

,

 CT L CT R

CBL CBR

→


C00 c01 C02

cT
10 γ11 cT

12

C20 c21 C22


whereυ11 is 1×1, ρ11 is 1×1, γ11 is 1×1

Continue with UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 RT L RT R

RBL RBR

←


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22

,

 CT L CT R

CBL CBR

←


C00 c01 C02

cT
10 γ11 cT

12

C20 c21 C22


endwhile

Hint: consider Homework 5.2.4.10. Then implement and test it.

5.5. Wrap Up 185

Challenge 5.5.1.11 Propose many algorithms for computing C :=UR where C, U , and R are all upper triangular
matrices. Hint: Think about how we created matrix-vector multiplication algorithms for the case where A was
triangular. How can you similarly take the three different algorithms discussed in Units 5.3.2-4 and transform
them into algorithms that take advantage of the triangular shape of the matrices?

Challenge 5.5.1.12 Propose many algorithms for computing C :=UR where C, U , and R are all upper triangular
matrices. This time, derive all algorithm systematically by following the methodology in

The Science of Programming Matrix Computations.

(You will want to read Chapters 2-5.)
(You may want to use the blank “worksheet” on the next page.)

http://www.lulu.com/shop/enrique-s-quintana-ort%C3%AD/the-science-of-programming-matrix-computations/ebook/product-17418498.html

Week 5. Matrix-Matrix Multiplication 186

Step Annotated Algorithm: [C] := TRTRMM UU UNB (U,R,C)

1a
{

C = Ĉ
}

4 Partition U →

UT L UT R

UBL UBR

 , R→

 RT L RT R

RBL RBR

 , C→

CT L CT R

CBL CBR


whereUT L is 0×0, RT L is 0×0, CT L is 0×0

2


CT L CT R

CBL CBR

=


3 while m(UT L)< m(U) do

2,3


CT L CT R

CBL CBR

=

∧ (m(UT L)< m(U))


5a

Repartition

UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 RT L RT R

RBL RBR

→


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22

,

CT L CT R

CBL CBR

→


C00 c01 C02

cT
10 γ11 cT

12

C20 c21 C22


whereυ11 is 1×1, ρ11 is 1×1, γ11 is 1×1

6




C00 c01 C02

cT
10 γ11 cT

12

C20 c21 C22

=


8

5b
Continue with

UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 RT L RT R

RBL RBR

←


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22

,

CT L CT R

CBL CBR

←


C00 c01 C02

cT
10 γ11 cT

12

C20 c21 C22



7




C00 c01 C02

cT
10 γ11 cT

12

C20 c21 C22

=


2


CT L CT R

CBL CBR

=


endwhile

2,3


CT L CT R

CBL CBR

=

∧¬(m(UT L)< m(U))


1b {C =UR}

5.5.2 Summary

Theorem 5.7 Let C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n. Let

• m = m0 +m1 + · · ·mM−1, mi ≥ 0 for i = 0, . . . ,M−1;

• n = n0 +n1 + · · ·nN−1, n j ≥ 0 for j = 0, . . . ,N−1; and

• k = k0 + k1 + · · ·kK−1, kp ≥ 0 for p = 0, . . . ,K−1.

5.5. Wrap Up 187

Partition

C =


C0,0 C0,1 · · · C0,N−1

C1,0 C1,1 · · · C1,N−1

...
...

. . .
...

CM−1,0 CM−1,1 · · · CM−1,N−1

 ,A =


A0,0 A0,1 · · · A0,K−1

A1,0 A1,1 · · · A1,K−1

...
...

. . .
...

AM−1,0 AM−1,1 · · · AM−1,K−1

 ,

and B =


B0,0 B0,1 · · · B0,N−1

B1,0 B1,1 · · · B1,N−1

...
...

. . .
...

BK−1,0 BK−1,1 · · · BK−1,N−1

 ,

with Ci, j ∈ Rmi×n j , Ai,p ∈ Rmi×kp , and Bp, j ∈ Rkp×n j . Then Ci, j = ∑
K−1
p=0 Ai,pBp, j.

If one partitions matrices C, A, and B into blocks, and one makes sure the dimensions match up, then blocked matrix-
matrix multiplication proceeds exactly as does a regular matrix-matrix multiplication except that individual multiplications
of scalars commute while (in general) individual multiplications with matrix blocks (submatrices) do not.

Properties of matrix-matrix multiplication

• Matrix-matrix multiplication is not commutative: In general, AB 6= BA.

• Matrix-matrix multiplication is associative: (AB)C = A(BC). Hence, we can just write ABC.

• Special case: eT
i (Ae j) = (eT

i A)e j = eT
i Ae j = αi, j (the i, j element of A).

• Matrix-matrix multiplication is distributative: A(B+C) = AB+AC and (A+B)C = AC+BC.

Transposing the product of two matrices

(AB)T = BT AT

Product with identity matrix

In the following, assume the matrices are “of appropriate size.”

IA = AI = A

Product with a diagonal matrix

(
a0 a1 · · · an−1

)


δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δn−1

=
(

δ0a0 δ1a1 · · · δ1an−1

)


δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δm−1




ãT

0

ãT
1
...

ãT
m−1

=


δ0ãT

0

δ1ãT
1

...

δm−1ãT
m−1



Week 5. Matrix-Matrix Multiplication 188

Product of triangular matrices

In the following, assume the matrices are “of appropriate size.”

• The product of two lower triangular matrices is lower triangular.

• The product of two upper triangular matrices is upper triangular.

Matrix-matrix multiplication involving symmetric matrices

In the following, assume the matrices are “of appropriate size.”

• AT A is symmetric.

• AAT is symmetric.

• If A is symmetric then A+βxxT is symmetric.

Loops for computing C := AB

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
. . .

...

γm−1,0 γm−1,1 · · · γm−1,n−1

=


ãT

0

ãT
1
...

ãT
m−1


(

b0 b1 · · · bn−1

)

=


ãT

0 b0 ãT
0 b1 · · · ãT

0 bn−1

ãT
1 b0 ãT

1 b1 · · · ãT
1 bn−1

...
...

. . .
...

ãT
m−1b0 ãT

m−1b1 · · · ãT
m−1bn−1

 .

Algorithms for computing C := AB+C via dot products.

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

γi, j := ãT
i b j + γi, j

endfor

endfor

or

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

γi, j := ãT
i b j + γi, j

endfor

endfor

Computing C := AB by columns(
c0 c1 · · · cn−1

)
=C = AB = A

(
b0 b1 · · · bn−1

)
=
(

Ab0 Ab1 · · · Abn−1

)
.

Algorithms for computing C := AB+C:

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c j := Ab j + c j

endfor

or

for j = 0, . . . ,n−1

for p = 0, . . . ,k−1

for i = 0, . . . ,m−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c j := Ab j + c j

endfor

5.5. Wrap Up 189

Algorithm: C := GEMM UNB VAR1(A,B,C)

Partition B→
(

BL BR

)
, C→

(
CL CR

)
whereBL has 0 columns, CL has 0 columns

while n(BL)< n(B) do

Repartition(
BL BR

)
→
(

B0 b1 B2

)
,
(

CL CR

)
→
(

C0 c1 C2

)
whereb1 has 1 column, c1 has 1 column

c1 := Ab1 + c1

Continue with(
BL BR

)
←
(

B0 b1 B2

)
,
(

CL CR

)
←
(

C0 c1 C2

)
endwhile

Computing C := AB by rows


c̃T

0

c̃T
1
...

c̃T
m−1

=C = AB =


ãT

0

ãT
1
...

ãT
m−1

B =


ãT

0 B

ãT
1 B
...

ãT
m−1B

 .

Algorithms for computing C := AB+C by rows:

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

for p = 0, . . . ,k−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c̃T

i := ãT
i B+ c̃T

i

endfor

or

for i = 0, . . . ,m−1

for p = 0, . . . ,k−1

p

for j = 0, . . . ,n−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


c̃T

i := ãT
i B+ c̃T

i

endfor

Week 5. Matrix-Matrix Multiplication 190

Algorithm: C := GEMM UNB VAR2(A,B,C)

Partition A→

 AT

AB

 , C→

 CT

CB


whereAT has 0 rows, CT has 0 rows

while m(AT)< m(A) do

Repartition AT

AB

→


A0

aT
1

A2

 ,

 CT

CB

→


C0

cT
1

C2


wherea1 has 1 row, c1 has 1 row

cT
1 := aT

1 B+ cT
1

Continue with AT

AB

←


A0

aT
1

A2

 ,

 CT

CB

←


C0

cT
1

C2


endwhile

Computing C := AB via rank-1 updates

C = AB =
(

a0 a1 · · · ak−1

)


b̃T
0

b̃T
1
...

b̃T
k−1

= a0b̃T
0 +a1b̃T

1 + · · ·+ak−1b̃T
k−1.

Algorithm for computing C := AB+C via rank-1 updates:

for p = 0, . . . ,k−1

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


C := apb̃T

p +C

endfor

or

for p = 0, . . . ,k−1

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

γi, j := αi,pβp, j + γi, j

endfor

endfor


C := apb̃T

p +C

endfor

5.5. Wrap Up 191

Algorithm: C := GEMM UNB VAR3(A,B,C)

Partition A→
(

AL AR

)
, B→

 BT

BB


whereAL has 0 columns, BT has 0 rows

while n(AL)< n(A) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 BT

BB

→


B0

bT
1

B2


wherea1 has 1 column, b1 has 1 row

C := a1bT
1 +C

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 BT

BB

←


B0

bT
1

B2


endwhile

Week 5. Matrix-Matrix Multiplication 192

Week 6
Gaussian Elimination

6.1 Opening Remarks

6.1.1 Solving Linear Systems

* View at edX

193

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/cd9761377b2549aa85b7e651848d3a18/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/cd9761377b2549aa85b7e651848d3a18/1

Week 6. Gaussian Elimination 194

6.1.2 Outline

6.1. Opening Remarks . 193
6.1.1. Solving Linear Systems . 193
6.1.2. Outline . 194
6.1.3. What You Will Learn . 195

6.2. Gaussian Elimination . 196
6.2.1. Reducing a System of Linear Equations to an Upper Triangular System 196
6.2.2. Appended Matrices . 198
6.2.3. Gauss Transforms . 201
6.2.4. Computing Separately with the Matrix and Right-Hand Side (Forward Substitution) 204
6.2.5. Towards an Algorithm . 205

6.3. Solving Ax = b via LU Factorization . 209
6.3.1. LU factorization (Gaussian elimination) . 209
6.3.2. Solving Lz = b (Forward substitution) . 212
6.3.3. Solving Ux = b (Back substitution) . 214
6.3.4. Putting it all together to solve Ax = b . 218
6.3.5. Cost . 220

6.4. Enrichment . 225
6.4.1. Blocked LU Factorization . 225
6.4.2. How Ordinary Elimination Became Gaussian Elimination . 230

6.5. Wrap Up . 230
6.5.1. Homework . 230
6.5.2. Summary . 230

6.1. Opening Remarks 195

6.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Apply Gaussian elimination to reduce a system of linear equations into an upper triangular system of equations.

• Apply back(ward) substitution to solve an upper triangular system in the form Ux = b.

• Apply forward substitution to solve a lower triangular system in the form Lz = b.

• Represent a system of equations using an appended matrix.

• Reduce a matrix to an upper triangular matrix with Gauss transforms and then apply the Gauss transforms to a right-hand
side.

• Solve the system of equations in the form Ax = b using LU factorization.

• Relate LU factorization and Gaussian elimination.

• Relate solving with a unit lower triangular matrix and forward substitution.

• Relate solving with an upper triangular matrix and back substitution.

• Create code for various algorithms for Gaussian elimination, forward substitution, and back substitution.

• Determine the cost functions for LU factorization and algorithms for solving with triangular matrices.

Week 6. Gaussian Elimination 196

6.2 Gaussian Elimination

6.2.1 Reducing a System of Linear Equations to an Upper Triangular System

* View at edX

A system of linear equations

Consider the system of linear equations

2x + 4y − 2z = −10

4x − 2y + 6z = 20

6x − 4y + 2z = 18.

Notice that x, y, and z are just variables for which we can pick any symbol or letter we want. To be consistent with the notation
we introduced previously for naming components of vectors, we identify them instead with χ0, χ1, and and χ2, respectively:

2χ0 + 4χ1 − 2χ2 = −10

4χ0 − 2χ1 + 6χ2 = 20

6χ0 − 4χ1 + 2χ2 = 18.

Gaussian elimination (transform linear system of equations to an upper triangular system)

Solving the above linear system relies on the fact that its solution does not change if

1. Equations are reordered (not used until next week);

2. An equation in the system is modified by subtracting a multiple of another equation in the system from it; and/or

3. Both sides of an equation in the system are scaled by a nonzero number.

These are the tools that we will employ.
The following steps are knows as (Gaussian) elimination. They transform a system of linear equations to an equivalent

upper triangular system of linear equations:

• Subtract λ1,0 = (4/2) = 2 times the first equation from the second equation:

Before After

2χ0 + 4χ1 − 2χ2 = −10

4χ0 − 2χ1 + 6χ2 = 20

6χ0 − 4χ1 + 2χ2 = 18

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

6χ0 − 4χ1 + 2χ2 = 18

• Subtract λ2,0 = (6/2) = 3 times the first equation from the third equation:

Before After

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

6χ0 − 4χ1 + 2χ2 = 18

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

− 16χ1 + 8χ2 = 48

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/1

6.2. Gaussian Elimination 197

• Subtract λ2,1 = ((−16)/(−10)) = 1.6 times the second equation from the third equation:

Before After

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

− 16χ1 + 8χ2 = 48

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

− 8χ2 = −16

This now leaves us with an upper triangular system of linear equations.

In the above Gaussian elimination procedure, λ1,0, λ2,0, and λ2,1 are called the multipliers. Notice that their subscripts
indicate the coefficient in the linear system that is being eliminated.

Back substitution (solve the upper triangular system)

The equivalent upper triangular system of equations is now solved via back substitution:

• Consider the last equation,

−8χ2 =−16.

Scaling both sides by by 1/(−8) we find that

χ2 =−16/(−8) = 2.

• Next, consider the second equation,

−10χ1 +10χ2 = 40.

We know that χ2 = 2, which we plug into this equation to yield

−10χ1 +10(2) = 40.

Rearranging this we find that

χ1 = (40−10(2))/(−10) =−2.

• Finally, consider the first equation,

2χ0 +4χ1−2χ2 =−10

We know that χ2 = 2 and χ1 =−2, which we plug into this equation to yield

2χ0 +4(−2)−2(2) =−10.

Rearranging this we find that

χ0 = (−10− (4(−2)− (2)(2)))/2 = 1.

Thus, the solution is the vector

x =


χ0

χ1

χ2

=


1

−2

2

 .

Week 6. Gaussian Elimination 198

Check your answer (ALWAYS!)

Check the answer (by plugging χ0 = 1, χ1 =−2, and χ2 = 2 into the original system)

2(1) + 4(−2) − 2(2) = −10 X

4(1) − 2(−2) + 6(2) = 20 X

6(1) − 4(−2) + 2(2) = 18 X

Homework 6.2.1.1

* View at edX
Practice reducing a system of linear equations to an upper triangular system of linear equations by visiting the
Practice with Gaussian Elimination webpage we created for you. For now, only work with the top part of that
webpage.

Homework 6.2.1.2 Compute the solution of the linear system of equations given by

−2χ0 + χ1 + 2χ2 = 0

4χ0 − χ1 − 5χ2 = 4

2χ0 − 3χ1 − χ2 = −6

•


χ0

χ1

χ2

=


�
�
�


Homework 6.2.1.3 Compute the coefficients γ0, γ1, and γ2 so that

n−1

∑
i=0

i = γ0 + γ1n+ γ2n2

(by setting up a system of linear equations).

Homework 6.2.1.4 Compute γ0, γ1, γ2, and γ3 so that

n−1

∑
i=0

i2 = γ0 + γ1n+ γ2n2 + γ3n3.

6.2.2 Appended Matrices

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/1
http://ulaff.s3.amazonaws.com/GaussianEliminationPractice/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/2

6.2. Gaussian Elimination 199

Representing the system of equations with an appended matrix

Now, in the above example, it becomes very cumbersome to always write the entire equation. The information is encoded in
the coefficients in front of the χi variables, and the values to the right of the equal signs. Thus, we could just let

2 4 −2 −10

4 −2 6 20

6 −4 2 18

 represent

2χ0 + 4χ1 − 2χ2 = −10

4χ0 − 2χ1 + 6χ2 = 20

6χ0 − 4χ1 + 2χ2 = 18.

Then Gaussian elimination can simply operate on this array of numbers as illustrated next.

Gaussian elimination (transform to upper triangular system of equations)

• Subtract λ1,0 = (4/2) = 2 times the first row from the second row:

Before After
2 4 −2 −10

4 −2 6 20

6 −4 2 18




2 4 −2 −10

−10 10 40

6 −4 2 18

 .

• Subtract λ2,0 = (6/2) = 3 times the first row from the third row:

Before After
2 4 2 −10

−10 10 40

6 −4 2 18




2 4 −2 −10

−10 10 40

−16 8 48

 .

• Subtract λ2,1 = ((−16)/(−10)) = 1.6 times the second row from the third row:

Before After
2 4 −2 −10

−10 10 40

−16 8 48




2 4 −2 −10

−10 10 40

−8 −16

 .

This now leaves us with an upper triangular system of linear equations.

Back substitution (solve the upper triangular system)

The equivalent upper triangular system of equations is now solved via back substitution:

• The final result above represents 
2 4 −2

−10 10

−8




χ0

χ1

χ2

=


−10

40

−16


or, equivalently,

2χ0 + 4χ1 − 2χ2 = −10

− 10χ1 + 10χ2 = 40

− 8χ2 = −16

Week 6. Gaussian Elimination 200

• Consider the last equation,
8χ2 =−16.

Scaling both sides by by 1/(−8) we find that

χ2 =−16/(−8) = 2.

• Next, consider the second equation,
−10χ1 +10χ2 = 40.

We know that χ2 = 2, which we plug into this equation to yield

−10χ1 +10(2) = 40.

Rearranging this we find that
χ1 = (40−10(2))/(−10) =−2.

• Finally, consider the first equation,
2χ0 +4χ1−2χ2 =−10

We know that χ2 = 2 and χ1 =−2, which we plug into this equation to yield

2χ0 +4(−2)−2(2) =−10.

Rearranging this we find that
χ0 = (−10− (4(−2)+(−2)(−2)))/2 = 1.

Thus, the solution is the vector

x =


χ0

χ1

χ2

=


1

−2

2

 .

Check your answer (ALWAYS!)

Check the answer (by plugging χ0 = 1, χ1 =−2, and χ2 = 2 into the original system)

2(1) + 4(−2) − 2(2) = −10 X

4(1) − 2(−2) + 6(2) = 20 X

6(1) − 4(−2) + 2(2) = 18 X

Alternatively, you can check that 
2 4 −2

4 −2 6

6 −4 2




1

−2

2

=


−10

20

18

 X

Homework 6.2.2.1

* View at edX
Practice reducing a system of linear equations to an upper triangular system of linear equations by visiting the
Practice with Gaussian Elimination webpage we created for you. For now, only work with the top two parts of that
webpage.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/2
http://ulaff.s3.amazonaws.com/GaussianEliminationPractice/index.html

6.2. Gaussian Elimination 201

Homework 6.2.2.2 Compute the solution of the linear system of equations expressed as an appended matrix given
by 

−1 2 −3 2

−2 2 −8 10

2 −6 6 −2



•


χ0

χ1

χ2

=


�
�
�



6.2.3 Gauss Transforms

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/3

Week 6. Gaussian Elimination 202

Homework 6.2.3.1
Compute ONLY the values in the boxes. A ? means a value that we don’t care about.

•


1 0 0

−2 1 0

0 0 1




2 4 −2

4 −2 6

6 −4 2

=


.

•


1 0 0

0 1 0

345 0 1




2 4 −2

4 −2 6

6 −4 2

=


? ? ?

.

•


1 0 0

0 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2

=


.

•


1 0 0

1 0

0 0 1




2 4 −2

2 −2 6

6 −4 2

=

 0

.

•


1 0 0

1 0

0 1




2 4 −2

2 −2 6

−4 −4 2

=

 0

0

.

•


1 0 0

0 1 0

0 1




2 4 −2

0 −10 10

0 −16 8

=


0

.

•


1 0

0 1

0 0 1




2 4 −8

1 1 −4

−1 −2 4

=


0

0

.

Theorem 6.1 Let L̂ j be a matrix that equals the identity, except that for i > jthe (i, j) elements (the ones below the diagonal in
the jth column) have been replaced with −λi,, j:

L̂ j =



I j 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −λ j+1, j 1 0 · · · 0

0 −λ j+2, j 0 1 · · · 0
...

...
...

...
. . .

...

0 −λm−1, j 0 0 · · · 1


.

Then L̂ jA equals the matrix A except that for i > j the ith row is modified by subtracting λi, j times the jth row from it. Such a
matrix L̂ j is called a Gauss transform.

6.2. Gaussian Elimination 203

Proof: Let

L̂ j =



I j 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −λ j+1, j 1 0 · · · 0

0 −λ j+2, j 0 1 · · · 0
...

...
...

...
. . .

...

0 −λm−1, j 0 0 · · · 1


and A =



A0: j−1,:

ǎT
j

ǎT
j+1

ǎT
j+2
...

ǎT
m−1


,

where Ik equals a k× k identity matrix, As:t,: equals the matrix that consists of rows s through t from matrix A, and ǎT
k equals

the kth row of A. Then

L̂ jA =



I j 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −λ j+1, j 1 0 · · · 0

0 −λ j+2, j 0 1 · · · 0
...

...
...

...
. . .

...

0 −λm−1, j 0 0 · · · 1





A0: j−1,:

ǎT
j

ǎT
j+1

ǎT
j+2
...

ǎT
m−1



=



A0: j−1,:

ǎT
j

−λ j+1, jǎT
j + ǎT

j+1

−λ j+2, jǎT
j + ǎT

j+2
...

−λm−1, jǎT
j + ǎT

m−1


=



A0: j−1,:

ǎT
j

ǎT
j+1−λ j+1, jǎT

j

ǎT
j+2−λ j+2, jǎT

j
...

ǎT
m−1−λm−1, jǎT

j


.

Gaussian elimination (transform to upper triangular system of equations)

• Subtract λ1,0 = (4/2) = 2 times the first row from the second row and subtract λ2,0 = (6/2) = 3 times the first row from
the third row:

Before After
1 0 0

−2 1 0

−3 0 1




2 4 −2 −10

4 −2 6 20

6 −4 2 18




2 4 −2 −10

0 −10 10 40

0 −16 8 48


• Subtract λ2,1 = ((−16)/(−10)) = 1.6 times the second row from the third row:

Before After
1 0 0

0 1 0

0 −1.6 1




2 4 −2 −10

0 −10 10 40

0 −16 8 48




2 4 −2 −10

0 −10 10 40

0 0 −8 −16


This now leaves us with an upper triangular appended matrix.

Week 6. Gaussian Elimination 204

Back substitution (solve the upper triangular system)

As before.

Check your answer (ALWAYS!)

As before.

Homework 6.2.3.2

* View at edX
Practice reducing an appended sytem to an upper triangular form with Gauss transforms by visiting the Practice
with Gaussian Elimination webpage we created for you. For now, only work with the top three parts of that
webpage.

6.2.4 Computing Separately with the Matrix and Right-Hand Side (Forward Substitution)

* View at edX

Transform to matrix to upper triangular matrix

• Subtract λ1,0 = (4/2) = 2 times the first row from the second row and subtract λ2,0 = (6/2) = 3 times the first row from
the third row:

Before After
1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2




2 4 −2

2 −10 10

3 −16 8


Notice that we are storing the multipliers over the zeroes that are introduced.

• Subtract λ2,1 = ((−16)/(−10)) = 1.6 times the second row from the third row:

Before After
1 0 0

0 1 0

0 −1.6 1




2 4 −2

2 −10 10

3 −16 8




2 4 −2

2 −10 10

3 1.6 −8


(The transformation does not affect the (2,0) element that equals 3 because we are merely storing a previous multiplier
there.) Again, notice that we are storing the multiplier over the zeroes that are introduced.

This now leaves us with an upper triangular matrix and the multipliers used to transform the matrix to the upper triangular
matrix.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/3
http://ulaff.s3.amazonaws.com/GaussianEliminationPractice/index.html
http://ulaff.s3.amazonaws.com/GaussianEliminationPractice/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/4

6.2. Gaussian Elimination 205

Forward substitution (applying the transforms to the right-hand side)

We now take the transforms (multipliers) that were computed during Gaussian Elimination (and stored over the zeroes) and
apply them to the right-hand side vector.

• Subtract λ1,0 = 2 times the first component from the second component and subtract λ2,0 = 3 times the first component
from the third component:

Before After
1 0 0

−2 1 0

−3 0 1



−10

20

18



−10

40

48


• Subtract λ2,1 = 1.6 times the second component from the third component:

Before After
1 0 0

0 1 0

0 −1.6 1



−10

40

48



−10

40

−16


The important thing to realize is that this updates the right-hand side exactly as the appended column was updated in the

last unit. This process is often referred to as forward substitution.

Back substitution (solve the upper triangular system)

As before.

Check your answer (ALWAYS!)

As before.

Homework 6.2.4.1 No video this time! We trust that you have probably caught on to how to use the webpage.
Practice reducing a matrix to an upper triangular matrix with Gauss transforms and then applying the Gauss trans-
forms to a right-hand side by visiting the Practice with Gaussian Elimination webpage we created for you. Now
you can work with all parts of the webpage. Be sure to compare and contrast!

6.2.5 Towards an Algorithm

* View at edX

Gaussian elimination (transform to upper triangular system of equations)

• As is shown below, compute

 λ1,0

λ2,0

=

 4

6

/2 =

 2

3

 and apply the Gauss transform to the matrix:

http://ulaff.s3.amazonaws.com/GaussianEliminationPractice/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/512525e3974e4b708f1bc0d570e48134/5

Week 6. Gaussian Elimination 206

Algorithm: A := GAUSSIAN ELIMINATION (A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


a21 := a21/α11 (= l21)

A22 := A22−a21aT
12 (= A22− l21aT

12)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 6.1: Algorithm that transforms a matrix A into an upper triangular matrix U , overwriting the uppertriangular part of A
with that U . The elements of A below the diagonal are overwritten with the multipliers.

Before After
1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2




2 4 −2

2 −10 10

3 −16 8


• As is shown below, compute

(
λ2,1

)
=
(
−16

)
/(−10) =

(
1.6

)
and apply the Gauss transform to the matrix:

Before After
1 0 0

0 1 0

0 −1.6 1




2 4 −2

2 −10 10

3 −16 8




2 4 −2

2 −10 10

3 1.6 −8


(The transformation does not affect the (2,0) element that equals 3 because we are merely storing a previous multiplier
there.)

This now leaves us with an upper triangular matrix and the multipliers used to transform the matrix to the upper triangular
matrix.

The insights in this section are summarized in the algorithm in Figure 6.1, in which the original matrix A is overwritten with
the upper triangular matrix that results from Gaussian elimination and the strictly lower triangular elements are overwritten by
the multipliers.

6.2. Gaussian Elimination 207

Algorithm: b := FORWARD SUBSTITUTION(A,b)

Partition A→

 AT L AT R

ABL ABR

 , b→

 bT

bB


where AT L is 0×0, bT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

→


b0

β1

b2


b2 := b2−β1a21 (= b2−β1l21)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.2: Algorithm that applies the multipliers (stored in the elements of A below the diagonal) to a right-hand side vector b.

Forward substitution (applying the transforms to the right-hand side)

We now take the transforms (multipliers) that were computed during Gaussian Elimination (and stored over the zeroes) and
apply them to the right-hand side vector.

• Subtract λ1,0 = 2 times the first component from the second component and subtract λ2,0 = 3 times the first component
from the third component:

Before After
1 0 0

−2 1 0

−3 0 1



−10

20

18



−10

40

48


• Subtract λ2,1 = 1.6 times the second component from the third component:

Before After
1 0 0

0 1 0

0 −1.6 1



−10

40

48



−10

40

−16


The important thing to realize is that this updates the right-hand side exactly as the appended column was updated in the

last unit. This process is often referred to as forward substitution.
The above observations motivate the algorithm for forward substitution in Figure 6.2.

Week 6. Gaussian Elimination 208

Back substitution (solve the upper triangular system)

As before.

Check your answer (ALWAYS!)

As before.

Homework 6.2.5.1 Implement the algorithms in Figures 6.1 and 6.2

• [A out] = GaussianElimination(A)

• [b out] = ForwardSubstitution(A, b)

You can check that they compute the right answers with the following script:

• test GausianElimination.m

This script exercises the functions by factoring the matrix

A = [
2 0 1 2

-2 -1 1 -1
4 -1 5 4

-4 1 -3 -8
]

by calling

LU = GaussianElimination(A)

Next, solve Ax = b where

b = [
2
2

11
-3

]

by first apply forward substitution to b, using the output matrix LU:

bhat = ForwardSubstitution(LU, b)

extracting the upper triangular matrix U from LU:

U = triu(LU)

and then solving Ux = b̂ (which is equivalent to backward substitution) with the MATLAB intrinsic function:

x = U \ bhat

Finally, check that you got the right answer:

b - A * x

(the result should be a zero vector with four elements).

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week6/test_GaussianElimination.m

6.3. Solving Ax = b via LU Factorization 209

6.3 Solving Ax = b via LU Factorization

6.3.1 LU factorization (Gaussian elimination)

* View at edX
In this unit, we will use the insights into how blocked matrix-matrix and matrix-vector multiplication works to derive and

state algorithms for solving linear systems in a more concise way that translates more directly into algorithms.
The idea is that, under circumstances to be discussed later, a matrix A ∈ Rn×n can be factored into the product of two

matrices L,U ∈ Rn×n:
A = LU,

where L is unit lower triangular and U is upper triangular.
Assume A ∈ Rn×n is given and that L and U are to be computed such that A = LU , where L ∈ Rn×n is unit lower triangular

and U ∈ Rn×n is upper triangular. We derive an algorithm for computing this operation by partitioning

A→

 α11 aT
12

a21 A22

 , L→

 1 0

l21 L22

 , and U →

 υ11 uT
12

0 U22

 .

Now, A = LU implies (using what we learned about multiplying matrices that have been partitioned into submatrices)

A︷ ︸︸ ︷ α11 aT
12

a21 A22

 =

L︷ ︸︸ ︷ 1 0

l21 L22


U︷ ︸︸ ︷ υ11 uT

12

0 U22



=

LU︷ ︸︸ ︷ 1×υ11 +0×0 1×uT
12 +0×U22

l21υ11 +L22×0 l21uT
12 +L22U22

 .

=

LU︷ ︸︸ ︷ υ11 uT
12

l21υ11 l21uT
12 +L22U22

 .

For two matrices to be equal, their elements must be equal, and therefore, if they are partitioned conformally, their submatrices
must be equal:

α11 = υ11 aT
12 = uT

12

a21 = l21υ11 A22 = l21uT
12 +L22U22

or, rearranging,
υ11 = α11 uT

12 = aT
12

l21 = a21/υ11 L22U22 = A22− l21uT
12

.

This suggests the following steps for overwriting a matrix A with its LU factorization:

• Partition

A→

 α11 aT
12

a21 A22

 .

• Update a21 = a21/α11(= l21). (Scale a21 by 1/α11!)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/1

Week 6. Gaussian Elimination 210

Algorithm: A := LU UNB VAR5(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

a21 := a21/α11 (= l21)

A22 := A22−a21aT
12 (= A22− l21aT

12)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 6.3: LU factorization algorithm.

• Update A22 = A22−a21aT
12(= A22− l21uT

12) (Rank-1 update!).

• Overwrite A22 with L22 and U22 by repeating with A = A22.

This will leave U in the upper triangular part of A and the strictly lower triangular part of L in the strictly lower triangular part
of A. The diagonal elements of L need not be stored, since they are known to equal one.

The above can be summarized in Figure 6.14. If one compares this to the algorithm GAUSSIAN ELIMINATION we arrived
at in Unit 6.2.5, you find they are identical! LU factorization is Gaussian elimination.

We illustrate in Fgure 6.4 how LU factorization with a 3×3 matrix proceeds. Now, compare this to Gaussian elimination
with an augmented system, in Figure 6.5. It should strike you that exactly the same computations are performed with the
coefficient matrix to the left of the vertical bar.

6.3. Solving Ax = b via LU Factorization 211

Step


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 a21/α11 A22−a21aT
12

1-2


−2 −1 1

2 −2 −3

−4 4 7


 2

−4

/(−2) =

−1

2


−2 −3

4 7

−
−1

2

(−1 1
)

=

−3 −2

6 5



3


−2 −1 1

−1 −3 −2

2 6 5

 (
6
)
/(−3) =

(
−2
) (

5
)
−
(
−2
) (
−2
)

=
(

1
)


−2 −1 1

−1 −3 −2

2 −2 1



Figure 6.4: LU factorization with a 3×3 matrix

Step Current system Multiplier Operation

1


−2 −1 1 6

2 −2 −3 3

−4 4 7 −3

 2
−2 =−1

2 −2 −3 3

−1×(−2 −1 1 6)

0 −3 −2 9

2


−2 −1 1 6

0 −3 −2 9

−4 4 7 −3

 −4
−2 = 2

−4 4 7 −3

−(2)×(−2 −1 1 6)

0 6 5 −15

3


−2 −1 1 6

0 −3 −2 9

0 6 5 −15

 6
−3 =−2

0 6 5 −15

−(−2)×(0 −3 −2 9)

0 0 1 3

4


−2 −1 1 6

0 −3 −2 9

0 0 1 3



Figure 6.5: Gaussian elimination with an augmented system.

Week 6. Gaussian Elimination 212

Homework 6.3.1.1 Implement the algorithm in Figures 6.4.

• [A out] = LU unb var5(A)

You can check that they compute the right answers with the following script:

• test LU unb var5.m

This script exercises the functions by factoring the matrix

A = [
2 0 1 2

-2 -1 1 -1
4 -1 5 4

-4 1 -3 -8
]

by calling

LU = LU_unb_var5(A)

Next, it extracts the unit lower triangular matrix and upper triangular matrix:

L = tril(LU, -1) + eye(size(A))

U = triu(LU)

and checks if the correct factors were computed:

A - L * U

which should yield a 4×4 zero matrix.

Homework 6.3.1.2 Compute the LU factorization of
1 −2 2

5 −15 8

−2 −11 −11

 .

6.3.2 Solving Lz = b (Forward substitution)

* View at edX

Next, we show how forward substitution is the same as solving the linear system Lz = b where b is the right-hand side and
L is the matrix that resulted from the LU factorization (and is thus unit lower triangular, with the multipliers from Gaussian
Elimination stored below the diagonal).

Given a unit lower triangular matrix L ∈Rn×n and vectors z,b ∈Rn, consider the equation Lz = b where L and b are known
and z is to be computed. Partition

L→

 1 0

l21 L22

 , z→

 ζ1

z2

 , and b→

 β1

b2

 .

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week6/test_LU_unb_var5.m
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/2

6.3. Solving Ax = b via LU Factorization 213

Algorithm: [b] := LTRSV UNB VAR1(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

b2 := b2−β1l21

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.6: Algorithm for solving Lx = b, overwriting b with the result vector x. Here L is a lower triangular matrix.

(Recall: the horizontal line here partitions the result. It is not a division.) Now, Lz = b implies that

b︷ ︸︸ ︷ β1

b2

 =

L︷ ︸︸ ︷ 1 0

l21 L22


z︷ ︸︸ ︷ ζ1

z2



=

Lz︷ ︸︸ ︷ 1×ζ1 +0× z2

l21ζ1 +L22z2

 =

Lz︷ ︸︸ ︷ ζ1

l21ζ1 +L22z2


so that

β1 = ζ1

b2 = l21ζ1 +L22z2
or, equivalently,

ζ1 = β1

L22z2 = b2−ζ1l21
.

This suggests the following steps for overwriting the vector b with the solution vector z:

• Partition

L→

 1 0

l21 L22

 and b→

 β1

b2


• Update b2 = b2−β1l21 (this is an AXPY operation!).

Week 6. Gaussian Elimination 214

• Continue with L = L22 and b = b2.

This motivates the algorithm in Figure 6.15. If you compare this algorithm to FORWARD SUBSTITUTION in Unit 6.2.5, you
find them to be the same algorithm, except that matrix A has now become matrix L! So, solving Lz = b, overwriting b with z,
is forward substitution when L is the unit lower triangular matrix that results from LU factorization.

We illustrate solving Lz = b in Figure 6.8. Compare this to forward substitution with multipliers stored below the diagonal
after Gaussian elimination, in Figure ??.

Homework 6.3.2.1 Implement the algorithm in Figure 6.15.

• [b out] = Ltrsv unb var1(L, b)

You can check that they compute the right answers with the following script:

• test Ltrsv unb var1.m

This script exercises the function by setting the matrix

L = [
1 0 0 0

-1 1 0 0
2 1 1 0

-2 -1 1 1
]

and solving Lx = b with the right-hand size vector

b = [
2
2

11
-3

]

by calling

x = Ltrsv_unb_var1(L, b)

Finally, it checks if x is indeed the answer by checking if

b - L * x

equals the zero vector.

x = U \ z

We can the check if this solves Ax = b by computing

b - A * x

which should yield a zero vector.

6.3.3 Solving Ux = b (Back substitution)

* View at edX
Next, let us consider how to solve a linear system Ux = b. We will conclude that the algorithm we come up with is the same

as backward substitution.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week6/test_Ltrsv_unb_var1.m
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/3

6.3. Solving Ax = b via LU Factorization 215

Step


L00 0 0

lT
10 λ11 0

L20 l21 L22




b0

β1

b2

 b2− l21β1

1-2


1 0 0

−1 1 0

2 −2 1




6

3

−3


 3

−3

−
−1

2

(6) =

 9

−15



3


1 0 0

−1 1 0

2 −2 1




6

9

−15

 (
−15

)
−
(
−2
)
(9) = (3)


1 0 0

−1 1 0

2 −2 1




6

9

3



Figure 6.7: Solving Lz = b where L is a unit lower triangular matrix. Vector z overwrites vector b.

Step
Stored multipliers

and right-hand side Operation

1


− − − 6

−1 − − 3

2 −2 − −3


3

−(−1)×(6)

9

2


− − − 6

−1 − − 9

2 −2 − −3


−3

−(2)×(6)

−15

3


− − − 6

−1 − − 9

2 −2 − −15


−15

−(−2)×(9)

3

4


− − − 6

−1 − − 9

2 -2 − 3



Figure 6.8: Forward substitutions with multipliers stored below the diagonal (e.g., as output from Gaussian Elimination).

Week 6. Gaussian Elimination 216

Given upper triangular matrix U ∈Rn×n and vectors x,b ∈Rn, consider the equation Ux = b where U and b are known and
x is to be computed. Partition

U →

 υ11 uT
12

0 U22

 , x→

 χ1

x2

 and b→

 β1

b2

 .

Now, Ux = b implies

b︷ ︸︸ ︷ β1

b2

 =

U︷ ︸︸ ︷ υ11 uT
12

0 U22


x︷ ︸︸ ︷ χ1

x2



=

Ux︷ ︸︸ ︷ υ11χ1 +uT
12x2

0×χ1 +U22x2

 =

Ux︷ ︸︸ ︷ υ11χ1 +uT
12x2

U22x2


so that

β1 = υ11χ1 +uT
12x2

b2 =U22x2
or, equivalently,

χ1 = (β1−uT
12x2)/υ11

U22x2 = b2
.

This suggests the following steps for overwriting the vector b with the solution vector x:

• Partition

U →

 υ11 uT
12

0 U22

 , and b→

 β1

b2


• Solve U22x2 = b2 for x2, overwriting b2 with the result.

• Update β1 = (β1−uT
12b2)/υ11(= (β1−uT

12x2)/υ11).
(This requires a dot product followed by a scaling of the result by 1/υ11.)

This suggests the following algorithm: Notice that the algorithm does not have “Solve U22x2 = b2” as an update. The reason is
that the algorithm marches through the matrix from the bottom-right to the top-left and through the vector from bottom to top.
Thus, for a given iteration of the while loop, all elements in x2 have already been computed and have overwritten b2. Thus, the
“Solve U22x2 = b2” has already been accomplished by prior iterations of the loop. As a result, in this iteration, only β1 needs
to be updated with χ1 via the indicated computations.

Homework 6.3.3.1 Side-by-side, solve the upper triangular linear system

−2χ0− χ1+ χ2= 6

−3χ1−2χ2= 9

χ2= 3

via back substitution and by executing the above algorithm with

U =


−2 −1 1

0 −3 −2

0 0 1

 and b =


6

9

3

 .

Compare and contrast!

6.3. Solving Ax = b via LU Factorization 217

Algorithm: [b] := UTRSV UNB VAR1(U,b)

Partition U →

 UT L UT R

UBL UBR

 , b→

 bT

bB


where UBR is 0×0, bB has 0 rows

while m(UBR)< m(U) do

Repartition UT L UT R

0 UBR

→


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

→


b0

β1

b2


β1 := β1−uT

12b2

β1 := β1/υ11

Continue with UT L UT R

0 UBR

←


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.9: Algorithm for solving Ux = b where U is an uppertriangular matrix. Vector b is overwritten with the result vector
x.

Week 6. Gaussian Elimination 218

Homework 6.3.3.2 Implement the algorithm in Figure 6.16.

• [b out] = Utrsv unb var1(U, b)

You can check that it computes the right answer with the following script:

• test Utrsv unb var1.m

This script exercises the function by starting with matrix

U = [
2 0 1 2
0 -1 2 1
0 0 1 -1
0 0 0 -2

]

Next, it solves Ux = b with the right-hand size vector

b = [
2
4
3
2

]

by calling

x = Utrsv_unb_var1(U, b)

Finally, it checks if x indeed solves Ux = b by computing

b - U * x

which should yield a zero vector of size four.

6.3.4 Putting it all together to solve Ax = b

* View at edX
Now, the week started with the observation that we would like to solve linear systems. These could then be written more

concisely as Ax = b, where n×n matrix A and vector b of size n are given, and we would like to solve for x, which is the vectors
of unknowns. We now have algorithms for

• Factoring A into the product LU where L is unit lower triangular;

• Solving Lz = b; and

• Solving Ux = b.

We now discuss how these algorithms (and functions that implement them) can be used to solve Ax = b.
Start with

Ax = b.

If we have L and U so that A = LU , then we can replace A with LU :

(LU)︸ ︷︷ ︸
A

x = b.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week6/test_Utrsv_unb_var1.m
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/4

6.3. Solving Ax = b via LU Factorization 219

Now, we can treat matrices and vectors alike as matrices, and invoke the fact that matrix-matrix multiplication is associative to
place some convenient parentheses:

L(Ux) = b.

We can then recognize that Ux is a vector, which we can call z:

L (Ux)︸︷︷︸
z

= b

so that

Lz = b and Ux = z.

Thus, the following steps will solve Ax = b:

• Factor A into L and U so that A = LU (LU factorization).

• Solve Lz = b for z (forward substitution).

• Solve Ux = z for x (back substitution).

This works if A has the right properties for the LU factorization to exist, which is what we will discuss next week...

Week 6. Gaussian Elimination 220

Homework 6.3.4.1 Implement the function

• [A out, b out] = Solve(A, b)

that

• Computes the LU factorization of matrix A, A = LU , overwriting the upper triangular part of A with U and
the strictly lower triangular part of A with the strictly lower triangular part of L. The result is then returned
in variable A out.

• Uses the factored matrix to solve Ax = b.

Use the routines you wrote in the previous subsections (6.3.1-6.3.3).
You can check that it computes the right answer with the following script:

• test Solve.m

This script exercises the function by starting with matrix

A = [
2 0 1 2

-2 -1 1 -1
4 -1 5 4

-4 1 -3 -8
]

Next, it solves Ax = b with

b = [
2
2

11
-3

]

by calling

x = Solve(A, b)

Finally, it checks if x indeed solves Ax = b by computing

b - A * x

which should yield a zero vector of size four.

6.3.5 Cost

* View at edX

LU factorization

Let’s look at how many floating point computations are needed to compute the LU factorization of an n× n matrix A. Let’s
focus on the algorithm:

Assume that during the kth iteration AT L is k× k. Then

• A00 is a k× k matrix.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week6/test_Solve.m
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/79833945cbff476aa93d99bc1a5a12b1/90318f3de35d4418ae7b5195edc05b55/5

6.3. Solving Ax = b via LU Factorization 221

Algorithm: A := LU UNB VAR5(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

a21 := a21/α11 (= l21)

A22 := A22−a21aT
12 (= A22− l21aT

12)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 6.10: LU factorization algorithm.

• a21 is a column vector of size n− k−1.

• aT
12 is a row vector of size n− k−1.

• A22 is a (n− k−1)× (n− k−1) matrix.

Now,

• a21/α11 is typically implemented as (1/α11)× a21 so that only one division is performed (divisions are EXPENSIVE)
and (n− k−1) multiplications are performed.

• A22 := A22−a21aT
12 is a rank-1 update. In a rank-1 update, for each element in the matrix one multiply and one add (well,

subtract in this case) is performed, for a total of 2(n− k−1)2 floating point operations.

Now, we need to sum this over all iterations k = 0, . . . ,(n−1):

n−1

∑
k=0

(
(n− k−1)+2(n− k−1)2) floating point operations.

Here we ignore the divisions. Clearly, there will only be n of those (one per iteration of the algorithm).

Week 6. Gaussian Elimination 222

Let us compute how many flops this equals.

∑
n−1
k=0

(
(n− k−1)+2(n− k−1)2

)
= < Change of variable: p = n− k− 1 so that p = 0 when k = n− 1 and

p = n−1 when k = 0 >

∑
0
p=n−1

(
p+2p2

)
= < Sum in reverse order >

∑
n−1
p=0

(
p+2p2

)
= < Split into two sums >

∑
n−1
p=0 p+∑

n−1
p=0(2p2)

= < Results from Week 2! >
(n−1)n

2 +2 (n−1)n(2n−1)
6

= < Algebra >
3(n−1)n

6 +2 (n−1)n(2n−1)
6

= < Algebra >
(n−1)n(4n+1)

6

Now, when n is large n−1 and 4n+1 equal, approximately, n and 4n, respectively, so that the cost of LU factorization equals,
approximately,

2
3

n3 flops.

Forward substitution

Next, let us look at how many flops are needed to solve Lx = b. Again, focus on the algorithm: Assume that during the kth
iteration LT L is k× k. Then

• L00 is a k× k matrix.

• l21 is a column vector of size n− k−1.

• b2 is a column vector of size n− k−1.

Now,

• The axpy operation b2 := b2−β1l21 requires 2(n− k−1) flops since the vectors are of size n− k−1.

We need to sum this over all iterations k = 0, . . . ,(n−1):

n−1

∑
k=0

(n− k−1) flops.

Let us compute how many flops this equals:

∑
n−1
k=0 2(n− k−1)

= < Factor out 2 >

2∑
n−1
k=0(n− k−1)

= < Change of variable: p = n− k− 1 so that p = 0 when k = n− 1 and
p = n−1 when k = 0 >

2∑
0
p=n−1 2p

= < Sum in reverse order >

6.3. Solving Ax = b via LU Factorization 223

Algorithm: [b] := LTRSV UNB VAR1(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

b2 := b2−β1l21

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.11: Algorithm for solving Lx = b, overwriting b with the result vector x. Here L is a lower triangular matrix.

2∑
n−1
p=0 p

= < Results from Week 2! >

2 (n−1)n
2

= < Algebra >

(n−1)n.

Now, when n is large n−1 equals, approximately, n so that the cost for the forward substitution equals, approximately,

n2 flops.

Back substitution

Finally, let us look at how many flops are needed to solve Ux = b. Focus on the algorithm:

Week 6. Gaussian Elimination 224

Algorithm: [b] := UTRSV UNB VAR1(U,b)

Partition U →

 UT L UT R

UBL UBR

 , b→

 bT

bB


where UBR is 0×0, bB has 0 rows

while m(UBR)< m(U) do

Repartition UT L UT R

0 UBR

→


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

→


b0

β1

b2


β1 := β1−uT

12b2

β1 := β1/υ11

Continue with UT L UT R

0 UBR

←


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.12: Algorithm for solving Ux = b where U is an uppertriangular matrix. Vector b is overwritten with the result vector
x.

6.4. Enrichment 225

Homework 6.3.5.1 Assume that during the kth iteration UBR is k×k. (Notice we are purposely saying that UBR is
k× k because this algorithm moves in the opposite direction!)
Then answer the following questions:

• U22 is a ?×? matrix.

• uT
12 is a column/row vector of size ????.

• b2 is a column vector of size ???.

Now,

• The axpy/dot operation β1 := β1−uT
12b2 requires ??? flops since the vectors are of size ????.

We need to sum this over all iterations k = 0, . . . ,(n−1) (You may ignore the divisions):

????? flops.

Compute how many floating point operations this equal. Then, approximate the result.

Total cost

The total cost of first factoring A and then performing forward and back substitution is, approximately,

2
3

n3 +n2 +n2 =
2
3

n3 +2n2 flops.

When n is large n2 is very small relative to n3 and hence the total cost is typically given as

2
3

n3 flops.

Notice that this explains why we prefer to do the LU factorization separate from the forward and back substitutions. If we
solve Ax = b via these three steps, and afterwards a new right-hand side b comes along with which we wish to solve, then
we need not refactor A since we already have L and U (overwritten in A). But it is the factorization of A where most of the
expense is, so solving with this new right-hand side is almost free.

6.4 Enrichment

6.4.1 Blocked LU Factorization

What you saw in Week 5, Units 5.4.1 and 5.4.2, was that by carefully implementing matrix-matrix multiplication, the perfor-
mance of this operation could be improved from a few percent of the peak of a processor to better than 90%. This came at a
price: clearly the implementation was not nearly as “clean” and easy to understand as the routines that you wrote so far in this
course.

Imagine implementing all the operations you have encountered so far in this way. When a new architecture comes along,
you will have to reimplement to optimize for that architecture. While this guarantees job security for those with the skill and
patience to do this, it quickly becomes a distraction from more important work.

So, how to get around this problem? Widely used linear algebra libraries like LAPACK (written in Fortran)

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Hammarling, A.
Greenbaum, A. McKenney, and D. Sorensen.
LAPACK Users’ guide (third ed.).
SIAM, 1999.

and the libflame library (developed as part of our FLAME project and written in C)

Week 6. Gaussian Elimination 226

F. G. Van Zee, E. Chan, R. A. van de Geijn, E. S. Quintana-Orti, G. Quintana-Orti.
The libflame Library for Dense Matrix Computations.
IEEE Computing in Science and Engineering, Vol. 11, No 6, 2009.

F. G. Van Zee.
libflame: The Complete Reference.
www.lulu.com , 2009

implement many linear algebra operations so that most computation is performed by a call to a matrix-matrix multiplication
routine. The libflame library is coded with an API that is very similar to the FLAME@lab API that you have been using for
your routines.

More generally, in the scientific computing community there is a set of operations with a standardized interface known as
the Basic Linear Algebra Subprograms (BLAS) in terms of which applications are written.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh.
Basic Linear Algebra Subprograms for Fortran Usage.
ACM Transactions on Mathematical Software, 1979.

J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson.
An Extended Set of FORTRAN Basic Linear Algebra Subprograms.
ACM Transactions on Mathematical Software, 1988.

J. J. Dongarra, J. Du Croz, S. Hammarling, I. Duff.
A Set of Level 3 Basic Linear Algebra Subprograms.
ACM Transactions on Mathematical Software, 1990.

F. G. Van Zee, R. A. van de Geijn.
BLIS: A Framework for Rapid Instantiation of BLAS Functionality.
ACM Transactions on Mathematical Software, to appear.

It is then expected that someone optimizes these routines. When they are highly optimized, any applications and libraries
written in terms of these routines also achieve high performance.

In this enrichment, we show how to cast LU factorization so that most computation is performed by a matrix-matrix
multiplication. Algorithms that do this are called blocked algorithms.

Blocked LU factorization

It is difficult to describe how to attain a blocked LU factorization algorithm by starting with Gaussian elimination as we did in
Section 6.2, but it is easy to do so by starting with A = LU and following the techniques exposed in Unit 6.3.1.

We start again by assuming that matrix A ∈ Rn×n can be factored into the product of two matrices L,U ∈ Rn×n, A = LU ,
where L is unit lower triangular and U is upper triangular. Matrix A ∈ Rn×n is given and that L and U are to be computed such
that A = LU , where L ∈ Rn×n is unit lower triangular and U ∈ Rn×n is upper triangular.

We derive a blocked algorithm for computing this operation by partitioning

A→

 A11 A12

A21 A22

 , L→

 L11 0

L21 L22

 , and U →

 U11 U12

0 U22

 ,

where A11,L11,U11 ∈ Rb×b. The integer b is the block size for the algorithm. In Unit 6.3.1, b = 1 so that A11 = α11, L11 = 1,
and so forth. Here, we typically choose b > 1 so that L11 is a unit lower triangular matrix and U11 is an upper triangular matrix.
How to choose b is closely related to how to optimize matrix-matrix multiplication (Units 5.4.1 and 5.4.2).

Now, A = LU implies (using what we learned about multiplying matrices that have been partitioned into submatrices)

A︷ ︸︸ ︷ A11 A12

A21 A22

 =

L︷ ︸︸ ︷ L11 0

L21 L22


U︷ ︸︸ ︷ U11 U12

0 U22



6.4. Enrichment 227

=

LU︷ ︸︸ ︷ L11×U11 +0×0 L11×U12 +0×U22

L21×U11 +L22×0 L21×U12 +L22×U22

 .

=

LU︷ ︸︸ ︷ L11U11 L11U12

L21U11 L21U12 +L22U22

 .

For two matrices to be equal, their elements must be equal and therefore, if they are partitioned conformally, their submatrices
must be equal:

A11 = L11U11 A12 = L11U12

A21 = L21U11 A22 = L21U12 +L22U22

or, rearranging,

A11 = L11U11 A12 = L11U12

A21 = L21U11 A22−L21U12 = L22U22

This suggests the following steps for overwriting a matrix A with its LU factorization:

• Partition

A→

 A11 A12

A21 A22

 .

• Compute the LU factorization of A11: A11→ L11U11. Overwrite A11 with this factorization.
Note: one can use an unblocked algorithm for this.

• Now that we know L11, we can solve L11U12 = A12, where L11 and A12 are given. U12 overwrites A12.
This is known as an triangular solve with multiple right-hand sides. More on this later in this unit.

• Now that we know U11 (still from the first step), we can solve L21U11 = A21, where U11 and A21 are given. L21 overwrites
A21.
This is also known as a triangular solve with multiple right-hand sides. More on this also later in this unit.

• Update A22 = A22−A21A12(= A22−L21U12).
This is a matrix-matrix multiplication and is where, if b is small relative to n, most of the computation is performed.

• Overwrite A22 with L22 and U22 by repeating the above steps with A = A22.

This will leave U in the upper triangular part of A and the strictly lower triangular part of L in the strictly lower triangular part
of A. The diagonal elements of L need not be stored, since they are known to equal one.

The above is summarized in Figure 6.13. In that figure, the derivation of the unblocked algorithm from Unit 6.3.1 is given
on the left and the above derivation of the blocked algorithm is given on the right, for easy comparing and contrasting. The
resulting algorithms, in FLAME notation, are given as well. It is important to note that the algorithm now progresses b rows
and b columns at a time, since A11 is a b×b block.

Triangular solve with multiple right-hand sides

In the above algorithm, we needed to perform two subproblems:

• L11U12 = A12 where unit lower triangular matrix L11 and (general) matrix A12 are known and (general) matrix U12 is to
be computed; and

• L21U11 = A21 where upper triangular matrix U11 and (general) matrix A21 are known and (general) matrix L21 is to be
computed.

Week 6. Gaussian Elimination 228

Unblocked algorithm Blocked algorithm

A→

 α11 aT
12

a21 A22

 ,L→

 1 0

l21 L22

 ,U →

 υ11 uT
12

0 U22

 A→

 A11 A12

A21 A22

 ,L→

 L11 0

L21 L22

 ,U →

U11 U12

0 U22


 α11 aT

12

a21 A22

=

 1 0

l21 L22

 υ11 uT
12

0 U22


︸ ︷︷ ︸ υ11 uT

12

l21υ11 l21uT
12 +L22U22



 A11 A12

A21 A22

=

 L11 0

L21 L22

 U11 U12

0 U22


︸ ︷︷ ︸ L11U11 L11U12

L21U11 L21UT
12 +L22U22


α11 = υ11 aT

12 = uT
12

a21 = l21υ11 A22 = l21uT
12 +L22U22

A11 = L11U11 A12 = L11U12

A21 = L21U11 A22 = L21U12 +L22U22

α11 := α11

aT
12 := aT

12

a21 := a21/α11

A22 := A22−a21aT
12

A11→ L11U11 (overwriting A11 with L11 and U11)

Solve L11U12 := A12 (overwiting A12 with U12)

Solve L21U11 := A21 (overwiting A21 with L21)

A22 := A22−A21A12

Algorithm: [A] := LU UNB VAR5(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22



a21 := a21/α11

A22 := A22−a21aT
12

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Algorithm: [A] := LU BLK VAR5(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 A01 A02

A10 A11 A12

A20 A21 A22


Factor A11→ L11U11 (Overwrite A11)

Solve L11U12 = A12 (Overwrite A12)

Solve L21U11 = A21 (Overwrite A21)

A22 := A22−A21A12

Continue with

 AT L AT R

ABL ABR

←


A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 6.13: Side-by-side derivation of the unblocked and blocked algorithms.

6.4. Enrichment 229

These operations are known as special cases of the “triangular solve with multiple right-hand side” operation.
Let’s simplify the discussion to solving LX = B where L is unit lower triangular and X and B are general matrices. Here L

and B are known and X is to be computed. We slice and dice B and X into columns to observe that

L
(

x0 x1 · · ·
)
=
(

b0 b1 · · ·
)

and hence (
Lx0 Lx1 · · ·

)
=
(

b0 b1 · · ·
)
.

We therefore conclude that Lx j = b j for all pairs of columns x j and b j. But that means that to compute x j from L and b j we need
to solve with a unit lower triangular matrix L. Thus the name “triangular solve with multiple right-hand sides”. The multiple
right-hand sides are the columns b j.

Now let us consider solving XU = B, where U is upper triangular. If we transpose both sides, we get that (XU)T = BT or
UT XT = BT . If we partition X and B by columns so that

X =


x̃T

0

x̃T
1
...

 and B =


b̃T

0

b̃T
1
...

 ,

then
UT
(

x̃0 x̃1 · · ·
)
=
(

UT x̃0 UT x̃1 · · ·
)
=
(

b̃0 b̃1 · · ·
)
.

We notice that this, again, is a matter of solving multiple right-hand sides (now rows of B that have been transposed) with a
lower triangular matrix (UT). In practice, none of the matrices are transposed.

Cost analysis

Let us analyze where computation is spent in just the first step of a blocked LU factorization. We will assume that A is n× n
and that a block size of b is used:

• Partition

A→

 A11 A12

A21 A22

 .

This carries no substantial cost, since it just partitions the matrix.

• Compute the LU factorization of A11: A11→ L11U11. Overwrite A11 with this factorization.
One can use an unblocked algorithm for this and we saw that the cost of that algorithm, for a b×b matrix, is approximately
2
3 b3.

• Now that we know L11, we can solve L11U12 = A12, where L11 and A12 are given. U12 overwrites A12.
This is a triangular solve with multiple right-hand sides with a matrix A12 that is b× (n−b). Now, each triangular solve
with each column of A12 costs, approximately, b2 flops for a total of b2(n−b) flops.

• Now that we know U11, we can solve L21U11 = A21, where U11 and A21 are given. L21 overwrites A21.
This is a triangular solve with multiple right-hand sides with a matrix A21 that is (n−b)×b. Now, each triangular solve
with each row of A21 costs, approximately, b2 flops for a total of b2(n−b) flops.

• Update A22 = A22−A21A12(= A22−L21U12).
This is a matrix-matrix multiplication that multiplies (n−b)×b matrix A21 times b× (n−b) matrix A12 to update A22.
This requires b(n−b)2 flops.

• Overwrite A22 with L22 and U22 by repeating with A = A22, in future iterations. We don’t count that here, since we said
we were only going to analyze the first iteration of the blocked LU factorization.

Week 6. Gaussian Elimination 230

Now, if n is much larger than b, 2
3 b3 is small compared to b2(n− b) which is itself small relative to 2b(n− b)2. Thus, if n is

much larger than b, most computational time is spent in the matrix-matrix multiplication A22 := A22−A21A12. Since we saw
in the enrichment of Week 5 that such a matrix-matrix multiplication can achieve extremely high performance, the blocked LU
factorization can achieve extremely high performance (if n is large).

It is important to note that the blocked LU factorization algorithm executes exactly the same number of floating point
operations as does the unblocked algorithm. It just does so in a different order so that matrix-matrix multiplication can be
utilized.

More

A large number of algorithms, both unblocked and blocked, that are expressed with our FLAME notation can be found in the
following technical report:

P. Bientinesi and R. van de Geijn.
Representing Dense Linear Algebra Algorithms: A Farewell to Indices.
FLAME Working Note #17. The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-2006-10, 2006.

It is available from the FLAME Publications webpage.

6.4.2 How Ordinary Elimination Became Gaussian Elimination

Read

Joseph F. Grcar.
How Ordinary Elimination Became Gaussian Elimination.

Cite as

Joseph F. Grcar.
How ordinary elimination became Gaussian elimination.
Historia Math, 2011.

6.5 Wrap Up

6.5.1 Homework

There is no additional graded homework. However, we have an additional version of the ”Gaussian Elimination” webpage:

• Practice with four equations in four unknowns.

Now, we always joke that in a standard course on matrix computations the class is asked to solve systems with three equations
with pencil and paper. What defines an honor version of the course is that the class is asked to solve systems with four equations
with pencil and paper...

Of course, there is little insight gained from the considerable extra work. However, here we have webpages that automate
most of the rote work, and hence it IS worthwhile to at least observe how the methodology extends to larger systems. DO NOT
DO THE WORK BY HAND. Let the webpage do the work and focus on the insights that you can gain from this.

6.5.2 Summary

Linear systems of equations

A linear system of equations with m equations in n unknowns is given by

α0,0χ0 + α0,1χ1 + · · · + α0,n−1χn−1 = β0

α1,0χ0 + α1,1χ1 + · · · + α1,n−1χn−1 = β1
...

...
...

...
...

...
...

...

αm−1,0χ0 + αm−1,1χ1 + · · · + αm−1,n−1χn−1 = βm−1

http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://arxiv.org/abs/0907.2397
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/GaussianEliminationPractice/4x4.html

6.5. Wrap Up 231

Variables χ0,χ1, . . . ,χn−1 are the unknowns.
This Week, we only considered the case where m = n:

α0,0χ0 + α0,1χ1 + · · · + α0,n−1χn−1 = β0

α1,0χ0 + α1,1χ1 + · · · + α1,n−1χn−1 = β1
...

...
...

...
...

...
...

...

αn−1,0χ0 + αn−1,1χ1 + · · · + αn−1,n−1χn−1 = βn−1

Here the αi, js are the coefficients in the linear system. The βis are the right-hand side values.

Basic tools

Solving the above linear system relies on the fact that its solution does not change if

1. Equations are reordered (not used until next week);

2. An equation in the system is modified by subtracting a multiple of another equation in the system from it; and/or

3. Both sides of an equation in the system are scaled by a nonzero.

Gaussian elimination is a method for solving systems of linear equations that employs these three basic rules in an effort to
reduce the system to an upper triangular system, which is easier to solve.

Appended matrices

The above system of n linear equations in n unknowns is more concisely represented as an appended matrix:
α0,0 α0,1 · · · α0,n−1 β0

α1,0 α1,1 · · · α1,n−1 β1
...

...
...

...

αn−1,0 αn−1,1 · · · αn−1,n−1 βn−1


This representation allows one to just work with the coefficients and right-hand side values of the system.

Matrix-vector notation

The linear system can also be represented as Ax = b where

A =


α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αn−1,0 αn−1,1 · · · αn−1,n−1

 , x =


χ0

χ1
...

χn−1

 , and


β0

β1
...

βn−1

 .

Here, A is the matrix of coefficients from the linear system, x is the solution vector, and b is the right-hand side vector.

Gauss transforms

A Gauss transform is a matrix of the form

L j =



I j 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −λ j+1, j 1 0 · · · 0

0 −λ j+2, j 0 1 · · · 0
...

...
...

...
. . .

...

0 −λn−1, j 0 0 · · · 1


.

Week 6. Gaussian Elimination 232

When applied to a matrix (or a vector, which we think of as a special case of a matrix), it subtracts λi, j times the jth row from
the ith row, for i = j+1, . . . ,n−1. Gauss transforms can be used to express the operations that are inherently performed as part
of Gaussian elimination with an appended system of equations.

The action of a Gauss transform on a matrix, A := L jA can be described as follows:

I j 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −λ j+1, j 1 0 · · · 0

0 −λ j+2, j 0 1 · · · 0
...

...
...

...
. . .

...

0 −λn−1, j 0 0 · · · 1





A0

ãT
j

ãT
j+1
...

ãT
n−1


=



A0

ãT
j

ãT
j+1−λ j+1, jãT

j
...

ãT
n−1−λn−1, jãT

j


.

An important observation that was NOT made clear enough this week is that the rows of A are updates with an AXPY!
A multiple of the jth row is subtracted from the ith row.

A more concise way to describe a Gauss transforms is

L̃ =


I 0 0

0 1 0

0 −l21 I

 .

Now, applying to a matrix A, L̃A yields
I 0 0

0 1 0

0 −l21 I




A0

aT
1

A2

=


A0

aT
1

A2− l21aT
1

 .

In other words, A2 is updated with a rank-1 update. An important observation that was NOT made clear enough this week
is that a rank-1 update can be used to simultaneously subtract multiples of a row of A from other rows of A.

Forward substitution

Forward substitution applies the same transformations that were applied to the matrix to a right-hand side vector.

Back(ward) substitution

Backward substitution solves the upper triangular system

α0,0χ0 + α0,1χ1 + · · · + α0,n−1χn−1 = β0

α1,1χ1 + · · · + α1,n−1χn−1 = β1

. . .
...

...
...

αn−1,n−1χn−1 = βn−1

This algorithm overwrites b with the solution x.

LU factorization

The LU factorization factorization of a square matrix A is given by A = LU , where L is a unit lower triangular matrix and U is
an upper triangular matrix. An algorithm for computing the LU factorization is given by

This algorithm overwrites A with the matrices L and U . Since L is unit lower triangular, its diagonal needs not be stored.
The operations that compute an LU factorization are the same as the operations that are performed when reducing a system

of linear equations to an upper triangular system of equations.

6.5. Wrap Up 233

Algorithm: A := LU UNB VAR5(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

a21 := a21/α11 (= l21)

A22 := A22−a21aT
12 (= A22− l21aT

12)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 6.14: LU factorization algorithm.

Solving Lz = b

Forward substitution is equivalent to solving a unit lower triangular system Lz = b. An algorithm for this is given by This
algorithm overwrites b with the solution z.

Solving Ux = b

Back(ward) substitution is equivalent to solving an upper triangular system Ux = b. An algorithm for this is given by This
algorithm overwrites b with the solution x.

Solving Ax = b

If LU factorization completes with an upper triangular matrix U that does not have zeroes on its diagonal, then the following
three steps can be used to solve Ax = b:

• Factor A = LU .

• Solve Lz = b.

• Solve Ux = z.

Cost

• Factoring A = LU requires, approximately, 2
3 n3 floating point operations.

• Solve Lz = b requires, approximately, n2 floating point operations.

Week 6. Gaussian Elimination 234

Algorithm: [b] := LTRSV UNB VAR1(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

b2 := b2−β1l21

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.15: Algorithm for solving Lx = b, overwriting b with the result vector x. Here L is a lower triangular matrix.

• Solve Ux = z requires, approximately, n2 floating point operations.

6.5. Wrap Up 235

Algorithm: [b] := UTRSV UNB VAR1(U,b)

Partition U →

 UT L UT R

UBL UBR

 , b→

 bT

bB


where UBR is 0×0, bB has 0 rows

while m(UBR)< m(U) do

Repartition UT L UT R

0 UBR

→


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

→


b0

β1

b2


β1 := β1−uT

12b2

β1 := β1/υ11

Continue with UT L UT R

0 UBR

←


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 6.16: Algorithm for solving Ux = b where U is an uppertriangular matrix. Vector b is overwritten with the result vector
x.

Week 6. Gaussian Elimination 236

Week 7
More Gaussian Elimination and Matrix
Inversion

7.1 Opening Remarks

7.1.1 Introduction

* View at edX

237

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/82d43d475b6b440495ced8941e4e6cbf/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/82d43d475b6b440495ced8941e4e6cbf/1

Week 7. More Gaussian Elimination and Matrix Inversion 238

7.1.2 Outline

7.1. Opening Remarks . 237
7.1.1. Introduction . 237
7.1.2. Outline . 238
7.1.3. What You Will Learn . 239

7.2. When Gaussian Elimination Breaks Down . 240
7.2.1. When Gaussian Elimination Works . 240
7.2.2. The Problem . 244
7.2.3. Permutations . 245
7.2.4. Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting) 249
7.2.5. When Gaussian Elimination Fails Altogether . 254

7.3. The Inverse Matrix . 255
7.3.1. Inverse Functions in 1D . 255
7.3.2. Back to Linear Transformations . 255
7.3.3. Simple Examples . 257
7.3.4. More Advanced (but Still Simple) Examples . 261
7.3.5. Properties . 264

7.4. Enrichment . 265
7.4.1. Library Routines for LU with Partial Pivoting . 265

7.5. Wrap Up . 266
7.5.1. Homework . 266
7.5.2. Summary . 266

.13

7.1. Opening Remarks 239

7.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine, recognize, and apply permutation matrices.

• Apply permutation matrices to vectors and matrices.

• Identify and interpret permutation matrices and fluently compute the multiplication of a matrix on the left and right by a
permutation matrix.

• Reason, make conjectures, and develop arguments about properties of permutation matrices.

• Recognize when Gaussian elimination breaks down and apply row exchanges to solve the problem when appropriate.

• Recognize when LU factorization fails and apply row pivoting to solve the problem when appropriate.

• Recognize that when executing Gaussian elimination (LU factorization) with Ax = b where A is a square matrix, one of
three things can happen:

1. The process completes with no zeroes on the diagonal of the resulting matrix U . Then A = LU and Ax = b has a
unique solution, which can be found by solving Lz = b followed by Ux = z.

2. The process requires row exchanges, completing with no zeroes on the diagonal of the resulting matrix U . Then
PA = LU and Ax = b has a unique solution, which can be found by solving Lz = Pb followed by Ux = z.

3. The process requires row exchanges, but at some point no row can be found that puts a nonzero on the diagonal, at
which point the process fails (unless the zero appears as the last element on the diagonal, in which case it completes,
but leaves a zero on the diagonal of the upper triangular matrix). In Week 8 we will see that this means Ax = b does
not have a unique solution.

• Reason, make conjectures, and develop arguments about properties of inverses.

• Find the inverse of a simple matrix by understanding how the corresponding linear transformation is related to the matrix-
vector multiplication with the matrix.

• Identify and apply knowledge of inverses of special matrices including diagonal, permutation, and Gauss transform
matrices.

• Determine whether a given matrix is an inverse of another given matrix.

• Recognize that a 2× 2 matrix A =

 α0,0 α0,1

α1,0 α1,1

 has an inverse if and only if its determinant is not zero: det(A) =

α0,0α1,1−α0,1α1,0 6= 0.

• Compute the inverse of a 2×2 matrix A if that inverse exists.

Week 7. More Gaussian Elimination and Matrix Inversion 240

•

Algorithm: [b] := LTRSV UNB VAR1(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

b2 := b2−β1l21

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.1: Algorithm for solving Lz = b when L is a unit lower triangular matrix. The right-hand side vector b is overwritten
with the solution vector z.

7.2 When Gaussian Elimination Breaks Down

7.2.1 When Gaussian Elimination Works

* View at edX
We know that if Gaussian elimination completes (the LU factorization of a given matrix can be computed) and the upper

triangular factor U has no zeroes on the diagonal, then Ax = b can be solved for all right-hand side vectors b.

Why?

• If Gaussian elimination completes (the LU factorization can be computed), then A = LU for some unit lower triangular
matrix L and upper triangular matrix U . We know this because of the equivalence of Gaussian elimination and LU
factorization.

If you look at the algorithm for forward substitition (solving Lz = b) in Figure 7.1 you notice that the only computations
that are encountered are multiplies and adds. Thus, the algorithm will complete.

Similarly, the backward substitution algorithm (for solving Ux = z) in Figure 7.2 can only break down if the division
causes an error. And that can only happen if U has a zero on its diagonal.

So, under the mentioned circumstances, we can compute a solution to Ax = b via Gaussian elimination, forward substitution,
and back substitution. Last week we saw how to compute this solution.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/1

7.2. When Gaussian Elimination Breaks Down 241

•

Algorithm: [b] := UTRSV UNB VAR1(U,b)

Partition U →

 UT L UT R

UBL UBR

 , b→

 bT

bB


where UBR is 0×0, bB has 0 rows

while m(UBR)< m(U) do

Repartition UT L UT R

0 UBR

→


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

→


b0

β1

b2


β1 := β1−uT

12b2

β1 := β1/υ11

Continue with UT L UT R

0 UBR

←


U00 u01 U02

0 υ11 uT
12

0 0 U22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.2: Algorithm for solving Ux = b when U is an upper triangular matrix. The right-hand side vector b is overwritten
with the solution vector x.

Is this the only solution?

We first give an intuitive explanation, and then we move on and walk you through a rigorous proof.
The reason is as follows: Assume that Ax = b has two solutions: u and v. Then

• Au = b and Av = b.

• This then means that vector w = u− v satisfies

Aw = A(u− v) = Au−Av = b−b = 0.

• Since Gaussian elimination completed we know that

(LU)w = 0,

or, equivalently,
Lz = 0 and Uw = z.

• It is not hard to see that if Lz = 0 then z = 0:

1 0 0 · · · 0

λ1,0 1 0 · · · 0

λ2,0 λ2,1 1 · · · 0
...

...
. . .

...

λn−1,0 λn−1,1 λn−1,2 · · · 1





ζ0

ζ1

ζ2
...

ζn−1


=



0

0

0
...

0


means ζ0 = 0. But then λ1,0ζ0 +ζ1 = 0 means ζ1 = 0. In turn λ2,0ζ0 +λ2,1ζ1 +ζ2 = 0 means ζ2 = 0. And so forth.

Week 7. More Gaussian Elimination and Matrix Inversion 242

• Thus, z = 0 and hence Uw = 0.

• It is not hard to see that if Uw = 0 then w = 0:

υ0,0 · · · υ0,n−3 υ0,n−2 υ0,n−1
...

. . .
...

...

0 · · · υn−3,n−3 υn−3,n−2 υn−3,n−1

0 · · · 0 υn−2,n−2 υn−2,n−1

0 · · · 0 0 υn−11,n−1





ω0
...

ωn−3

ωn−2

ωn−1


=



0
...

0

0

0


means υn−1,n−1ωn−1 = 0 and hence ωn−1 = 0 (since υn−1,n−1 6= 0). But then υn−2,n−2ωn−2 +υn−2,n−1ωn−1 = 0 means
ωn−2 = 0. And so forth.

We conclude that

If Gaussian elimination completes with an upper triangular system that has no zero diagonal coefficients (LU factorization
computes with L and U where U has no diagonal zero elements), then for all right-hand side vectors, b, the linear system
Ax = b has a unique solution x.

A rigorous proof

Let A ∈ Rn×n. If Gaussian elimination completes and the resulting upper triangular system has no zero coefficients on the
diagonal (U has no zeroes on its diagonal), then there is a unique solution x to Ax = b for all b ∈ R.

Always/Sometimes/Never

We don’t yet state this as a homework problem, because to get to that point we are going to make a number of observations
that lead you to the answer.

Homework 7.2.1.1 Let L∈R1×1 be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.2 Give the solution of

 1 0

2 1

 χ0

χ1

=

 1

2

.

Homework 7.2.1.3 Give the solution of


1 0 0

2 1 0

−1 2 1




χ0

χ1

χ2

=


1

2

3

.

(Hint: look carefully at the last problem, and you will be able to save yourself some work.)

Homework 7.2.1.4 Let L∈R2×2 be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.5 Let L∈R3×3 be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.6 Let L∈Rn×n be a unit lower triangular matrix. Lx = b, where x is the unknown and b is given,
has a unique solution.

Always/Sometimes/Never

7.2. When Gaussian Elimination Breaks Down 243

Algorithm: [b] := LTRSV UNB VAR2(L,b)

Partition L→

 LT L 0

LBL LBR

 , b→

 bT

bB


whereLT L is 0×0, bT has 0 rows

while m(LT L)< m(L) do

Repartition LT L 0

LBL LBR

→


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

→


b0

β1

b2


whereλ11 is 1×1 , β1 has 1 row

Continue with LT L 0

LBL LBR

←


L00 0 0

lT
10 λ11 0

L20 l21 L22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.3: Blank algorithm for solving Lx = b, overwriting b with the result vector x for use in Homework 7.2.1.7. Here L is a
lower triangular matrix.

Homework 7.2.1.7 The proof for the last exercise suggests an alternative algorithm (Variant 2) for solving Lx = b
when L is unit lower triangular. Use Figure 7.3 to state this alternative algorithm and then implement it, yielding

• [b out] = Ltrsv unb var2(L, b)

You can check that they compute the right answers with the script in

• test Ltrsv unb var2.m
33

Homework 7.2.1.8 Let L ∈ Rn×n be a unit lower triangular matrix. Lx = 0, where 0 is the zero vector of size n,
has the unique solution x = 0.

Always/Sometimes/Never

Homework 7.2.1.9 Let U ∈ R1×1 be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.10 Give the solution of

 −1 1

0 2

 χ0

χ1

=

 1

2

.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week7/test_Ltrsv_unb_var2.m

Week 7. More Gaussian Elimination and Matrix Inversion 244

Homework 7.2.1.11 Give the solution of


−2 1 −2

0 −1 1

0 0 2




χ0

χ1

χ2

=


0

1

2

.

Homework 7.2.1.12 Let U ∈ R2×2 be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.13 Let U ∈ R3×3 be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

Homework 7.2.1.14 Let U ∈ Rn×n be an upper triangular matrix with no zeroes on its diagonal. Ux = b, where x
is the unknown and b is given, has a unique solution.

Always/Sometimes/Never

The proof for the last exercise closely mirrors how we derived Variant 1 for solving Ux = b last week.

Homework 7.2.1.15 Let U ∈Rn×n be an upper triangular matrix with no zeroes on its diagonal. Ux = 0, where 0
is the zero vector of size n, has the unique solution x = 0.

Always/Sometimes/Never

Homework 7.2.1.16 Let A ∈ Rn×n. If Gaussian elimination completes and the resulting upper triangular system
has no zero coefficients on the diagonal (U has no zeroes on its diagonal), then there is a unique solution x to
Ax = b for all b ∈ R.

Always/Sometimes/Never

7.2.2 The Problem

* View at edX
The question becomes “Does Gaussian elimination always solve a linear system of n equations and n unknowns?” Or,

equivalently, can an LU factorization always be computed for an n×n matrix? In this unit we show that there are linear systems
where Ax = b has a unique solution but Gaussian elimination (LU factorization) breaks down. In this and the next sections
we will discuss what modifications must be made to Gaussian elimination and LU factorization so that if Ax = b has a unique
solution, then these modified algorithms complete and can be used to solve Ax = b.

A simple example where Gaussian elimination and LU factorization break down involves the matrix A =

 0 1

1 0

. In

the first step, the multiplier equals 1/0, which will cause a “division by zero” error.
Now, Ax = b is given by the set of linear equations 0 1

1 0

 χ0

χ1

=

 β1

β0


so that Ax = b is equivalent to  χ1

χ0

=

 β0

β1



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2

7.2. When Gaussian Elimination Breaks Down 245

and the solution to Ax = b is given by the vector x =

 β1

β0

.

Homework 7.2.2.1 Solve the following linear system, via the steps in Gaussian elimination that you have learned
so far.

2χ0+ 4χ1+(−2)χ2 =−10

4χ0+ 8χ1+ 6χ2 = 20

6χ0+(−4)χ1+ 2χ2 = 18

Mark all that are correct:

(a) The process breaks down.

(b) There is no solution.

(c)


χ0

χ1

χ2

=


1

−1

4



* View at edX

Now you try an example:

Homework 7.2.2.2 Perform Gaussian elimination with

0χ0+ 4χ1+(−2)χ2 =−10

4χ0+ 8χ1+ 6χ2 = 20

6χ0+(−4)χ1+ 2χ2 = 18

We now understand how to modify Gaussian elimination so that it completes when a zero is encountered on the diagonal
and a nonzero appears somewhere below it.

The above examples suggest that the LU factorization algorithm needs to be modified to allow for row exchanges. But to
do so, we need to develop some machinery.

7.2.3 Permutations

* View at edX

Homework 7.2.3.1 Compute 
0 1 0

0 0 1

1 0 0


︸ ︷︷ ︸

P


−2 1 2

3 2 1

−1 0 −3


︸ ︷︷ ︸

A

=

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3

Week 7. More Gaussian Elimination and Matrix Inversion 246

* View at edX

Examining the matrix P in the above exercise, we see that each row of P equals a unit basis vector. This leads us to the
following definitions that we will use to help express permutations:

Definition 7.1 A vector with integer components

p =


k0

k1
...

kn−1



is said to be a permutation vector if

• k j ∈ {0, . . . ,n−1} , for 0≤ j < n; and

• ki = k j implies i = j.

In other words, p is a rearrangement of the numbers 0, . . . ,n−1 (without repetition).

We will often write (k0,k1, . . . ,kn−1)
T to indicate the column vector, for space considerations.

Definition 7.2 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Then

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1



is said to be a permutation matrix.

In other words, P is the identity matrix with its rows rearranged as indicated by the permutation vector (k0,k1, . . . ,kn−1). We
will frequently indicate this permutation matrix as P(p) to indicate that the permutation matrix corresponds to the permutation
vector p.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3

7.2. When Gaussian Elimination Breaks Down 247

Homework 7.2.3.2 For each of the following, give the permutation matrix P(p):

• If p =


0

1

2

3

 then P(p) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

• If p =


3

2

1

0

 then P(p) =

• If p =


1

0

2

3

 then P(p) =

• If p =


1

2

3

0

 then P(p) =

Homework 7.2.3.3 Let p = (2,0,1)T . Compute

• P(p)


−2

3

−1

=

• P(p)


−2 1 2

3 2 1

−1 0 −3

=

Homework 7.2.3.4 Let p = (2,0,1)T and P = P(p). Compute
−2 1 2

3 2 1

−1 0 −3

PT =

Week 7. More Gaussian Elimination and Matrix Inversion 248

Homework 7.2.3.5 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Consider

x =


χ0

χ1
...

χn−1

 .

Applying permuation matrix P = P(p) to x yields

Px =


χk0

χk1

...

χkn−1

 .

Always/Sometimes/Never

Homework 7.2.3.6 Let p = (k0, . . . ,kn−1)
T be a permutation. Consider

A =


ãT

0

ãT
1
...

ãT
n−1

 .

Applying P = P(p) to A yields

PA =


ãT

k0

ãT
k1
...

ãT
kn−1

 .

Always/Sometimes/Never

In other words, Px and PA rearrange the elements of x and the rows of A in the order indicated by permutation vector p.

* View at edX

Homework 7.2.3.7 Let p = (k0, . . . ,kn−1)
T be a permutation, P = P(p), and A =

(
a0 a1 · · · an−1

)
.

APT =
(

ak0 ak1 · · · akn−1

)
.

Aways/Sometimes/Never

Homework 7.2.3.8 If P is a permutation matrix, then so is PT .
True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/3

7.2. When Gaussian Elimination Breaks Down 249

Definition 7.3 Let us call the special permutation matrix of the form

P̃(π) =



eT
π

eT
1
...

eT
π−1

eT
0

eT
π+1
...

eT
n−1



=



0 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1


a pivot matrix.

P̃(π) = (P̃(π))T .

Homework 7.2.3.9 Compute

P̃(1)


−2

3

−1

= and P̃(1)


−2 1 2

3 2 1

−1 0 −3

= .

Homework 7.2.3.10 Compute 
−2 1 2

3 2 1

−1 0 −3

 P̃(1) = .

Homework 7.2.3.11 When P̃(π) (of appropriate size) multiplies a matrix from the left, it swaps row 0 and row π,
leaving all other rows unchanged.

Always/Sometimes/Never

Homework 7.2.3.12 When P̃(π) (of appropriate size) multiplies a matrix from the right, it swaps column 0 and
column π, leaving all other columns unchanged.

Always/Sometimes/Never

7.2.4 Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting)

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

Week 7. More Gaussian Elimination and Matrix Inversion 250

Gaussian elimination with row pivoting

* View at edX
We start our discussion with the example in Figure 7.4.

Homework 7.2.4.1 Compute

•


1 0 0

0 0 1

0 1 0




1 0 0

0 1 0

0 0 1




2 4 −2

4 8 6

6 −4 2

=

•


1 0 0

3 1 0

2 0 1




2 4 −2

0 −16 8

0 0 10

=

• What do you notice?

* View at edX
What the last homework is trying to demonstrate is that, for given matrix A,

• Let L =


1 0 0

3 1 0

2 0 1

 be the matrix in which the multipliers have been collected (the unit lower triangular matrix that

has overwritten the strictly lower triangular part of the matrix).

• Let U =


2 4 −2

0 −16 8

0 0 10

 be the upper triangular matrix that overwrites the matrix.

• Let P be the net result of multiplying all the permutation matrices together, from last to first as one goes from lef t to
right:

P =


1 0 0

0 0 1

0 1 0




1 0 0

0 1 0

0 0 1

=


1 0 0

0 0 1

0 1 0


Then

PA = LU.

In other words, Gaussian elimination with row interchanges computes the LU factorization of a permuted matrix. Of course,
one does not generally know ahead of time (a priori) what that permutation must be, because one doesn’t know when a zero
will appear on the diagonal. The key is to notice that when we pivot, we also interchange the multipliers that have overwritten
the zeroes that were introduced.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

7.2. When Gaussian Elimination Breaks Down 251

Example 7.4
(You may want to print the blank worksheet at the end of this week so you can follow along.)
In this example, we incorporate the insights from the last two units (Gaussian elimination with row interchanges
and permutation matrices) into the explanation of Gaussian elimination that uses Gauss transforms:

i Li P̃ A p

0

1 0 0

0 1 0

0 0 1

2 4 −2

4 8 6

6 −4 2

0

·
·

1 0 0

−2 1 0

−3 0 1

2 4 −2

4 8 6

6 −4 2

0

·
·

1 0 1

1 0

2 4 −2

2 0 10

3 −16 8

0

1

·

1 0 0

0 1 0

0 −0 1

2 4 −2

3 −16 8

2 0 10

0

1

·

2

2 4 −2

3 −16 8

2 0 10

0

1

0

Figure 7.4: Example of a linear system that requires row swapping to be added to Gaussian elimination.

Week 7. More Gaussian Elimination and Matrix Inversion 252

Homework 7.2.4.2
(You may want to print the blank worksheet at the end of this week so you can follow along.)
Perform Gaussian elimination with row swapping (row pivoting):

i Li P̃ A p

0

0 4 −2

4 8 6

6 −4 2

·
·

·
·

1

·

·

2

The example and exercise motivate the modification to the LU factorization algorithm in Figure 7.5. In that algorithm,
PIVOT(x) returns the index of the first nonzero component of x. This means that the algorithm only works if it is always the
case that α11 6= 0 or vector a21 contains a nonzero component.

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

7.2. When Gaussian Elimination Breaks Down 253

Algorithm: [A, p] := LU PIV(A, p)

Partition A→

 AT L AT R

ABL ABR

, p→

 pT

pB


where AT L is 0×0 and pT has 0 com-

ponents
while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

→


p0

π1

p2



π1 = PIVOT

 α11

a21

 aT
10 α11 aT

12

A20 a21 A22

 := P(π1)

 aT
10 α11 aT

12

A20 a21 A22


a21 := a21/α11 (a21 now contains l21) aT

12

A22

=

 aT
12

A22−a21aT
12


Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

←


p0

π1

p2


endwhile

Figure 7.5: LU factorization algorithm that incorporates row (partial) pivoting.

Solving the linear system

* View at edX
Here is the cool part: We have argued that Gaussian elimination with row exchanges (LU factorization with row pivoting)

computes the equivalent of a pivot matrix P and factors L and U (unit lower triangular and upper triangular, respectively) so
that PA = LU . If we want to solve the system Ax = b, then

Ax = b

is equivalent to
PAx = Pb.

Now, PA = LU so that
(LU)︸ ︷︷ ︸
PA

x = Pb.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/b7813ac9c50b49fbb664a59043da2315/4

Week 7. More Gaussian Elimination and Matrix Inversion 254

•

Algorithm: b := APPLY PIV(p,b)

Partition p→

 pT

pB

, b→

 bT

bB


where pT and bT have 0 components

while m(bT)< m(b) do

Repartition pT

pB

→


p0

π1

p2

,

 bT

bB

→


b0

β1

b2


 β1

b2

 := P(π1)

 β1

b2


Continue with pT

pB

←


p0

π1

p2

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 7.6: Algorithm for applying the same exchanges rows that happened during the LU factorization with row pivoting to
the components of the right-hand side.

So, solving Ax = b is equivalent to solving
L (Ux)︸︷︷︸

z

= Pb.

This leaves us with the following steps:

Update b := Pb by applying the pivot matrices that were encountered during Gaussian elimination with row exchanges
to vector b, in the same order. A routine that, given the vector with pivot information p, does this is given in Figure 7.6.

• Solve Lz = b with this updated vector b, overwriting b with z. For this we had the routine Ltrsv unit.

• Solve Ux = b, overwriting b with x. For this we had the routine Utrsv nonunit.

Uniqueness of solution

If Gaussian elimination with row exchanges (LU factorization with pivoting) completes with an upper triangular system
that has no zero diagonal coefficients, then for all right-hand side vectors, b, the linear system Ax = b has a unique solution,
x.

7.2.5 When Gaussian Elimination Fails Altogether

Now, we can see that when executing Gaussian elimination (LU factorization) with Ax = b where A is a square matrix, one of
three things can happen:

• The process completes with no zeroes on the diagonal of the resulting matrix U . Then A = LU and Ax = b has a unique
solution, which can be found by solving Lz = b followed by Ux = z.

7.3. The Inverse Matrix 255

• The process requires row exchanges, completing with no zeroes on the diagonal of the resulting matrix U . Then PA = LU
and Ax = b has a unique solution, which can be found by solving Lz = Pb followed by Ux = z.

• The process requires row exchanges, but at some point no row can be found that puts a nonzero on the diagonal, at which
point the process fails (unless the zero appears as the last element on the diagonal, in which case it completes, but leaves
a zero on the diagonal).

This last case will be studied in great detail in future weeks. For now, we simply state that in this case Ax = b either has no
solutions, or it has an infinite number of solutions.

7.3 The Inverse Matrix

7.3.1 Inverse Functions in 1D

* View at edX
In high school, you should have been exposed to the idea of an inverse of a function of one variable. If

• f : R→ R maps a real to a real; and

• it is a bijection (both one-to-one and onto)

then

• f (x) = y has a unique solution for all y ∈ R.

• The function that maps y to x so that g(y) = x is called the inverse of f .

• It is denoted by f−1 : R→ R.

• Importantly, f (f−1(x)) = x and f−1(f (x)) = x.

In the next units we will examine how this extends to vector functions and linear transformations.

7.3.2 Back to Linear Transformations

* View at edX

Theorem 7.5 Let f : Rn→ Rm be a vector function. Then f is one-to-one and onto (a bijection) implies that m = n.

The proof of this hinges on the dimensionality of Rm and Rn. We won’t give it here.

Corollary 7.6 Let f : Rn→ Rn be a vector function that is a bijection. Then there exists a function f−1 : Rn→ Rn, which we
will call its inverse, such that f (f−1(x)) = f−1(f (x)) = x.

This is an immediate consequence of the fact that for every y there is a unique x such that f (x) = y and f−1(y) can then be
defined to equal that x.

Homework 7.3.2.1 Let L : Rn→ Rn be a linear transformation that is a bijection and let L−1 denote its inverse.

L−1 is a linear transformation.
Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2

Week 7. More Gaussian Elimination and Matrix Inversion 256

* View at edX

What we conclude is that if A ∈ Rn×n is the matrix that represents a linear transformation that is a bijection L, then there
is a matrix, which we will denote by A−1, that represents L−1, the inverse of L. Since for all x ∈ Rn it is the case that
L(L−1(x)) = L−1(L(x)) = x, we know that AA−1 = A−1A = I, the identity matrix.

Theorem 7.7 Let L : Rn→ Rn be a linear transformation, and let A be the matrix that represents L. If there exists a matrix B
such that AB = BA = I, then L has an inverse, L−1, and B equals the matrix that represents that linear transformation.

Actually, it suffices to require there to be a matrix B such that AB = I or BA = I. But we don’t quite have the knowledge at
this point to be able to prove it from that weaker assumption.

Proof: We need to show that L is a bijection. Clearly, for every x ∈ Rn there is a y ∈ Rn such that y = L(x). The question is
whether, given any y ∈ Rn, there is a vector x ∈ Rn such that L(x) = y. But

L(By) = A(By) = (AB)y = Iy = y.

So, x = By has the property that L(x) = y.
But is this vector x unique? If Ax0 = y and Ax1 = y then A(x0− x1) = 0. Since BA = I we find that BA(x0− x1) = x0− x1

and hence x0− x1 = 0, meaning that x0 = x1.

Let L : Rn→ Rn and let A be the matrix that represents L. Then L has an inverse if and only if there exists a matrix B such
that AB = BA = I. We will call matrix B the inverse of A, denote it by A−1 and note that if AA−1 = I then A−1A = I.

Definition 7.8 A matrix A is said to be invertible if the inverse, A−1, exists. An equivalent term for invertible is nonsingular.

We are going to collect a string of conditions that are equivalent to the statement “A is invertible”. Here is the start of that
collection.

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

We will add to this collection as the course proceeds.

Homework 7.3.2.2 Let A, B, and C all be n×n matrices. If AB = I and CA = I then B =C.
True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/2

7.3. The Inverse Matrix 257

7.3.3 Simple Examples

* View at edX

General principles

Given a matrix A for which you want to find the inverse, the first thing you have to check is that A is square. Next, you want to
ask yourself the question: “What is the matrix that undoes Ax?” Once you guess what that matrix is, say matrix B, you prove it
to yourself by checking that BA = I or AB = I.

If that doesn’t lead to an answer or if that matrix is too complicated to guess at an inverse, you should use a more systematic
approach which we will teach you in the next unit. We will then teach you a fool-proof method next week.

Inverse of the Identity matrix

Homework 7.3.3.1 If I is the identity matrix, then I−1 = I. True/False

* View at edX

Inverse of a diagonal matrix

Homework 7.3.3.2 Find 
−1 0 0

0 2 0

0 0 1
3


−1

=

Homework 7.3.3.3 Assume δ j 6= 0 for 0≤ j < n.


δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δn−1



−1

=


1
δ0

0 · · · 0

0 1
δ1
· · · 0

...
...

. . .
...

0 0 · · · 1
δn−1

 .

Always/Sometimes/Never

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3

Week 7. More Gaussian Elimination and Matrix Inversion 258

Inverse of a Gauss transform

Homework 7.3.3.4 Find 
1 0 0

1 1 0

−2 0 1


−1

=

Important: read the answer!

Homework 7.3.3.5 
I 0 0

0 1 0

0 l21 I


−1

=


I 0 0

0 1 0

0 −l21 I

 .

True/False
The observation about how to compute the inverse of a Gauss transform explains the link between Gaussian elimination with
Gauss transforms and LU factorization.

Let’s review the example from Section 6.2.4:

•

Before After
1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2




2 4 −2

−10 10

−16 8

 .

•

Before After
1 0 0

0 1 0

0 −1.6 1




2 4 −2

−10 10

−16 8




2 4 −2

−10 10

−8

 .

Now, we can summarize the above by
1 0 0

0 1 0

0 −1.6 1




1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2

=


2 4 −2

0 −10 10

0 0 −8

 .

Now 
1 0 0

−2 1 0

−3 0 1


−1

1 0 0

0 1 0

0 −1.6 1


−1

1 0 0

0 1 0

0 −1.6 1




1 0 0

−2 1 0

−3 0 1




2 4 −2

4 −2 6

6 −4 2



=


1 0 0

−2 1 0

−3 0 1


−1

1 0 0

0 1 0

0 −1.6 1


−1

2 4 −2

0 −10 10

0 0 −8

 .

7.3. The Inverse Matrix 259

so that 
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

−2 1 0

−3 0 1


−1

1 0 0

0 1 0

0 −1.6 1


−1

2 4 −2

0 −10 10

0 0 −8

 .

But, given our observations about the inversion of Gauss transforms, this translates to
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

2 1 0

3 0 1




1 0 0

0 1 0

0 1.6 1




2 4 −2

0 −10 10

0 0 −8

 .

But, miraculously, 
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

2 1 0

3 0 1




1 0 0

0 1 0

0 1.6 1


︸ ︷︷ ︸

1 0 0

2 1 0

3 1.6 1




2 4 −2

0 −10 10

0 0 −8

 .

But this gives us the LU factorization of the original matrix:
2 4 −2

4 −2 6

6 −4 2

=


1 0 0

2 1 0

3 1.6 1




2 4 −2

0 −10 10

0 0 −8

 .

Now, the LU factorization (overwriting the strictly lower triangular part of the matrix with the multipliers) yielded
2 4 −2

2 −10 10

3 1.6 −8

 .

NOT a coincidence!
The following exercise explains further:

Homework 7.3.3.6 Assume the matrices below are partitioned conformally so that the multiplications and com-
parison are legal. 

L00 0 0

lT
10 1 0

L20 0 I




I 0 0

0 1 0

0 l21 I

=


L00 0 0

lT
10 1 0

L20 l21 I


Always/Sometimes/Never

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3

Week 7. More Gaussian Elimination and Matrix Inversion 260

Inverse of a permutation

Homework 7.3.3.7 Find 
0 1 0

1 0 0

0 0 1


−1

=

Homework 7.3.3.8 Find 
0 0 1

1 0 0

0 1 0


−1

=

Homework 7.3.3.9 Let P be a permutation matrix. Then P−1 = P.
Always/Sometimes/Never

Homework 7.3.3.10 Let P be a permutation matrix. Then P−1 = PT .
Always/Sometimes/Never

* View at edX

Inverting a 2D rotation

Homework 7.3.3.11 Recall from Week 2 how Rθ(x) rotates a vector x through angle θ:

x
θ

Rθ(x)

Rθ is represented by the matrix

R =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 .

What transformation will “undo” this rotation through angle θ? (Mark all correct answers)

(a) R−θ(x)

(b) Ax, where A =

 cos(−θ) −sin(−θ)

sin(−θ) cos(−θ)



(c) Ax, where A =

 cos(θ) sin(θ)

−sin(θ) cos(θ)



* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3

7.3. The Inverse Matrix 261

Inverting a 2D reflection

Homework 7.3.3.12 Consider a reflection with respect to the 45 degree line:

x

M(x)

If A represents the linear transformation M, then

(a) A−1 =−A

(b) A−1 = A

(c) A−1 = I

(d) All of the above.

* View at edX

7.3.4 More Advanced (but Still Simple) Examples

* View at edX

More general principles

Notice that AA−1 = I. Let’s label A−1 with the letter B instead. Then AB = I. Now, partition both B and I by columns. Then

A
(

b0 b1 · · · bn−1

)
=
(

e0 e1 · · · en−1

)
and hence Ab j = e j. So.... the jth column of the inverse equals the solution to Ax = e j where A and e j are input, and x is output.

We can now add to our string of equivalent conditions:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4

Week 7. More Gaussian Elimination and Matrix Inversion 262

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

Inverse of a triangular matrix

Homework 7.3.4.1 Compute

 −2 0

4 2

−1

=

* View at edX

Homework 7.3.4.2 Find  1 −2

0 2

−1

=

Homework 7.3.4.3 Let α0,0 6= 0 and α1,1 6= 0. Then α0,0 0

α1,0 α1,1

−1

=

 1
α0,0

0

− α1,0
α0,0α1,1

1
α1,1


True/False

Homework 7.3.4.4 Partition lower triangular matrix L as

L =

 L00 0

lT
10 λ11


Assume that L has no zeroes on its diagonal. Then

L−1 =

 L−1
00 0

− 1
λ11

lT
10L−1

00
1

λ11


True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4

7.3. The Inverse Matrix 263

* View at edX

Homework 7.3.4.5 The inverse of a lower triangular matrix with no zeroes on its diagonal is a lower triangular
matrix.

True/False

Challenge 7.3.4.6 The answer to the last exercise suggests an algorithm for inverting a lower triangular matrix.
See if you can implement it!

Inverting a 2×2 matrix

Homework 7.3.4.7 Find  1 2

1 1

−1

=

Homework 7.3.4.8 If α0,0α1,1−α1,0α0,1 6= 0 then α0,0 α0,1

α1,0 α1,1

−1

=
1

α0,0α1,1−α1,0α0,1

 α1,1 −α0,1

−α1,0 α0,0


(Just check by multiplying... Deriving the formula is time consuming.)

True/False

Homework 7.3.4.9 The 2×2 matrix A =

 α0,0 α0,1

α1,0 α1,1

 has an inverse if and only if α0,0α1,1−α1,0α0,1 6= 0.

True/False

* View at edX

The expression α0,0α1,1−α1,0α0,1 6= 0 is known as the determinant of α0,0 α0,1

α1,0 α1,1

 .

This 2×2 matrix has an inverse if and only if its determinant is nonzero. We will see how the determinant is useful again
late in the course, when we discuss how to compute eigenvalues of small matrices. The determinant of a n×n matrix can
be defined and is similarly a condition for checking whether the matrix is invertible. For this reason, we add it to our list
of equivalent conditions:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/6e00e53f2df142e9adea3e11f308f9ab/65bfdc23a34d48a6902c8449e609c001/4

Week 7. More Gaussian Elimination and Matrix Inversion 264

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

7.3.5 Properties

Inverse of product

Homework 7.3.5.1 Let α 6= 0 and B have an inverse. Then

(αB)−1 =
1
α

B−1.

True/False

Homework 7.3.5.2 Which of the following is true regardless of matrices A and B (as long as they have an inverse
and are of the same size)?

(a) (AB)−1 = A−1B−1

(b) (AB)−1 = B−1A−1

(c) (AB)−1 = B−1A

(d) (AB)−1 = B−1

Homework 7.3.5.3 Let square matrices A,B,C ∈ Rn×n have inverses A−1, B−1, and C−1, respectively. Then
(ABC)−1 =C−1B−1A−1.

Always/Sometimes/Never

Inverse of transpose

Homework 7.3.5.4 Let square matrix A have inverse A−1. Then (AT)−1 = (A−1)T .
Always/Sometimes/Never

7.4. Enrichment 265

Inverse of inverse

Homework 7.3.5.5

(A−1)−1 = A

Always/Sometimes/Never

7.4 Enrichment

7.4.1 Library Routines for LU with Partial Pivoting

Various linear algebra software libraries incorporate LU factorization with partial pivoting.

LINPACK

The first such library was LINPACK:

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart.
LINPACK Users’ Guide.
SIAM, 1979.

A link to the implementation of the routine DGEFA can be found at

http://www.netlib.org/linpack/dgefa.f.

You will notice that it is written in Fortran and uses what are now called Level-1 BLAS routines. LINPACK preceded the
introduction of computer architectures with cache memories, and therefore no blocked algorithm is included in that library.

LAPACK

LINPACK was replaced by the currently most widely used library, LAPACK:

E. Anderson, Z. Bai, J. Demmel, J. J. Dongarra, J. Ducroz, A. Greenbaum, S. Hammarling, A. E. McKenney, S.
Ostroucho, and D. Sorensen.
LAPACK Users’ Guide.
SIAM 1992.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Ducroz, A. Greenbaum, S. Ham-
marling, A. E. McKenney, S. Ostroucho, and D. Sorensen.
LAPACK Users’ Guide (3rd Edition).
SIAM 1999.

Implementations in this library include

• DGETF2 (unblocked LU factorization with partial pivoting).

• DGETRF (blocked LU factorization with partial pivoting).

It, too, is written in Fortran. The unblocked implementation makes calls to Level-1 (vector-vector) and Level-2 (matrix-vector)
BLAS routines. The blocked implementation makes calls to Level-3 (matrix-matrix) BLAS routines. See if you can recognize
some of the names of routines.

ScaLAPACK

ScaLAPACK is version of LAPACK that was (re)written for large distributed memory architectures. The design decision was
to make the routines in ScaLAPACK reflect as closely as possible the corresponding routines in LAPACK.

http://www.netlib.org/linpack/dgefa.f
http://www.netlib.org/lapack/explore-html/d2/da1/dgetf2_8f_source.html
http://www.netlib.org/lapack/explore-html/d3/d6a/dgetrf_8f_source.html

Week 7. More Gaussian Elimination and Matrix Inversion 266

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R. C. Whaley.
ScaLAPACK Users’ Guilde.
SIAM, 1997.

Implementations in this library include

• PDGETRF (blocked LU factorization with partial pivoting).

ScaLAPACK is wirtten in a mixture of Fortran and C. The unblocked implementation makes calls to Level-1 (vector-vector) and
Level-2 (matrix-vector) BLAS routines. The blocked implementation makes calls to Level-3 (matrix-matrix) BLAS routines.
See if you can recognize some of the names of routines.

libflame

We have already mentioned libflame. It targets sequential and multithreaded architectures.

F. G. Van Zee, E. Chan, R. A. van de Geijn, E. S. Quintana-Orti, G. Quintana-Orti.
The libflame Library for Dense Matrix Computations.
IEEE Computing in Science and Engineering, Vol. 11, No 6, 2009.

F. G. Van Zee.
libflame: The Complete Reference.
www.lulu.com , 2009
(Available from http://www.cs.utexas.edu/ flame/web/FLAMEPublications.html.)

It uses an API so that the code closely resembles the code that you have been writing.

• Various unblocked and blocked implementations.

Elemental

Elemental is a library that targets distributed memory architectures, like ScaLAPACK does.

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, Nichols A. Romero. Elemental: A New
Framework for Distributed Memory Dense Matrix Computations. ACM Transactions on Mathematical Software
(TOMS), 2013.
(Available from http://www.cs.utexas.edu/ flame/web/FLAMEPublications.html.)

It is coded in C++ in a style that resembles the FLAME APIs.

• Blocked implementation.

7.5 Wrap Up

7.5.1 Homework

(No additional homework this week.)

7.5.2 Summary

Permutations

Definition 7.9 A vector with integer components

p =


k0

k1
...

kn−1


is said to be a permutation vector if

http://www.netlib.org/scalapack/explore-html/df/dfe/pdgetrf_8f_source.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://github.com/flame/libflame/tree/master/src/lapack/dec/lu/piv/vars/flamec
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
https://github.com/elemental/Elemental/blob/master/src/lapack_like/factor/dense/LU.cpp

7.5. Wrap Up 267

• k j ∈ {0, . . . ,n−1} , for 0≤ j < n; and

• ki = k j implies i = j.

In other words, p is a rearrangement of the numbers 0, . . . ,n−1 (without repetition).

Definition 7.10 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Then

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1


is said to be a permutation matrix.

Theorem 7.11 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Consider

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1

 , x =


χ0

χ1
...

χn−1

 , and A =


aT

0

aT
1
...

aT
n−1

 .

Then

Px =


χk0

χk1
...

χkn−1

 , and PA =


aT

k0

aT
k1
...

aT
kn−1

 .

Theorem 7.12 Let p = (k0, . . . ,kn−1)
T be a permutation vector. Consider

P = P(p) =


eT

k0

eT
k1
...

eT
kn−1

 and A =
(

a0 a1 · · · an−1

)
.

Then
APT =

(
ak0 ak1 · · · akn−1

)
.

Theorem 7.13 If P is a permutation matrix, so is PT .

Definition 7.14 Let us call the special permutation matrix of the form

P̃(π) =



eT
π

eT
1
...

eT
π−1

eT
0

eT
π+1
...

eT
n−1



=



0 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1


a pivot matrix.

Week 7. More Gaussian Elimination and Matrix Inversion 268

Theorem 7.15 When P̃(π) (of appropriate size) multiplies a matrix from the left, it swaps row 0 and row π, leaving all other
rows unchanged.

When P̃(π) (of appropriate size) multiplies a matrix from the right, it swaps column 0 and column π, leaving all other
columns unchanged.

LU with row pivoting

Algorithm: [A, p] := LU PIV(A, p)

Partition A→

 AT L AT R

ABL ABR

, p→

 pT

pB


where AT L is 0×0 and pT has 0 components

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

→


p0

π1

p2



π1 = PIVOT

 α11

a21

 aT
10 α11 aT

12

A20 a21 A22

 := P(π1)

 aT
10 α11 aT

12

A20 a21 A22


a21 := a21/α11 (a21 now contains l21) aT

12

A22

=

 aT
12

A22−a21aT
12


Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

 pT

pB

←


p0

π1

p2


endwhile

Algorithm: b := APPLY PIV(p,b)

Partition p→

 pT

pB

, b→

 bT

bB


where pT and bT have 0 components

while m(bT)< m(b) do
Repartition

 pT

pB

→


p0

π1

p2

,

 bT

bB

→


b0

β1

b2


 β1

b2

 := P(π1)

 β1

b2


Continue with

 pT

pB

←


p0

π1

p2

,

 bT

bB

←


b0

β1

b2


endwhile

• LU factorization with row pivoting, starting with a square nonsingular matrix A, computes the LU factorization of a
permuted matrix A: PA = LU (via the above algorithm LU PIV).

• Ax = b then can be solved via the following steps:

– Update b := Pb (via the above algorithm APPLY PIV).

– Solve Lz = b, overwriting b with z (via the algorithm from 6.3.2).

– Solve Ux = b, overwriting b with x (via the algorithm from 6.3.3).

Theorem 7.16 Let L : Rn→ Rn be a linear transformation that is a bijection. Then the inverse function L−1 : Rn→ Rn exists
and is a linear transformation.

Theorem 7.17 If A has an inverse, A−1, then A−1 is unique.

7.5. Wrap Up 269

Inverses of special matrices

Type A A−1

Identity matrix I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 0

 I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



Diagonal matrix D =


δ0,0 0 · · · 0

0 δ1,1 · · · 0
...

...
. . .

...

0 0 · · · δn−1,n−1

 D−1 =


δ
−1
0,0 0 · · · 0

0 δ
−1
1,1 · · · 0

...
...

. . .
...

0 0 · · · δ
−1
n−1,n−1



Gauss transform L̃ =


I 0 0

0 1 0

0 l21 I

 L̃−1 =


I 0 0

0 1 0

0 −l21 I

 .

Permutation matrix P PT

2D Rotation R =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 R−1 =

 cos(θ) sin(θ)

−sin(θ) cos(θ)

= RT

2D Reflection A A

Lower triangular matrix L =

 L00 0

lT
10 λ11

 L−1 =

 L−1
00 0

− 1
λ11

lT
10L−1

00
1

λ11


Upper triangular matrix U =

 U00 u01

0 υ11

 U−1 =

 U−1
00 −U−1

00 u01/υ11

0 1
υ11


General 2×2 matrix

 α0,0 α0,1

α1,0 α1,1

 1
α0,0α1,1−α1,0α0,1

 α1,1 −α0,1

−α1,0 α0,0


The following matrices have inverses:

• Triangular matrices that have no zeroes on their diagonal.

• Diagonal matrices that have no zeroes on their diagonal.
(Notice: this is a special class of triangular matrices!).

• Gauss transforms.

(In Week 8 we will generalize the notion of a Gauss transform to matrices of the form


I u01 0

0 1 0

0 l21 0

.)

• Permutation matrices.

• 2D Rotations.

• 2D Reflections.

General principle

If A,B ∈ Rn×n and AB = I, then Ab j = e j, where b j is the jth column of B and e j is the jth unit basis vector.

Week 7. More Gaussian Elimination and Matrix Inversion 270

Properties of the inverse

Assume A, B, and C are square matrices that are nonsingular. Then

• (αB)−1 = 1
α

B−1.

• (AB)−1 = B−1A−1.

• (ABC)−1 =C−1B−1A−1.

• (AT)−1 = (A−1)T .

• (A−1)−1 = A.

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

7.5. Wrap Up 271

Blank worksheet for pivoting exercises

i Li P̃ A p

0 ·
·

1 0 0

1 0

0 1

·
·

1

·

1 0 0

0 1 0

0 1 ·

2

Week 7. More Gaussian Elimination and Matrix Inversion 272

Week 8
More on Matrix Inversion

8.1 Opening Remarks

8.1.1 When LU Factorization with Row Pivoting Fails

* View at edX

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

Homework 8.1.1.1 Assume that A,B,C ∈ Rn×n, let BA =C, and B be nonsingular.

A is nonsingular if and only if C is nonsingular.
True/False

The reason the above result is important is that we have seen that LU factorization computes a sequence of pivot matrices
and Gauss transforms in an effort to transform the matrix into an upper triangular matrix. We know that the permutation
matrices and Gauss transforms are all nonsingular since we saw last week that inverses could be constructed. If we now look at
under what circumstance LU factorization with row pivoting breaks down, we will see that with the help of the above result we
can conclude that the matrix is singular (does not have an inverse).

Let us assume that a number of pivot matrices and Gauss transforms have been successfully computed by LU factorization

273

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/df588793d0cc4386a64c885af9a09924/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/df588793d0cc4386a64c885af9a09924/1

Week 8. More on Matrix Inversion 274

with partial pivoting:

L̃k−1Pk−1 · · · L̃0P0Â =


U00 u01 U02

0 α11 aT
12

0 a21 A22


where Â equals the original matrix with which the LU factorization with row pivoting started and the values on the right of
= indicate what is currently in matrix A, which has been overwritten. The following picture captures when LU factorization
breaks down, for k = 2:

L̃1︷ ︸︸ ︷

1 0 0 0 0

0 1 0 0 0

0 −× 1 0 0

0 −× 0 1 0

0 −× 0 0 1


P1

L̃0P0A︷ ︸︸ ︷

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


=


U00 u01 U02

0 α11 aT
12

0 a21 A22


︷ ︸︸ ︷

× × × × ×
0 × × × ×

0 0 0 × ×

0 0 0 × ×
0 0 0 × ×


.

Here the ×s are “representative” elements in the matrix. In other words, if in the current step α11 = 0 and a21 = 0 (the zero
vector), then no row can be found with which to pivot so that α11 6= 0, and the algorithm fails.

Now, repeated application of the insight in the homework tells us that matrix A is nonsingular if and only if the matrix to
the right is nonsingular. We recall our list of equivalent conditions:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

It is the condition “Ax = 0 implies that x = 0” that we will use. We show that if LU factorization with partial pivoting breaks
down, then there is a vector x 6= 0 such that Ax = 0 for the current (updated) matrix A:


U00 u01 U02

0 0 aT
12

0 0 A22


x︷ ︸︸ ︷

−U−1
00 u01

1

0

 =


−U00U−1

00 u01 +u01

0

0

=


0

0

0


We conclude that if LU factorization with partial pivoting breaks down, then the original matrix A is not nonsingular. (In other
words, it is singular.)

8.1. Opening Remarks 275

This allows us to add another condition to the list of equivalent conditions:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

Week 8. More on Matrix Inversion 276

8.1.2 Outline

8.1. Opening Remarks . 273
8.1.1. When LU Factorization with Row Pivoting Fails . 273
8.1.2. Outline . 276
8.1.3. What You Will Learn . 277

8.2. Gauss-Jordan Elimination . 278
8.2.1. Solving Ax = b via Gauss-Jordan Elimination . 278
8.2.2. Solving Ax = b via Gauss-Jordan Elimination: Gauss Transforms . 280
8.2.3. Solving Ax = b via Gauss-Jordan Elimination: Multiple Right-Hand Sides 286
8.2.4. Computing A−1 via Gauss-Jordan Elimination . 291
8.2.5. Computing A−1 via Gauss-Jordan Elimination, Alternative . 297
8.2.6. Pivoting . 300
8.2.7. Cost of Matrix Inversion . 300

8.3. (Almost) Never, Ever Invert a Matrix . 302
8.3.1. Solving Ax = b . 302
8.3.2. But... 303

8.4. (Very Important) Enrichment . 304
8.4.1. Symmetric Positive Definite Matrices . 304
8.4.2. Solving Ax = b when A is Symmetric Positive Definite . 305
8.4.3. Other Factorizations . 308
8.4.4. Welcome to the Frontier . 309

8.5. Wrap Up . 310
8.5.1. Homework . 310
8.5.2. Summary . 310

8.1. Opening Remarks 277

8.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine with Gaussian elimination (LU factorization) when a system of linear equations with n equations in n un-
knowns does not have a unique solution.

• Understand and apply Gauss Jordan elimination to solve linear systems with one or more right-hand sides and to find the
inverse of a matrix.

• Identify properties that indicate a linear transformation has an inverse.

• Identify properties that indicate a matrix has an inverse.

• Create an algorithm to implement Gauss-Jordan elimination and determine the cost function.

• Recognize and understand that inverting a matrix is not the method of choice for solving a linear system.

• Identify specialized factorizations of matrices with special structure and/or properties and create algorithms that take
advantage of this (enrichment).

Week 8. More on Matrix Inversion 278

8.2 Gauss-Jordan Elimination

8.2.1 Solving Ax = b via Gauss-Jordan Elimination

* View at edX
In this unit, we discuss a variant of Gaussian elimination that is often referred to as Gauss-Jordan elimination.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/1

8.2. Gauss-Jordan Elimination 279

Homework 8.2.1.1 Perform the following steps

• To transform the system on the left to the one on the right:

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

−→
−2χ0 + 2χ1 − 5χ2 = −7

−χ1 + 2χ2 = 4

−χ1 + 3χ2 = 5

one must subtract λ1,0 =� times the first row from the second row and subtract λ2,0 =� times the first
row from the third row.

• To transform the system on the left to the one on the right:

−2χ0 + 2χ1 − 5χ2 = −7

−χ1 + 2χ2 = 4

−χ1 + 3χ2 = 5

−→
−2χ0 − χ2 = 1

−χ1 + 2χ2 = 4

χ2 = 1

one must subtract υ0,1 =� times the second row from the first row and subtract λ2,1 =� times the
second row from the third row.

• To transform the system on the left to the one on the right:

−2χ0 − χ2 = 1

−χ1 + 2χ2 = 4

χ2 = 1

−→
−2χ0 = 2

−χ1 = 2

χ2 = 1

one must subtract υ0,2 =� times the third row from the first row and subtract υ1,2 =� times the third
row from the first row.

• To transform the system on the left to the one on the right:

−2χ0 = 2

−χ1 = 2

χ2 = 1

−→
χ0 = −1

χ1 = −2

χ2 = 1

one must multiply the first row by δ0,0 =�, the second row by δ1,1 =�, and the third row by δ2,2 =�.

• Use the above exercises to compute the vector x that solves

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

Be sure to compare and contrast the above order of eliminating elements in the matrix to what you do with Gaussian
elimination.

Homework 8.2.1.2 Perform the process illustrated in the last exercise to solve the systems of linear equations

•


3 2 10

−3 −3 −14

3 1 3




χ0

χ1

χ2

=


−7

9

−5



•


2 −3 4

2 −2 3

6 −7 9




χ0

χ1

χ2

=


−8

−5

−17



Week 8. More on Matrix Inversion 280

8.2.2 Solving Ax = b via Gauss-Jordan Elimination: Gauss Transforms

* View at edX
We again discuss Gauss-Jordan elimination, but now with an appended system.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/2

8.2. Gauss-Jordan Elimination 281

Homework 8.2.2.1 Evaluate

•


1 0 0

1 1 0

−2 0 1



−2 2 −5 −7

2 −3 7 11

−4 3 −7 −9

=

•


1 2 0

0 1 0

0 −1 1



−2 2 −5 −7

0 −1 2 4

0 −1 3 5

=

•


1 0 1

0 1 −2

0 0 1



−2 0 −1 1

0 −1 2 4

0 0 1 1

=

•


− 1

2 0 0

0 −1 0

0 0 1



−2 0 0 2

0 −1 0 2

0 0 1 1

=

• Use the above exercises to compute x =


χ0

χ1

χ2

 that solves

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

Week 8. More on Matrix Inversion 282

Homework 8.2.2.2 This exercise shows you how to use MATLAB to do the heavy lifting for Homework 8.2.2.1.
Again solve

−2χ0 + 2χ1 − 5χ2 = −7

2χ0 − 3χ1 + 7χ2 = 11

−4χ0 + 3χ1 − 7χ2 = −9

via Gauss-Jordan elimination. This time we set this up as an appended matrix:
−2 2 −5 −7

2 −3 7 11

−4 3 −7 −9

 .

We can enter this into MATLAB as

A = [
-2 2 -5 ??
2 -3 7 ??

-4 3 -7 ??
]

(You enter ??.) Create the Gauss transform, G0, that zeroes the entries in the first column below the diagonal:

G0 = [
1 0 0

?? 1 0
?? 0 1
]

(You fill in the ??). Now apply the Gauss transform to the appended system:

A0 = G0 * A

Similarly create G1,

G1 = [
1 ?? 0
0 1 0
0 ?? 1

]

A1, G2, and A2, where A2 equals the appended system that has been transformed into a diagonal system. Finally,
let D equal to a diagonal matrix so that A3 = D∗A2 has the identity for the first three columns.
You can then find the solution to the linear system in the last column.

Homework 8.2.2.3 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 b0

0 α11 aT
12 β1

0 a21 A22 b2

=


D00 a01−α11u01 A02−u01aT

12 b0−β1u01

0 α11 aT
12 β1

0 a21−α11l21 A22− l21aT
12 b2−β1l21


Always/Sometimes/Never

8.2. Gauss-Jordan Elimination 283

Homework 8.2.2.4 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11; and

• l21 := a21/α11.

Consider the following expression:
I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 b0

0 α11 aT
12 β1

0 a21 A22 b2

=


D00 0 A02−u01aT

12 b0−β1u01

0 α11 aT
12 β1

0 0 A22− l21aT
12 b2−β1l21


Always/Sometimes/Never

The above exercises showcase a variant on Gauss transforms that not only take multiples of a current row and add or subtract
these from the rows below the current row, but also take multiples of the current row and add or subtract these from the rows
above the current row:

I −u01 0

0 1 0

0 −l21 I




A0

aT
1

A2

=


A0−u01aT

1

aT
1

A2− l21aT
1


←− Subtract multiples of aT

1 from the rows above aT
1

← Leave aT
1 alone

←− Subtract multiples of aT
1 from the rows below aT

1

The discussion in this unit motivates the algorithm GAUSSJORDAN PART1 in Figure 8.1, which transforms A to a diagonal
matrix and updates the right-hand side accordingly, and GAUSSJORDAN PART2 in Figure 8.2, which transforms the diagonal
matrix A to an identity matrix and updates the right-hand side accordingly. The two algorithms together leave A overwritten
with the identity and the vector to the right of the double lines with the solution to Ax = b.

The reason why we split the process into two parts is that it is easy to create problems for which only integers are encountered
during the first part (while matrix A is being transformed into a diagonal). This will make things easier for us when we extend
this process so that it computes the inverse of matrix A: fractions only come into play during the second, much simpler, part.

Week 8. More on Matrix Inversion 284

Algorithm: [A,b] := GAUSSJORDAN PART1(A,b)

Partition A→

 AT L AT R

ABL ABR

 , b→

 bT

bB


where AT L is 0×0, bT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

→


b0

β1

b2


a01 := a01/α11 (= u01)

a21 := a21/α11 (= l21)

A02 := A02−a01aT
12 (= A02−u01aT

12)

A22 := A22−a21aT
12 (= A22− l21aT

12)

b0 := b0−β1a01 (= b2−β1u01)

b2 := b2−β1a21 (= b2−β1l21)

a01 := 0 (zero vector)

a21 := 0 (zero vector)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 8.1: Algorithm that transforms matrix A to a diagonal matrix and updates the right-hand side accordingly.

8.2. Gauss-Jordan Elimination 285

Algorithm: [A,b] := GAUSSJORDAN PART2(A,b)

Partition A→

 AT L AT R

ABL ABR

 , b→

 bT

bB


where AT L is 0×0, bT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

→


b0

β1

b2


β1 := β1/α11

α11 := 1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 bT

bB

←


b0

β1

b2


endwhile

Figure 8.2: Algorithm that transforms diagonal matrix A to an identity matrix and updates the right-hand side accordingly.

Week 8. More on Matrix Inversion 286

8.2.3 Solving Ax = b via Gauss-Jordan Elimination: Multiple Right-Hand Sides

* View at edX

Homework 8.2.3.1 Evaluate

•


1 0 0

1 1 0

−2 0 1



−2 2 −5 −7 8

2 −3 7 11 −13

−4 3 −7 −9 9

=


−2 2 −5 −7 �

0 −1 2 4 �
0 −1 3 5 �



•


1 2 0

0 1 0

0 −1 1



−2 2 −5 −7 8

0 −1 2 4 −5

0 −1 3 5 −7

=


−2 0 −1 1 �

0 −1 2 4 �
0 0 1 1 �



•


1 0 1

0 1 −2

0 0 1



−2 0 −1 1 −2

0 −1 2 4 −5

0 0 1 1 −2

=


−2 0 0 2 �

0 −1 0 2 �
0 0 1 1 �



•


− 1

2 0 0

0 −1 0

0 0 1



−2 0 0 2 −4

0 −1 0 2 −1

0 0 1 1 −2

=


1 0 0 −1 �
0 1 0 −2 �
0 0 1 1 �



• Use the above exercises to compute x0 =


χ00

χ10

χ20

 and x1 =


χ01

χ11

χ21

 that solve

−2χ00 + 2χ10 − 5χ20 = −7

2χ00 − 3χ10 + 7χ20 = 11

−4χ00 + 3χ10 − 7χ20 = −9

and

−2χ01 + 2χ11 − 5χ21 = 8

2χ01 − 3χ11 + 7χ21 = −13

−4χ01 + 3χ11 − 7χ21 = 9

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/3

8.2. Gauss-Jordan Elimination 287

Homework 8.2.3.2 This exercise shows you how to use MATLAB to do the heavy lifting for Homework 8.2.3.1.
Start with the appended system: 

−2 2 −5 −7 8

2 −3 7 11 −13

−4 3 −7 −9 9


Enter this into MATLAB as

A = [
-2 2 -5 ?? ??
2 -3 7 ?? ??

-4 3 -7 ?? ??
]

(You enter ??.) Create the Gauss transform, G0, that zeroes the entries in the first column below the diagonal:

G0 = [
1 0 0

?? 1 0
?? 0 1
]

(You fill in the ??). Now apply the Gauss transform to the appended system:

A0 = G0 * A

Similarly create G1,

G1 = [
1 ?? 0
0 1 0
0 ?? 1

]

A1, G2, and A2, where A2 equals the appended system that has been transformed into a diagonal system. Finally,
let D equal to a diagonal matrix so that A3 = D∗A2 has the identity for the first three columns.
You can then find the solutions to the linear systems in the last column.

Week 8. More on Matrix Inversion 288

Homework 8.2.3.3 Evaluate

•


1 0 0

� 1 0

� 0 1




3 2 10 −7 16

−3 −3 −14 9 −25

3 1 4 −5 3

=


3 2 10 � �
0 −1 −4 � �
0 −1 −6 � �



•


1 � 0

0 1 0

0 � 1




3 2 10 −7 16

0 −1 −4 2 −9

0 −1 −6 2 −13

=


3 0 2 � �
0 −1 −4 � �
0 0 −2 � �



•


1 0 �
0 1 �
0 0 1




3 0 2 −3 −2

0 −1 −4 2 −9

0 0 −2 0 −4

=


3 0 0 � �
0 −1 0 � �
0 0 −2 � �



•


� 0 0

0 � 0

0 0 �




3 0 0 −3 −6

0 −1 0 2 −1

0 0 −2 0 −4

=


1 0 0 � �
0 1 0 � �
0 0 1 � �



Use the above exercises to compute x0 =


χ0,0

χ1,0

χ2,0

 and x1 =


χ0,1

χ1,1

χ2,1

 that solve

3χ0,0 + 2χ1,0 + 10χ2,0 = −7

−3χ0,0 − 3χ1,0 − 14χ2,0 = 9

3χ0,0 + 1χ1,0 + 4χ2,0 = −5

and

3χ0,0 + 2χ1,0 + 10χ2,0 = 16

−3χ0,0 − 3χ1,0 − 14χ2,0 = −25

3χ0,0 + 1χ1,0 + 4χ2,0 = 3

(You could use MATLAB to do the heavy lifting, like in the last homework...)

Homework 8.2.3.4 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 B0

0 α11 aT
12 bT

1

0 a21 A22 B2

=


D00 a01−α11u01 A02−u01aT

12 B0−u01bT
1

0 α11 aT
12 bT

1

0 a21−α11l21 A22− l21aT
12 B2− l21bT

1


Always/Sometimes/Never

8.2. Gauss-Jordan Elimination 289

Algorithm: [A,B] := GAUSSJORDAN MRHS PART1(A,B)

Partition A→

 AT L AT R

ABL ABR

 , B→

 BT

BB


where AT L is 0×0, BT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

→


B0

bT
1

B2


a01 := a01/α11 (= u01)

a21 := a21/α11 (= l21)

A02 := A02−a01aT
12 (= A02−u01aT

12)

A22 := A22−a21aT
12 (= A22− l21aT

12)

B0 := B0−a01bT
1 (= B0−u01bT

1)

B2 := B2−a21bT
1 (= B2− l21bT

1)

a01 := 0 (zero vector)

a21 := 0 (zero vector)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

←


B0

bT
1

B2


endwhile

Figure 8.3: Algorithm that transforms diagonal matrix A to an identity matrix and updates a matrix B with multiple right-hand
sides accordingly.

Homework 8.2.3.5 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11; and

• l21 := a21/α11.

The following expression holds:
I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 b0

0 α11 aT
12 β1

0 a21 A22 b2

=


D00 0 A02−u01aT

12 B0−u01bT
1

0 α11 aT
12 bT

1

0 0 A22− l21aT
12 B2− l21bT

1


Always/Sometimes/Never

The above observations justify the two algorithms in Figures 8.3 and 8.4 for “Gauss-Jordan elimination” that work with
“multiple right-hand sides” (viewed as the columns of matrix B).

Week 8. More on Matrix Inversion 290

Algorithm: [A,B] := GAUSSJORDAN MRHS PART2(A,B)

Partition A→

 AT L AT R

ABL ABR

 , B→

 BT

BB


where AT L is 0×0, BT has 0 rows

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

→


B0

bT
1

B2


bT

1 := (1/α11)bT
1

α11 := 1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT

BB

←


B0

bT
1

B2


endwhile

Figure 8.4: Algorithm that transforms diagonal matrix A to an identity matrix and updates a matrix B with multiple right-hand
sides accordingly.

8.2. Gauss-Jordan Elimination 291

8.2.4 Computing A−1 via Gauss-Jordan Elimination

* View at edX
Recall the following observation about the inverse of matrix A. If we let X equal the inverse of A, then

AX = I

or
A
(

x0 x1 · · · xn−1

)
=
(

e0 e1 · · · en−1

)
,

so that Ax j = e j. In other words, the jth column of X = A−1 can be computed by solving Ax = e j. Clearly, we can use the

routine that performs Gauss-Jordan with the appended system
(

A B
)

to compute A−1 by feeding it B = I!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/4

Week 8. More on Matrix Inversion 292

Homework 8.2.4.1 Evaluate

•


1 0 0

1 1 0

−2 0 1



−2 2 −5 1 0 0

2 −3 7 0 1 0

−4 3 −7 0 0 1

=


−2 2 −5 � � �

0 −1 2 � � �
0 −1 3 � � �



•


1 2 0

0 1 0

0 −1 1



−2 2 −5 1 0 0

0 −1 2 1 1 0

0 −1 3 −2 0 1

=


−2 0 −1 � � �

0 −1 2 � � �
0 0 1 � � �



•


1 0 1

0 1 −2

0 0 1



−2 0 −1 3 2 0

0 −1 2 1 1 0

0 0 1 −3 −1 1

=


−2 0 0 � � �

0 −1 0 � � �
0 0 1 � � �



•


− 1

2 0 0

0 −1 0

0 0 1



−2 0 0 0 1 1

0 −1 0 7 3 −2

0 0 1 −3 −1 1

=


1 0 0 � � �
0 1 0 � � �
0 0 1 � � �



•


−2 2 −5

2 −3 7

−4 3 −7




0 − 1
2 − 1

2

−7 −3 2

−3 −1 1

=

8.2. Gauss-Jordan Elimination 293

Homework 8.2.4.2 In this exercise, you will use MATLAB to compute the inverse of a matrix using the techniques
discussed in this unit.

Initialize
A = [-2 2 -5

2 -3 7
-4 3 -7]

Create an appended matrix by appending
the identity

A_appended = [A eye(size(A))]

Create the first Gauss transform to intro-
duce zeros in the first column (fill in the
?s).

G0 = [1 0 0
? 1 0
? 0 1]

Apply the Gauss transform to the ap-
pended system

A0 = G0 * A_appended

Create the second Gauss transform to in-
troduce zeros in the second column

G1 = [1 ? 0
0 1 0
0 ? 1]

Apply the Gauss transform to the ap-
pended system

A1 = G1 * A0

Create the third Gauss transform to intro-
duce zeros in the third column

G2 = [1 0 ?
0 1 ?
0 0 1]

Apply the Gauss transform to the ap-
pended system

A2 = G2 * A1

Create a diagonal matrix to set the diag-
onal elements to one

D3 = [-1/2 0 0
0 -1 0
0 0 1]

Apply the diagonal matrix to the ap-
pended system

A3 = D3 * A2

Extract the (updated) appended columns Ainv = A3(:, 4:6)

Check that the inverse was computed A * Ainv

The result should be a 3×3 identity matrix.

Homework 8.2.4.3 Compute

•


3 2 9

−3 −3 −14

3 1 3


−1

=

•


2 −3 4

2 −2 3

6 −7 9


−1

=

Week 8. More on Matrix Inversion 294

Homework 8.2.4.4 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


D00 a01−α11u01 A02−u01aT

12 B00−u01bT
10 −u01 0

0 α11 aT
12 bT

10 1 0

0 a21−α11l21 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

Homework 8.2.4.5 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11; and

• l21 := a21/α11.

Consider the following expression:
I −u01 0

0 1 0

0 −l21 I




D00 a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


D00 0 A02−u01aT

12 B00−u01bT
10 −u01 0

0 α11 aT
12 bT

10 1 0

0 0 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

The above observations justify the two algorithms in Figures 8.5 and 8.6 for “Gauss-Jordan elimination” for inverting a
matrix.

8.2. Gauss-Jordan Elimination 295

Algorithm: [A,B] := GJ INVERSE PART1(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

B00 := B00−a01bT
10 b01 :=−a01

B20 := B20−a21bT
10 b21 :=−a21

(Note: a01 and a21 on the left need to be updated first.)

a01 := 0 (zero vector)

a21 := 0 (zero vector)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

Figure 8.5: Algorithm that transforms diagonal matrix A to an identity matrix and updates an identity matrix stored in B
accordingly.

Week 8. More on Matrix Inversion 296

Algorithm: [A,B] := GJ INVERSE PART2(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

bT
10 := bT

10/α11

β11 := β11/α11

bT
12 := bT

12/α11

α11 := 1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

Figure 8.6: Algorithm that transforms diagonal matrix A to an identity matrix and updates an identity matrix stored in B
accordingly.

8.2. Gauss-Jordan Elimination 297

8.2.5 Computing A−1 via Gauss-Jordan Elimination, Alternative

* View at edX

We now motivate a slight alternative to the Gauss Jordan method, which is easiest to program.

Homework 8.2.5.1

• Determine δ0,0, λ1,0, λ2,0 so that
δ0,0 0 0

λ1,0 1 0

λ2,0 0 1



−1 −4 −2 1 0 0

2 6 2 0 1 0

−1 0 3 0 0 1

=


1 4 2 −1 0 0

0 −2 −2 2 1 0

0 4 5 −1 0 1


• Determine υ0,1, δ1,1, and λ2,1 so that

1 υ0,1 0

0 δ1,1 0

0 λ2,1 1




1 4 2 −1 0 0

0 −2 −2 2 1 0

0 4 5 −1 0 1

=


1 0 −2 3 2 0

0 1 1 −1 − 1
2 0

0 0 1 3 2 1


• Determine υ0,2, υ0,2, and δ2,2 so that

1 0 υ0,2

0 1 υ1,2

0 0 δ2,2




1 0 −2 3 2 0

0 1 1 −1 − 1
2 0

0 0 1 3 2 1

=


1 0 0 9 6 2

0 1 0 −4 − 5
2 −1

0 0 1 3 2 1


• Evaluate 

−1 −4 −2

2 6 2

−1 0 3




9 6 2

−4 − 5
2 −1

3 2 1

=

Homework 8.2.5.2 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense.

I −u01 0

0 δ11 0

0 −l21 I




I a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


I a01−α11u01 A02−u01aT

12 B00−u01bT
10 −u01 0

0 δ11α11 δ11aT
12 δ11bT

10 δ11 0

0 a21−α11l21 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/5

Week 8. More on Matrix Inversion 298

Homework 8.2.5.3 Assume below that all matrices and vectors are partitioned “conformally” so that the opera-
tions make sense. Choose

• u01 := a01/α11;

• l21 := a21/α11; and

• δ11 := 1/α11.


I −u01 0

0 δ11 0

0 −l21 I




I a01 A02 B00 0 0

0 α11 aT
12 bT

10 1 0

0 a21 A22 B20 0 I



=


I 0 A02−u01aT

12 B00−u01bT
10 −u01 0

0 1 aT
12/α11 bT

10/α11 1/α11 0

0 0 A22− l21aT
12 B20− l21bT

10 −l21 I


Always/Sometimes/Never

The last homework motivates the algorithm in Figure 8.7

Homework 8.2.5.4 Implement the algorithm in Figure 8.7 yielding the function

• [A out] = GJ Inverse alt unb(A, B). Assume that it is called as

Ainv = GJ Inverse alt unb(A, B)

Matrices A and B must be square and of the same size.

Check that it computes correctly with the script

• test GJ Inverse alt unb.m.

Homework 8.2.5.5 If you are very careful, you can overwrite matrix A with its inverse without requiring the
matrix B.
Modify the algorithm in Figure 8.7 so that it overwrites A with its inverse without the use of matrix B yielding the
function

• [A out] = GJ Inverse inplace unb(A).

Check that it computes correctly with the script

• test GJ Inverse inplace unb.m.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week8/test_GJ_Inverse_alt_unb.m
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week8/test_GJ_Inverse_inplace_unb.m

8.2. Gauss-Jordan Elimination 299

Algorithm: [B] := GJ INVERSE ALT(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

(Note: above a01 and a21 must be updated

before the operations to their right.)

a01 := 0

α11 := 1 aT
12 := aT

12/α11

a21 := 0

(Note: above α11 must be updated last.)

B00 := B00−a01bT
10 b01 :=−a01

B20 := B20−a21bT
10 b21 :=−a21

bT
10 := bT

10/α11 β11 = 1/α11

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

Figure 8.7: Algorithm that simultaneously transforms matrix A to an identity and matrix B from the identity to A−1.

Week 8. More on Matrix Inversion 300

8.2.6 Pivoting

* View at edX
Adding pivoting to any of the discussed Gauss-Jordan methods is straight forward. It is a matter of recognizing that if a

zero is found on the diagonal during the process at a point where a divide by zero will happen, one will need to swap the current
row with another row below it to overcome this. If such a row cannot be found, then the matrix does not have an inverse.

We do not further discuss this in this course.

8.2.7 Cost of Matrix Inversion

* View at edX
Let us now discuss the cost of matrix inversion via various methods. In our discussion, we will ignore pivoting. In other

words, we will assume that no zero pivot is encountered. We wil start with an n×n matrix A.

A very naive approach

Here is a very naive approach. Let X be the matrix in which we will compute the inverse. We have argued several times that
AX = I means that

A
(

x0 x1 · · · xn−1

)
=
(

e0 e1 · · · en−1

)
so that Ax j = e j. So, for each column x j, we can perform the operations

• Compute the LU factorization of A so that A = LU . We argued in Week 6 that the cost of this is approximately 2
3 n3 flops.

• Solve Lz = e j. This is a lower (unit) triangular solve with cost of approximately n2 flops.

• Solve Ux j = z. This is an upper triangular solve with cost of approximately n2 flops.

So, for each column of X the cost is approximately 2
3 n3 +n2 +n2 = 2

3 n3 +2n2. There are n columns of X to be computed for a
total cost of approximately

n(
2
3

n3 +2n2) =
2
3

n4 +2n3 flops.

To put this in perspective: A relatively small problem to be solved on a current supercomputer involves a 100,000×100,000
matrix. The fastest current computer can perform approximately 55,000 Teraflops, meaning 55×1015 floating point operations
per second. On this machine, inverting such a matrix would require approximately a third of an hour of compute time.

(Note: such a supercomputer would not attain the stated peak performance. But let’s ignore that in our discussions.)

A less naive approach

The problem with the above approach is that A is redundantly factored into L and U for every column of X . Clearly, we only
need to do that once. Thus, a less naive approach is given by

• Compute the LU factorization of A so that A = LU at a cost of approximately 2
3 n3 flops.

• For each column x j

– Solve Lz = e j. This is a lower (unit) triangular solve with cost of approximately n2 flops.

– Solve Ux j = z. This is an upper triangular solve with cost of approximately n2 flops.

There are n columns of X to be computed for a total cost of approximately

n(n2 +n2) = 2n3 flops.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/dee2cc3144584d25950c8a756fd47533/7

8.2. Gauss-Jordan Elimination 301

Thus, the total cost is now approximately

2
3

n3 +2n3 =
8
3

n3 flops.

Returning to our relatively small problem of inverting a 100,000×100,000 matrix on the fastest current computer that can
perform approximately 55,000 Teraflops, inverting such a matrix with this alternative approach would require approximately
0.05 seconds. Clearly an improvement.

The cost of the discussed Gauss-Jordan matrix inversion

Now let’s consider the Gauss-Jordan matrix inversion algorithm that we developed in the last unit:

Algorithm: [B] := GJ INVERSE ALT(A,B)

Partition A→

 AT L AT R

ABL ABR

 ,B→

 BT L BT R

BBL BBR


whereAT L is 0×0, BT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

→


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


whereα11 is 1×1, β11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

(Note: above a01 and a21 must be updated

before the operations to their right.)

a01 := 0

α11 := 1 aT
12 := aT

12/α11

a21 := 0

(Note: above α11 must be updated last.)

B00 := B00−a01bT
10 b01 :=−a01

B20 := B20−a21bT
10 b21 :=−a21

bT
10 := bT

10/α11 β11 = 1/α11

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 BT L BT R

BBL BBR

←


B00 b01 B02

bT
10 β11 bT

12

B20 b21 B22


endwhile

During the kth iteration, AT L and BT L are k× k (starting with k = 0). After repartitioning, the sizes of the different subma-

Week 8. More on Matrix Inversion 302

trices are
k︷︸︸︷ 1︷︸︸︷ n− k−1︷︸︸︷

k{
1{

n− k−1{

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A02

The following operations are performed (we ignore the other operations since they are clearly “cheap” relative to the ones we
do count here):

• A02 := A02−a01aT
12. This is a rank-1 update. The cost is 2k× (n− k−1) flops.

• A22 := A22−a21aT
12. This is a rank-1 update. The cost is 2(n− k−1)× (n− k−1) flops.

• B00 := B00−a01bT
10. This is a rank-1 update. The cost is 2k× k flops.

• B02 := B02−a21bT
12. This is a rank-1 update. The cost is 2(n− k−1)× k flops.

For a total of, approximately,

2k(n− k−1)+2(n− k−1)(n− k−1)︸ ︷︷ ︸
2(n−1)(n− k−1)

+ 2k2 +2(n− k−1)k︸ ︷︷ ︸
2(n−1)k

= 2(n−1)(n− k−1)+2(n−1)k

= 2(n−1)2 flops.

Now, we do this for n iterations, so the total cost of the Gauss-Jordan inversion algorithms is, approximately,

n(2(n−1)2)≈ 2n3 flops.

Barring any special properties of matrix A, or high-trapeze heroics, this turns out to be the cost of matrix inversion. Notice that
this cost is less than the cost of the (less) naive algorithm given before.

A simpler analysis is as follows: The bulk of the computation in each iteration is in the updates

B00 := B00−a01bT
10 A02 := A02−a01aT

12

B20 := B20−a21bT
10 A22 := A22−a21aT

12

Here we try to depict that the elements being updated occupy almost an entire n× n matrix. Since there are rank-1 updates
being performed, this means that essentially every element in this matrix is being updated with one multiply and one add. Thus,
in this iteration, approximately 2n2 flops are being performed. The total for n iterations is then, approximately, 2n3 flops.

Returning one last time to our relatively small problem of inverting a 100,000× 100,000 matrix on the fastest current
computer that can perform approximately 55,000 Teraflops, inverting such a matrix with this alternative approach is further
reduced from approximately 0.05 seconds to approximately 0.036 seconds. Not as dramatic a reduction, but still worthwhile.

Interestingly, the cost of matrix inversion is approximately the same as the cost of matrix-matrix multiplication.

8.3 (Almost) Never, Ever Invert a Matrix

8.3.1 Solving Ax = b

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/920e01472f7d479696c40d7e403632e2/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/920e01472f7d479696c40d7e403632e2/1

8.3. (Almost) Never, Ever Invert a Matrix 303

Solving Ax = b via LU Factorization

Homework 8.3.1.1 Let A∈Rn×n and x,b∈Rn. What is the cost of solving Ax = b via LU factorization (assuming
there is nothing special about A)? You may ignore the need for pivoting.

Solving Ax = b by Computing A−1

Homework 8.3.1.2 Let A ∈Rn×n and x,b ∈Rn. What is the cost of solving Ax = b if you first invert matrix A and
than compute x = A−1b? (Assume there is nothing special about A and ignore the need for pivoting.)

Just Don’t Do It!

The bottom line is: LU factorization followed by two triangular solves is cheaper!
Now, some people would say “What if we have many systems Ax = b where A is the same, but b differs? Then we can just

invert A once and for each of the bs multiply x = A−1b.”

Homework 8.3.1.3 What is wrong with the above argument?

There are other arguments why computing A−1 is a bad idea that have to do with floating point arithmetic and the roundoff
error that comes with it. This is a subject called “numerical stability”, which goes beyond the scope of this course.

So.... You should be very suspicious if someone talks about computing the inverse of a matrix. There are very, very few
applications where one legitimately needs the inverse of a matrix.
However, realize that often people use the term “inverting a matrix” interchangeably with “solving Ax = b”, where they
don’t mean to imply that they explicitly invert the matrix. So, be careful before you start arguing with such a person! They
may simply be using awkward terminology.

Of course, the above remarks are for general matrices. For small matrices and/or matrices with special structure, inversion
may be a reasonable option.

8.3.2 But...

No Video for this Unit

Inverse of a general matrix

Ironically, one of the instructors of this course has written a paper about high-performance inversion of a matrix, which was
then published by a top journal:

Xiaobai Sun, Enrique S. Quintana, Gregorio Quintana, and Robert van de Geijn.
A Note on Parallel Matrix Inversion.
SIAM Journal on Scientific Computing, Vol. 22, No. 5, pp. 1762–1771.
Available from http://www.cs.utexas.edu/users/flame/pubs/SIAMMatrixInversion.pdf.
(This was the first journal paper in which the FLAME notation was introduced.)

The algorithm developed for that paper is a blocked algorithm that incorporates pivoting that is a direct extension of the
algorithm we introduce in Unit 8.2.5. It was developed for use in a specific algorithm that required the explicit inverse of a
general matrix.

Inverse of a symmetric positive definite matrix

Inversion of a special kind of symmetric matrix called a symmetric positive definite (SPD) matrix is sometimes needed in
statistics applications. The inverse of the so-called covariance matrix (which is typically a SPD matrix) is called the precision
matrix, which for some applications is useful to compute. We talk about how to compute a factorization of such matrices in this
week’s enrichment.

If you go to wikipedia and seach for “precision matrix” you will end up on this page:

https://www.youtube.com/watch?v=rQQrJueA9Uo
http://www.cs.utexas.edu/users/flame/pubs/SIAMMatrixInversion.pdf

Week 8. More on Matrix Inversion 304

Precision (statistics)

that will give you more information.
We have a paper on how to compute the inverse of a SPD matrix:

Paolo Bientinesi, Brian Gunter, Robert A. van de Geijn.
Families of algorithms related to the inversion of a Symmetric Positive Definite matrix.
ACM Transactions on Mathematical Software (TOMS), 2008
Available from http://www.cs.utexas.edu/˜flame/web/FLAMEPublications.html.

Welcome to the frontier!

Try reading the papers above (as an enrichment)! You will find the notation very familiar.

8.4 (Very Important) Enrichment

8.4.1 Symmetric Positive Definite Matrices

Symmetric positive definite (SPD) matrices are an important class of matrices that occur naturally as part of applications. We
will see SPD matrices come up later in this course, when we discuss how to solve overdetermined systems of equations:

Bx = y where B ∈ Rm×n and m > n.

In other words, when there are more equations than there are unknowns in our linear system of equations. When B has “linearly
independent columns,” a term with which you will become very familiar later in the course, the best solution to Bx = y satisfies
BT Bx = BT y. If we set A = BT B and b = BT y, then we need to solve Ax = b, and now A is square and nonsingular (which we
will prove later in the course). Now, we could solve Ax = b via any of the methods we have discussed so far. However, these
methods ignore the fact that A is symmetric. So, the question becomes how to take advantage of symmetry.

Definition 8.1 Let A ∈ Rn×n. Matrix A is said to be symmetric positive definite (SPD) if

• A is symmetric; and

• xT Ax > 0 for all nonzero vectors x ∈ Rn.

A nonsymmetric matrix can also be positive definite and there are the notions of a matrix being negative definite or indefinite.
We won’t concern ourselves with these in this course.

Here is a way to relate what a positive definite matrix is to something you may have seen before. Consider the quadratic
polynomial

p(χ) = αχ
2 +βχ+ γ = χαχ+βχ+ γ.

The graph of this function is a parabola that is “concaved up” if α > 0. In that case, it attains a minimum at a unique value χ.
Now consider the vector function f : Rn→ R given by

f (x) = xT Ax+bT x+ γ

where A ∈Rn×n, b ∈Rn, and γ ∈R are all given. If A is a SPD matrix, then this equation is minimized for a unique vector x. If
n = 2, plotting this function when A is SPD yields a paraboloid that is concaved up:

http://en.wikipedia.org/wiki/Precision_matrix
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html
http://www.cs.utexas.edu/~flame/web/FLAMEPublications.html

8.4. (Very Important) Enrichment 305

8.4.2 Solving Ax = b when A is Symmetric Positive Definite

We are going to concern ourselves with how to solve Ax = b when A is SPD. What we will notice is that by taking advantage
of symmetry, we can factor A akin to how we computed the LU factorization, but at roughly half the computational cost. This
new factorization is known as the Cholesky factorization.

Cholesky factorization theorem

Theorem 8.2 Let A ∈Rn×n be a symmetric positive definite matrix. Then there exists a lower triangular matrix L ∈Rn×n such
that A = LLT . If the diagonal elements of L are chosen to be positive, this factorization is unique.

We will not prove this theorem.

Unblocked Cholesky factorization

We are going to closely mimic the derivation of the LU factorization algorithm from Unit 6.3.1.
Partition

A→

 α11 ?

a21 A22

 , and L→

 λ11 0

l21 L22

 .

Here we use ? to indicate that we are not concerned with that part of the matrix because A is symmetric and hence we should
be able to just work with the lower triangular part of it.

We want L to satisfy A = LLT . Hence

A︷ ︸︸ ︷ α11 ?

a21 A22

 =

L︷ ︸︸ ︷ λ11 0

l21 L22


LT︷ ︸︸ ︷ λ11 0

l21 L22

T

=

L︷ ︸︸ ︷ λ11 0

l21 L22


LT︷ ︸︸ ︷ λ11 lT

21

0 LT
22



=

LLT︷ ︸︸ ︷ λ2
11 +0×0 ?

l21λ11 +L22×0 l21lT
21 +L22LT

22

 .

=

LLT︷ ︸︸ ︷ λ2
11 ?

l21λ11 l21lT
21 +L22LT

22

 .

where, again, the ? refers to part of the matrix in which we are not concerned because of symmetry.
For two matrices to be equal, their elements must be equal, and therefore, if they are partitioned conformally, their subma-

trices must be equal:
α11 = λ2

11 ?

a21 = l21λ11 A22 = l21lT
21 +L22LT

22

or, rearranging,
λ11 =

√
α11 ?

l21 = a21/λ11 L22LT
22 = A22− l21lT

21

.

This suggests the following steps for overwriting a matrix A with its Cholesky factorization:

Week 8. More on Matrix Inversion 306

Algorithm: [A] := CHOL UNB VAR3(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


α11 :=

√
α11

a21 := a21/α11

A22 := A22−a21aT
21

(updating only the lower triangular part)

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 8.8: Algorithm for overwriting the lower triangular part of A with its Cholesky factor.

• Partition

A→

 α11 ?

a21 A22

 .

• α11 =
√

α11 (= λ11).

• Update a21 = a21/α11 (= l21).

• Update A22 = A22−a21aT
12(= A22− l21lT

21)
Here we use a “symmetric rank-1 update” since A22 and l21lT

21 are both symmetric and hence only the lower triangular
part needs to be updated. This is where we save flops.

• Overwrite A22 with L22 by repeating with A = A22.

This overwrites the lower triangular part of A with L.
The above can be summarized in Figure 8.8. The suspicious reader will notice that α11 :=

√
α11 is only legal if α11 > 0 and

a21 := a21/α11 is only legal if α11 6= 0. It turns out that if A is SPD, then

• α11 > 0 in the first iteration and hence α11 :=
√

α11 and a21 := a21/α11 are legal; and

• A22 := A22−a21aT
21 is again a SPD matrix.

The proof of these facts goes beyond the scope of this course. The net result is that the algorithm will compute L if it is executed
starting with a matrix A that is SPD. It is useful to compare and contrast the derivations of the unblocked LU factorization and
the unblocked Cholesky factorization, in Figure 8.9.

8.4. (Very Important) Enrichment 307

LU factorization Cholesky factorization

A→

 α11 aT
12

a21 A22

 ,L→

 1 0

l21 L22

 ,U →

 υ11 uT
12

0 U22

 A→

 α11 ?

a21 A22

 ,L→

 λ11 0

l21 L22

 .

 α11 aT
12

a21 A22

=

 1 0

l21 L22

 υ11 uT
12

0 U22


︸ ︷︷ ︸ υ11 uT

12

l21υ11 l21uT
12 +L22U22



 α11 ?

a21 A22

 =

 λ11 0

l21 L22

 λ11 0

l21 L22

T

︸ ︷︷ ︸ λ2
11 ?

l21λ11 l21lT
12 +L22LT

22

 .

α11 = υ11 aT
12 = uT

12

a21 = l21υ11 A22 = l21uT
12 +L22U22

α11 = λ2
11 ?

a21 = l21λ11 A22 = l21lT
12 +L22L2

22

α11 := α11

aT
12 := aT

12

a21 := a21/α11

A22 := A22−a21aT
12

α11 :=
√

α11

a21 := a21/α11

A22 := A22−a21aT
12

(update only lower triangular part)

Algorithm: [A] := LU UNB VAR5(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22



a21 := a21/α11

A22 := A22−a21aT
12

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Algorithm: [A] := CHOL UNB VAR3(A)

Partition A→

 AT L AT R

ABL ABR


where AT L is 0×0

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


α11 :=

√
α11

a21 := a21/α11

A22 := A22−a21aT
21

(updating only the lower triangular part)

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 8.9: Side-by-side derivations of the unblocked LU factorization and Cholesky factorization algorithms.

Week 8. More on Matrix Inversion 308

Once one has computed the Cholesky factorization of A, one can solve Ax = b by substituting

A︷︸︸︷
LLT x = b

and first solving Lz = b after which solving LT x = z computes the desired solution x. Of course, as you learned in Weeks 3 and
4, you need not transpose the matrix!

Blocked (and other) algorithms

If you are interested in blocked algorithms for computing the Cholesky factorization, you may want to look at some notes we
wrote:

Robert van de Geijn.
Notes on Cholesky Factorization
http://www.cs.utexas.edu/users/flame/Notes/NotesOnCholReal.pdf

These have since become part of the notes Robert wrote for his graduate class on Numerical Linear Algebra:

Robert van de Geijn.
Linear Algebra: Foundations to Frontiers - Notes on Numerical Linear Algebra, Chapter 12.

Systematic derivation of Cholesky factorization algorithms

* View at edX
The above video was created when Robert was asked to give an online lecture for a class at Carnegie Mellon University.

It shows how algorithms can be systematically derived (as we discussed already in Week 2) using goal-oriented programming.
It includes a demonstration by Prof. Paolo Bientinesi (RWTH Aachen University) of a tool that performs the derivation au-
tomatically. It is when a process is systematic to the point where it can be automated that a computer scientist is at his/her
happiest!

More materials

You will find materials related to the implementation of this operations, including a video that demonstrates this, at

http://www.cs.utexas.edu/users/flame/Movies.html#Chol

Unfortunately, some of the links don’t work (we had a massive failure of the wiki that hosted the material).

8.4.3 Other Factorizations

We have now encountered the LU factorization,
A = LU,

the LU factorization with row pivoting,
PA = LU,

and the Cholesky factorization,
A = LLT .

Later in this course you will be introduced to the QR factorization,

A = QR,

where Q has the special property that QT Q = I and R is an upper triangular matrix.
When a matrix is indefinite symmetric, there is a factorization called the LDLT (pronounce as L D L transpose) factorization,

A = LDLT ,

where L is unit lower triangular and D is diagonal. You may want to see if you can modify the derivation of the Cholesky
factorization to yield an algorithm for the LDLT factorization.

http://www.cs.utexas.edu/users/flame/Notes/NotesOnCholReal.pdf
http://www.ulaff.net
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/e4b0c93da78c44d3854fa56b364d0189/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/9452d6714a0e4725a1ad6d5dae192309/e4b0c93da78c44d3854fa56b364d0189/2
http://www.cs.utexas.edu/users/flame/Movies.html#Chol

8.4. (Very Important) Enrichment 309

8.4.4 Welcome to the Frontier

Building on the material to which you have been exposed so far in this course, you should now be able to fully understand
significant parts of many of our publications. (When we write our papers, we try to target a broad audience.) Many of these
papers can be found at

http://www.cs.utexas.edu/˜flame/web/publications.

If not there, then Google!
Here is a small sampling:

• The paper I consider our most significant contribution to science to date:

Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Orti, Robert A. van de Geijn.
The science of deriving dense linear algebra algorithms.
ACM Transactions on Mathematical Software (TOMS), 2005.

• The book that explains the material in that paper at a more leisurely pace:

Robert A. van de Geijn and Enrique S. Quintana-Orti.
The Science of Programming Matrix Computations.
www.lulu.com, 2008.

• The journal paper that first introduced the FLAME notation:

Xiaobai Sun, Enrique S. Quintana, Gregorio Quintana, and Robert van de Geijn.
A Note on Parallel Matrix Inversion.
SIAM Journal on Scientific Computing, Vol. 22, No. 5, pp. 1762–1771.
http://www.cs.utexas.edu/˜flame/pubs/SIAMMatrixInversion.pdf.

• The paper that discusses many operations related to the inversion of a SPD matrix:

Paolo Bientinesi, Brian Gunter, Robert A. van de Geijn.
Families of algorithms related to the inversion of a Symmetric Positive Definite matrix.
ACM Transactions on Mathematical Software (TOMS), 2008.

• The paper that introduced the FLAME APIs:

Paolo Bientinesi, Enrique S. Quintana-Orti, Robert A. van de Geijn.
Representing linear algebra algorithms in code: the FLAME application program interfaces.
ACM Transactions on Mathematical Software (TOMS), 2005.

• Our papers on high-performance implementation of BLAS libraries:

Kazushige Goto, Robert A. van de Geijn.
Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software (TOMS), 2008.

Kazushige Goto, Robert van de Geijn.
High-performance implementation of the level-3 BLAS.
ACM Transactions on Mathematical Software (TOMS), 2008

Field G. Van Zee, Robert A. van de Geijn.
BLIS: A Framework for Rapid Instantiation of BLAS Functionality.
ACM Transactions on Mathematical Software, to appear.

• A classic paper on how to parallelize matrix-matrix multiplication:

Robert A van de Geijn, Jerrell Watts.
SUMMA: Scalable universal matrix multiplication algorithm.
Concurrency Practice and Experience, 1997.

http://www.cs.utexas.edu/~flame/web/publications
http://www.cs.utexas.edu/~flame/web/publications
http://www.cs.utexas.edu/~flame/pubs/SIAMMatrixInversion.pdf
http://www.cs.utexas.edu/~flame/pubs/SIAMMatrixInversion.pdf

Week 8. More on Matrix Inversion 310

For that paper, and others on parallel computing on large distributed memory computers, it helps to read up on collective
communication on massively parallel architectures:

Ernie Chan, Marcel Heimlich, Avi Purkayastha, Robert van de Geijn.
Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice & Experience , Volume 19 Issue 1, September 2007

• A paper that gives you a peek at how to parallelize for massively parallel architectures:

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, Nichols A. Romero.
Elemental: A New Framework for Distributed Memory Dense Matrix Computations.
ACM Transactions on Mathematical Software (TOMS), 2013.

Obviously, there are many people who work in the area of dense linear algebra operations and algorithms. We cite our
papers here because you will find the notation used in those papers to be consistent with the slicing and dicing notation that you
have been taught in this course. Much of the above cite work builds on important results of others. We stand on the shoulders
of giants.

8.5 Wrap Up

8.5.1 Homework

8.5.2 Summary

Equivalent conditions

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

Algorithm for inverting a matrix

See Figure 8.10.

Cost of inverting a matrix

Via Gauss-Jordan, taking advantage of zeroes in the appended identity matrix, requires approximately

2n3 floating point operations.

8.5. Wrap Up 311

Algorithm: [A] := GJ INVERSE INPLACE(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

a01 := a01/α11 A02 := A02−a01aT
12

a21 := a21/α11 A22 := A22−a21aT
12

(Note: above a01 and a21 must be updated

before the operations to their right.)

a01 := 0

α11 := 1 aT
12 := aT

12/α11

a21 := 0

(Note: above α11 must be updated last.)

A00 := A00−a01aT
10 a01 :=−a01

A20 := A20−a21aT
10 a21 :=−a21

aT
10 := aT

10/α11 α11 = 1/α11

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 8.10: Algorithm for inplace inversion of a matrix (when pivoting is not needed).

(Almost) never, ever invert a matrix

Solving Ax = b should be accomplished by first computing its LU factorization (possibly with partial pivoting) and then solving
with the triangular matrices.

Week 8. More on Matrix Inversion 312

Week 9
Vector Spaces

9.1 Opening Remarks

9.1.1 Solvable or not solvable, that’s the question

* View at edX
Consider the picture

(−2,−1)

(0,2)

(2,3)

p(χ) = γ0 + γ1χ+ γ2χ2

depicting three points in R2 and a quadratic polynomial (polynomial of degree two) that passes through those points. We say
that this polynomial interpolates these points. Let’s denote the polynomial by

p(χ) = γ0 + γ1χ+ γ2χ
2.

How can we find the coefficients γ0, γ1, and γ2 of this polynomial? We know that p(−2) =−1, p(0) = 2, and p(2) = 3. Hence

p(−2) = γ0 + γ1(−2) + γ2(−2)2 = −1

p(0) = γ0 + γ1 (0) + γ2 (0)2 = 2

p(2) = γ0 + γ1 (2) + γ2 (2)2 = 3

313

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/301956a961db4235b63397188cc337a5/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/301956a961db4235b63397188cc337a5/1

Week 9. Vector Spaces 314

In matrix notation we can write this as 
1 −2 4

1 0 0

1 2 4




γ0

γ1

γ2

=


−1

2

3

 .

By now you have learned a number of techniques to solve this linear system, yielding
γ0

γ1

γ2

=


2

1

−0.25


so that

p(χ) = 2+χ− 1
4

χ
2.

Now, let’s look at this problem a little differently. p(χ) is a linear combination (a word you now understand well) of the
polynomials p0(χ) = 1, p1(χ) = χ, and p2(χ) = χ2. These basic polynomials are called “parent functions”.

1

χ2

χ

γ0 + γ1χ+ γ2χ2

Now, notice that 
p(−2)

p(0)

p(2)

 =


γ0 + γ1(−2) + γ2(−2)2

γ0 + γ1(0) + γ2(0)2

γ0 + γ1(2) + γ2(2)2



= γ0


p0(−2)

p0(0)

p0(2)

+ γ1


p1(−2)

p1(0)

p1(2)

+ γ2


p2(−2)

p2(0)

p2(2)



= γ0


1

1

1

+ γ1


−2

0

2

+ γ2


(−2)2

02

22



= γ0


1

1

1

+ γ1


−2

0

2

+ γ2


4

0

4

 .

9.1. Opening Remarks 315

You need to think of the three vectors


1

1

1

,


−2

0

2

, and


4

0

4

 as vectors that capture the polynomials p0, p1, and p2

at the values −2, 0, and 2. Similarly, the vector


−1

2

3

 captures the polynomial p that interpolates the given points.


1

1

1




4

0

4



−2

0

2



−1

2

3



What we notice is that this last vector must equal a linear combination of the first three vectors:

γ0


1

1

1

+ γ1


−2

0

2

+ γ2


4

0

4

=


−1

2

3


Again, this gives rise to the matrix equation


1 −2 4

1 0 0

1 2 4




γ0

γ1

γ2

=


−1

2

3


with the solution 

γ0

γ1

γ2

=


2

1

−0.25

 .

The point is that one can think of finding the coefficients of a polynomial that interpolates points as either solving a system of
linear equations that come from the constraint imposed by the fact that the polynomial must go through a given set of points, or
as finding the linear combination of the vectors that represent the parent functions at given values so that this linear combination
equals the vector that represents the polynomial that is to be found.

Week 9. Vector Spaces 316

Figure 9.1: Interpolating with at second degree polynomial at χ =−2,0,2,4.

To be or not to be (solvable), that’s the question

Next, consider the picture in Figure 9.1 (left), which accompanies the matrix equation
1 −2 4

1 0 0

1 2 4

1 4 16




γ0

γ1

γ2

=


−1

2

3

2

 .

Now, this equation is also solved by 
γ0

γ1

γ2

=


2

1

−0.25

 .

The picture in Figure 9.1 (right) explains why: The new brown point that was added happens to lie on the overall quadratic
polynomial p(χ).

9.1. Opening Remarks 317

Figure 9.2: Interpolating with at second degree polynomial at χ =−2,0,2,4: when the fourth point doesn’t fit.

Finally, consider the picture in Figure 9.2 (left) which accompanies the matrix equation
1 −2 4

1 0 0

1 2 4

1 4 16




γ0

γ1

γ2

=


−1

2

3

9

 .

It turns out that this matrix equation (system of linear equations) does not have a solution. The picture in Figure 9.2 (right)
explains why: The new brown point that was added does not lie on the quadratic polynomial p2(χ).

This week, you will learn that the system Ax = b for an m×n matrix A sometimes has a unique solution, sometimes has no
solution at all, and sometimes has an infinite number of solutions. Clearly, it does not suffice to only look at the matrix A. It is
how the columns of A are related to the right-hand side vector that is key to understanding with which situation we are dealing.
And the key to understanding how the columns of A are related to those right-hand sides for which Ax = b has a solution is to
understand a concept called vector spaces.

Week 9. Vector Spaces 318

9.1.2 Outline

9.1. Opening Remarks . 313
9.1.1. Solvable or not solvable, that’s the question . 313
9.1.2. Outline . 318
9.1.3. What you will learn . 319

9.2. When Systems Don’t Have a Unique Solution . 320
9.2.1. When Solutions Are Not Unique . 320
9.2.2. When Linear Systems Have No Solutions . 321
9.2.3. When Linear Systems Have Many Solutions . 322
9.2.4. What is Going On? . 324
9.2.5. Toward a Systematic Approach to Finding All Solutions . 325

9.3. Review of Sets . 328
9.3.1. Definition and Notation . 328
9.3.2. Examples . 328
9.3.3. Operations with Sets . 329

9.4. Vector Spaces . 331
9.4.1. What is a Vector Space? . 331
9.4.2. Subspaces . 332
9.4.3. The Column Space . 334
9.4.4. The Null Space . 335

9.5. Span, Linear Independence, and Bases . 337
9.5.1. Span . 337
9.5.2. Linear Independence . 339
9.5.3. Bases for Subspaces . 343
9.5.4. The Dimension of a Subspace . 344

9.6. Enrichment . 346
9.6.1. Typesetting algorithms with the FLAME notation . 346

9.7. Wrap Up . 346
9.7.1. Homework . 346
9.7.2. Summary . 346

9.1. Opening Remarks 319

9.1.3 What you will learn

Upon completion of this unit, you should be able to

• Determine when systems do not have a unique solution and recognize the general solution for a system.

• Use and understand set notation.

• Determine if a given subset of Rn is a subspace.

• For simple examples, determine the null space and column space for a given matrix.

• Identify, apply, and prove simple properties of sets, vector spaces, subspaces, null spaces and column spaces.

• Recognize for simple examples when the span of two sets of vectors is the same.

• Determine when a set of vectors is linearly independent by exploiting special structures. For example, relate the rows of
a matrix with the columns of its transpose to determine if the matrix has linearly independent rows.

• For simple examples, find a basis for a subspace and recognize that while the basis is not unique, the number of vectors
in the basis is.

Week 9. Vector Spaces 320

9.2 When Systems Don’t Have a Unique Solution

9.2.1 When Solutions Are Not Unique

* View at edX

Up until this week, we looked at linear systems that had exactly one solution. The reason was that some variant of Gaussian
elimination (with row exchanges, if necessary and/or Gauss-Jordan elimination) completed, which meant that there was exactly
one solution.

What we will look at this week are linear systems that have either no solution or many solutions (indeed an infinite number).

Example 9.1 Consider 
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

3


Does Ax = b0 have a solution? The answer is yes:

2 2 −2

−2 −3 4

4 3 −2




2

−1

1

=


0

3

3

 . X

But this is not the only solution:
2 2 −2

−2 −3 4

4 3 −2




3
2

0
3
2

=


0

3

3

 X
and 

2 2 −2

−2 −3 4

4 3 −2




3

−3

0

=


0

3

3

 . X

Indeed, later we will see there are an infinite number of solutions!

Example 9.2 Consider 
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

4

 .

We will show that this equation does not have a solution in the next unit.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/1

9.2. When Systems Don’t Have a Unique Solution 321

Homework 9.2.1.1 Evaluate

1.


2 −4 −2

−2 4 1

2 −4 0




1

0

−1

=

2.


2 −4 −2

−2 4 1

2 −4 0




3

1

−1

=

3.


2 −4 −2

−2 4 1

2 −4 0



−1

−1

−1

=

Does the system


2 −4 −2

−2 4 1

2 −4 0




χ0

χ1

χ2

=


4

−3

2

 have multiple solutions? Yes/No

9.2.2 When Linear Systems Have No Solutions

* View at edX
Consider 

2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

4

 .

• Set this up as an appended system 
2 2 −2 0

−2 −3 4 3

4 3 −2 4

 .

Now, start applying Gaussian elimination (with row exchanges).

• Use the first row to eliminate the coefficients in the first column below the diagonal:
2 2 −2 0

0 −1 2 3

0 −1 2 4

 .

• Use the second row to eliminate the coefficients in the second column below the diagonal:
2 2 −2 0

0 −1 2 3

0 0 0 1

 .

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/2

Week 9. Vector Spaces 322

• At this point, we have encountered a zero on the diagonal of the matrix that cannot be fixed by exchanging with rows
below the row that has the zero on the diagonal.

Now we have a problem: The last line of the appended system represents

0×χ0 +0×χ1 +0×χ2 = 1,

or,
0 = 1

which is a contradiction. Thus, the original linear system represented three equations with three unknowns in which a contra-
diction was hidden. As a result this system does not have a solution.

Anytime you execute Gaussian elimination (with row exchanges) or Gauss-Jordan (with row exchanges) and at some point
encounter a row in the appended system that has zeroes to the left of the vertical bar and a nonzero to its right, the process
fails and the system has no solution.

Homework 9.2.2.1 The system


2 −4 −2

−2 4 1

2 −4 0




χ0

χ1

χ2

=


4

−3

3

 has no solution.

True/False

9.2.3 When Linear Systems Have Many Solutions

* View at edX
Now, let’s learn how to find one solution to a system Ax = b that has an infinite number of solutions. Not surprisingly, the

process is remarkably like Gaussian elimination:
Consider again

A =


2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

3

 .

Set this up as an appended systems 
2 2 −2 0

−2 −3 4 3

4 3 −2 3

 (9.1)

Now, apply Gauss-Jordan elimination. (Well, something that closely resembles what we did before, anyway.)

• Use the first row to eliminate the coefficients in the first column below the diagonal:
2 2 −2 0

0 −1 2 3

0 −1 2 3

 .

• Use the second row to eliminate the coefficients in the second column below the diagonal and use the second row to
eliminate the coefficients in the second column above the diagonal:

2 0 2 6

0 −1 2 3

0 0 0 0

 .

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/3

9.2. When Systems Don’t Have a Unique Solution 323

• Divide the first and second row by the diagonal element:
1 0 1 3

0 1 −2 −3

0 0 0 0

 .

Now, what does this mean? Up until this point, we have not encountered a situation in which the system, upon completion
of either Gaussian elimination or Gauss-Jordan elimination, an entire zero row. Notice that the difference between this situation
and the situation of no solution in the previous section is that the entire row of the final appended system is zero, including the
part to the right of the vertical bar.

So, let’s translate the above back into a system of linear equations:

χ0 + χ2 = 3

χ1 − 2χ2 = −3

0 = 0

Notice that we really have two equations and three unknowns, plus an equation that says that “0 = 0”, which is true, but doesn’t
help much!

Two equations with three unknowns does not give us enough information to find a unique solution. What we are going to
do is to make χ2 a “free variable”, meaning that it can take on any value in R and we will see how the “bound variables” χ0 and
χ1 now depend on the free variable. To so so, we introduce β to capture this “any value” that χ2 can take on. We introduce this
as the third equation

χ0 + χ2 = 3

χ1 − 2χ2 = −3

χ2 = β

and then substitute β in for χ2 in the other equations:

χ0 + β = 3

χ1 − 2β = −3

χ2 = β

Next, we bring the terms that involve β to the right

χ0 = 3 − β

χ1 = −3 + 2β

χ2 = β

Finally, we write this as vectors: 
χ0

χ1

χ2

=


3

−3

0

+β


−1

2

1


We now claim that this captures all solutions of the system of linear equations. We will call this the general solution.

Let’s check a few things:

• Let’s multiply the original matrix times the first vector in the general solution:
2 2 −2

−2 −3 4

4 3 −2




3

−3

0

=


0

3

3

 .X

Week 9. Vector Spaces 324

Thus the first vector in the general solution is a solution to the linear system, corresponding to the choice β = 0. We will
call this vector a specific solution and denote it by xs. Notice that there are many (indeed an infinite number of) specific
solutions for this problem.

• Next, let’s multiply the original matrix times the second vector in the general solution, the one multiplied by β:
2 2 −2

−2 −3 4

4 3 −2



−1

2

1

=


0

0

0

 .X

And what about the other solutions that we saw two units ago? Well,
2 2 −2

−2 −3 4

4 3 −2




2

−1

1

=


0

3

3

 . X

and 
2 2 −2

−2 −3 4

4 3 −2




3/2

0

3/2

=


0

3

3

 X
But notice that these are among the infinite number of solutions that we identified:

2

−1

1

=


3

−3

0

+(1)


−1

2

1

 and


3/2

0

3/2

=


3

−3

0

+(3/2)


−1

2

1

 .

9.2.4 What is Going On?

* View at edX
Consider Ax = b and assume that we have

• One solution to the system Ax = b, the specific solution we denote by xs so that Axs = b.

• One solution to the system Ax = 0 that we denote by xn so that Axn = 0.

Then
A(xs + xn)

= < Distribute A >

Axs +Axn

= < Axs = b and Axn = 0 >

b+0

= < algebra >

b

So, xs + xn is also a solution.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/4

9.2. When Systems Don’t Have a Unique Solution 325

Now,
A(xs +βxn)

= < Distribute A >

Axs +A(βxn)

= < Constant can be brought out >

Axs +βAxn

= < Axs = b and Axn = 0 >

b+0

= < algebra >

b

So A(xs +βxn) is a solution for every β ∈ R.

Given a linear system Ax = b, the strategy is to first find a specific solution, xs such that Axs = b. If this is clearly a unique
solution (Gauss-Jordan completed successfully with no zero rows), then you are done. Otherwise, find vector(s) xn such
that Axn = 0 and use it (these) to specify the general solution.

We will make this procedure more precise later this week.

Homework 9.2.4.1 Let Axs = b, Axn0 = 0 and Axn1 = 0. Also, let β0,β1 ∈ R. Then A(xs +β0xn0 +β1xn1) = b.
Always/Sometimes/Never

9.2.5 Toward a Systematic Approach to Finding All Solutions

* View at edX
Let’s focus on finding nontrivial solutions to Ax = 0, for the same example as in Unit 9.2.3. (The trivial solution to Ax = 0 is
x = 0.)

Recall the example 
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

3

3


which had the general solution 

χ0

χ1

χ2

=


3

−3

0

+β


−1

2

1

 .

We will again show the steps of Gaussian elimination, except that this time we also solve
2 2 −2

−2 −3 4

4 3 −2




χ0

χ1

χ2

=


0

0

0


• Set both of these up as an appended systems

2 2 −2 0

−2 −3 4 3

4 3 −2 3




2 2 −2 0

−2 −3 4 0

4 3 −2 0



https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ad2a2af1697241ec9a1f5c814bece403/5

Week 9. Vector Spaces 326

• Use the first row to eliminate the coefficients in the first column below the diagonal:
2 2 −2 0

0 −1 2 3

0 −1 2 3




2 2 −2 0

0 −1 2 0

0 −1 2 0

 .

• Use the second row to eliminate the coefficients in the second column below the diagonal
2 2 −2 0

0 −1 2 3

0 0 0 0




2 2 −2 0

0 −1 2 0

0 0 0 0

 .

Some terminology

The form of the transformed equations that we have now reached on the left is known as the row-echelon form. Let’s examine
it: 

2 2 −2 0

0 −1 2 3

0 0 0 0


The boxed values are known as the pivots. In each row to the left of the vertical bar, the left-most nonzero element is the pivot
for that row. Notice that the pivots in later rows appear to the right of the pivots in earlier rows.

Continuing on

• Use the second row to eliminate the coefficients in the second column above the diagonal:
2 0 2 6

0 −1 2 3

0 0 0 0




2 0 2 0

0 −1 2 0

0 0 0 0

 .

In this way, all elements above pivots are eliminated. (Notice we could have done this as part of the previous step, as part
of the Gauss-Jordan algorithm from Week 8. However, we broke this up into two parts to be able to introduce the term
row echelon form, which is a term that some other instructors may expect you to know.)

• Divide the first and second row by the diagonal element to normalize the pivots:
1 0 1 3

0 1 −2 −3

0 0 0 0




1 0 1 0

0 1 −2 0

0 0 0 0

 .

Some more terminology

The form of the transformed equations that we have now reached on the left is known as the reduced row-echelon form. Let’s
examine it: 

1 0 1 3

0 1 −2 −3

0 0 0 0




1 0 1 0

0 1 −2 0

0 0 0 0

 .

In each row, the pivot is now equal to one. All elements above pivots have been zeroed.

9.2. When Systems Don’t Have a Unique Solution 327

Continuing on again

• Observe that there was no need to perform all the transformations with the appended system on the right. One could have
simply applied them only to the appended system on the left. Then, to obtain the results on the right we simply set the
right-hand side (the appended vector) equal to the zero vector.

So, let’s translate the left appended system back into a system of linear systems:

χ0 + χ2 = 3

χ1 − 2χ2 = −3

0 = 0

As before, we have two equations and three unknowns, plus an equation that says that “0 = 0”, which is true, but doesn’t help
much! We are going to find one solution (a specific solution), by choosing the free variable χ2 = 0. We can set it to equal
anything, but zero is an easy value with which to compute. Substituting χ2 = 0 into the first two equations yields

χ0 + 0 = 3

χ1 − 2(0) = −3

0 = 0

We conclude that a specific solution is given by

xs =


χ0

χ1

χ2

=


3

−3

0

 .

Next, let’s look for one non-trivial solution to Ax = 0 by translating the right appended system back into a system of linear
equations:

χ0 + χ2 = 0

χ1 − 2χ2 = 0

Now, if we choose the free variable χ2 = 0, then it is easy to see that χ0 = χ1 = 0, and we end up with the trivial solution, x = 0.
So, instead choose χ2 = 1. (We, again, can choose any value, but it is easy to compute with 1.) Substituting this into the first
two equations yields

χ0 + 1 = 0

χ1 − 2(1) = 0

Solving for χ0 and χ1 gives us the following non-trivial solution to Ax = 0:

xn =


−1

2

1

 .

But if Axn = 0, then A(βxn) = 0. This means that all vectors

xs +βxn =


3

−3

0

+β


−1

2

1


solve the linear system. This is the general solution that we saw before.

In this particular example, it was not necessary to exchange (pivot) rows.

Week 9. Vector Spaces 328

Homework 9.2.5.1 Find the general solution (an expression for all solutions) for
2 −2 −4

−2 1 4

2 0 −4




χ0

χ1

χ2

=


4

−3

2

 .

Homework 9.2.5.2 Find the general solution (an expression for all solutions) for
2 −4 −2

−2 4 1

2 −4 0




χ0

χ1

χ2

=


4

−3

2

 .

9.3 Review of Sets

9.3.1 Definition and Notation

* View at edX
We very quickly discuss what a set is and some properties of sets. As part of discussing vector spaces, we will see lots of

examples of sets and hence we keep examples down to a minimum.

Definition 9.3 In mathematics, a set is defined as a collection of distinct objects.

The objects that are members of a set are said to be its elements. If S is used to denote a given set and x is a member of that
set, then we will use the notation x ∈ S which is pronounced x is an element of S.

If x, y, and z are distinct objects that together are the collection that form a set, then we will often use the notation {x,y,z}
to describe that set. It is extremely important to realize that order does not matter: {x,y,z} is the same set as {y,z,x}, and this
is true for all ways in which you can order the objects.

A set itself is an object and hence once can have a set of sets, which has elements that are sets.

Definition 9.4 The size of a set equals the number of distinct objects in the set.

This size can be finite or infinite. If S denotes a set, then its size is denoted by |S|.

Definition 9.5 Let S and T be sets. Then S is a subset of T if all elements of S are also elements of T . We use the notation
S⊂ T or T ⊃ S to indicate that S is a subset of T .

Mathematically, we can state this as
(S⊂ T)⇔ (x ∈ S⇒ x ∈ T).

(S is a subset of T if and only if every element in S is also an element in T .)

Definition 9.6 Let S and T be sets. Then S is a proper subset of T if all S is a subset of T and there is an element in T that is
not in S. We use the notation S (T or T) S to indicate that S is a proper subset of T .

Some texts will use the symbol ⊂ to mean “proper subset” and ⊆ to mean “subset”. Get used to it! You’ll have to figure
out from context what they mean.

9.3.2 Examples

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/2

9.3. Review of Sets 329

Examples

Example 9.7 The integers 1,2,3 are a collection of three objects (the given integers). The set formed by these three
objects is given by {1,2,3} (again, emphasizing that order doesn’t matter). The size of this set is |{1,2,3,}|= 3.

Example 9.8 The collection of all integers is a set. It is typically denoted by Z and sometimes written as
{. . . ,−2,−1,0,1,2, . . .}. Its size is infinite: |Z|= ∞.

Example 9.9 The collection of all real numbers is a set that we have already encountered in our course. It is
denoted by R. Its size is infinite: |R|= ∞. We cannot enumerate it (it is uncountably infinite, which is the subject
of other courses).

Example 9.10 The set of all vectors of size n whose components are real valued is denoted by Rn.

9.3.3 Operations with Sets

* View at edX
There are three operations on sets that will be of interest:

Definition 9.11 The union of two sets S and T is the set of all elements that are in S or in T . This union is denoted by S∪T .

Formally, we can give the union as
S∪T = {x|x ∈ S∨ x ∈ T}

which is read as “The union of S and T equals the set of all elements x such that x is in S or x is in T .” (The “|” (vertical bar)
means “such that” and the ∨ is the logical “or” operator.) It can be depicted by the shaded area (blue, pink, and purple) in the
following Venn diagram:

S T

Example 9.12 Let S = {1,2,3} and T = {2,3,5,8,9}. Then S∪T = {1,2,3,5,8,9}.
What this example shows is that the size of the union is not necessarily the sum of the sizes of the individual sets.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/02fb7e47fef249e89e42accb4558bcc7/3

Week 9. Vector Spaces 330

Definition 9.13 The intersection of two sets S and T is the set of all elements that are in S and in T . This intersection is
denoted by S∩T .

Formally, we can give the intersection as
S∩T = {x|x ∈ S∧ x ∈ T}

which is read as “The intersection of S and T equals the set of all elements x such that x is in S and x is in T .” (The “|” (vertical
bar) means “such that” and the ∧ is the logical “and” operator.) It can be depicted by the shaded area in the following Venn
diagram:

S T

Example 9.14 Let S = {1,2,3} and T = {2,3,5,8,9}. Then S∩T = {2,3}.

Example 9.15 Let S = {1,2,3} and T = {5,8,9}. Then S∩T =∅ (∅ is read as “the empty set”).

Definition 9.16 The complement of set S with respect to set T is the set of all elements that are in T but are not in S. This
complement is denoted by T\S.

Example 9.17 Let S = {1,2,3} and T = {2,3,5,8,9}. Then T\S = {5,8,9} and S\T = {1}.

Formally, we can give the complement as
T\S = {x|x /∈ S∧ x ∈ T}

which is read as “The complement of S with respect to T equals the set of all elements x such that x is not in S and x is in T .”
(The “|” (vertical bar) means “such that”, ∧ is the logical “and” operator, and the /∈ means “is not an element in”.) It can be
depicted by the shaded area in the following Venn diagram:

ST

9.4. Vector Spaces 331

Sometimes, the notation S̄ or Sc is used for the complement of set S. Here, the set with respect to which the complement is
taken is “obvious from context”.

For a single set S, the complement, S̄ is shaded in the diagram below.

S̄

S

Homework 9.3.3.1 Let S and T be two sets. Then S⊂ S∪T .
Always/Sometimes/Never

Homework 9.3.3.2 Let S and T be two sets. Then S∩T ⊂ S.
Always/Sometimes/Never

9.4 Vector Spaces

9.4.1 What is a Vector Space?

* View at edX
For our purposes, a vector space is a subset, S, of Rn with the following properties:

• 0 ∈ S (the zero vector of size n is in the set S); and

• If v,w ∈ S then (v+w) ∈ S; and

• If α ∈ R and v ∈ S then αv ∈ S.

A mathematician would describe the last two properties as “S is closed under addition and scalar multiplication.” All the results
that we will encounter for such vector spaces carry over to the case where the components of vectors are complex valued.

Example 9.18 The set Rn is a vector space:

• 0 ∈ Rn.

• If v,w ∈ Rn then v+w ∈ Rn.

• If v ∈ Rn and α ∈ R then αv ∈ Rn.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/1

Week 9. Vector Spaces 332

9.4.2 Subspaces

* View at edX
So, the question now becomes: “What subsets of Rn are vector spaces?” We will call such sets subspaces of Rn.

Homework 9.4.2.1 Which of the following subsets of R3 are subspaces of R3?

1. The plane of vectors x =


χ0

χ1

χ2

 such that χ0 = 0. In other words, the set of all vectors

x ∈ R3

∣∣∣∣∣∣∣∣x =


0

χ1

χ2


.

2. Similarly, the plane of vectors x with χ0 = 1:

x ∈ R3

∣∣∣∣∣∣∣∣x =


1

χ1

χ2


.

3.

x ∈ R3

∣∣∣∣∣∣∣∣x =


χ0

χ1

χ2

∧χ0χ1 = 0

. (Recall, ∧ is the logical “and” operator.)

4.

x ∈ R3

∣∣∣∣∣∣∣∣x = β0


1

1

0

+β1


0

1

2

 where β0,β1 ∈ R

.

5.

x ∈ R3

∣∣∣∣∣∣∣∣x =


χ0

χ1

χ2

∧χ0−χ1 +3χ2 = 0

.

Homework 9.4.2.2 The empty set, ∅, is a subspace of Rn.
True/False

Homework 9.4.2.3 The set {0} where 0 is a vector of size n is a subspace of Rn.
True/False

Homework 9.4.2.4 The set S⊂ Rn described by

{x | ‖x‖2 < 1} .

is a subspace of Rn. (Recall that ‖x‖2 is the Euclidean length of vector x so this describes all elements with length
less than or equal to one.)

True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/2

9.4. Vector Spaces 333

Homework 9.4.2.5 The set S⊂ Rn described by


ν0

0
...

0



∣∣∣∣∣∣∣∣∣∣∣
ν0 ∈ R


is a subspace of Rn.

True/False

Homework 9.4.2.6 The set S⊂ Rn described by{
νe j | ν ∈ R

}
,

where e j is a unit basis vector, is a subspace.
True/False

* View at edX

Homework 9.4.2.7 The set S⊂ Rn described by

{χa | χ ∈ R} ,

where a ∈ Rn, is a subspace.
True/False

Homework 9.4.2.8 The set S⊂ Rn described by

{χ0a0 +χ1a1 | χ0,χ1 ∈ R} ,

where a0,a1 ∈ Rn, is a subspace.
True/False

Homework 9.4.2.9 The set S⊂ Rm described by(a0 a1

) χ0

χ1

 ∣∣∣∣∣∣ χ0,χ1 ∈ R

 ,

where a0,a1 ∈ Rm, is a subspace.
True/False

Homework 9.4.2.10 The set S⊂ Rm described by{
Ax | x ∈ R2} ,

where A ∈ Rm×2, is a subspace.
True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/2

Week 9. Vector Spaces 334

9.4.3 The Column Space

* View at edX

Homework 9.4.3.1 The set S⊂ Rm described by

{Ax | x ∈ Rn} ,

where A ∈ Rm×n, is a subspace.
True/False

This last exercise very precisely answers the question of when a linear system of equation, expressed as the matrix equation
Ax = b, has a solution: it has a solution only if b is an element of the space S in this last exercise.

Definition 9.19 Let A ∈ Rm×n. Then the column space of A equals the set

{Ax | x ∈ Rn} .

It is denoted by C (A).

The name “column space” comes from the observation (which we have made many times by now) that

Ax =
(

a0 a1 · · · an−1

)


χ0

χ1
...

χn−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1.

Thus C (A) equals the set of all linear combinations of the columns of matrix A.

Theorem 9.20 The column space of A ∈ Rm×n is a subspace of Rm.

Proof: The last exercise proved this.

Theorem 9.21 Let A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. Then Ax = b has a solution if and only if b ∈ C (A).

Proof: Recall that to prove an “if and only if” statement P⇔ Q, you may want to instead separately prove P⇒ Q and P⇐ Q.

(⇒) Assume that Ax = b. Then b ∈ {Ax|x ∈ Rn}. Hence b is in the column space of A.

(⇐) Assume that b is in the column space of A. Then b ∈ {Ax|x ∈Rn}. But this means there exists a vector x such that Ax = b.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/3

9.4. Vector Spaces 335

Homework 9.4.3.2 Match the matrices on the left to the column space on the right. (You should be able to do this
“by examination.”)

1.

 0 0

0 0



2.

 0 1

0 0



3.

 0 −2

0 0



4.

 0 0

1 −2



5.

 0 1

2 0



6.

 1 0

2 3



7.

 1

2



8.

 1 −2

2 −4



9.

 1 −2 −1

2 −4 −2



a. R2.

b.


 χ0

χ1

∣∣∣∣∣∣χ0 = 0∨χ1 = 0



c.


 α

0

∣∣∣∣∣∣α ∈ R



d.


 0

α

∣∣∣∣∣∣α ∈ R



e.

α

 1

2

∣∣∣∣∣∣α ∈ R



f.


 0

0



(Recall that ∨ is the logical “or” operator.)

Homework 9.4.3.3 Which of the following matrices have a FINITE number of elements in their column space?
(Mark all that apply.)

1. The identity matrix.

2. The zero matrix.

3. All matrices.

4. None of the above.

9.4.4 The Null Space

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/e0bc45c579814ab6827134127a7d5042/4

Week 9. Vector Spaces 336

Recall:

• We are interested in the solutions of Ax = b.

• We have already seen that if Axs = b and Axn = 0 then xs + xn is also a solution:

A(xs + xn) = b.

Definition 9.22 Let A ∈ Rm×n. Then the set of all vectors x ∈ Rn that have the property that Ax = 0 is called the null space of
A and is denoted by

N (A) = {x|Ax = 0}.

Homework 9.4.4.1 Let A ∈ Rm×n. The null space of A, N (A), is a subspace
True/False

9.5. Span, Linear Independence, and Bases 337

Homework 9.4.4.2 For each of the matrices on the left match the set of vectors on the right that describes its null
space. (You should be able to do this “by examination.”)

1.

 0 0

0 0



2.

 0 1

0 0



3.

 0 −2

0 0



4.

 0 0

1 −2



5.

 0 1

2 0



6.

 1 0

2 3



7.

 1

2



8.

 1 −2

2 −4



a. R2.

b.


 χ0

χ1

∣∣∣∣∣∣χ0 = 0∨χ1 = 0



c.


 α

0

∣∣∣∣∣∣α ∈ R


d. ∅

e.


 0

α

∣∣∣∣∣∣α ∈ R



f.


 0

0


g.
{(

0
)}

h.

α

 1

2

∣∣∣∣∣∣α ∈ R



i.

α

 2

1

∣∣∣∣∣∣α ∈ R


(Recall that ∨ is the logical “or” operator.)

9.5 Span, Linear Independence, and Bases

9.5.1 Span

* View at edX
What is important about vector (sub)spaces is that if you have one or more vectors in that space, then it is possible to

generate other vectors in the subspace by taking linear combinations of the original known vectors.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/1

Week 9. Vector Spaces 338

Example 9.23 α0

 1

0

+α1

 0

1

∣∣∣∣∣∣α0,α1 ∈ R


is the set of all linear combinations of the unit basis vectors e0,e1 ∈ R2. Notice that all of R2 (an uncountable
infinite set) can be described with just these two vectors.

We have already seen that, given a set of vectors, the set of all linear combinations of those vectors is a subspace. We now
give a name to such a set of linear combinations.

Definition 9.24 Let {v0,v1, · · · ,vn−1} ⊂ Rm. Then the span of these vectors, Span{v0,v1, · · · ,vn−1}, is said to be the set of all
vectors that are a linear combination of the given set of vectors.

Example 9.25

Span

 1

0

 ,

 0

1

= R2.

Example 9.26 Consider the equation χ0 +2χ1−χ2 = 0. It defines a subspace. In particular, that subspace is the
null space of the matrix

(
1 2 −1

)
. We know how to find two vectors in that nullspace:(

1 2 −1 0
)

The box identifies the pivot. Hence, the free variables are χ1 and χ2. We first set χ1 = 1 and χ2 = 0 and solve for
χ0. Then we set χ1 = 0 and χ2 = 1 and again solve for χ0. This gives us the vectors

1

0

1

 and


−2

1

0

 .

We know that any linear combination of these vectors also satisfies the equation (is also in the null space). Hence,
we know that any vector in

Span




1

0

1

 ,


−2

1

0




is also in the null space of the matrix. Thus, any vector in that set satisfies the equation given at the start of this
example.

We will later see that the vectors in this last example “span” the entire null space for the given matrix. But we are not quite
ready to claim that.

We have learned three things in this course that relate to this discussion:

• Given a set of vectors {v0,v1, . . . ,vn−1} ⊂ Rn, we can create a matrix that has those vectors as its columns:

V =
(

v0 v1 · · · vn−1

)
.

• Given a matrix V ∈ Rm×n and vector x ∈ Rn,

V x = χ0v0 +χ1v1 + · · ·+χn−1vn−1.

9.5. Span, Linear Independence, and Bases 339

In other words, V x takes a linear combination of the columns of V .

• The column space of V , C (V), is the set (subspace) of all linear combinations of the columns of V :

C (V) = {V x|x ∈ Rn}= {χ0v0 +χ1v1 + · · ·+χn−1vn−1|χ0,χ1, . . . ,χn−1 ∈ R} .

We conclude that

If V =
(

v0 v1 · · · vn−1

)
, then Span(v0,v1, . . . ,vn−1) = C (V).

Definition 9.27 A spanning set of a subspace S is a set of vectors {v0,v1, . . . ,vn−1}
such that Span({v0,v1, . . . ,vn−1}) = S.

9.5.2 Linear Independence

* View at edX

Example 9.28 We show that Span





1

0

0

 ,


0

1

0



= Span





1

0

0

 ,


0

1

0

 ,


1

1

0



. One can either simply recog-

nize that both sets equal all of R2, or one can reason it by realizing that in order to show that sets S and T are equal one can just show that both
S⊂ T and T ⊂ S:

• S ⊂ T : Let x ∈ Span




1

0

0

 ,


0

1

0


 Then there exist α0 and α1 such that x = α0


1

0

0

+α1


0

1

0

. This in turn means

that x = α0


1

0

0

+α1


0

1

0

+(0)


1

1

0

. Hence

x ∈ Span





1

0

0

 ,


0

1

0

 ,


1

1

0



.

• T ⊂ S: Let x ∈ Span





1

0

0

 ,


0

1

0

 ,


1

1

0



. Then there exist α0, α1, and α2 such that x = α0


1

0

0

+α1


0

1

0

+

α2


1

1

0

. But


1

1

0

=


1

0

0

+


0

1

0

. Hence

x = α0


1

0

0

+α1


0

1

0

+α2




1

0

0

+


0

1

0


= (α0 +α2)


1

0

0

+(α1 +α2)


0

1

0

.

Therefore x ∈ Span





1

0

0

 ,


0

1

0



.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/2

Week 9. Vector Spaces 340

Homework 9.5.2.1

Span





1

0

1

 ,


0

0

1



= Span





1

0

1

 ,


0

0

1

 ,


1

0

3





True/False

You might be thinking that needing fewer vectors to describe a subspace is better than having more, and we’d agree with
you!

In both examples and in the homework, the set on the right of the equality sign identifies three vectors to identify the
subspace rather than the two required for the equivalent set to its left. The issue is that at least one (indeed all) of the vectors
can be written as linear combinations of the other two. Focusing on the exercise, notice that

1

1

0

=


1

0

0

+


0

1

0

 .

Thus, any linear combination

α0


1

0

1

+α1


0

0

1

+α2


1

0

3


can also be generated with only the first two vectors:

α0


1

0

1

+α1


0

0

1

+α2


1

0

3

= (α0 +α2)


1

0

1

+(α0 +2α2)


0

0

1


We now introduce the concept of linear (in)dependence to cleanly express when it is the case that a set of vectors has elements
that are redundant in this sense.

Definition 9.29 Let {v0, . . . ,vn−1} ⊂ Rm. Then this set of vectors is said to be linearly independent if χ0v0 + χ1v1 + · · ·+
χn−1vn−1 = 0 implies that χ0 = · · ·= χn−1 = 0. A set of vectors that is not linearly independent is said to be linearly dependent.

Homework 9.5.2.2 Let the set of vectors {a0,a1, . . . ,an−1}⊂Rm be linearly dependent. Then at least one of these
vectors can be written as a linear combination of the others.

True/False

This last exercise motivates the term linearly independent in the definition: none of the vectors can be written as a linear
combination of the other vectors.

Example 9.30 The set of vectors 


1

0

0

 ,


0

1

0

 ,


1

1

0




is linearly dependent: 
1

0

0

+


0

1

0

−


1

1

0

=


0

0

0

 .

9.5. Span, Linear Independence, and Bases 341

Theorem 9.31 Let {a0, . . . ,an−1} ⊂ Rm and let A =
(

a0 · · · an−1

)
. Then the vectors {a0, . . . ,an−1} are linearly inde-

pendent if and only if N (A) = {0}.

Proof:

(⇒) Assume {a0, . . . ,an−1} are linearly independent. We need to show that N (A) = {0}. Assume x ∈ N (A). Then Ax = 0
implies that

0 = Ax =
(

a0 · · · an−1

)
χ0
...

χn−1


= χ0a0 +χ1a1 + · · ·+χn−1an−1

and hence χ0 = · · ·= χn−1 = 0. Hence x = 0.

(⇐) Notice that we are trying to prove P⇐ Q, where P represents “the vectors {a0, . . . ,an−1} are linearly independent” and
Q represents “N (A) = {0}”. It suffices to prove the contrapositive: ¬P⇒ ¬Q. (Note that ¬ means “not”) Assume
that {a0, . . . ,an−1} are not linearly independent. Then there exist {χ0, · · · ,χn−1} with at least one χ j 6= 0 such that
χ0a0+χ1a1+ · · ·+χn−1an−1 = 0. Let x = (χ0, . . . ,χn−1)

T . Then Ax = 0 which means x∈N (A) and hence N (A) 6= {0}.

Example 9.32 In the last example, we could have taken the three vectors to be the columns of a 3× 3 matrix A
and checked if Ax = 0 has a solution: 

1 0 1

0 1 1

0 0 0




1

1

−1

=


0

0

0


Because there is a non-trivial solution to Ax = 0, the nullspace of A has more than just the zero vector in it, and the
columns of A are linearly dependent.

Example 9.33 The columns of an identity matrix I ∈ Rn×n form a linearly independent set of vectors.

Proof: Since I has an inverse (I itself) we know that N (I) = {0}. Thus, by Theorem 9.31, the columns of I are linearly
independent.

Week 9. Vector Spaces 342

Example 9.34 The columns of L =


1 0 0

2 −1 0

1 2 3

 are linearly independent. If we consider


1 0 0

2 −1 0

1 2 3




χ0

χ1

χ2

=


0

0

0


and simply solve this, we find that χ0 = 0/1 = 0, χ1 = (0− 2χ0)/(−1) = 0, and χ2 = (0− χ0− 2χ1)/(3) = 0.
Hence, N (L) = {0} (the zero vector) and we conclude, by Theorem 9.31, that the columns of L are linearly
independent.

The last example motivates the following theorem:

Theorem 9.35 Let L ∈ Rn×n be a lower triangular matrix with nonzeroes on its diagonal. Then its columns are linearly
independent.

Proof: Let L be as indicated and consider Lx = 0. If one solves this via whatever method one pleases, the solution x = 0 will
emerge as the only solution. Thus N (L) = {0} and by Theorem 9.31, the columns of L are linearly independent.

Homework 9.5.2.3 Let U ∈Rn×n be an upper triangular matrix with nonzeroes on its diagonal. Then its columns
are linearly independent. Always/Sometimes/Never

Homework 9.5.2.4 Let L ∈ Rn×n be a lower triangular matrix with nonzeroes on its diagonal. Then its rows are
linearly independent. (Hint: How do the rows of L relate to the columns of LT ?)

Always/Sometimes/Never

Example 9.36 The columns of L =


1 0 0

2 −1 0

1 2 3

−1 0 −2

 are linearly independent. If we consider


1 0 0

2 −1 0

1 2 3

−1 0 −2




χ0

χ1

χ2

=


0

0

0

0


and simply solve this, we find that χ0 = 0/1 = 0, χ1 = (0−2χ0)/(−1) = 0, χ2 = (0−χ0−2χ1)/(3) = 0. Hence,
N (L) = {0} (the zero vector) and we conclude, by Theorem 9.31, that the columns of L are linearly independent.

Next, we observe that if one has a set of more than m vectors in Rm, then they must be linearly dependent:

Theorem 9.37 Let {a0,a1, . . . ,an−1} ∈ Rm and n > m. Then these vectors are linearly dependent.

9.5. Span, Linear Independence, and Bases 343

Proof: Consider the matrix A =
(

a0 · · · an−1

)
. If one applies the Gauss-Jordan method to this matrix in order to get

it to upper triangular form, at most m columns with pivots will be encountered. The other n−m columns correspond to free
variables, which allow us to construct nonzero vectors x so that Ax = 0.

The observations in this unit allows us to add to our conditions related to the invertibility of matrix A:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

• C (A) = Rn.

• A has linearly independent columns.

• N (A) = {0}.

9.5.3 Bases for Subspaces

* View at edX
In the last unit, we started with an example and then an exercise that showed that if we had three vectors and one of the

three vectors could be written as a linear combination of the other two, then the span of the three vectors was equal to the span
of the other two vectors.

It turns out that this can be generalized:

Definition 9.38 Let S be a subspace of Rm. Then the set {v0,v1, · · · ,vn−1}⊂Rm is said to be a basis for S if (1) {v0,v1, · · · ,vn−1}
are linearly independent and (2) Span{v0,v1, · · · ,vn−1}= S.

Homework 9.5.3.1 The vectors {e0,e1, . . . ,en−1} ⊂ Rn are a basis for Rn.
True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/3

Week 9. Vector Spaces 344

Example 9.39 Let {a0, . . . ,an−1} ⊂Rn and let A =
(

a0 a1 · · · an−1

)
be invertible. Then {a0, . . . ,an−1} ⊂

Rn form a basis for Rn.
Note: The fact that A is invertible means there exists A−1 such that A−1A = I. Since Ax = 0 means x = A−1Ax =
A−10 = 0, the columns of A are linearly independent. Also, given any vector y ∈ Rn, there exists a vector x ∈ Rn

such that Ax = y (namely x = A−1y). Letting x =


χ0
...

χn−1

 we find that y = χ0a0 + · · ·+χn−1an−1 and hence

every vector in Rn is a linear combination of the set {a0, . . . ,an−1} ⊂ Rn.

Lemma 9.40 Let S⊂ Rm. Then S contains at most m linearly independent vectors.

Proof: Proof by contradiction. We will assume that S contains more than m linearly independent vectors and show that this
leads to a contradiction.

Since S contains more than m linearly independent vectors, it contains at least m+ 1 linearly independent vectors. Let us
label m+1 such vectors v0,v1, . . . ,vm−1,vm. Let V =

(
v0 v1 · · · vm

)
. This matrix is m× (m+1) and hence there exists

a nontrivial xn such that V xn = 0. (This is an equation with m equations and m+1 unknowns.) Thus, the vectors {v0,v1, · · · ,vm}
are linearly dependent, which is a contradiction.

Theorem 9.41 Let S be a nontrivial subspace of Rm. (In other words, S 6= {0}.) Then there exists a basis {v0,v1, . . . ,vn−1} ⊂
Rm such that Span(v0,v1, . . . ,vn−1) = S.

Proof: Notice that we have already established that m < n. We will construct the vectors. Let S be a nontrivial subspace. Then
S contains at least one nonzero vector. Let v0 equal such a vector. Now, either Span(v0) = S in which case we are done or
S\Span(v0) is not empty, in which case we can pick some vector in S\Span(v0) as v1. Next, either Span(v0,v1) = S in which
case we are done or S\Span(v0,v1) is not empty, in which case we pick some vector in S\Span(v0,v1) as v2. This process
continues until we have a basis for S. It can be easily shown that the vectors are all linearly independent.

9.5.4 The Dimension of a Subspace

* View at edX
We have established that every nontrivial subspace of Rm has a basis with n vectors. This basis is not unique. After all, we

can simply multiply all the vectors in the basis by a nonzero constant and contruct a new basis. What we’ll establish now is
that the number of vectors in a basis for a given subspace is always the same. This number then becomes the dimension of the
subspace.

Theorem 9.42 Let S be a subspace of Rm and let {v0,v1, · · · ,vn−1} ⊂ Rm and {w0,w1, · · · ,wk−1} ⊂ Rm both be bases for S.
Then k = n. In other words, the number of vectors in a basis is unique.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/ec1f54c337b24a0cad095c3782eec0d8/4

9.5. Span, Linear Independence, and Bases 345

Proof: Proof by contradiction. Without loss of generality, let us assume that k > n. (Otherwise, we can switch the roles of the
two sets.) Let V =

(
v0 · · · vn−1

)
and W =

(
w0 · · · wk−1

)
. Let x j have the property that w j =V x j. (We know such

a vector x j exists because V spans V and w j ∈ V.) Then W =V X , where X =
(

x0 · · · xk−1

)
. Now, X ∈ Rn×k and recall

that k > n. This means that N (X) contains nonzero vectors (why?). Let y ∈ N (X). Then Wy = V Xy = V (Xy) = V (0) = 0,
which contradicts the fact that {w0,w1, · · · ,wk−1} are linearly independent, and hence this set cannot be a basis for V.

Definition 9.43 The dimension of a subspace S equals the number of vectors in a basis for that subspace.

A basis for a subspace S can be derived from a spanning set of a subspace S by, one-to-one, removing vectors from the set
that are dependent on other remaining vectors until the remaining set of vectors is linearly independent , as a consequence of
the following observation:

Definition 9.44 Let A ∈ Rm×n. The rank of A equals the number of vectors in a basis for the column space of A. We will let
rank(A) denote that rank.

Theorem 9.45 Let {v0,v1, · · · ,vn−1} ⊂Rm be a spanning set for subspace S and assume that vi equals a linear combination of
the other vectors. Then {v0,v1, · · · ,vi−1,vi+1, · · · ,vn−1} is a spanning set of S.

Similarly, a set of linearly independent vectors that are in a subspace S can be “built up” to be a basis by successively adding
vectors that are in S to the set while maintaining that the vectors in the set remain linearly independent until the resulting is a
basis for S.

Theorem 9.46 Let {v0,v1, · · · ,vn−1} ⊂ Rm be linearly independent and assume that {v0,v1, · · · ,vn−1} ⊂ S where S is a sub-
space. Then this set of vectors is either a spanning set for S or there exists w ∈ S such that {v0,v1, · · · ,vn−1,w} are linearly
independent.

We can add some more conditions regarding the invertibility of matrix A:

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

• C (A) = Rn.

• A has linearly independent columns.

• N (A) = {0}.

• rank(A) = n.

Week 9. Vector Spaces 346

9.6 Enrichment

9.6.1 Typesetting algorithms with the FLAME notation

* View at edX

9.7 Wrap Up

9.7.1 Homework

No additional homework this week.

9.7.2 Summary

Solution(s) to linear systems

Whether a linear system of equations Ax = b has a unique solution, no solution, or multiple solutions can be determined by
writing the system as an appended system (

A b
)

and transforming this appended system to row echelon form, swapping rows if necessary.
When A is square, conditions for the solution to be unique were discussed in Weeks 6-8.
Examples of when it has a unique solution, no solution, or multiple solutions when m 6= n were given in this week, but this

will become more clear in Week 10. Therefore, we won’t summarize it here.

Sets

Definition 9.47 In mathematics, a set is defined as a collection of distinct objects.

• The objects that are members of a set are said to be its elements.

• The notation x ∈ S is used to indicate that x is an element in set S.

Definition 9.48 The size of a set equals the number of distinct objects in the set. It is denoted by |S|.

Definition 9.49 Let S and T be sets. Then S is a subset of T if all elements of S are also elements of T . We use the notation
S⊂ T to indicate that S is a subset of T :

(S⊂ T)⇔ (x ∈ S⇒ x ∈ T).

Definition 9.50 The union of two sets S and T is the set of all elements that are in S or in T . This union is denoted by S∪T :

S∪T = {x|x ∈ S∨ x ∈ T.}

Definition 9.51 The intersection of two sets S and T is the set of all elements that are in S and in T . This intersection is
denoted by S∩T :

S∩T = {x|x ∈ S∧ x ∈ T.}

Definition 9.52 The complement of set S with respect to set T is the set of all elements that are in T but are not in S. This
complement is denoted by T\S:

T\S = {x|x /∈ S∧ x ∈ T}

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/d90540e6510d4511b440385c84b947eb/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/290b3c9657b4487d9ccf0506f1fe3f66/d90540e6510d4511b440385c84b947eb/1

9.7. Wrap Up 347

Vector spaces

For our purposes, a vector space is a subset, S, of Rn with the following properties:

• 0 ∈ S (the zero vector of size n is in the set S); and

• If v,w ∈ S then (v+w) ∈ S; and

• If α ∈ R and v ∈ S then αv ∈ S.

Definition 9.53 A subset of Rn is said to be a subspace of Rn is it a vector space.

Definition 9.54 Let A ∈ Rm×n. Then the column space of A equals the set

{Ax | x ∈ Rn} .

It is denoted by C (A).

The name “column space” comes from the observation (which we have made many times by now) that

Ax =
(

a0 a1 · · · an−1

)


χ0

χ1
...

χn−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1.

Thus C (A) equals the set of all linear combinations of the columns of matrix A.

Theorem 9.55 The column space of A ∈ Rm×n is a subspace of Rm.

Theorem 9.56 Let A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. Then Ax = b has a solution if and only if b ∈ C (A).

Definition 9.57 Let A ∈ Rm×n. Then the set of all vectors x ∈ Rn that have the property that Ax = 0 is called the null space of
A and is denoted by

N (A) = {x|Ax = 0}.

Span, Linear Dependence, Bases

Definition 9.58 Let {v0,v1, · · · ,vn−1} ⊂ Rm. Then the span of these vectors, Span{v0,v1, · · · ,vn−1}, is said to be the set of all
vectors that are a linear combination of the given set of vectors.

If V =
(

v0 v1 · · · vn−1

)
, then Span(v0,v1, . . . ,vn−1) = C (V).

Definition 9.59 A spanning set of a subspace S is a set of vectors {v0,v1, . . . ,vn−1}
such that Span({v0,v1, . . . ,vn−1}) = S.

Definition 9.60 Let {v0, . . . ,vn−1} ⊂ Rm. Then this set of vectors is said to be linearly independent if χ0v0 + χ1v1 + · · ·+
χn−1vn−1 = 0 implies that χ0 = · · ·= χn−1 = 0. A set of vectors that is not linearly independent is said to be linearly dependent.

Theorem 9.61 Let the set of vectors {a0,a1, . . . ,an−1} ⊂ Rm be linearly dependent. Then at least one of these vectors can be
written as a linear combination of the others.

This last theorem motivates the term linearly independent in the definition: none of the vectors can be written as a linear
combination of the other vectors.

Theorem 9.62 Let {a0, . . . ,an−1} ⊂ Rm and let A =
(

a0 · · · an−1

)
. Then the vectors {a0, . . . ,an−1} are linearly inde-

pendent if and only if N (A) = {0}.

Week 9. Vector Spaces 348

Theorem 9.63 Let {a0,a1, . . . ,an−1} ∈ Rm and n > m. Then these vectors are linearly dependent.

Definition 9.64 Let S be a subspace of Rm. Then the set {v0,v1, · · · ,vn−1}⊂Rm is said to be a basis for S if (1) {v0,v1, · · · ,vn−1}
are linearly independent and (2) Span{v0,v1, · · · ,vn−1}= S.

Theorem 9.65 Let S be a subspace of Rm and let {v0,v1, · · · ,vn−1} ⊂ Rm and {w0,w1, · · · ,wk−1} ⊂ Rm both be bases for S.
Then k = n. In other words, the number of vectors in a basis is unique.

Definition 9.66 The dimension of a subspace S equals the number of vectors in a basis for that subspace.

Definition 9.67 Let A ∈ Rm×n. The rank of A equals the number of vectors in a basis for the column space of A. We will let
rank(A) denote that rank.

Theorem 9.68 Let {v0,v1, · · · ,vn−1} ⊂Rm be a spanning set for subspace S and assume that vi equals a linear combination of
the other vectors. Then {v0,v1, · · · ,vi−1,vi+1, · · · ,vn−1} is a spanning set of S.

Theorem 9.69 Let {v0,v1, · · · ,vn−1} ⊂ Rm be linearly independent and assume that {v0,v1, · · · ,vn−1} ⊂ S where S is a sub-
space. Then this set of vectors is either a spanning set for S or there exists w ∈ S such that {v0,v1, · · · ,vn−1,w} are linearly
independent.

The following statements are equivalent statements about A ∈ Rn×n:

• A is nonsingular.

• A is invertible.

• A−1 exists.

• AA−1 = A−1A = I.

• A represents a linear transformation that is a bijection.

• Ax = b has a unique solution for all b ∈ Rn.

• Ax = 0 implies that x = 0.

• Ax = e j has a solution for all j ∈ {0, . . . ,n−1}.

• The determinant of A is nonzero: det(A) 6= 0.

• LU with partial pivoting does not break down.

• C (A) = Rn.

• A has linearly independent columns.

• N (A) = {0}.

• rank(A) = n.

Week 10
Vector Spaces, Orthogonality, and Linear Least
Squares

10.1 Opening Remarks

10.1.1 Visualizing Planes, Lines, and Solutions

Consider the following system of linear equations from the opener for Week 9:

χ0 − 2χ1 + 4χ2 = −1

χ0 = 2

χ0 + 2χ1 + 4χ2 = 3

We solved this to find the (unique) solution


χ0

χ1

χ2

=


2

1

−0.25



Let us look at each of these equations one at a time, and then put them together.

349

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 350

Example 10.1 Find the general solution to

χ0 − 2χ1 + 4χ2 = −1

We can write this as an appended system: (
1 −2 4 −1

)
.

Now, we would perform Gaussian or Gauss-Jordan elimination with this, except that there really isn’t anything to
do, other than to identify the pivot, the free variables, and the dependent variables:(

1 −2 4 −1
)
.

↑ ↑ ↑
de

pe
nd

en
t

va
ri

ab
le

fr
ee

va
ri

ab
le

fr
ee

va
ri

ab
le

Here the pivot is highlighted with the box. There are two free variables, χ1 and χ2, and there is one dependent
variable, χ0. To find a specific solution, we can set χ1 and χ2 to any value, and solve for χ0. Setting χ1 = χ2 = 0 is
particularly convenient, leaving us with χ0−2(0)+4(0) = −1, or χ0 = −1, so that the specific solution is given
by

xs =


-1

0

0

 .

To find solutions (a basis) in the null space, we look for solutions of
(

1 −2 4 0
)

in the form

xn0 =


χ0

1

0

 and xn1 =


χ0

0

1


which yields the vectors

xn0 =


2

1

0

 and xn1 =


-4

0

1

 .

This then gives us the general solution
χ0

χ1

χ2

= xs +β0xn0 +β1xn1 =


−1

0

0

+β0


2

1

0

+β1


−4

0

1

 .

10.1. Opening Remarks 351

Homework 10.1.1.1 Consider, again, the equation from the last example:

χ0 − 2χ1 + 4χ2 = −1

Which of the following represent(s) a general solution to this equation? (Mark all)

•


χ0

χ1

χ2

=


−1

0

0

+β0


2

1

0

+β1


−4

0

1

 .

•


χ0

χ1

χ2

=


2

1

−0.25

+β0


2

1

0

+β1


−4

0

1

 .

•


χ0

χ1

χ2

=


−5

0

1

+β0


2

1

0

+β1


−4

0

1

 .

The following video helps you visualize the results from the above exercise:

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 352

Homework 10.1.1.2 Now you find the general solution for the second equation in the system of linear equations
with which we started this unit. Consider

χ0 = 2

Which of the following is a true statement about this equation:

•


2

0

0

 is a specific solution.

•


2

1

1

 is a specific solution.

•


2

0

0

+β0


0

1

0

+β1


0

0

1

 is a general solution.

•


2

1

−0.25

+β0


0

1

0

+β1


0

0

1

 is a general solution.

•


2

0

0

+β0


0

1

0

+β1


0

0

2

 is a general solution.

The following video helps you visualize the message in the above exercise:

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1

10.1. Opening Remarks 353

Homework 10.1.1.3 Now you find the general solution for the third equation in the system of linear equations
with which we started this unit. Consider

χ0 + 2χ1 + 4χ2 = 3

Which of the following is a true statement about this equation:

•


3

0

0

 is a specific solution.

•


2

1

−0.25

 is a specific solution.

•


3

0

0

+β0


−2

1

0

+β1


−4

0

1

 is a general solution.

•


2

1

−0.25

+β0


−2

1

0

+β1


−4

0

1

 is a general solution.

•


3

0

0

+β0


−4

2

0

+β1


−4

0

1

 is a general solution.

The following video helps you visualize the message in the above exercise:

* View at edX

Now, let’s put the three planes together in one visualization.

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 354

Homework 10.1.1.4 We notice that it would be nice to put lines where planes meet. Now, let’s start by focusing
on the first two equations: Consider

χ0 − 2χ1 + 4χ2 = −1

χ0 = 2

Compute the general solution of this system with two equations in three unknowns and indicate which of the
following is true about this system?

•


2

1

−0.25

 is a specific solution.

•


2

3/2

0

 is a specific solution.

•


2

3/2

0

+β


0

2

1

 is a general solution.

•


2

1

−0.25

+β


0

2

1

 is a general solution.

The following video helps you visualize the message in the above exercise:

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1

10.1. Opening Remarks 355

Homework 10.1.1.5 Similarly, consider

χ0 = 2

χ0 + 2χ1 + 4χ2 = 3

Compute the general solution of this system that has two equations with three unknowns and indicate which of the
following is true about this system?

•


2

1

−0.25

 is a specific solution.

•


2

1/2

0

 is a specific solution.

•


2

1/2

0

+β


0

−2

1

 is a general solution.

•


2

1

−0.25

+β


0

−2

1

 is a general solution.

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 356

Homework 10.1.1.6 Finally consider

χ0 − 2χ1 + 4χ2 = −1

χ0 + 2χ1 + 4χ2 = 3

Compute the general solution of this system with two equations in three unknowns and indicate which of the
following is true about this system? UPDATE

•


2

1

−0.25

 is a specific solution.

•


1

1

0

 is a specific solution.

•


1

1

0

+β


−4

0

1

 is a general solution.

•


2

1

−0.25

+β


−4

0

1

 is a general solution.

* View at edX
The following video helps you visualize the message in the above exercise:

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/25ba184fcf79465784444f9953b94f28/1

10.1. Opening Remarks 357

10.1.2 Outline

10.1. Opening Remarks . 349
10.1.1. Visualizing Planes, Lines, and Solutions . 349
10.1.2. Outline . 357
10.1.3. What You Will Learn . 358

10.2. How the Row Echelon Form Answers (Almost) Everything . 359
10.2.1. Example . 359
10.2.2. The Important Attributes of a Linear System . 359

10.3. Orthogonal Vectors and Spaces . 364
10.3.1. Orthogonal Vectors . 364
10.3.2. Orthogonal Spaces . 365
10.3.3. Fundamental Spaces . 366

10.4. Approximating a Solution . 369
10.4.1. A Motivating Example . 369
10.4.2. Finding the Best Solution . 372
10.4.3. Why It is Called Linear Least-Squares . 376

10.5. Enrichment . 377
10.5.1. Solving the Normal Equations . 377

10.6. Wrap Up . 378
10.6.1. Homework . 378
10.6.2. Summary . 378

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 358

10.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine when linear systems of equations have a unique solution, an infinite number of solutions, or only approximate
solutions.

• Determine the row-echelon form of a system of linear equations or matrix and use it to

– find the pivots,

– decide the free and dependent variables,

– establish specific (particular) and general (complete) solutions,

– find a basis for the column space, the null space, and row space of a matrix,

– determine the rank of a matrix, and/or

– determine the dimension of the row and column space of a matrix.

• Picture and interpret the fundamental spaces of matrices and their dimensionalities.

• Indicate whether vectors are orthogonal and determine whether subspaces are orthogonal.

• Determine the null space and column space for a given matrix and connect the row space of A with the column space of
AT .

• Identify, apply, and prove simple properties of vector spaces, subspaces, null spaces and column spaces.

• Determine when a set of vectors is linearly independent by exploiting special structures. For example, relate the rows of
a matrix with the columns of its transpose to determine if the matrix has linearly independent rows.

• Approximate the solution to a system of linear equations of small dimension using the method of normal equations to
solve the linear least-squares problem.

10.2. How the Row Echelon Form Answers (Almost) Everything 359

10.2 How the Row Echelon Form Answers (Almost) Everything

10.2.1 Example

* View at edX

Homework 10.2.1.1 Consider the linear system of equations


1 3 1 2

2 6 4 8

0 0 2 4


︸ ︷︷ ︸

A


χ0

χ1

χ2

χ3


︸ ︷︷ ︸

x

=


1

3

1


︸ ︷︷ ︸

b

.

Write it as an appended system and reduce it to to row echelon form (but not reduced row echelon form). Identify
the pivots, the free variables and the dependent variables.

10.2.2 The Important Attributes of a Linear System

* View at edX
We now discuss how questions about subspaces can be answered once it has been reduced to its row echelon form. In

particular, you can identify:

• The row-echelon form of the system.

• The pivots.

• The free variables.

• The dependent variables.

• A specific solution
Often called a particular solution.

• A general solution
Often called a complete solution.

• A basis for the column space.
Something we should have mentioned before: The column space is often called the range of the matrix.

• A basis for the null space.
Something we should have mentioned before: The null space is often called the kernel of the matrix.

• A basis for the row space.
The row space is the subspace of all vectors that can be created by taking linear combinations of the rows of a matrix. In
other words, the row space of A equals C (AT) (the column space of AT).

• The dimension of the row and column space.

• The rank of the matrix.

• The dimension of the null space.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/aae154ba4c54456cb007c1626383838a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/aae154ba4c54456cb007c1626383838a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/aae154ba4c54456cb007c1626383838a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/aae154ba4c54456cb007c1626383838a/2

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 360

Motivating example

Consider the example from the last unit.


1 3 1 2

2 6 4 8

0 0 2 4


︸ ︷︷ ︸

A


χ0

χ1

χ2

χ3

=


1

3

1



which, when reduced to row echelon form, yields
1 3 1 2 1

2 6 4 8 3

0 0 2 4 1

 →


1 3 1 2 1

0 0 2 4 1

0 0 0 0 0

 .

Here the boxed entries are the pivots (the first nonzero entry in each row) and they identify that the corresponding variables (χ0
and χ2) are dependent variables while the other variables (χ1 and χ3) are free variables.

Various dimensions

Notice that inherently the matrix is m×n. In this case

• m = 3 (the number of rows in the matrix which equals the number of equations in the linear system); and

• n = 4 (the number of columns in the matrix which equals the number of equations in the linear system).

Now

• There are two pivots. Let’s say that in general there are k pivots, where here k = 2.

• There are two free variables. In general, there are n− k free variables, corresponding to the columns in which no pivot
reside. This means that the null space dimension equals n− k, or two in this case.

• There are two dependent variables. In general, there are k dependent variables, corresponding to the columns in which
the pivots reside. This means that the column space dimension equals k, or also two in this case. This also means
that the row space dimension equals k, or also two in this case.

• The dimension of the row space always equals the dimension of the column space which always equals the number of
pivots in the row echelon form of the equation. This number, k, is called the rank of matrix A, rank(A).

Format of a general solution

To find a general solution to problem, you recognize that there are two free variables (χ1 and χ3) and a general solution can be
given by 

0

0

+β0


1

0

+β1


0

1

 .

10.2. How the Row Echelon Form Answers (Almost) Everything 361

Computing a specific solution

The specific (particular or special) solution is given by xs =


0

0

 . It solves the system. To obtain it, you set the free

variables to zero and solve the row echelon form of the system for the values in the boxes:

 1 3 1 2

0 0 2 4




χ0

0

χ2

0

=

 1

1



or
χ0 +χ2 = 1

2χ2 = 1

so that χ2 = 1/2 and χ0 = 1/2 yielding a specific solution xp =


1/2

0

1/2

0

.

Computing a basis for the null space

Next, we have to find two linearly independent vectors in the null space of the matrix. (There are two because there are two
free variables. In general, there are n− k.)

To obtain the first, we set the first free variable to one and the other(s) to zero, and solve the row echelon form of the system
with the right-hand side set to zero:

 1 3 1 2

0 0 2 4




χ0

1

χ2

0

=

 0

0


or

χ0 +3×1 +χ2 = 0

2χ2 = 0

so that χ2 = 0 and χ0 =−3, yielding the first vector in the null space xn0 =


−3

1

0

0

.

To obtain the second, we set the second free variable to one and the other(s) to zero, and solve the row echelon form of the
system with the right-hand side set to zero:

 1 3 1 2

0 0 2 4




χ0

0

χ2

1

=

 0

0



Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 362

or

χ0 +χ2 +2×1 = 0

2χ2 +4×1 = 0

so that χ2 =−4/2 =−2 and χ0 =−χ2−2 = 0, yielding the second vector in the null space xn1 =


0

0

−2

1

.

Thus,

N (A) = Span






−3

1

0

0

 ,


0

0

−2

1





 .

A general solution

Thus, a general solution is given by 
1/2

0

1/2

0

+β0


−3

1

0

0

+β1


0

0

−2

1

 ,

where β0,β1 ∈ R.

Finding a basis for the column space of the original matrix

To find the linearly independent columns, you look at the row echelon form of the matrix:
1 3 1 2

0 0 2 4

0 0 0 0


with the pivots highlighted. The columns that have pivots in them are linearly independent. The corresponding columns in the
original matrix are also linearly independent: 

1 3 1 2

2 6 4 8

0 0 2 4

 .

Thus, in our example, the answer is


1

2

0

 and


1

4

2

 (the first and third column).

Thus,

C (A) = Span





1

2

0

 ,


1

4

2



 .

10.2. How the Row Echelon Form Answers (Almost) Everything 363

Find a basis for the row space of the matrix.

The row space (we will see in the next chapter) is the space spanned by the rows of the matrix (viewed as column vectors).
Reducing a matrix to row echelon form merely takes linear combinations of the rows of the matrix. What this means is that the
space spanned by the rows of the original matrix is the same space as is spanned by the rows of the matrix in row echelon form.
Thus, all you need to do is list the rows in the matrix in row echelon form, as column vectors.

For our example this means a basis for the row space of the matrix is given by

R (A) = Span






1

3

1

2

 ,


0

0

2

4





 .

Summary observation

The following are all equal:

• The dimension of the column space.

• The rank of the matrix.

• The number of dependent variables.

• The number of nonzero rows in the upper echelon form.

• The number of columns in the matrix minus the number of free variables.

• The number of columns in the matrix minus the dimension of the null space.

• The number of linearly independent columns in the matrix.

• The number of linearly independent rows in the matrix.

Homework 10.2.2.1 Consider

 1 2 2

2 4 5




χ0

χ1

χ2

=

 1

4

.

• Reduce the system to row echelon form (but not reduced row echelon form).

• Identify the free variables.

• Identify the dependent variables.

• What is the dimension of the column space?

• What is the dimension of the row space?

• What is the dimension of the null space?

• Give a set of linearly independent vectors that span the column space

• Give a set of linearly independent vectors that span the row space.

• What is the rank of the matrix?

• Give a general solution.

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 364

Homework 10.2.2.2 Which of these statements is a correct definition of the rank of a given matrix A ∈ Rm×n?

1. The number of nonzero rows in the reduced row echelon form of A. True/False

2. The number of columns minus the number of rows, n−m. True/False

3. The number of columns minus the number of free columns in the row reduced form of A. (Note: a free
column is a column that does not contain a pivot.) True/False

4. The number of 1s in the row reduced form of A. True/False

Homework 10.2.2.3 Compute 
−1

2

3

(3 −1 2
)
.

Reduce it to row echelon form. What is the rank of this matrix?

Homework 10.2.2.4 Let u ∈ Rm and v ∈ Rn so that uvT is a m×n matrix. What is the rank, k, of this matrix?

10.3 Orthogonal Vectors and Spaces

10.3.1 Orthogonal Vectors

* View at edX
If nonzero vectors x,y ∈ Rn are linearly independent then the subspace of all vectors αx+βy, α,β ∈ R (the space spanned

by x and y) form a plane. All three vectors x, y, and (x− y) lie in this plane and they form a triangle:

��
��

��
�1

�
�
�
�
�
�
�
�
��

J
J
J
J
J
J
J]

x

y z = y− x

where this page represents the plane in which all of these vectors lie.
Vectors x and y are considered to be orthogonal (perpendicular) if they meet at a right angle. Using the Euclidean length

‖x‖2 =
√

χ2
0 + · · ·+χ2

n−1 =
√

xT x,

we find that the Pythagorean Theorem dictates that if the angle in the triangle where x and y meet is a right angle, then
‖z‖2

2 = ‖x‖2
2 +‖y‖2

2. In this case,

‖z‖2
2 = ‖x‖2

2 +‖y‖2
2 = ‖y− x‖2

2

= (y− x)T (y− x)

= (yT − xT)(y− x)

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/1

10.3. Orthogonal Vectors and Spaces 365

= (yT − xT)y− (yT − xT)x

= yT y︸︷︷︸
‖y‖2

2

− (xT y+ yT x)︸ ︷︷ ︸
2xT y

+ xT x︸︷︷︸
‖x‖2

2

= ‖x‖2
2−2xT y+‖y‖2

2.

In other words, when x and y are perpendicular (orthogonal)

‖x‖2
2 +‖y‖2

2 = ‖x‖2
2−2xT y+‖y‖2

2.

Cancelling terms on the left and right of the equality, this implies that xT y = 0. This motivates the following definition:

Definition 10.2 Two vectors x,y ∈ Rn are said to be orthogonal if and only if xT y = 0.

Sometimes we will use the notation x⊥ y to indicate that x is perpendicular to y.

Homework 10.3.1.1 For each of the following, indicate whether the vectors are orthogonal: 1

−1

 and

 1

1

 True/False 1

0

 and

 0

1

 True/False

The unit basis vectors ei and e j. Always/Sometimes/Never c

s

 and

 −s

c

 Always/Sometimes/Never

Homework 10.3.1.2 Let A ∈ Rm×n. Let aT
i be a row of A and x ∈N (A). Then ai is orthogonal to x.

Always/Sometimes/Never

10.3.2 Orthogonal Spaces

* View at edX
We can extend this to define orthogonality of two subspaces:

Definition 10.3 Let V,W⊂Rn be subspaces. Then V and W are said to be orthogonal if and only if v ∈V and w ∈W implies
that vT w = 0.

We will use the notation V⊥W to indicate that subspace V is orthogonal to subspace W.

In other words: Two subspaces are orthogonal if all the vectors from one of the subspaces are orthogonal to all of the
vectors from the other subspace.

Homework 10.3.2.1 Let V = {0} where 0 denotes the zero vector of size n. Then V⊥ Rn.
Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/2

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 366

Homework 10.3.2.2 Let

V = Span





1

0

0

 ,


0

1

0



 and W = Span





0

0

1





Then V⊥W.
True/False

The above can be interpreted as: the “x-y” plane is orthogonal to the z axis.

Homework 10.3.2.3 Let V,W⊂ Rn be subspaces. If V⊥W then V∩W = {0}, the zero vector.
Always/Sometimes/Never

Whenever S∩T = {0} we will sometimes call this the trivial intersection of two subspaces. Trivial in the sense that it only
contains the zero vector.

Definition 10.4 Given subspace V⊂Rn, the set of all vectors in Rn that are orthogonal to V is denoted by V⊥ (pronounced as
“V-perp”).

Homework 10.3.2.4 If V⊂ Rn is a subspace, then V⊥ is a subspace.
True/False

* View at edX

10.3.3 Fundamental Spaces

* View at edX
Let us recall some definitions:

• The column space of a matrix A ∈Rm×n, C (A), equals the set of all vectors in Rm that can be written as Ax: {y | y = Ax}.

• The null space of a matrix A ∈ Rm×n, N (A), equals the set of all vectors in Rn that map to the zero vector: {x | Ax = 0}.

• The row space of a matrix A ∈ Rm×n, R (A), equals the set of all vectors in Rn that can be written as AT x: {y | y = AT x}.

Theorem 10.5 Let A ∈ Rm×n. Then R (A)⊥N (A).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/3

10.3. Orthogonal Vectors and Spaces 367

Proof: Let y ∈ R (A) and z ∈N (A). We need to prove that yT z = 0.

yT z

= < y ∈ R (A) implies that y = AT x for some x ∈ Rm >

(AT x)T z

= < (AB)T = BT AT >

xT (AT)T z

= < (AT)T = A >

xT Az

= < z ∈N (A) implies that Az = 0 >

xT 0

= < algebra >

0

Theorem 10.6 Let A ∈ Rm×n. Then every x ∈ Rn can be written as x = xr + xn where xr ∈ R (A) and xn ∈N (A).

Proof: Recall that if dim(R (A) = k, then dim(N (A)) = n− k. Let {v0, . . . ,vk−1 be a basis for R (A) and {vk, . . . ,vn−1 be a
basis for N (A). It can be argued, via a proof by contradiction that is beyond this course, that the set of vectors {v0, . . . ,vn−1}
are linearly independent.

Let x ∈ Rn. This is then a basis for Rn, which in turn means that x = ∑i=0 αivi, some linear combination. But then

x =
k−1

∑
i=0

αivi︸ ︷︷ ︸
xr

+
n−1

∑
i=k

αivi︸ ︷︷ ︸
xn

,

where by construction xr ∈ R (A) and xn ∈N (A).

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 368

Let A ∈Rm×n, x ∈Rn, and b ∈Rm, with Ax = b. Then there exist xr ∈ R (A) and xn ∈N (A) such that x = xr +xn. But then

Axr

= < 0 of size n >

Axr +0

= < Axn = 0 >

Axr +Axn

= < A(y+ z) = Ay+Az >

A(xr + xn)

= < x = xr + xn >

Ax

= < Ax = b >

b.

We conclude that if Ax = b has a solution, then there is a xr ∈ R (A) such that Axr = b.

Theorem 10.7 Let A ∈ Rm×n. Then A is a one-to-one, onto mapping from R (A) to C (A).

Proof: Let A ∈ Rm×n. We need to show that

• A maps R (A) to C (A). This is trivial, since any vector x ∈ Rn maps to C (A).

• Uniqueness: We need to show that if x,y ∈ R (A) and Ax = Ay then x = y. Notice that Ax = Ay implies that A(x− y) = 0,
which means that (x− y) is both in R (A) (since it is a linear combination of x and y, both of which are in R (A)) and in
N (A). Since we just showed that these two spaces are orthogonal, we conclude that (x− y) = 0, the zero vector. Thus
x = y.

• Onto: We need to show that for any b ∈ C (A) there exists xr ∈ R (A) such that Axr = b. Notice that if b ∈ C , then
there exists x ∈ Rn such that Ax = b. By Theorem 10.6, x = xr + xn where xr ∈ R (A) and xn ∈ N (A). Then b = Ax =
A(xr + xn) = Axr +Axn = Axr.

We define one more subpace:

Definition 10.8 Given A ∈ Rm×n the left null space of A is the set of all vectors x such that xT A = 0.

Clearly, the left null space of A equals the null space of AT .

Theorem 10.9 Let A ∈Rm×n. Then the left null space of A is orthogonal to the column space of A and the dimension of the left
null space of A equals m− r, where r is the dimension of the column space of A.

Proof: This follows trivially by applying the previous theorems to AT .

10.4. Approximating a Solution 369

The observations in this unit are summarized by the following video and subsequent picture:

* View at edX

Row$space$

Null$space$

Column$$
space$

Le1$null$$
space$

Ax = b

b

xr

xn

Axr = b

Axn = 0

dim = r

dim = n− r

dim = r

dim =m− r

A

x = xr + xn= xr + xn

Ax = A(xr + xn) = Axr + Axn = Axr

10.4 Approximating a Solution

10.4.1 A Motivating Example

* View at edX

Consider the following graph:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/608682a99da64d7a88a54328d34c6cb9/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/89219ffd97b8461fb01f0959f7ff82ea/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/89219ffd97b8461fb01f0959f7ff82ea/1

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 370

It plots the number of registrants for our “Linear Algebra - Foundations to Frontiers” course as a function of days that have
passed since registration opened (data for the first offering of LAFF in Spring 2014), for the first 45 days or so (the course opens
after 107 days). The blue dots represent the measured data and the blue line is the best straight line fit (which we will later call
the linear least-squares fit to the data). By fitting this line, we can, for example, extrapolate that we will likely have more than
20,000 participants by the time the course commences.

Let us illustrate the basic principles with a simpler, artificial example. Consider the following set of points:

(χ0,ψ0) = (1,1.97),(χ1,ψ1) = (2,6.97),(χ2,ψ2) = (3,8.89),(χ3,ψ3) = (4,10.01),

which we plot in the following figure:

What we would like to do is to find a line that interpolates these points. Here is a rough approximation for such a line:

10.4. Approximating a Solution 371

Here we show with the vertical lines the distance from the points to the line that was chosen. The question becomes, what is
the best line? We will see that “best” is defined in terms of minimizing the sum of the square of the distances to the line. The
above line does not appear to be “best”, and it isn’t.

Let us express this with matrices and vectors. Let

x =


χ0

χ1

χ2

χ3

=


1

2

3

4

 and y =


ψ0

ψ1

ψ2

ψ3

=


1.97

6.97

8.89

10.01

 .

If we give the equation of the line as y = γ0 + γ1x then, IF this line COULD go through all these points THEN the following
equations would have to be simultaneously satified:

ψ0 = γ0 + γ1χ1

ψ1 = γ0 + γ1χ2

ψ2 = γ0 + γ1χ3

ψ3 = γ0 + γ1χ4

or, specifically,

1.97 = γ0 + γ1

6.97 = γ0 +2γ1

8.89 = γ0 +3γ1

10.01 = γ0 +4γ1

which can be written in matrix notation as


ψ0

ψ1

ψ2

ψ3

=


1 χ0

1 χ1

1 χ2

1 χ3


 γ0

γ1

 or, specifically,


1.97

6.97

8.89

10.01

=


1 1

1 2

1 3

1 4


 γ0

γ1

 .

Now, just looking at

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 372

it is obvious that these points do not lie on the same line and that therefore all these equations cannot be simultaneously satified.
So, what do we do now?

How does it relate to column spaces?

The first question we ask is “For what right-hand sides could we have solved all four equations simultaneously?” We would
have had to choose y so that Ac = y, where

A =


1 χ0

1 χ1

1 χ2

1 χ3

=


1 1

1 2

1 3

1 4

 and c =

 γ0

γ1

 .

This means that y must be in the column space of A. It must be possible to express it as y= γ0a0+γ1a1, where A=
(

a0 a1

)
!

What does this mean if we relate this back to the picture? Only if {ψ0, · · · ,ψ3} have the property that {(1,ψ0), · · · ,(4,ψ3)} lie
on a line can we find coefficients γ0 and γ1 such that Ac = y.

How does this problem relate to orthogonality?

The problem is that the given y does not lie in the column space of A. So a question is, what vector z, that does lie in the column
space should we use to solve Ac = z instead so that we end up with a line that best interpolates the given points?

If z solves Ac = z exactly, then z =
(

a0 a1

) γ0

γ1

= γ0a0 + γ1a1, which is of course just a repeat of the observation

that z is in the column space of A. Thus, what we want is y = z+w, where w is as small (in length) as possible. This happens
when w is orthogonal to z! So, y = γ0a0 + γ1a1 +w, with aT

0 w = aT
1 w = 0. The vector z in the column space of A that is closest

to y is known as the projection of y onto the column space of A. So, it would be nice to have a way of finding a way to compute
this projection.

10.4.2 Finding the Best Solution

* View at edX
The last problem motivated the following general problem: Given m equations in n unknowns, we end up with a system

Ax = b where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/89219ffd97b8461fb01f0959f7ff82ea/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/89219ffd97b8461fb01f0959f7ff82ea/2

10.4. Approximating a Solution 373

• This system of equations may have no solutions. This happens when b is not in the column space of A.

• This system may have a unique solution. This happens only when r = m = n, where r is the rank of the matrix (the
dimension of the column space of A). Another way of saying this is that it happens only if A is square and nonsingular
(it has an inverse).

• This system may have many solutions. This happens when b is in the column space of A and r < n (the columns of A are
linearly dependent, so that the null space of A is nontrivial).

Let us focus on the first case: b is not in the column space of A.
In the last unit, we argued that what we want is an approximate solution x̂ such that Ax̂ = z, where z is the vector in the

column space of A that is “closest” to b: b = z+w where wT v = 0 for all v ∈ C (A). From

Row$space$

Null$space$

Column$$
space$

Le1$null$$
space$

Ax = b

b

xr

xn

Axr = b

Axn = 0

dim = r

dim = n− r

dim = r

dim =m− r

A

x = xr + xn= xr + xn

Ax = A(xr + xn) = Axr + Axn = Axr

we conclude that this means that w is in the left null space of A. So, AT w = 0. But that means that

0 = AT w = AT (b− z) = AT (b−Ax̂)

which we can rewrite as
AT Ax̂ = AT b. (10.1)

This is known as the normal equation associated with the problem Ax̂≈ b.

Theorem 10.10 If A∈Rm×n has linearly independent columns, then AT A is nonsingular (equivalently, has an inverse, AT Ax̂ =
AT b has a solution for all b, etc.).

Proof: Proof by contradiction.

• Assume that A ∈ Rm×n has linearly independent columns and AT A is singular.

• Then there exists x 6= 0 such that AT Ax = 0.

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 374

• Hence, there exists y = Ax 6= 0 such that AT y = 0 (because A has linearly independent columns and x 6= 0).

• This means y is in the left null space of A.

• But y is also in the column space of A, since Ax = y.

• Thus, y = 0, since the intersection of the column space of A and the left null space of A only contains the zero vector.

• This contradicts the fact that A has linearly independent columns.

Therefore AT A cannot be singular.

This means that if A has linearly independent columns, then the desired x̂ that is the best approximate solution is given by

x̂ = (AT A)−1AT b

and the vector z ∈ C (A) closest to b is given by

z = Ax̂ = A(AT A)−1AT b.

This shows that if A has linearly independent columns, then z = A(AT A)−1AT b is the vector in the columns space closest to b.
This is the projection of b onto the column space of A.

Let us now formulate the above observations as a special case of a linear least-squares problem:

Theorem 10.11 Let A ∈ Rm×n, b ∈ Rm, and x ∈ Rn and assume that A has linearly independent columns. Then the solution
that minimizes the length of the vector b−Ax is given by x̂ = (AT A)−1AT b.

Definition 10.12 Let A ∈ Rm×n. If A has linearly independent columns, then A† = (AT A)−1AT is called the (left) pseudo
inverse. Note that this means m≥ n and A†A = (AT A)−1AT A = I.

If we apply these insights to the motivating example from the last unit, we get the following approximating line

10.4. Approximating a Solution 375

Homework 10.4.2.1 Consider A =


1 0

0 1

1 1

 and b =


1

1

0

.

1. Is b in the column space of A?
True/False

2. AT b =

3. AT A =

4. (AT A)−1 =

5. A† =.

6. A†A =.

7. Compute the approximate solution, in the least squares sense, of Ax≈ b.

x =

 χ0

χ1

=

8. What is the project of b onto the column space of A?

b̂ =


β̂0

β̂1

β̂2

=

Homework 10.4.2.2 Consider A =


1 −1

1 0

1 1

 and b =


4

5

9

.

1. b is in the column space of A, C (A).
True/False

2. Compute the approximate solution, in the least squares sense, of Ax≈ b.

x =

 χ0

χ1

=

3. What is the project of b onto the column space of A?

b̂ =


β̂0

β̂1

β̂2

=

4. A† =.

5. A†A =.

Homework 10.4.2.3 What 2×2 matrix B projects the x-y plane onto the line x+ y = 0?

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 376

Homework 10.4.2.4 Find the line that best fits the following data:

x y

−1 2

1 −3

0 0

2 −5

Homework 10.4.2.5 Consider A =


1 1

1 −1

−2 4

 and b =


1

2

7

.

1. b is in the column space of A, C (A).
True/False

2. Compute the approximate solution, in the least squares sense, of Ax≈ b.

x =

 χ0

χ1

=

3. What is the projection of b onto the column space of A?

b̂ =


β̂0

β̂1

β̂2

=

4. A† =.

5. A†A =.

10.4.3 Why It is Called Linear Least-Squares

* View at edX

The “best” solution discussed in the last unit is known as the “linear least-squares” solution. Why?

Notice that we are trying to find x̂ that minimizes the length of the vector b−Ax. In other words, we wish to find x̂ that
minimizes minx ‖b−Ax‖2. Now, if x̂ minimizes minx ‖b−Ax‖2, it also minimizes the function ‖b−Ax‖2

2. Let y = Ax̂. Then

‖b−Ax̂‖2 = ‖b− y‖2 =
n−1

∑
i=0

(βi−ψi)
2.

Thus, we are trying to minimize the sum of the squares of the differences. If you consider, again,

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/89219ffd97b8461fb01f0959f7ff82ea/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/bd8bc294fb3e489a9ac4ab3caf6cc210/89219ffd97b8461fb01f0959f7ff82ea/3

10.5. Enrichment 377

then this translates to minimizing the sum of the lenghts of the vertical lines that connect the linear approximation to the original
points.

10.5 Enrichment

10.5.1 Solving the Normal Equations

In our examples and exercises, we solved the normal equations

AT Ax = AT b,

where A ∈ Rm×n has linear independent columns, via the following steps:

• Form y = AT b

• Form AT A.

• Invert AT A to compute B = (AT A)−1.

• Compute x̂ = By = (AT A)−1AT b.

This involves the inversion of a matrix, and we claimed in Week 8 that one should (almost) never, ever invert a matrix.
In practice, this is not how it is done for larger systems of equations. Instead, one uses either the Cholesky factorization

(which was discussed in the enrichment for Week 8), the QR factorization (to be discussed in Week 11), or the Singular Value
Decomposition (SVD, which is briefly mentioned in Week 11).

Let us focus on how to use the Cholesky factorization. Here are the steps:

• Compute C = AT A.

• Compute the Cholesky factorization C = LLT , where L is lower triangular.
This allows us to take advantage of symmetry in C.

• Compute y = AT b.

• Solve Lz = y.

• Solve LT x̂ = z.

The vector x̂ is then the best solution (in the linear least-squares sense) to Ax≈ b.
The Cholesky factorization of a matrix, C, exists if and only if C has a special property. Namely, it must be symmetric

positive definite (SPD).

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 378

Definition 10.13 A symmetric matrix C ∈ Rm×m is said to be symmetric positive definite if xTCx ≥ 0 for all nonzero vectors
x ∈ Rm.

We started by assuming that A has linearly independent columns and that C = AT A. Clearly, C is symmetric: CT = (AT A)T =
AT (AT)T = AT A =C. Now, let x 6= 0. Then

xTCx = xT (AT A)x = (xT AT)(Ax) = (Ax)T (Ax) = ‖Ax‖2
2.

We notice that Ax 6= 0 because the columns of A are linearly independent. But that means that its length, ‖Ax‖2, is not equal to
zero and hence ‖Ax‖2

2 > 0. We conclude that x 6= 0 implies that xTCx > 0 and that therefore C is symmetric positive definite.

10.6 Wrap Up

10.6.1 Homework

No additional homework this week.

10.6.2 Summary

Solving underdetermined systems

Important attributes of a linear system Ax = b and associated matrix A:

• The row-echelon form of the system.

• The pivots.

• The free variables.

• The dependent variables.

• A specific solution
Also called a particular solution.

• A general solution
Also called a complete solution.

• A basis for the null space.
Also called the kernel of the matrix. This is the set of all vectors that are mapped to the zero vector by A.

• A basis for the column space, C (A).
Also called the range of the matrix. This is the set of linear combinations of the columns of A.

• A basis for the row space, R (A) = C (AT).
This is the set of linear combinations of the columns of AT .

• The dimension of the row and column space.

• The rank of the matrix.

• The dimension of the null space.

Various dimensions Notice that, in general, a matrix is m×n. In this case

• Start the linear system of equations Ax = y.

• Reduce this to row echelon form Bx = ŷ.

• If any of the equations are inconsistent (0 6= ψ̂i, for some row i in the row echelon form Bx = ŷ), then the system does not
have a solution, and y is not in the column space of A.

10.6. Wrap Up 379

• If this is not the case, assume there are k pivots in the row echelon reduced form.

• Then there are n− k free variables, corresponding to the columns in which no pivots reside. This means that the null
space dimension equals n− k

• There are k dependent variables corresponding to the columns in which the pivots reside. This means that the column
space dimension equals k and the row space dimension equals k.

• The dimension of the row space always equals the dimension of the column space which always equals the number of
pivots in the row echelon form of the equation, k. This number, k, is called the rank of matrix A, rank(A).

• To find a specific (particular) solution to system Ax = b, set the free variables to zero and solve Bx = ŷ for the dependent
variables. Let us call this solution xs.

• To find n− k linearly independent vectors in N (A), follow the following procedure, assuming that n0, . . .nn−k−1 equal
the indices of the free variables. (In other words: χn0 , . . . ,χnn−k−1 equal the free variables.)

– Set χn j equal to one and χnk with nk 6= n j equal to zero. Solve for the dependent variables.

This yields n− k linearly independent vectors that are a basis for N (A). Let us call these xn0 , . . . ,xnn−k−1 .

• The general (complete) solution is then given as

xs + γ0xn0 + γ1xn1 + · · ·+ γn−k−1xnn−k−1 .

• To find a basis for the column space of A, C (A), you take the columns of A that correspond to the columns with pivots in
B.

• To find a basis for the row space of A, R (A), you take the rows of B that contain pivots, and transpose those into the
vectors that become the desired basis. (Note: you take the rows of B, not A.)

• The following are all equal:

– The dimension of the column space.

– The rank of the matrix.

– The number of dependent variables.

– The number of nonzero rows in the upper echelon form.

– The number of columns in the matrix minus the number of free variables.

– The number of columns in the matrix minus the dimension of the null space.

– The number of linearly independent columns in the matrix.

– The number of linearly independent rows in the matrix.

Orthogonal vectors

Definition 10.14 Two vectors x,y ∈ Rm are orthogonal if and only if xT y = 0.

Orthogonal subspaces

Definition 10.15 Two subspaces V,W⊂ Rm are orthogonal if and only if v ∈ V and w ∈W implies vT w = 0.

Definition 10.16 Let V⊂ Rm be a subspace. Then V⊥ ⊂ Rm equals the set of all vectors that are orthogonal to V.

Theorem 10.17 Let V⊂ Rm be a subspace. Then V⊥ is a subspace of Rm.

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 380

The Fundamental Subspaces

• The column space of a matrix A ∈Rm×n, C (A), equals the set of all vectors in Rm that can be written as Ax: {y | y = Ax}.

• The null space of a matrix A ∈ Rm×n, N (A), equals the set of all vectors in Rn that map to the zero vector: {x | Ax = 0}.

• The row space of a matrix A ∈ Rm×n, R (A), equals the set of all vectors in Rn that can be written as AT x: {y | y = AT x}.

• The left null space of a matrix A ∈ Rm×n, N (AT), equals the set of all vectors in Rm described by {x | xT A = 0}.

Theorem 10.18 Let A ∈ Rm×n. Then R (A)⊥N (A).

Theorem 10.19 Let A ∈ Rm×n. Then every x ∈ Rn can be written as x = xr + xn where xr ∈ R (A) and xn ∈N (A).

Theorem 10.20 Let A ∈ Rm×n. Then A is a one-to-one, onto mapping from R (A) to C (A).

Theorem 10.21 Let A ∈ Rm×n. Then the left null space of A is orthogonal to the column space of A and the dimension of the
left null space of A equals m− r, where r is the dimension of the column space of A.

An important figure:

Row$space$

Null$space$

Column$$
space$

Le1$null$$
space$

Ax = b

b

xr

xn

Axr = b

Axn = 0

dim = r

dim = n− r

dim = r

dim =m− r

A

x = xr + xn= xr + xn

Ax = A(xr + xn) = Axr + Axn = Axr

Overdetermined systems

• Ax = b has a solution if and only if b ∈ C (A).

• Let us assume that A has linearly independent columns and we wish to solve Ax≈ b. Then

– The solution of the normal equations
AT Ax = AT b

is the best solution (in the linear least-squares sense) to Ax≈ b.

– The pseudo inverse of A is given by A† = (AT A)−1AT .

10.6. Wrap Up 381

– The best solution (in the linear least-squares sense) of Ax = b is given by x̂ = A†b = (AT A)−1AT b.

– The orthogonal projection of b onto C (A) is given by b̂ = A(AT A)−1AT b.

– The vector (b− b̂) is the component of b orthogonal to C (A).

– The orthogonal projection of b onto C (A)⊥ is given by b− b̂ = [I−A(AT A)−1AT]b.

Week 10. Vector Spaces, Orthogonality, and Linear Least Squares 382

Week 11
Orthogonal Projection, Low Rank
Approximation, and Orthogonal Bases

11.1 Opening Remarks

11.1.1 Low Rank Approximation

* View at edX

383

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/b46692e267b3402a877ba16823f8aad0/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/b46692e267b3402a877ba16823f8aad0/1

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 384

11.1.2 Outline

11.1. Opening Remarks . 383
11.1.1. Low Rank Approximation . 383
11.1.2. Outline . 384
11.1.3. What You Will Learn . 385

11.2. Projecting a Vector onto a Subspace . 386
11.2.1. Component in the Direction of ... 386
11.2.2. An Application: Rank-1 Approximation . 389
11.2.3. Projection onto a Subspace . 392
11.2.4. An Application: Rank-2 Approximation . 394
11.2.5. An Application: Rank-k Approximation . 396

11.3. Orthonormal Bases . 398
11.3.1. The Unit Basis Vectors, Again . 398
11.3.2. Orthonormal Vectors . 399
11.3.3. Orthogonal Bases . 401
11.3.4. Orthogonal Bases (Alternative Explanation) . 403
11.3.5. The QR Factorization . 406
11.3.6. Solving the Linear Least-Squares Problem via QR Factorization . 407
11.3.7. The QR Factorization (Again) . 408

11.4. Change of Basis . 411
11.4.1. The Unit Basis Vectors, One More Time . 411
11.4.2. Change of Basis . 411

11.5. Singular Value Decomposition . 414
11.5.1. The Best Low Rank Approximation . 414

11.6. Enrichment . 417
11.6.1. The Problem with Computing the QR Factorization . 417
11.6.2. QR Factorization Via Householder Transformations (Reflections) . 417
11.6.3. More on SVD . 417

11.7. Wrap Up . 417
11.7.1. Homework . 417
11.7.2. Summary . 417

11.1. Opening Remarks 385

11.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Given vectors a and b in Rm, find the component of b in the direction of a and the component of b orthogonal to a.

• Given a matrix A with linear independent columns, find the matrix that projects any given vector b onto the column space
A and the matrix that projects b onto the space orthogonal to the column space of A, which is also called the left null
space of A.

• Understand low rank approximation, projecting onto columns to create a rank-k approximation.

• Identify, apply, and prove simple properties of orthonormal vectors.

• Determine if a set of vectors is orthonormal.

• Transform a set of basis vectors into an orthonormal basis using Gram-Schmidt orthogonalization.

• Compute an orthonormal basis for the column space of A.

• Apply Gram-Schmidt orthogonalization to compute the QR factorization.

• Solve the Linear Least-Squares Problem via the QR Factorization.

• Make a change of basis.

• Be aware of the existence of the Singular Value Decomposition and that it provides the “best” rank-k approximation.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 386

11.2 Projecting a Vector onto a Subspace

11.2.1 Component in the Direction of ...

* View at edX
Consider the following picture:

Span({a}) = C ((a))

a

b

z = χa

w

Here, we have two vectors, a,b∈Rm. They exist in the plane defined by Span({a,b}) which is a two dimensional space (unless
a and b point in the same direction). From the picture, we can also see that b can be thought of as having a component z in the
direction of a and another component w that is orthogonal (perpendicular) to a. The component in the direction of a lies in the
Span({a}) = C ((a)) (here (a) denotes the matrix with only once column, a) while the component that is orthogonal to a lies in
Span({a})⊥. Thus,

b = z+w,

where

• z = χa with χ ∈ R; and

• aT w = 0.

Noting that w = b− z we find that
0 = aT w = aT (b− z) = aT (b−χa)

or, equivalently,
aT aχ = aT b.

We have seen this before. Recall that when you want to approximately solve Ax = b where b is not in C (A) via Linear
Least Squares, the “best” solution satisfies AT Ax = AT b. The equation that we just derived is the exact same, except that A
has one column: A = (a).

Then, provided a 6= 0,
χ = (aT a)−1(aT b).

Thus, the component of b in the direction of a is given by

u = χa = (aT a)−1(aT b)a = a(aT a)−1(aT b) =
[
a(aT a)−1aT]b.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/1

11.2. Projecting a Vector onto a Subspace 387

Note that we were able to move a to the left of the equation because (aT a)−1 and aT b are both scalars. The component of b
orthogonal (perpendicular) to a is given by

w = b− z = b−
(
a(aT a)−1aT)b = Ib−

(
a(aT a)−1aT)b =

(
I−a(aT a)−1aT)b.

Summarizing:

z =
(
a(aT a)−1aT

)
b is the component of b in the direction of a; and

w =
(
I−a(aT a)−1aT

)
b is the component of b perpendicular (orthogonal) to a.

We say that, given vector a, the matrix that projects any given vector b onto the space spanned by a is given by

a(aT a)−1aT (=
1

aT a
aaT)

since a(aT a)−1aT b is the component of b in Span({a}). Notice that this is an outer product:

a (aT a)−1aT .︸ ︷︷ ︸
vT

We say that, given vector a, the matrix that projects any given vector b onto the space orthogonal to the space spanned by a is
given by

I−a(aT a)−1aT (= I− 1
aT a

aaT = I−avT),

since
(
I−a(aT a)−1aT

)
b is the component of b in Span({a})⊥.

Notice that I− 1
aT a aaT = I−avT is a rank-1 update to the identity matrix.

Homework 11.2.1.1 Let a =

 1

0

 and Pa(x) and P⊥a (x) be the projection of vector x onto Span({a}) and

Span({a})⊥, respectively. Compute

1. Pa(

 2

0

) =

2. P⊥a (

 2

0

) =

3. Pa(

 4

2

) =

4. P⊥a (

 4

2

) =

5. Draw a picture for each of the above.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 388

Homework 11.2.1.2 Let a =


1

1

0

 and Pa(x) and P⊥a (x) be the projection of vector x onto Span({a}) and

Span({a})⊥, respectively. Compute

1. Pa(


0

1

1

) =

2. P⊥a (


0

1

1

) =

3. Pa(


0

0

1

) =

4. P⊥a (


0

0

1

) =

Homework 11.2.1.3 Let a,v,b ∈ Rm.
What is the approximate cost of computing (avT)b, obeying the order indicated by the parentheses?

• m2 +2m.

• 3m2.

• 2m2 +4m.

What is the approximate cost of computing (vT b)a, obeying the order indicated by the parentheses?

• m2 +2m.

• 3m.

• 2m2 +4m.

For computational efficiency, it is important to compute a(aT a)−1aT b according to order indicated by the following paren-
theses:

((aT a)−1(aT b))a.

Similarly, (I−a(aT a)−1aT)b should be computed as

b− (((aT a)−1(aT b))a).

11.2. Projecting a Vector onto a Subspace 389

Homework 11.2.1.4 Given a,x ∈ Rm, let Pa(x) and P⊥a (x) be the projection of vector x onto Span({a}) and
Span({a})⊥, respectively. Then which of the following are true:

1. Pa(a) = a. True/False

2. Pa(χa) = χa. True/False

3. P⊥a (χa) = 0 (the zero vector). True/False

4. Pa(Pa(x)) = Pa(x). True/False

5. P⊥a (P⊥a (x)) = P⊥a (x). True/False

6. Pa(P⊥a (x)) = 0 (the zero vector). True/False

(Hint: Draw yourself a picture.)

11.2.2 An Application: Rank-1 Approximation

* View at edX
Consider the picture

bj

βi, j

This picture can be thought of as a matrix B ∈ Rm×n where each element in the matrix encodes a pixel in the picture. The jth
column of B then encodes the jth column of pixels in the picture.

Now, let’s focus on the first few columns. Notice that there is a lot of similarity in those columns. This can be illustrated by
plotting the values in the column as a function of the element in the column:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/2

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 390

In the graph on the left, we plot βi, j, the value of the (i, j) pixel, for j = 0,1,2,3 in different colors. The picture on the right
highlights the columns for which we are doing this. The green line corresponds to j = 3 and you notice that it is starting to
deviate some for i near 250.

If we now instead look at columns j = 0,1,2,100, where the green line corresponds to j = 100, we see that that column in
the picture is dramatically different:

Changing this to plotting j = 100,101,102,103 and we notice a lot of similarity again:

11.2. Projecting a Vector onto a Subspace 391

Now, let’s think about this from the point of view taking one vector, say the first column of B, b0, and projecting the other
columns onto the span of that column. What does this mean?

• Partition B into columns B =
(

b0 b1 · · · bn−1

)
.

• Pick a = b0.

• Focus on projecting b0 onto Span({a}):

a(aT a)−1aT b0 = a(aT a)−1aT a︸ ︷︷ ︸
Since b0 = a

= a.

Of course, this is what we expect when projecting a vector onto itself.

• Next, focus on projecting b1 onto Span({a}):
a(aT a)−1aT b1

since b1 is very close to b0.

• Do this for all columns, and create a picture with all of the projected vectors:(
a(aT a)−1aT b0 a(aT a)−1aT b1 a(aT a)−1aT b2 · · ·

)
• Now, remember that if T is some matrix, then

T B =
(

T b0 T b1 T b2 · · ·
)
.

If we let T = a(aT a)−1aT (the matrix that projects onto Span({a}), then

a(aT a)−1aT
(

b0 b1 b2 · · ·
)
= a(aT a)−1aT B.

• We can manipulate this further by recognizing that yT = (aT a)−1aT B can be computed as y = (aT a)−1BT a:

a(aT a)−1aT B = a ((aT a)−1BT a︸ ︷︷ ︸
y

)T = ayT

• We now recognize ayT as an outer product (a column vector times a row vector).

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 392

• If we do this for our picture, we get the picture on the left:

Notice how it seems like each column is the same, except with some constant change in the gray-scale. The same is true
for rows. Why is this? If you focus on the left-most columns in the picture, they almost look correct (comparing to the
left-most columns in the picture on the right). Why is this?

• The benefit of the approximation on the left is that it can be described with two vectors: a and y (n+m floating point
numbers) while the original matrix on the right required an entire matrix (m×n floating point numbers).

• The disadvantage of the approximation on the left is that it is hard to recognize the original picture...

Homework 11.2.2.1 Let S and T be subspaces of Rm and S⊂ T.
dim(S)≤ dim(T).

Always/Sometimes/Never

Homework 11.2.2.2 Let u ∈ Rm and v ∈ Rn. Then the m×n matrix uvT has a rank of at most one.
True/False

Homework 11.2.2.3 Let u ∈ Rm and v ∈ Rn. Then uvT has rank equal to zero if
(Mark all correct answers.)

1. u = 0 (the zero vector in Rm).

2. v = 0 (the zero vector in Rn).

3. Never.

4. Always.

11.2.3 Projection onto a Subspace

No video this section

Next, consider the following picture:

11.2. Projecting a Vector onto a Subspace 393

C (A)

b

z = Ax

w

What we have here are

• Matrix A ∈ Rm×n.

• The space spanned by the columns of A: C (A).

• A vector b ∈ Rm.

• Vector z, the component of b in C (A) which is also the vector in C (A) closest to the vector b. Since this vector is in the
column space of A, z = Ax for some vector x ∈ Rn.

• The vector w which is the component of b orthogonal to C (A).

The vectors b,z,w, all exist in the same planar subspace since b = z+w, which is the page on which these vectors are drawn in
the above picture.

Thus,
b = z+w,

where

• z = Ax with x ∈ Rn; and

• AT w = 0 since w is orthogonal to the column space of A and hence in N (AT).

Noting that w = b− z we find that
0 = AT w = AT (b− z) = AT (b−Ax)

or, equivalently,
AT Ax = AT b.

This should look familiar!
Then, provided (AT A)−1 exists (which, we saw before happens when A has linearly independent columns),

x = (AT A)−1AT b.

Thus, the component of b in C (A) is given by
z = Ax = A(AT A)−1AT b

while the component of b orthogonal (perpendicular) to C (A) is given by

w = b− z = b−A(AT A)−1AT b = Ib−A(AT A)−1AT b =
(
I−A(AT A)−1AT)b.

Summarizing:

z = A(AT A)−1AT b

w =
(
I−A(AT A)−1AT)b.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 394

We say that, given matrix A with linearly independent columns, the matrix that projects a given vector b onto the column
space of A is given by

A(AT A)−1AT

since A(AT A)−1AT b is the component of b in C (A).

We say that, given matrix A with linearly independent columns, the matrix that projects a given vector b onto the space
orthogonal to the column space of A (which, recall, is the left null space of A) is given by

I−A(AT A)−1AT

since
(
I−A(AT A)−1AT

)
b is the component of b in C (A)⊥ = N (AT).

Homework 11.2.3.1 Consider A =


1 1

1 −1

−2 4

 and b =


1

2

7

.

1. Find the projection of b onto the column space of A.

2. Split b into z+w where z is in the column space and w is perpendicular (orthogonal) to that space.

3. Which of the four subspaces (C(A), R(A), N (A), N (AT)) contains w?

For computational reasons, it is important to compute A(AT A)−1AT x according to order indicated by the following paren-
theses:

A[(AT A)−1[AT x]]

Similarly, (I−A(AT A)−1AT)x should be computed as

x− [A[(AT A)−1[AT x]]]

11.2.4 An Application: Rank-2 Approximation

* View at edX

Earlier, we took the first column as being representative of all columns of the picture. Looking at the picture, this is clearly
not the case. But what if we took two columns instead, say column j = 0 and j = n/2, and projected each of the columns onto
the subspace spanned by those two columns:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/4

11.2. Projecting a Vector onto a Subspace 395

b0 bn/2

• Partition B into columns B =
(

b0 b1 · · · bn−1

)
.

• Pick A =
(

a0 a1

)
=
(

b0 bn/2

)
.

• Focus on projecting b0 onto Span({a0,a1}) = C (A):

A(AT A)−1AT b0 = a = b0

because a is in C (A) and a is therefore the best vector in C (A).

• Next, focus on projecting b1 onto Span({a}):

A(AT A)−1AT b1 ≈ b1

since b1 is very close to a.

• Do this for all columns, and create a picture with all of the projected vectors:(
A(AT A)−1AT b0 A(AT A)−1AT b1 A(AT A)−1AT b2 · · ·

)
• Now, remember that if T is some matrix, then

T B =
(

T b0 T b1 T b2 · · ·
)
.

If we let T = A(AT A)−1AT (the matrix that projects onto C (A), then

A(AT A)−1AT
(

b0 b1 b2 · · ·
)
= A(AT A)−1AT B.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 396

• We can manipulate this by letting W = BT A(AT A)−1 so that

A (AT A)−1AT B︸ ︷︷ ︸
W T

= AW T .

Notice that A and W each have two columns.

• We now recognize AW T is the sum of two outer products:

AW T =
(

a0 a1

)(
w0 w1

)T
=
(

a0 a1

) wT
0

wT
1

= a0wT
0 +a1wT

1 .

It can be easily shown that this matrix has rank of at most two, which is why this would be called a rank-2 approximation
of B.

• If we do this for our picture, we get the picture on the left:

We are starting to see some more detail.

• We now have to store only a n×2 and m×2 matrix (A and W).

11.2.5 An Application: Rank-k Approximation

* View at edX

Rank-k approximations

We can improve the approximations above by picking progressively more columns for A. The following progression of pictures
shows the improvement as more and more columns are used, where k indicates the number of columns:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/5

11.2. Projecting a Vector onto a Subspace 397

k = 1 k = 2

k = 10 k = 25

k = 50 original

Homework 11.2.5.1 Let U ∈ Rm×k and V ∈ Rn×k. Then the m×n matrix UV T has rank at most k.
True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/6b6f47e5867d4a858a537389cd2dec81/5

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 398

Homework 11.2.5.2 We discussed in this section that the projection of B onto the column space of A is given by
A(AT A)−1AT B. So, if we compute V = (AT A)−1AT B, then AV is an approximation to B that requires only m× k
matrix A and k×n matrix V .
To compute V , we can perform the following steps:

• Form C = AT A.

• Compute the LU factorization of C, overwriting C with the resulting L and U .

• Compute V = AT B.

• Solve LX =V , overwriting V with the solution matrix X .

• Solve UX =V , overwriting V with the solution matrix X .

• Compute the approximation of B as A ·V (A times V). In practice, you would not compute this approximation,
but store A and V instead, which typically means less data is stored.

To experiments with this, download Week11.zip, place it in

LAFF-2.0xM -> Programming

and unzip it. Then examine the file Week11/CompressPicture.m, look for the comments on what operations
need to be inserted, and insert them. Execute the script in the Command Window and see how the picture in file
building.png is approximated. Play with the number of columns used to approximate. Find your own picture!
(It will have to be a black-and-white picture for what we discussed to work.
Notice that AT A is a symmetric matrix, and it can be shown to be symmetric positive definite under most cir-
cumstances (when A has linearly independent columns). This means that instead of the LU factorization, one can
use the Cholesky factorization (see the enrichment in Week 8). In Week11.zip you will also find a function for
computing the Cholesky factorization. Try to use it to perform the calculations.

11.3 Orthonormal Bases

11.3.1 The Unit Basis Vectors, Again

* View at edX
Recall the unit basis vectors in R3:

e0 =


1

0

0

 , e1 =


0

1

0

 and e2 =


0

0

1

 .

This set of vectors forms a basis for R3; they are linearly independent and any vector x ∈ R3 can be written as a linear
combination of these three vectors.

Now, the set

v0 =


1

0

0

 , v1 =


1

1

0

 and v2 =


1

1

1


is also a basis for R3, but is not nearly as nice:

• Two of the vectors are not of length one.

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Week11.zip
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/1

11.3. Orthonormal Bases 399

• They are not orthogonal to each other.

There is something pleasing about a basis that is orthonormal. By this we mean that each vector in the basis is of length
one, and any pair of vectors is orthogonal to each other.

A question we are going to answer in the next few units is how to take a given basis for a subspace and create an orthonormal
basis from it.

Homework 11.3.1.1 Consider the vectors

v0 =


1

0

0

 , v1 =


1

1

0

 and v2 =


1

1

1


1. Compute

(a) vT
0 v1 =

(b) vT
0 v2 =

(c) vT
1 v2 =

2. These vectors are orthonormal. True/False

11.3.2 Orthonormal Vectors

* View at edX

Definition 11.1 Let q0,q1, . . . ,qk−1 ∈ Rm. Then these vectors are (mutually) orthonormal if for all 0≤ i, j < k :

qT
i q j =

 1 if i = j

0 otherwise.

Homework 11.3.2.1

1.

 cos(θ) −sin(θ)

sin(θ) cos(θ)

T  cos(θ) −sin(θ)

sin(θ) cos(θ)

=

2.

 cos(θ) sin(θ)

−sin(θ) cos(θ)

T  cos(θ) sin(θ)

−sin(θ) cos(θ)

=

3. The vectors

 −sin(θ)

cos(θ)

 ,

 cos(θ)

sin(θ)

 are orthonormal. True/False

4. The vectors

 sin(θ)

cos(θ)

 ,

 cos(θ)

−sin(θ)

 are orthonormal. True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 400

Homework 11.3.2.2 Let q0,q1, . . . ,qk−1 ∈ Rm be a set of orthonormal vectors. Let

Q =
(

q0 q1 · · · qk−1

)
.

Then QT Q = I.
TRUE/FALSE

* View at edX

Homework 11.3.2.3 Let Q ∈ Rm×k (with k ≤ m) and QT Q = I. Partition

Q =
(

q0 q1 · · · qk−1

)
.

Then q0,q1, . . . ,qk−1 are orthonormal vectors.
TRUE/FALSE

* View at edX

* View at edX

Homework 11.3.2.4 Let q ∈ Rm be a unit vector (which means it has length one). Then the matrix that projects
vectors onto Span({q}) is given by qqT .

True/False

* View at edX

Homework 11.3.2.5 Let q∈Rm be a unit vector (which means it has length one). Let x∈Rm. Then the component
of x in the direction of q (in Span({q})) is given by qT xq.

True/False

* View at edX

Homework 11.3.2.6 Let Q ∈ Rm×n have orthonormal columns (which means QT Q = I). Then the matrix that
projects vectors onto the column space of Q, C (Q), is given by QQT .

True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2

11.3. Orthonormal Bases 401

Homework 11.3.2.7 Let Q ∈ Rm×n have orthonormal columns (which means QT Q = I). Then the matrix that
projects vectors onto the space orthogonal to the columns of Q, C (Q)⊥, is given by I−QQT .

True/False

* View at edX

11.3.3 Orthogonal Bases

* View at edX

* View at edX
The fundamental idea for this unit is that it is convenient for a basis to be orthonormal. The question is: how do we transform

a given set of basis vectors (e.g., the columns of a matrix A with linearly independent columns) into a set of orthonormal vectors
that form a basis for the same space? The process we will described is known as Gram-Schmidt orthogonalization (GS
orthogonalization).

The idea is very simple:

• Start with a set of n linearly independent vectors, a0,a1, . . . ,an−1 ∈ Rm.

• Take the first vector and make it of unit length:

q0 = a0/ ‖a0‖2︸ ︷︷ ︸
ρ0,0

,

where ρ0,0 = ‖a0‖2, the length of a0.

Notice that Span({a0}) = Span({q0}) since q0 is simply a scalar multiple of a0.

This gives us one orthonormal vector, q0.

• Take the second vector, a1, and compute its component orthogonal to q0:

a⊥1 = (I−q0qT
0)a1 = a1−q0qT

0 a1 = a1− qT
0 a1︸︷︷︸

ρ0,1

q0.

• Take a⊥1 , the component of a1 orthogonal to q0, and make it of unit length:

q1 = a⊥1 / ‖a⊥1 ‖2︸ ︷︷ ︸
ρ1,1

,

We will see later that Span({a0,a1}) = Span({q0,q1}).

This gives us two orthonormal vectors, q0,q1.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/4

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 402

• Take the third vector, a2, and compute its component orthogonal to Q(2) =
(

q0 q1

)
(orthogonal to both q0 and q1

and hence Span({q0,q1}) = C (Q(2)):

a⊥2 = (I−Q(2)Q(2)T)a2︸ ︷︷ ︸
Projection

onto C (Q(2))⊥

= a2− Q(2)Q(2)T a2︸ ︷︷ ︸
Component

in C (Q(2))

= a2−
(

q0 q1

)(
q0 q1

)T
a2

= a2−
(

q0 q1

) qT
0

qT
1

a2 = a2−
(

q0 q1

) qT
0 a2

qT
1 a2


= a2−

(
qT

0 a2q0 +qT
1 a2q1

)
= a2− qT

0 a2q0︸ ︷︷ ︸
Component

in direction

of q0

− qT
1 a2q1.︸ ︷︷ ︸

Component

in direction

of q1

Notice:

– a2−qT
0 a2q0 equals the vector a2 with the component in the direction of q0 subtracted out.

– a2−qT
0 a2q0−qT

1 a2q1 equals the vector a2 with the components in the direction of q0 and q1 subtracted out.

– Thus, a⊥2 equals component of a2 that is orthogonal to both q0 and q1.

• Take a⊥2 , the component of a2 orthogonal to q0 and q1, and make it of unit length:

q2 = a⊥2 / ‖a⊥2 ‖2︸ ︷︷ ︸
ρ2,2

,

We will see later that Span({a0,a1,a2}) = Span({q0,q1,q2}).
This gives us three orthonormal vectors, q0,q1,q2.

• (Continue repeating the process)

• Take vector ak, and compute its component orthogonal to Q(k) =
(

q0 q1 · · · qk−1

)
(orthogonal to all vectors

q0,q1, . . . ,qk−1 and hence Span({q0,q1, . . . ,qk−1}) = C (Q(k)):

a⊥k = (I−Q(k)Q(k)T)ak = ak−Q(k)Q(k)T ak = ak−
(

q0 q1 · · · qk−1

)(
q0 q1 · · · qk−1

)T
ak

= ak−
(

q0 q1 · · · qk−1

)


qT
0

qT
1
...

qT
k−1

ak = ak−
(

q0 q1 · · · qk−1

)


qT
0 ak

qT
1 ak
...

qT
k−1ak


= ak−qT

0 akq0−qT
1 akq1−·· ·qT

k−1akqk−1.

Notice:

– ak−qT
0 akq0 equals the vector ak with the component in the direction of q0 subtracted out.

– ak−qT
0 akq0−qT

1 akq1 equals the vector ak with the components in the direction of q0 and q1 subtracted out.

– ak−qT
0 akq0−qT

1 akq1−·· ·−qT
k−1akqk−1 equals the vector ak with the components in the direction of q0,q1, . . . ,qk−1

subtracted out.

11.3. Orthonormal Bases 403

– Thus, a⊥k equals component of ak that is orthogonal to all vectors q j that have already been computed.

• Take a⊥k , the component of ak orthogonal to q0,q1, . . .qk−1, and make it of unit length:

qk = a⊥k / ‖a⊥k ‖2︸ ︷︷ ︸
ρk,k

,

We will see later that Span({a0,a1, . . . ,ak}) = Span({q0,q1, . . . ,qk}).

This gives us k+1 orthonormal vectors, q0,q1, . . . ,qk.

• Continue this process to compute q0,q1, . . . ,qn−1.

The following result is the whole point of the Gram-Schmidt process, namely to find an orthonormal basis for the span of a
given set of linearly independent vectors.

Theorem 11.2 Let a0,a1, . . . ,ak−1 ∈ Rm be linearly independent vectors and let q0,q1, . . . ,qk−1 ∈ Rm be the result of Gram-
Schmidt orthogonalization. Then Span({a0,a1, . . . ,ak−1}) = Span({q0,q1, . . . ,qk−1}).

The proof is a bit tricky (and in some sense stated in the material in this unit) so we do not give it here.

11.3.4 Orthogonal Bases (Alternative Explanation)

* View at edX
We now give an alternate explanation for Gram-Schmidt orthogonalization.
We are given linearly independent vectors a0,a1, . . . ,an−1 ∈Rm and would like to compute orthonormal vectors q0,q1, . . . ,qn−1 ∈

Rm such that Span({a0,a1, . . . ,an−1}) equals Span({q0,q1, . . . ,qn−1}).
Let’s put one more condition on the vectors qk: Span({a0,a1, . . . ,ak−1}) = Span({q0,q1, . . . ,qk−1}) for k = 0,1, . . . ,n. In

other words,

Span({a0}) = Span({q0})
Span({a0,a1}) = Span({q0,q1})

...
Span({a0,a1, . . . ,ak−1}) = Span({q0,q1, . . . ,qk−1})

...
Span({a0,a1, . . . ,an−1}) = Span({q0,q1, . . . ,qn−1})

Computing q0

Now, Span({a0}) = Span({q0}) means that a0 = ρ0,0q0 for some scalar ρ0,0. Since q0 has to be of length one, we can choose

ρ0,0 := ‖a0‖2

q0 := a0/ρ0,0.

Notice that q0 is not unique: we could have chosen ρ0,0 = −‖a0‖2 and q0 = a0/ρ0,0. This non-uniqueness is recurring in the
below discussion, and we will ignore it since we are merely interested in a single orthonormal basis.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/5

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 404

Computing q1

Next, we note that Span({a0,a1}) = Span({q0,q1}) means that a1 = ρ0,1q0 +ρ1,1q1 for some scalars ρ0,1 and ρ1,1. We also
know that qT

0 q1 = 0 and qT
1 q1 = 1 since these vectors are orthonormal. Now

qT
0 a1 = qT

0 (ρ0,1q0 +ρ1,1q1) = qT
0 ρ0,1q0 +qT

0 ρ1,1q1 = ρ0,1 qT
0 q0︸︷︷︸
1

+ρ1,1 qT
0 q1︸︷︷︸
0

= ρ0,1

so that
ρ0,1 = qT

0 a1.

Once ρ0,1 has been computed, we can compute the component of a1 orthogonal to q0:

ρ1,1q1︸ ︷︷ ︸
a⊥1

= a1− qT
0 a1︸︷︷︸

ρ0,1

q0

after which a⊥1 = ρ1,1q1. Again, we can now compute ρ1,1 as the length of a⊥1 and normalize to compute q1:

ρ0,1 := qT
0 a1

a⊥1 := a1−ρ0,1q0

ρ1,1 := ‖a⊥1 ‖2

q1 := a⊥1 /ρ1,1.

Computing q2

We note that Span({a0,a1,a2}) = Span({q0,q1,q2}) means that a2 = ρ0,2q0 +ρ1,2q1 +ρ2,2q2 for some scalars ρ0,2, ρ1,2 and
ρ2,2. We also know that qT

0 q2 = 0, qT
1 q2 = 0 and qT

2 q2 = 1 since these vectors are orthonormal. Now

•

qT
0 a2 = qT

0 (ρ0,2q0 +ρ1,2q1 +ρ2,2q2) = ρ0,2 qT
0 q0︸︷︷︸
1

+ρ1,2 qT
0 q1︸︷︷︸
0

+ρ2,2 qT
0 q2︸︷︷︸
0

= ρ0,2

so that
ρ0,2 = qT

0 a2.

•

qT
1 a2 = qT

1 (ρ0,2q0 +ρ1,2q1 +ρ2,2q2) = ρ0,2 qT
1 q0︸︷︷︸
0

+ρ1,2 qT
1 q1︸︷︷︸
1

+ρ2,2 qT
1 q2︸︷︷︸
0

= ρ1,2

so that
ρ1,2 = qT

1 a2.

Once ρ0,2 and ρ1,2 have been computed, we can compute the component of a2 orthogonal to q0 and q1:

ρ2,2q2︸ ︷︷ ︸
a⊥2

= a2− qT
0 a2︸︷︷︸

ρ0,2

q0− qT
1 a2︸︷︷︸

ρ1,2

q1

after which a⊥2 = ρ2,2q2. Again, we can now compute ρ2,2 as the length of a⊥2 and normalize to compute q2:

ρ0,2 := qT
0 a2

ρ1,2 := qT
1 a2

a⊥2 := a2−ρ0,2q0−ρ1,2q1

ρ2,2 := ‖a⊥2 ‖2

q2 := a⊥2 /ρ2,2.

11.3. Orthonormal Bases 405

Computing qk

Let’s generalize this: Span({a0,a1, . . . ,ak}) = Span({q0,q1, . . . ,qk}) means that

ak = ρ0,kq0 +ρ1,kq1 + · · ·+ρk−1,kqk−1 +ρk,kqk =
k−1

∑
j=0

ρ j,kq j +ρk,kqk

for some scalars ρ0,k,ρ1,k, . . . ,ρk,k. We also know that

qT
i q j =

 1 if i = j

0 otherwise.

Now, if p < k,

qT
p ak = qT

p

(
k−1

∑
j=0

ρ j,kq j +ρk,kqk

)
=

k−1

∑
j=0

ρ j,kqT
p q j +ρk,kqT

p qk = ρp,kqT
p qp = ρp,k

so that

ρp,k = qT
p ak.

Once the scalars ρp,k have been computed, we can compute the component of ak orthogonal to q0, . . . ,qk−1:

ρk,kqk︸ ︷︷ ︸
a⊥k

= ak−
k−1

∑
j=0

qT
j ak︸︷︷︸

ρ j,k

q j

after which a⊥k = ρk,kqk. Once again, we can now compute ρk,k as the length of a⊥k and normalize to compute qk:

ρ0,k := qT
0 ak

...
ρk−1,k := qT

k−1ak

a⊥k := ak−
k−1

∑
j=0

ρ j,kq j

ρk,k := ‖a⊥k ‖2

qk := a⊥k /ρk,k.

An algorithm

The above discussion yields an algorithm for Gram-Schmidt orthogonalization, computing q0, . . . ,qn−1 (and all the ρi, j’s as a
side product). This is not a FLAME algorithm so it may take longer to comprehend:

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 406

for k = 0, . . . ,n−1

for p = 0, . . . ,k−1
ρp,k := qT

p ak
endfor

}


ρ0,k

ρ1,k
...

ρk−1,k

=


qT

0 ak

qT
1 ak
...

qT
k−1ak

=


qT

0

qT
1
...

qT
k−1

ak =
(

q0 q1 · · · qk−1

)T
ak

a⊥k := ak
for j = 0, . . . ,k−1

a⊥k := a⊥k −ρ j,kq j
endfor

 a⊥k = ak−∑
k−1
j=0 ρ j,kq j = ak−

(
q0 q1 · · · qk−1

)


ρ0,k

ρ1,k
...

ρk−1,k


ρk,k := ‖a⊥k ‖2
qk := a⊥k /ρk,k

}
Normalize a⊥k to be of length one.

endfor

Homework 11.3.4.1 Consider A =


1 0

0 1

1 1

 Compute an orthonormal basis for C (A).

Homework 11.3.4.2 Consider A =


1 −1 0

1 0 1

1 1 2

. Compute an orthonormal basis for C (A).

Homework 11.3.4.3 Consider A =


1 1

1 −1

−2 4

. Compute an orthonormal basis for C (A).

11.3.5 The QR Factorization

* View at edX
Given linearly independent vectors a0,a1, . . . ,an−1 ∈ Rm, the last unit computed the orthonormal basis q0,q1, . . . ,qn−1

such that Span({a1,a2, . . . ,an−1}) equals Span({q1,q2, . . . ,qn−1}). As a side product, the scalars ρi, j = qT
i a j were com-

puted, for i ≤ j. We now show that in the process we computed what’s known as the QR factorization of the matrix
A =

(
a0 a1 · · · an−1

)
:

(
a0 a1 · · · an−1

)
︸ ︷︷ ︸

A

=
(

q0 q1 · · · qn−1

)
︸ ︷︷ ︸

Q


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


︸ ︷︷ ︸

R

.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/6

11.3. Orthonormal Bases 407

Notice that QT Q = I (since its columns are orthonormal) and R is upper triangular.
In the last unit, we noticed that

a0 = ρ0,0q0

a1 = ρ0,1q0 + ρ1,1q1
...

...
...

...
...

an−1 = ρ0,n−1q0 + ρ1,n−1q1 + · · · + ρn−1,n−1qn−1

If we write the vectors on the left of the equal signs as the columns of a matrix, and do the same for the vectors on the right of
the equal signs, we get(

a0 a1 · · · an−1

)
︸ ︷︷ ︸

A

=
(

ρ0,0q0 ρ0,1q0 +ρ1,1q1 · · · ρ0,n−1q0 +ρ1,n−1q1 + · · ·+ρn−1,n−1qn−1

)

=
(

q0 q1 · · · qn−1

)
︸ ︷︷ ︸

Q


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


︸ ︷︷ ︸

R

.

Bingo, we have shown how Gram-Schmidt orthogonalization computes the QR factorization of a matrix A.

Homework 11.3.5.1 Consider A =


1 0

0 1

1 1

.

• Compute the QR factorization of this matrix.

(Hint: Look at Homework 11.3.4.1)

• Check that QR = A.

Homework 11.3.5.2 Considerx !m

A =


1 1

1 −1

−2 4

. Compute the QR factorization of this matrix.

(Hint: Look at Homework 11.3.4.3)
Check that A = QR.

11.3.6 Solving the Linear Least-Squares Problem via QR Factorization

* View at edX
Now, let’s look at how to use the QR factorization to solve Ax≈ b when b is not in the column space of A but A has linearly

independent columns. We know that the linear least-squares solution is given by

x = (AT A)−1AT b.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/7
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/7

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 408

Now A = QR where QT Q = I. Then

x = (AT A)−1AT b = ((QR︸︷︷︸
A

)T (QR︸︷︷︸
A

))−1(QR︸︷︷︸
A

)T b

= (RT QT Q︸︷︷︸
I

R)−1RT QT b = (RT R)−1RT QT b = R−1 R−T RT︸ ︷︷ ︸
I

QT b

= R−1QT b.

Thus, the linear least-square solution, x, for Ax≈ b when A has linearly independent columns solves Rx = QT b.

Homework 11.3.6.1 In Homework 11.3.4.1 you were asked to consider A =


1 0

0 1

1 1

 and compute an or-

thonormal basis for C (A).
In Homework 11.3.5.1 you were then asked to compute the QR factorization of that matrix. Of course, you
could/should have used the results from Homework 11.3.4.1 to save yourself calculations. The result was the
following factorization A = QR:

1 0

0 1

1 1

=

 1√
2


1

0

1

 √
2√
3


− 1

2

1
1
2



 √2 1√

2

0
√

6
2


Now, compute the “best” solution (in the linear least-squares sense), x̂, to

1 0

0 1

1 1


 χ0

χ1

=


1

1

0

 .

(This is the same problem as in Homework 10.4.2.1.)

• u = QT b =

• The solution to Rx̂ = u is x̂ =

11.3.7 The QR Factorization (Again)

* View at edX
We now give an explanation of how to compute the QR factorization that yields an algorithm in FLAME notation.
We wish to compute A = QR where A,Q ∈ Rm×n and R ∈ Rn×n. Here QT Q = I and R is upper triangular. Let’s partition

these matrices:

A =
(

A0 a1 A2

)
, Q =

(
Q0 q1 Q2

)
, and


R00 r01 R02

0 ρ11 rT
12

0 0 R22

 ,

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/8
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/8db8dbddcb734e2ead4d5a74b828e664/8

11.3. Orthonormal Bases 409

where A0,Q0 ∈ Rm×k and R00 ∈ Rk×k. Now, A = QR means that

(
A0 a1 A2

)
=
(

Q0 q1 Q2

)
R00 r01 R02

0 ρ11 rT
12

0 0 R22



so that

(
A0 a1 A2

)
=
(

Q0R00 Q0r01 +ρ11q1 Q0R02 +q1rT
12 +Q2R22

)
.

Now, assume that Q0 and R00 have already been computed so that A0 = Q0R00. Let’s focus on how to compute the next column

of Q, q1, and the next column of R,

 r01

ρ11

:

a1 = Q0r01 +ρ11q1

implies that

QT
0 a1 = QT

0 (Q0r01 +ρ11q1) = QT
0 Q0︸ ︷︷ ︸
I

r01 +ρ11 QT
0 q1︸ ︷︷ ︸
0

= r01,

since QT
0 Q0 = I (the columns of Q0 are orthonormal) and QT

0 q1 = 0 (q1 is orthogonal to all the columns of Q0). So, we can
compute r01 as

r01 := QT
0 a1.

Now we can compute a⊥1 , the component of a1 orthogonal to the columns of Q0:

a⊥1 := a1−Q0r01

= a1−Q0QT
0 a1

= (I−Q0QT
0)a1, the component of a1 orthogonal to C (Q0).

Rearranging a1 = Q0r01 +ρ11q1 yields ρ11q1 = a1−Q0r01 = a⊥1 . Now, q1 is simply the vector of length one in the direction of
a⊥1 . Hence we can choose

ρ11 := ‖a⊥1 ‖2

q1 := a⊥1 /ρ11.

All of these observations are summarized in the algorithm in Figure 11.1

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 410

Algorithm: [Q,R] := QR(A,Q,R)

Partition A→
(

AL AR

)
, Q→

(
QL QR

)
, R→

 RT L RT R

RBL RBR


where AL and QL have 0 columns, RT L

is 0×0
while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,
(

QL QR

)
→
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

→


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


r01 := QT

0 a1

a⊥1 := a1−Q0r01

ρ11 := ‖a⊥1 ‖2

q1 = a⊥1 /ρ11

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,
(

QL QR

)
←
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

←


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


endwhile

Figure 11.1: QR facorization via Gram-Schmidt orthogonalization.

Homework 11.3.7.1 Implement the algorithm for computing the QR factorization of a matrix in Figure 11.1

[Q out, R out] = QR unb(A, Q, R)

where A and Q are m×n matrices and R is an n×n matrix. You will want to use the routines laff gemv, laff norm,
and laff invscal. (Alternatively, use native MATLAB operations.) Store the routine in

LAFF-2.0xM -> Programming -> Week11 -> QR unb.m

Test the routine with

A = [1 -1 2
2 1 -3
-1 3 2
0 -2 -1];

Q = zeros(4, 3);
R = zeros(3, 3);
[Q_out, R_out] = QR_unb(A, Q, R);

Next, see if A = QR:

A - Q_out * R_out

This should equal, approximately, the zero matrix. Check if Q has mutually orthogonal columns:

Q_out’ * Q_out

This should equal, approximately, the identity matrix.
Finally, repeat the above, but with matrix

epsilon = 1e-8

A = [1 1 1
epsilon 0 0

0 epsilon 0
0 0 epsilon]

Q = zeros(4, 3);
R = zeros(4, 3);
[Q_out, R_out] = QR_unb(A, Q, R);

Again, check if A = QR and if Q has mutually orthogonal columns. To understand what went wrong, you may
want to read Robert’s notes for his graduate class. For details, see the enrichment for this week.

11.4. Change of Basis 411

11.4 Change of Basis

11.4.1 The Unit Basis Vectors, One More Time

* View at edX
Once again, recall the unit basis vectors in R2:

e0 =

 1

0

 , e1 =

 0

1

 .

Now,  4

2

= 4

 1

0

+2

 0

1


by which we illustrate the fact that

 1

0

 and

 0

1

 form a basis for R2 and the vector

 4

2

 can then be written as a

linear combination of these basis vectors, with coefficients 4 and 2. We can illustrate this with

(
1

0

)

(
0

1

)

(
4

2

)
= 4

(
1

0

)
+2

(
0

1

)

4

(
1

0

)

2
(

0

1

)

11.4.2 Change of Basis

* View at edX
Similar to the example from the last unit, we could have created an alternate coordinate system with basis vectors

q0 =

√
2

2

 1

1

=

 √
2

2√
2

2

 , q1 =

√
2

2

 −1

1

=

 −√2
2√
2

2

 .

What are the coefficients for the linear combination of these two vectors (q0 and q1) that produce the vector

 4

2

? First let’s

look at a few exercises demonstrating how special these vectors that we’ve chosen are.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/828ffd97bc274836a555cbfdf8a8256a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/828ffd97bc274836a555cbfdf8a8256a/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/828ffd97bc274836a555cbfdf8a8256a/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/828ffd97bc274836a555cbfdf8a8256a/2

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 412

Homework 11.4.2.1 The vectors

q0 =

√
2

2

 1

1

=

 √
2

2√
2

2

 , q1 =

√
2

2

 −1

1

=

 −√2
2√
2

2

 .

are mutually orthonormal.
True/False

Homework 11.4.2.2 If Q ∈ Rn×n has mutually orthonormal columns then which of the following are true:

1. QT Q = I True/False

2. QQT = I True/False

3. QQ−1 = I True/False

4. Q−1 = QT True/False

(
4

2

)

What we would like to determine are the coefficients χ0 and χ1 such that

χ0

√
2

2

 1

1

+χ1

√
2

2

 −1

1

=

 4

2

 .

This can be alternatively written as  √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 χ0

χ1

=

 4

2



In Homework 11.4.2.1 we noticed that √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

=

 1 0

0 1



11.4. Change of Basis 413

and hence  √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q︸ ︷︷ ︸
I

 χ0

χ1

=

 √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 4

2



or, equivalently,  χ0

χ1

=

 √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 4

2

=

 4
√

2
2 +2

√
2

2

−4
√

2
2 +2

√
2

2

=

 3
√

2

−
√

2



so that

3
√

2

 √
2

2√
2

2

−√2

 −√2
2√
2

2

=

 4

2

 .

In other words: In the new basis, the coefficients are 3
√

2 and −
√

2.
Another way of thinking of the above discussion is that

4

 1

0

+2

 0

1

 =

 4

2

=

 1 0

0 1

 4

2


=

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 √
2

2

√
2

2

−
√

2
2

√
2

2


︸ ︷︷ ︸

QT

 4

2

=

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 4
√

2
2 +2

√
2

2

−4
√

2
2 +2

√
2

2



=

 √
2

2 −
√

2
2√

2
2

√
2

2


︸ ︷︷ ︸

Q

 3
√

2

−
√

2

= 3
√

2

 √
2

2√
2

2

−√2

 −√2
2√
2

2

 .

This last way of looking at the problem suggest a way of finding the coefficients for any basis, a0,a1, . . . ,an−1 ∈ Rn. Let
b ∈ Rn and let A =

(
a0 a1 · · · an−1

)
. Then

b = AA−1︸ ︷︷ ︸
I

b = Ax = χ0a0 +χ1a1 + · · ·+χn−1an−1.

So, when the basis is changed from the unit basis vectors to the vectors a0,a1, . . . ,an−1, the coefficients change from β0,β1, . . . ,βn−1
(the components of the vector b) to χ0,χ1, . . . ,χn−1 (the components of the vector x).

Obviously, instead of computing A−1b, one can instead solve Ax = b.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 414

11.5 Singular Value Decomposition

11.5.1 The Best Low Rank Approximation

* View at edX
Earlier this week, we showed that by taking a few columns from matrix B (which encoded the picture), and projecting onto

those columns we could create a rank-k approximation, AW T , that approximated the picture. The columns in A were chosen
from the columns of B.

Now, what if we could choose the columns of A to be the best colums onto which to project? In other words, what if we
could choose the columns of A so that the subspace spanned by them minimized the error in the approximation AW T when we
choose W = (AT A)−1AT B?

The answer to how to obtain the answers the above questions go beyond the scope of an introductory undergraduate linear
algebra course. But let us at least look at some of the results.

One of the most important results in linear algebra is the Singular Value Decomposition Theorem which says that any
matrix B ∈ Rm×n can be written as the product of three matrices, the Singular Value Decomposition (SVD):

B =UΣV T

where

• U ∈ Rm×r and UTU = I (U has orthonormal columns).

• Σ∈Rr×r is a diagonal matrix with positive diagonal elements that are ordered so that σ0,0 ≥ σ1,1 ≥ ·· · ≥ σ(r−1),(r−1) > 0.

• V ∈ Rn×r and V TV = I (V has orthonormal columns).

• r equals the rank of matrix B.

If we partition

U =
(

UL UR

)
,V =

(
VL VR

)
, and Σ =

 ΣT L 0

0 ΣBR

 ,

where UL and VL have k columns and ΣT L is k×k, then ULΣT LV T
L is the “best” rank-k approximation to matrix B. So, the “best”

rank-k approximation B = AW T is given by the choices A =UL and W = ΣT LVL.
The sequence of pictures in Figures 11.2 and 11.3 illustrate the benefits of using a rank-k update based on the SVD.

Homework 11.5.1.1 Let B =UΣV T be the SVD of B, with U ∈ Rm×r, Σ ∈ Rr×r, and V ∈ Rn×r. Partition

U =
(

u0 u1 · · · ur−1

)
, Σ =


σ0 0 · · · 0

0 σ1 · · · 0
...

...
. . .

...

0 0 · · · σr−1

 ,V =
(

v0 v1 · · · vr−1

)
.

UΣV T = σ0u0vT
0 +σ1u1vT

1 + · · ·+σr−1ur−1vT
r−1.

Always/Sometimes/Never

Homework 11.5.1.2 Let B =UΣV T be the SVD of B with U ∈ Rm×r, Σ ∈ Rr×r, and V ∈ Rn×r.

• C (B) = C (U)
Always/Sometimes/Never

• R (B) = C (V)
Always/Sometimes/Never

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/dd7c08ae097e43058b792eec37988e98/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/d0b73e2305cc4cf68de091c2cb536f9d/dd7c08ae097e43058b792eec37988e98/1

11.5. Singular Value Decomposition 415

A(AT A)−1AT B ULΣT LV T
L

k = 1 k = 1

k = 5 k = 5

k = 10 k = 10

Figure 11.2: Rank-k approximation using columns from the picture versus using the SVD. (Part 1)

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 416

A(AT A)−1AT B ULΣT LV T
L

k = 25 k = 25

k = 50 k = 50

Figure 11.3: Rank-k approximation using columns from the picture versus using the SVD. (Continued)

Given A ∈ Rm×n with linearly independent columns, and b ∈ Rm, we can solve Ax≈ b for the “best” solution (in the linear
least-squares sense) via its SVD, A =UΣV T , by observing that

x̂ = (AT A)−1AT b

= ((UΣV T)T (UΣV T))−1(UΣV T)T b

= (V ΣTUTUΣV T)−1V ΣTUT b

= (V ΣΣV T)−1V ΣUT b

= ((V T)−1(ΣΣ)−1V−1)V ΣUT b

= V Σ−1Σ−1ΣUT b

= V Σ−1UT b.

Hence, the “best” solution is given by

x̂ =V Σ
−1UT b.

11.6. Enrichment 417

Homework 11.5.1.3 You will now want to revisit exercise 11.2.5.2 and compare an approximation by projecting
onto a few columns of the picture versus using the SVD to approximate. You can do so by executing the script
Week11/CompressPictureWithSVD.m that you downloaded in Week11.zip. That script creates three figures: the
first is the original picture. The second is the approximation as we discussed in Section 11.2.5. The third uses the
SVD. Play with the script, changing variable k.

11.6 Enrichment

11.6.1 The Problem with Computing the QR Factorization

Modified Gram-Schmidt

In theory, the Gram-Schmidt process, started with a set of linearly independent vectors, yields an orthonormal basis for the
span of those vectors. In practice, due to round-off error, the process can result in a set of vectors that are far from mutually
orhonormal. A minor modification of the Gram-Schmidt process, known as Modified Gram-Schmidt, partially fixes this.

A more advanced treatment of Gram-Schmidt orthonalization, including the Modified Gram-Schmidt process, can be found
in Robert’s notes for his graduate class on Numerical Linear Algebra, available from http://www.ulaff.net.

Many linear algebra texts also treat this material.

11.6.2 QR Factorization Via Householder Transformations (Reflections)

If orthogonality is important, an alternative algorithm for computing the QR factorization is employed, based on Householder
transformations (reflections). This approach resembles LU factorization with Gauss transforms, except that at each step a
reflection is used to zero elements below the current diagonal.

QR factorization via Householder transformations is discussed in Robert’s notes for his graduate class on Numerical Linear
Algebra, available from http://www.ulaff.net.

Graduate level texts on numerical linear algebra usually treat this topic, as may some more advanced undergraduate texts.

11.6.3 More on SVD

The SVD is possibly the most important topic in linear algebra.
A thorough treatment of the SVD can be found in Robert’s notes for his graduate class on Numerical Linear Algebra,

available from http://www.ulaff.net.
Graduate level texts on numerical linear algebra usually treat this topic, as may some more advanced undergraduate texts.

11.7 Wrap Up

11.7.1 Homework

No additional homework this week.

11.7.2 Summary

Projection

Given a,b ∈ Rm:

• Component of b in direction of a:

u =
aT b
aT a

a = a(aT a)−1aT b.

• Matrix that projects onto Span({a}):
a(aT a)−1aT

http://www.ulaff.net
http://www.ulaff.net
http://www.ulaff.net

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 418

• Component of b orthogonal to a:

w = b− aT b
aT a

a = b−a(aT a)−1aT b = (I−a(aT a)−1aT)b.

• Matrix that projects onto Span({a})⊥:
I−a(aT a)−1aT

Given A ∈ Rm×n with linearly independent columns and vector b ∈ Rm:

• Component of b in C (A):
u = A(AT A)−1AT b.

• Matrix that projects onto C (A):
A(AT A)−1AT .

• Component of b in C (A)⊥ = N (AT):

w = b−A(AT A)−1AT b = (I−A(AT A)−1AT)b.

• Matrix that projects onto C (A)⊥ = N (AT):
(I−A(AT A)−1AT).

“Best” rank-k approximation of B ∈ Rm×n using the column space of A ∈ Rm×k with linearly independent columns:

A(AT A)−1AT B = AV T , where V T = (AT A)−1AT B.

Orthonormal vectors and spaces

Definition 11.3 Let q0,q1, . . . ,qk−1 ∈ Rm. Then these vectors are (mutually) orthonormal if for all 0≤ i, j < k :

qT
i q j =

 1 if i = j

0 otherwise.

Theorem 11.4 A matrix Q ∈ Rm×n has mutually orthonormal columns if and only if QT Q = I.

Given q,b ∈ Rm, with ‖q‖2 = 1 (q of length one):

• Component of b in direction of q:
u = qT bq = qqT b.

• Matrix that projects onto Span({q}):
qqT

• Component of b orthogonal to q:
w = b−qT bq = (I−qqT)b.

• Matrix that projects onto Span({q})⊥:
I−qqT

Given matrix Q ∈ Rm×n with mutually orthonormal columns and vector b ∈ Rm:

• Component of b in C (Q):
u = QQT b.

• Matrix that projects onto C (Q):
QQT .

• Component of b in C (Q)⊥ = N (Q):
w = b−QQT b = (I−QQT)b.

• Matrix that projects onto C (Q)⊥ = N (QT):
(I−QQT).

“Best” rank-k approximation of B ∈ Rm×n using the column space of Q ∈ Rm×k with mutually orthonormal columns:

QQT B = QV T , where V T = QT B.

11.7. Wrap Up 419

Gram-Schmidt orthogonalization

Starting with linearly independent vectors a0,a1, . . . ,an−1 ∈ Rm, the following algorithm computes the mutually orthonormal
vectors q0,q1, . . . ,qn−1 ∈ Rm such that Span({a0,a1, . . . ,an−1}) = Span({q0,q1, . . . ,qn−1}):

for k = 0, . . . ,n−1

for p = 0, . . . ,k−1
ρp,k := qT

p ak
endfor

}


ρ0,k

ρ1,k
...

ρk−1,k

=


qT

0 ak

qT
1 ak
...

qT
k−1ak

=


qT

0

qT
1
...

qT
k−1

ak =
(

q0 q1 · · · qk−1

)T
ak

a⊥k := ak
for j = 0, . . . ,k−1

a⊥k := a⊥k −ρ j,kq j
endfor

 a⊥k = ak−∑
k−1
j=0 ρ j,kq j = ak−

(
q0 q1 · · · qk−1

)


ρ0,k

ρ1,k
...

ρk−1,k


ρk,k := ‖a⊥k ‖2
qk := a⊥k /ρk,k

}
Normalize a⊥k to be of length one.

endfor

The QR factorization

Given A ∈ Rm×n with linearly independent columns, there exists a matrix Q ∈ Rm×n with mutually orthonormal columns and
upper triangular matrix R ∈ Rn×n such that A = QR.

If one partitions

A =
(

a0 a1 · · · an−1

)
, Q =

(
q0 q1 · · · qn−1

)
, and R =


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


then

(
a0 a1 · · · an−1

)
︸ ︷︷ ︸

A

=
(

q0 q1 · · · qn−1

)
︸ ︷︷ ︸

Q


ρ0,0 ρ0,1 · · · ρ0,n−1

0 ρ1,1 · · · ρ1,n−1
...

...
. . .

...

0 0 · · · ρn−1,n−1


︸ ︷︷ ︸

R

and Gram-Schmidt orthogonalization (the Gram-Schmidt process) in the above algorithm computes the columns of Q and
elements of R.

Solving the linear least-squares problem via the QR factorization

Given A ∈ Rm×n with linearly independent columns, there exists a matrix Q ∈ Rm×n with mutually orthonormal columns and
upper triangular matrix R ∈ Rn×n such that A = QR. The vector x̂ that is the best solution (in the linear least-squares sense) to
Ax≈ b is given by

• x̂ = (AT A)−1AT b (as shown in Week 10) computed by solving the normal equations

AT Ax = AT b.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 420

• x̂ = R−1QT b computed by solving
Rx = QT b.

An algorithm for computing the QR factorization (presented in FLAME notation) is given by

Algorithm: [Q,R] := QR(A,Q,R)

Partition A→
(

AL AR

)
, Q→

(
QL QR

)
, R→

 RT L RT R

RBL RBR


where AL and QL have 0 columns, RT L

is 0×0
while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,
(

QL QR

)
→
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

→


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


r01 := QT

0 a1

a⊥1 := a1−Q0r01

ρ11 := ‖a⊥1 ‖2

q1 = a⊥1 /ρ11

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,
(

QL QR

)
←
(

Q0 q1 Q2

)
, RT L RT R

RBL RBR

←


R00 r01 R02

rT
10 ρ11 rT

12

R20 r21 R22


endwhile

Singular Value Decomposition

Any matrix B ∈ Rm×n can be written as the product of three matrices, the Singular Value Decomposition (SVD):

B =UΣV T

where

• U ∈ Rm×r and UTU = I (U has orthonormal columns).

• Σ∈Rr×r is a diagonal matrix with positive diagonal elements that are ordered so that σ0,0 ≥ σ1,1 ≥ ·· · ≥ σ(r−1),(r−1) > 0.

• V ∈ Rn×r and V TV = I (V has orthonormal columns).

• r equals the rank of matrix B.

If we partition

U =
(

UL UR

)
,V =

(
VL VR

)
, and Σ =

 ΣT L 0

0 ΣBR

 ,

11.7. Wrap Up 421

where UL and VL have k columns and ΣT L is k×k, then ULΣT LV T
L is the “best” rank-k approximation to matrix B. So, the “best”

rank-k approximation B = AW T is given by the choices A =UL and W = ΣT LVL.
Given A ∈ Rm×n with linearly independent columns, and b ∈ Rm, the “best” solution to Ax ≈ b (in the linear least-squares

sense) via its SVD, A =UΣV T , is given by
x̂ =V Σ

−1UT b.

Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 422

Week 12
Eigenvalues, Eigenvectors, and Diagonalization

12.1 Opening Remarks

12.1.1 Predicting the Weather, Again

* View at edX
Let us revisit the example from Week 4, in which we had a simple model for predicting the weather. Again, the following

table tells us how the weather for any day (e.g., today) predicts the weather for the next day (e.g., tomorrow):

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

This table is interpreted as follows: If today is rainy, then the probability that it will be cloudy tomorrow is 0.6, etc.
We introduced some notation:

• Let χ
(k)
s denote the probability that it will be sunny k days from now (on day k).

• Let χ
(k)
c denote the probability that it will be cloudy k days from now.

• Let χ
(k)
r denote the probability that it will be rainy k days from now.

We then saw that predicting the weather for day k + 1 based on the prediction for day k was given by the system of linear
equations

χ
(k+1)
s = 0.4×χ

(k)
s + 0.3×χ

(k)
c + 0.1×χ

(k)
r

χ
(k+1)
c = 0.4×χ

(k)
s + 0.3×χ

(k)
c + 0.6×χ

(k)
r

χ
(k+1)
r = 0.2×χ

(k)
s + 0.4×χ

(k)
c + 0.3×χ

(k)
r .

which could then be written in matrix form as

x(k) =


χ
(k)
s

χ
(k)
c

χ
(k)
r

 and P =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3

 .

423

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/d919183ca9ca42d8b9d572c9c30d5055/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/d919183ca9ca42d8b9d572c9c30d5055/1

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 424

so that 
χ
(k+1)
s

χ
(k+1)
c

χ
(k+1)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(k)
s

χ
(k)
c

χ
(k)
r


or x(k+1) = Px(k).

Now, if we start with day zero being cloudy, then the predictions for the first two weeks are given by

Day # Sunny Cloudy Rainy

0 0. 1. 0.

1 0.3 0.3 0.4

2 0.25 0.45 0.3

3 0.265 0.415 0.32

4 0.2625 0.4225 0.315

5 0.26325 0.42075 0.316

6 0.263125 0.421125 0.31575

7 0.2631625 0.4210375 0.3158

8 0.26315625 0.42105625 0.3157875

9 0.26315813 0.42105188 0.31579

10 0.26315781 0.42105281 0.31578938

11 0.26315791 0.42105259 0.3157895

12 0.26315789 0.42105264 0.31578947

13 0.2631579 0.42105263 0.31578948

14 0.26315789 0.42105263 0.31578947

What you notice is that eventually
x(k+1) ≈ Px(k).

What this means is that there is a vector x such that Px = x. Such a vector (if it is non-zero) is known as an eigenvector. In
this example, it represents the long-term prediction of the weather. Or, in other words, a description of “typical weather”:
approximately 26% of the time it is sunny, 42% of the time it is cloudy, and 32% of the time rainy.

The question now is: How can we compute such vectors?
Some observations:

• Px = x means that Px− x = 0 which in turn means that (P− I)x = 0.

• This means that x is a vector in the null space of P− I: x ∈N (P− I).

• But we know how to find vectors in the null space of a matrix. You reduce a system to row echelon form, identify the
free variable(s), etc.

• But we also know that a nonzero vector in the null space is not unique.

• In this particular case, we know two more pieces of information:

– The components of x must be nonnegative (a negative probability does not make sense).

– The components of x must add to one (the probabilities must add to one).

The above example can be stated as a more general problem:

Ax = λx,

12.1. Opening Remarks 425

which is known as the (algebraic) eigenvalue problem. Scalars λ that satisfy Ax = λx for nonzero vector x are known as
eigenvalues while the nonzero vectors are known as eigenvectors.

From the table above we can answer questions like “what is the typical weather?” (Answer: Cloudy). An approach similar
to what we demonstrated in this unit is used, for example, to answer questions like “what is the most frequently visited webpage
on a given topic?”

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 426

12.1.2 Outline

12.1. Opening Remarks . 423
12.1.1. Predicting the Weather, Again . 423
12.1.2. Outline . 426
12.1.3. What You Will Learn . 427

12.2. Getting Started . 428
12.2.1. The Algebraic Eigenvalue Problem . 428
12.2.2. Simple Examples . 429
12.2.3. Diagonalizing . 437
12.2.4. Eigenvalues and Eigenvectors of 3×3 Matrices . 438

12.3. The General Case . 443
12.3.1. Eigenvalues and Eigenvectors of n×n matrices: Special Cases . 443
12.3.2. Eigenvalues of n×n Matrices . 444
12.3.3. Diagonalizing, Again . 446
12.3.4. Properties of Eigenvalues and Eigenvectors . 448

12.4. Practical Methods for Computing Eigenvectors and Eigenvalues . 449
12.4.1. Predicting the Weather, One Last Time . 449
12.4.2. The Power Method . 451
12.4.3. In Preparation for this Week’s Enrichment . 455

12.5. Enrichment . 456
12.5.1. The Inverse Power Method . 456
12.5.2. The Rayleigh Quotient Iteration . 460
12.5.3. More Advanced Techniques . 461

12.6. Wrap Up . 461
12.6.1. Homework . 461
12.6.2. Summary . 461

12.1. Opening Remarks 427

12.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Determine whether a given vector is an eigenvector for a particular matrix.

• Find the eigenvalues and eigenvectors for small-sized matrices.

• Identify eigenvalues of special matrices such as the zero matrix, the identity matrix, diagonal matrices, and triangular
matrices.

• Interpret an eigenvector of A, as a direction in which the “action” of A, Ax, is equivalent to x being scaled without
changing its direction. (Here scaling by a negative value still leaves the vector in the same direction.) Since this is true
for any scalar multiple of x, it is the direction that is important, not the length of x.

• Compute the characteristic polynomial for 2×2 and 3×3 matrices.

• Know and apply the property that a matrix has an inverse if and only if its determinant is nonzero.

• Know and apply how the roots of the characteristic polynomial are related to the eigenvalues of a matrix.

• Recognize that if a matrix is real valued, then its characteristic polynomial has real valued coefficients but may still have
complex eigenvalues that occur in conjugate pairs.

• Link diagonalization of a matrix with the eigenvalues and eigenvectors of that matrix.

• Make conjectures, reason, and develop arguments about properties of eigenvalues and eigenvectors.

• Understand practical algorithms for finding eigenvalues and eigenvectors such as the power method for finding an eigen-
vector associated with the largest eigenvalue (in magnitude).

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 428

12.2 Getting Started

12.2.1 The Algebraic Eigenvalue Problem

* View at edX
The algebraic eigenvalue problem is given by

Ax = λx.

where A ∈ Rn×n is a square matrix, λ is a scalar, and x is a nonzero vector. Our goal is to, given matrix A, compute λ and x. It
must be noted from the beginning that λ may be a complex number and that x will have complex components if λ is complex
valued. If x 6= 0, then λ is said to be an eigenvalue and x is said to be an eigenvector associated with the eigenvalue λ. The tuple
(λ,x) is said to be an eigenpair.

Here are some equivalent statements:

• Ax = λx,, where x 6= 0.
This is the statement of the (algebraic) eigenvalue problem.

• Ax−λx = 0, where x 6= 0.
This is merely a rearrangement of Ax = λx.

• Ax−λIx = 0, where x 6= 0.
Early in the course we saw that x = Ix.

• (A−λI)x = 0, where x 6= 0.
This is a matter of fractoring’ x out.

• A−λI is singular.
Since there is a vector x 6= 0 such that (A−λI)x = 0.

• N (A−λI) contains a nonzero vector x.
This is a consequence of there being a vector x 6= 0 such that (A−λI)x = 0.

• dim(N (A−λI))> 0.
Since there is a nonzero vector in N (A−λI), that subspace must have dimension greater than zero.

If we find a vector x 6= 0 such that Ax = λx, it is certainly not unique.

• For any scalar α, A(αx) = λ(αx) also holds.

• If Ax = λx and Ay = λy, then A(x+ y) = Ax+Ay = λx+λy = λ(x+ y).

We conclude that the set of all vectors x that satisfy Ax = λx is a subspace.

It is not the case that the set of all vectors x that satisfy Ax = λx is the set of all eigenvectors associated with λ. After all,
the zero vector is in that set, but is not considered an eigenvector.

It is important to think about eigenvalues and eigenvectors in the following way: If x is an eigenvector of A, then x is a
direction in which the “action” of A (in other words, Ax) is equivalent to x being scaled in length without changing its
direction other than changing sign. (Here we use the term “length” somewhat liberally, since it can be negative in which
case the direction of x will be exactly the opposite of what it was before.) Since this is true for any scalar multiple of x, it
is the direction that is important, not the magnitude of x.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/1

12.2. Getting Started 429

12.2.2 Simple Examples

* View at edX

In this unit, we build intuition about eigenvalues and eigenvectors by looking at simple examples.

Homework 12.2.2.1 Which of the following are eigenpairs (λ,x) of the 2×2 zero matrix: 0 0

0 0

x = λx,

where x 6= 0.
(Mark all correct answers.)

1. (1,

 0

0

).

2. (0,

 1

0

).

3. (0,

 0

1

).

4. (0,

 −1

1

).

5. (0,

 1

1

).

6. (0,

 0

0

).

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 430

Homework 12.2.2.2 Which of the following are eigenpairs (λ,x) of the 2×2 zero matrix: 1 0

0 1

x = λx,

where x 6= 0.
(Mark all correct answers.)

1. (1,

 0

0

).

2. (1,

 1

0

).

3. (1,

 0

1

).

4. (1,

 −1

1

).

5. (1,

 1

1

).

6. (−1,

 1

−1

).

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2

12.2. Getting Started 431

Homework 12.2.2.3 Let A =

 3 0

0 −1

.

•

 3 0

0 −1

 1

0

= 3

 1

0

 so that (3,

 1

0

) is an eigenpair.

True/False

• The set of all eigenvectors associated with eigenvalue 3 is characterized by (mark all that apply):

– All vectors x 6= 0 that satisfy Ax = 3x.

– All vectors x 6= 0 that satisfy (A−3I)x = 0.

– All vectors x 6= 0 that satisfy

 0 0

0 −4

x = 0.

–


 χ0

0

∣∣∣∣∣∣χ0 is a scalar


•

 3 0

0 −1

 0

1

=−1

 0

1

 so that (−1,

 0

1

) is an eigenpair.

True/False

* View at edX

Homework 12.2.2.4 Consider the diagonal matrix


δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δn−1

.

Eigenpairs for this matrix are given by (δ0,e0),(δ1,e1), · · · ,(δn−1,en−1), where e j equals the jth unit basis vector.
Always/Sometimes/Never

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 432

Homework 12.2.2.5 Which of the following are eigenpairs (λ,x) of the 2×2 triangular matrix: 3 1

0 −1

x = λx,

where x 6= 0.
(Mark all correct answers.)

1. (−1,

 −1

4

).

2. (1/3,

 1

0

).

3. (3,

 1

0

).

4. (−1,

 1

0

).

5. (3,

 −1

0

).

6. (−1,

 3

−1

).

* View at edX

Homework 12.2.2.6 Consider the upper triangular matrix U =


υ0,0 υ0,1 · · · υ0,n−1

0 υ1,1 · · · υ1,n−1
...

...
. . .

...

0 0 · · · υn−1,n−1

.

The eigenvalues of this matrix are υ0,0,υ1,1, . . . ,υn−1,n−1.
Always/Sometimes/Never

* View at edX

Below, on the left we discuss the general case, side-by-side with a specific example on the right.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2

12.2. Getting Started 433

General Example

Consider Ax = λx.

 1 −1

2 4

 χ0

χ1

= λ

 χ0

χ1

.

Rewrite as Ax−λx

 1 −1

2 4

 χ0

χ1

−λ

 χ0

χ1

=

 0

0

.

Rewrite as Ax−λIx = 0.

 1 −1

2 4

 χ0

χ1

−λ

 1 0

0 1

 χ0

χ1

=

 0

0

.

Now [A−λI]x = 0

 1 −1

2 4

−λ

 1 0

0 1

 χ0

χ1

=

 0

0

.

A− λI is the matrix A with λ sub-
tracted from its diagonal elements.

 1−λ −1

2 4−λ

 χ0

χ1

=

 0

0

.

Now A−λI has a nontrivial vector x in its null space if that matrix does not have an inverse. Recall that α0,0 α0,1

α1,0 α1,1

−1

=
1

α0,0α1,1−α1,0α0,1

 α1,1 −α0,1

−α1,0 α0,0

 .

Here the scalar α0,0α1,1−α1,0α0,1 is known as the determinant of 2×2 matrix A, det(A).
This turns out to be a general statement:

Matrix A has an inverse if and only if its determinant is nonzero.
We have not yet defined the determinant of a matrix of size greater than 2.

So, the matrix

 1−λ −1

2 4−λ

 does not have an inverse if and only if

det(

 1−λ −1

2 4−λ

) = (1−λ)(4−λ)− (2)(−1) = 0.

But
(1−λ)(4−λ)− (2)(−1) = 4−5λ+λ

2 +2 = λ
2−5λ+6

This is a quadratic (second degree) polynomial, which has at most two district roots. In particular, by examination,

λ
2−5λ+6 = (λ−2)(λ−3) = 0

so that this matrix has two eigenvalues: λ = 2 and λ = 3.
If we now take λ = 2, then we can determine an eigenvector associated with that eigenvalue: 1− (2) −1

2 4− (2)

 χ0

χ1

=

 0

0


or  −1 −1

2 2

 χ0

χ1

=

 0

0

 .

By examination, we find that

 χ0

χ1

 =

 1

−1

 is a vector in the null space and hence an eigenvector associated with the

eigenvalue λ = 2. (This is not a unique solution. Any vector

 χ

−χ

 with χ 6= 0 is an eigenvector.)

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 434

Similarly, if we take λ = 3, then we can determine an eigenvector associated with that second eigenvalue:

 1− (3) −1

2 4− (3)

 χ0

χ1

=

 0

0


or  −2 −1

2 1

 χ0

χ1

=

 0

0

 .

By examination, we find that

 χ0

χ1

 =

 1

−2

 is a vector in the null space and hence an eigenvector associated with the

eigenvalue λ = 3. (Again, this is not a unique solution. Any vector

 χ

−2χ

 with χ 6= 0 is an eigenvector.)

The above discussion identifies a systematic way for computing eigenvalues and eigenvectors of a 2×2 matrix:

• Compute

det(

 (α0,0−λ) α0,1

α1,0 (α1,1−λ)

) = (α0,0−λ)(α1,1−λ)−α0,1α1,0.

• Recognize that this is a second degree polynomial in λ.

• It is called the characteristic polynomial of the matrix A, p2(λ).

• Compute the coefficients of p2(λ) so that
p2(λ) =−λ

2 +βλ+ γ.

• Solve
−λ

2 +βλ+ γ = 0

for its roots. You can do this either by examination, or by using the quadratic formula:

λ =
−β±

√
β2 +4γ

−2
.

• For each of the roots, find an eigenvector that satisfies (α0,0−λ) α0,1

α1,0 (α1,1−λ)

 χ0

χ1

=

 0

0


The easiest way to do this is to subtract the eigenvalue from the diagonal, set one of the components of x to 1, and
then solve for the other component.

• Check your answer! It is a matter of plugging it into Ax = λx and seeing if the computed λ and x satisfy the equation.

A 2×2 matrix yields a characteristic polynomial of degree at most two, and has at most two distinct eigenvalues.

12.2. Getting Started 435

Homework 12.2.2.7 Consider A =

 1 3

3 1


• The eigenvalue largest in magnitude is

• Which of the following are eigenvectors associated with this largest eigenvalue (in magnitude):

–

 1

−1


–

 1

1


–

 2

2


–

 −1

2


• The eigenvalue smallest in magnitude is

• Which of the following are eigenvectors associated with this largest eigenvalue (in magnitude):

–

 1

−1


–

 1

1


–

 2

2


–

 −1

2



Homework 12.2.2.8 Consider A =

 −3 −4

5 6


• The eigenvalue largest in magnitude is

• The eigenvalue smallest in magnitude is

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 436

Example 12.1 Consider the matrix A =

(
3 −1

2 1

)
. To find the eigenvalues and eigenvectors of this matrix, we

form A−λI =
(

3−λ −1

2 1−λ

)
and check when the characteristic polynomial is equal to zero:

det(
(

3−λ −1

2 1−λ

)
) = (3−λ)(1−λ)− (−1)(2) = λ

2−4λ+5.

When is this equal to zero? We will use the quadratic formula:

λ =
−(−4)±

√
(−4)2−4(5)
2

= 2± i.

Thus, this matrix has complex valued eigenvalues in form of a conjugate pair: λ0 = 2+ i and λ1 = 2− i. To find
the corresponding eigenvectors:

λ0 = 2+ i: λ0 = 2− i:

A−λ0I =

(
3− (2+ i) −1

2 1− (2+ i)

)

=

(
1− i −1

2 −1− i

)
.

Find a nonzero vector in the null space:(
1− i −1

2 −1− i

)(
χ0

χ1

)
=

(
0

0

)
.

By examination,(
1− i −1

2 −1− i

)(
1

1− i

)
=

(
0

0

)
.

Eigenpair: (2+ i,

 1

1− i

).

A−λ1I =

(
3− (2− i) −1

2 1− (2− i)

)

=

(
1+ i −1

2 −1+ i

)
.

Find a nonzero vector in the null space:(
1+ i −1

2 −1+ i

)(
χ0

χ1

)
=

(
0

0

)
.

By examination,(
1+ i −1

2 −1+ i

)(
1

1+ i

)
=

(
0

0

)
.

Eigenpair: (2− i,

 1

1+ i

).

If A is real valued, then its characteristic polynomial has real valued coefficients. However, a polynomial with real valued
coefficients may still have complex valued roots. Thus, the eigenvalues of a real valued matrix may be complex.

* View at edX

Homework 12.2.2.9 Consider A =

 2 2

−1 4

. Which of the following are the eigenvalues of A:

• 4 and 2.

• 3+ i and 2.

• 3+ i and 3− i.

• 2+ i and 2− i.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/2

12.2. Getting Started 437

12.2.3 Diagonalizing

* View at edX
Diagonalizing a square matrix A ∈ Rn×n is closely related to the problem of finding the eigenvalues and eigenvectors of a

matrix. In this unit, we illustrate this for some simple 2×2 examples. A more thorough treatment then follows when we talk
about the eigenvalues and eigenvectors of n×n matrix, later this week.

In the last unit, we found eigenpairs for the matrix  1 −1

2 4

 .

Specifically,  1 −1

2 4

 −1

1

= 2

 −1

1

 and

 1 −1

2 4

 −1

2

= 3

 −1

2


so that eigenpairs are given by

(2,

 −1

1

) and 3

 −1

2

 .

Now, let’s put our understanding of matrix-matrix multiplication from Weeks 4 and 5 to good use:

Comment (A here is 2×2)(
1 −1

2 4

)(
−1

1

)
= 2

(
−1

1

)
;

(
1 −1

2 4

)(
−1

2

)
= 3

(
−1

2

)
︸ ︷︷ ︸

Ax0 = λ0x0;Ax1 = λ1x1

((
1 −1

2 4

)(
−1

1

) (
1 −1

2 4

)(
−1

2

))
=

(
2

(
−1

1

)
3

(
−1

2

))
︸ ︷︷ ︸

(
Ax0 Ax1

)
=
(

λ0x0 λ1x1

)
(

1 −1

2 4

)
︸ ︷︷ ︸

A

(
−1 −1

1 2

)
︸ ︷︷ ︸

X

=

(
−1 −1

1 2

)
︸ ︷︷ ︸

X

(
2 0

0 3

)
︸ ︷︷ ︸

Λ

A
(

x0 x1

)
︸ ︷︷ ︸

X

=
(

x0 x1

)
︸ ︷︷ ︸

X

(
λ0 0

0 λ1

)
︸ ︷︷ ︸

Λ(
−1 −1

1 2

)−1

︸ ︷︷ ︸
X−1

(
1 −1

2 4

)
︸ ︷︷ ︸

A

(
−1 −1

1 2

)
︸ ︷︷ ︸

X

=

(
2 0

0 3

)
︸ ︷︷ ︸

Λ

(
x0 x1

)−1

︸ ︷︷ ︸
X−1

A
(

x0 x1

)
︸ ︷︷ ︸

X

=

(
λ0 0

0 λ1

)
︸ ︷︷ ︸

Λ

What we notice is that if we take the two eigenvectors of matrix A, and create with them a matrix X that has those eigenvectors
as its columns, then X−1AX = Λ, where Λ is a diagonal matrix with the eigenvalues on its diagonal. The matrix X is said to
diagonalize matrix A.

Defective matrices

Now, it is not the case that for every A ∈ Rn×n there is a nonsingular matrix X ∈ Rn×n such that X−1AX = Λ, where Λ is
diagonal. Matrices for which such a matrix X does not exists are called defective matrices.

Homework 12.2.3.1 The matrix  0 1

0 0


can be diagonalized.

True/False

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/3

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 438

The matrix

 λ 1

0 λ



is a simple example of what is often called a Jordan block. It, too, is defective.

* View at edX

Homework 12.2.3.2 In Homework 12.2.2.7 you considered the matrix

A =

 1 3

3 1


and computed the eigenpairs

(4,

 1

1

) and (−2,

 1

−1

).

• Matrix A can be diagonalized by matrix X =. (Yes, this matrix is not unique, so please use the info from the
eigenpairs, in order...)

• AX =

• X−1 =

• X−1AX =

12.2.4 Eigenvalues and Eigenvectors of 3×3 Matrices

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/4

12.2. Getting Started 439

Homework 12.2.4.1 Let A =


3 0 0

0 −1 0

0 0 2

. Then which of the following are true:

•


1

0

0

 is an eigenvector associated with eigenvalue 3.

True/False

•


0

1

0

 is an eigenvector associated with eigenvalue −1.

True/False

•


0

χ1

0

, where χ1 6= 0 is a scalar, is an eigenvector associated with eigenvalue −1.

True/False

•


0

0

1

 is an eigenvector associated with eigenvalue 2.

True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/4

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 440

Homework 12.2.4.2 Let A =


α0,0 0 0

0 α1,1 0

0 0 α2,2

. Then which of the following are true:

•


1

0

0

 is an eigenvector associated with eigenvalue α0,0.

True/False

•


0

1

0

 is an eigenvector associated with eigenvalue α1,1.

True/False

•


0

χ1

0

 where χ1 6= 0 is an eigenvector associated with eigenvalue α1,1.

True/False

•


0

0

1

 is an eigenvector associated with eigenvalue α2,2.

True/False

12.2. Getting Started 441

Homework 12.2.4.3 Let A =


3 1 −1

0 −1 2

0 0 2

. Then which of the following are true:

• 3, −1, and 2 are eigenvalues of A.

•


1

0

0

 is an eigenvector associated with eigenvalue 3.

True/False

•


−1/4

1

0

 is an eigenvector associated with eigenvalue −1.

True/False

•


−1/4χ1

χ1

0

 where χ1 6= 0 is an eigenvector associated with eigenvalue −1.

True/False

•


1/3

2/3

1

 is an eigenvector associated with eigenvalue 2.

True/False

* View at edX

Homework 12.2.4.4 Let A =


α0,0 α0,1 α0,2

0 α1,1 α1,2

0 0 α2,2

. Then the eigenvalues of this matrix are α0,0, α1,1, and α2,2.

True/False

When we discussed how to find the eigenvalues of a 2×2 matrix, we saw that it all came down to the determinant of A−λI,
which then gave us the characteristic polynomial p2(λ). The roots of this polynomial were the eigenvalues of the matrix.

Similarly, there is a formula for the determinant of a 3×3 matrix:

det(


α0,0 α0,1 α0,2

α1,0 α1,1 α1,2

α2,0 α2,1 α2,2

=

(α0,0α1,1α2,2 +α0,1α1,2α2,0 +α0,2α1,0α2,1)︸ ︷︷ ︸
α0,0 α0,1 α0,2 α0,0 α0,1

α1,0 α1,1 α1,2 α1,0 α1,1

α2,0 α2,1 α2,2 α2,0 α2,1

Q
Q
Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q
Q

− (α2,0α1,1α0,2 +α2,1α1,2α0,0 +α2,2α1,0α0,1).︸ ︷︷ ︸
α0,0 α0,1 α0,2 α0,0 α0,1

α1,0 α1,1 α1,2 α1,0 α1,1

α2,0 α2,1 α2,2 α2,0 α2,1
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/bdec56568f914fc495ef9f493e87094b/4

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 442

Thus, for a 3×3 matrix, the characteristic polynomial becomes

p3(λ) = det(


α0,0−λ α0,1 α0,2

α1,0 α1,1−λ α1,2

α2,0 α2,1 α2,2−λ

=

[(α0,0−λ)(α1,1−λ)(α2,2−λ)+α0,1α1,2α2,0 +α0,2α1,0α2,1]

−[α2,0(α1,1−λ)α0,2 +α2,1α1,2(α0,0−λ)+(α2,2−λ)α1,0α0,1].

Multiplying this out, we get a third degree polynomial. The roots of this cubic polynomial are the eigenvalues of the 3× 3
matrix. Hence, a 3×3 matrix has at most three distinct eigenvalues.

Example 12.2 Compute the eigenvalues and eigenvectors of A =


1 1 1

1 1 1

1 1 1

.

det(


1−λ 1 1

1 1−λ 1

1 1 1−λ

) = [(1−λ)(1−λ)(1−λ)︸ ︷︷ ︸
1−3λ+3λ2−λ3

+1+1]

︸ ︷︷ ︸
3−3λ+3λ2−λ3

− [(1−λ)+(1−λ)+(1−λ)︸ ︷︷ ︸
3−3λ

].

︸ ︷︷ ︸
3λ2−λ3 = (3−λ)λ2

So, λ = 0 is a double root, while λ = 3 is the third root.

λ2 = 3: λ0 = λ1 = 0:

A−λ2I =


−2 1 1

1 −2 1

1 1 −2


We wish to find a nonzero vector in the null space:

−2 1 1

1 −2 1

1 1 −2




χ0

χ1

χ2

=


0

0

0

 .

By examination, I noticed that
−2 1 1

1 −2 1

1 1 −2




1

1

1

=


0

0

0

 .

Eigenpair:

(3,


1

1

1

).

A−0I =


1 1 1

1 1 1

1 1 1


Reducing this to row-echelon form gives us the matrix

1 1 1

0 0 0

0 0 0

 ,

for which we find vectors in the null space
−1

1

0

 and


−1

0

1

 .

Eigenpairs:

(0,


−1

1

0

) and (0,


−1

0

1

)

12.3. The General Case 443

What is interesting about this last example is that λ = 0 is a double root and yields two linearly independent eigenvectors.

Homework 12.2.4.5 Consider A =


1 0 0

2 0 1

1 0 0

. Which of the following is true about this matrix:

• (1,


1

3

1

) is an eigenpair.

• (0,


0

1

0

) is an eigenpair.

• (0,


0

−1

0

) is an eigenpair.

• This matrix is defective.

12.3 The General Case

12.3.1 Eigenvalues and Eigenvectors of n×n matrices: Special Cases

* View at edX

We are now ready to talk about eigenvalues and eigenvectors of arbitrary sized matrices.

Homework 12.3.1.1 Let A ∈Rn×n be a diagonal matrix: A =



α0,0 0 0 · · · 0

0 α1,1 0 · · · 0

0 0 α2,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · αn−1,n−1


. Then ei is

an eigenvector associated with eigenvalue αi,i.
True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/1

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 444

Homework 12.3.1.2 Let A =


A00 a01 A02

0 α11 aT
12

0 0 A22

, where A00 is square. Then α11 is an eigenvalue of A and


−(A00−α11I)−1a01

1

0

 is a corresponding eigenvalue (provided A00−α11I is nonsingular).

True/False

* View at edX

Homework 12.3.1.3 The eigenvalues of a triangular matrix can be found on its diagonal.
True/False

12.3.2 Eigenvalues of n×n Matrices

* View at edX
There is a formula for the determinant of a n×n matrix, which is a “inductively defined function”, meaning that the formula

for the determinant of an n× n matrix is defined in terms of the determinant of an (n− 1)× (n− 1) matrix. Other than as a
theoretical tool, the determinant of a general n×n matrix is not particularly useful. We restrict our discussion to some facts and
observations about the determinant that impact the characteristic polynomial, which is the polynomial that results when one
computes the determinant of the matrix A−λI, det(A−λI).

Theorem 12.3 A matrix A ∈ Rn×n is nonsingular if and only if det(A) 6= 0.

Theorem 12.4 Given A ∈ Rn×n,

pn(λ) = det(A−λI) = λ
n + γn−1λ

n−1 + · · ·+ γ1λ+ γ0.

for some coefficients γ1, . . . ,γn−1 ∈ R.

Since we don’t give the definition of a determinant, we do not prove the above theorems.

Definition 12.5 Given A ∈ Rn×n, pn(λ) = det(A−λI) is called the characteristic polynomial.

Theorem 12.6 Scalar λ satisfies Ax = λx for some nonzero vector x if and only if det(A−λI) = 0.

Proof: This is an immediate consequence of the fact that Ax = λx is equivalent to (A−λI)x = and the fact that A−λI is singular
(has a nontrivial null space) if and only if det(A−λI) = 0.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/2

12.3. The General Case 445

Roots of the characteristic polynomial

Since an eigenvalue of A is a root of pn(A) = det(A−λI) and vise versa, we can exploit what we know about roots of nth degree
polynomials. Let us review, relating what we know to the eigenvalues of A.

• The characteristic polynomial of A ∈ Rn×n is given by pn(λ) = det(A−λI) =γ0 + γ1λ+ · · ·+ γn−1λn−1 +λn

• Since pn(λ) is an nth degree polynomial, it has n roots, counting multiplicity. Thus, matrix A has n eigenvalues, counting
multiplicity.

– Let k equal the number of distinct roots of pn(λ). Clearly, k ≤ n. Clearly, matrix A then has k distinct eigenvalues.
– The set of all roots of pn(λ), which is the set of all eigenvalues of A, is denoted by Λ(A) and is called the spectrum

of matrix A.
– The characteristic polynomial can be factored as pn(λ) = det(A−λI) =(λ− λ0)

n0(λ− λ1)
n1 · · ·(λ− λk−1)

nk−1 ,
where n0 + n1 + · · ·+ nk−1 = n and n j is the root λ j, which is known as the (algebraic) multiplicity of eigenvalue
λ j.

• If A ∈ Rn×n, then the coefficients of the characteristic polynomial are real (γ0, . . . ,γn−1 ∈ R), but

– Some or all of the roots/eigenvalues may be complex valued and
– Complex roots/eigenvalues come in “conjugate pairs”: If λ = R e(λ) + iIm(λ) is a root/eigenvalue, so is λ =

R e(λ)− iIm(λ)

An inconvenient truth

Galois theory tells us that for n≥ 5, roots of arbitrary pn(λ) cannot be found in a finite number of computations.
Since we did not tell you how to compute the determinant of A−λI, you will have to take the following for granted: For

every nthe degree polynomial
pn(λ) = γ0 + γ1λ+ · · ·+ γn−1λ

n−1 +λ
n,

there exists a matrix, C, called the companion matrix that has the property that

pn(λ) = det(C−λI) =γ0 + γ1λ+ · · ·+ γn−1λ
n−1 +λ

n.

In particular, the matrix

C =



−γn−1 −γn−2 · · · −γ1 −γ0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


is the companion matrix for pn(λ):

pn(λ) = γ0 + γ1λ+ · · ·+ γn−1λ
n−1 +λ

n = det(



−γn−1 −γn−2 · · · −γ1 −γ0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


−λI).

Homework 12.3.2.1 If A ∈ Rn×n, then Λ(A) has n distinct elements.
True/False

Homework 12.3.2.2 Let A ∈ Rn×n and λ ∈ Λ(A). Let S be the set of all vectors that satisfy Ax = λx. (Notice that
S is the set of all eigenvectors corresponding to λ plus the zero vector.) Then S is a subspace.

True/False

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 446

12.3.3 Diagonalizing, Again

* View at edX
We now revisit the topic of diagonalizing a square matrix A ∈ Rn×n, but for general n rather than the special case of n = 2

treated in Unit 12.2.3.
Let us start by assuming that matrix A ∈ Rn×n has n eigenvalues, λ0, . . . ,λn−1, where we simply repeat eigenvalues that

have algebraic multiplicity greater than one. Let us also assume that x j equals the eigenvector associated with eigenvalue λ j
and, importantly, that x0, . . . ,xn−1 are linearly independent. Below, we generalize the example from Unit 12.2.3.

Ax0 = λ0x0;Ax1 = λ1x1; · · · ;Axn−1 = λn−1xn−1

if and only if < two matrices are equal if their columns are equal >(
Ax0 Ax1 · · · Axn−1

)
=
(

λ0x0 λ1x1 · · · λn−1xn−1

)
if and only if < partitioned matrix-matrix multiplication >

A
(

x0 x1 · · · xn−1

)
=
(

λ0x0 λ1x1 · · · λn−1xn−1

)
if and only if < multiplication on the right by a diagonal matrix >

A
(

x0 x1 · · · xn−1

)
=
(

x0 x1 · · · xn−1

)


λ0 0 · · · 0

0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λn−1


if and only if < multiplication on the right by a diagonal matrix >

AX = XΛ where X =
(

x0 x1 · · · xn−1

)
and Λ =


λ0 0 · · · 0

0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λn−1


if and only if < columns of X are linearly independent >

X−1AX = Λ where X =
(

x0 x1 · · · xn−1

)
and Λ =


λ0 0 · · · 0

0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λn−1


The above argument motivates the following theorem:

Theorem 12.7 Let A ∈ Rn×n. Then there exists a nonsingular matrix X such that X−1AX = Λ if and only if A has n linearly
independent eigenvectors.

If X is invertible (nonsingular, has linearly independent columns, etc.), then the following are equivalent

X−1 A X = Λ

A X = X Λ

A = X Λ X−1

If Λ is in addition diagonal, then the diagonal elements of Λ are eigenvectors of A and the columns of X are eigenvectors
of A.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/3

12.3. The General Case 447

Recognize that Λ(A) denotes the spectrum (set of all eigenvalues) of matrix A while here we use it to denote the matrix Λ,
which has those eigenvalues on its diagonal. This possibly confusing use of the same symbol for two different but related
things is commonly encountered in the linear algebra literature. For this reason, you might as well get use to it!

Defective (deficient) matrices

We already saw in Unit 12.2.3, that it is not the case that for every A ∈ Rn×n there is a nonsingular matrix X ∈ Rn×n such
that X−1AX = Λ, where Λ is diagonal. In that unit, a 2× 2 example was given that did not have two linearly independent
eigenvectors.

In general, the k× k matrix Jk(λ) given by

Jk(λ) =



λ 1 0 · · · 0 0

0 λ 1 · · · 0 0

0 0 λ
. . . 0 0

...
...

...
. . .

...
...

0 0 0 · · · λ 1

0 0 0 · · · 0 λ


has eigenvalue λ of algebraic multiplicity k, but geometric multiplicity one (it has only one linearly independent eigenvector).
Such a matrix is known as a Jordan block.

Definition 12.8 The geometric multiplicity of an eigenvalue λ equals the number of linearly independent eigenvectors that are
associated with λ.

The following theorem has theoretical significance, but little practical significance (which is why we do not dwell on it):

Theorem 12.9 Let A ∈ Rn×n. Then there exists a nonsingular matrix X ∈ Rn×n such that A = XJX−1, where

J =



Jk0(λ0) 0 0 · · · 0

0 Jk1(λ1) 0 · · · 0

0 0 Jk2(λ2) · · · 0
...

...
...

. . .
...

0 0 0 · · · Jkm−1(λm−1)


where each Jk j(λ j) is a Jordan block of size k j× k j.

The factorization A = XJX−1 is known as the Jordan Canonical Form of matrix A.

A few comments are in order:

• It is not the case that λ0,λ1, . . . ,λm−1 are distinct. If λ j appears in multiple Jordan blocks, the number of Jordan blocks in
which λ j appears equals the geometric multiplicity of λ j (and the number of linearly independent eigenvectors associated
with λ j).

• The sum of the sizes of the blocks in which λ j as an eigenvalue appears equals the algebraic multiplicity of λ j.

• If each Jordan block is 1×1, then the matrix is diagonalized by matrix X .

• If any of the blocks is not 1×1, then the matrix cannot be diagonalized.

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 448

Homework 12.3.3.1 Consider A =


2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2

.

• The algebraic multiplicity of λ = 2 is

• The geometric multiplicity of λ = 2 is

• The following vectors are linearly independent eigenvectors associated with λ = 2:
1

0

0

0

 and


0

0

1

0

 .

True/False

Homework 12.3.3.2 Let A ∈ An×n, λ ∈ Λ(A), and S be the set of all vectors x such that Ax = λx. Finally, let λ

have algebraic multiplicity k (meaning that it is a root of multiplicity k of the characteristic polynomial).
The dimension of S is k (dim(S) = k).

Always/Sometimes/Never

12.3.4 Properties of Eigenvalues and Eigenvectors

* View at edX
In this unit, we look at a few theoretical results related to eigenvalues and eigenvectors.

Homework 12.3.4.1 Let A ∈ Rn×n and A =

 A0,0 A0,1

0 A1,1

, where A0,0 and A1,1 are square matrices.

Λ(A) = Λ(A0,0)∪Λ(A1,1).
Always/Sometimes/Never

* View at edX
The last exercise motives the following theorem (which we will not prove):

Theorem 12.10 Let A ∈ Rn×n and

A =


A0,0 A0,1 · · · A0,N−1

0 A1,1 · · · A1,N−1
...

...
. . .

...

0 0 · · · AN−1,N−1


where all Ai,i are a square matrices. Then Λ(A) = Λ(A0,0)∪Λ(A1,1)∪·· ·∪Λ(AN−1,N−1).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/4

12.4. Practical Methods for Computing Eigenvectors and Eigenvalues 449

Homework 12.3.4.2 Let A ∈ Rn×n be symmetric, λi 6= λ j, Axi = λixi and Ax j = λ jx j.
xT

i x j = 0
Always/Sometimes/Never

The following theorem requires us to remember more about complex arithmetic than we have time to remember. For this
reason, we will just state it:

Theorem 12.11 Let A ∈ Rn×n be symmetric. Then its eigenvalues are real valued.

* View at edX

Homework 12.3.4.3 If Ax = λx then AAx = λ2x. (AA is often written as A2.)
Always/Sometimes/Never

Homework 12.3.4.4 Let Ax = λx and k ≥ 1. Recall that Ak = AA · · ·A︸ ︷︷ ︸
k times

.

Akx = λkx.
Always/Sometimes/Never

Homework 12.3.4.5 A ∈ Rn×n is nonsingular if and only if 0 /∈ Λ(A).
True/False

12.4 Practical Methods for Computing Eigenvectors and Eigenvalues

12.4.1 Predicting the Weather, One Last Time

* View at edX
If you think back about how we computed the probabilities of different types of weather for day k, recall that

x(k+1) = Px(k)

where x(k) is a vector with three components and P is a 3×3 matrix. We also showed that

x(k) = Pkx(0).

We noticed that eventually
x(k+1) ≈ Px(k)

and that therefore, eventually, x(k+1) came arbitrarily close to an eigenvector, x, associated with the eigenvalue 1 of matrix P:

Px = x.

Homework 12.4.1.1 If λ ∈ Λ(A) then λ ∈ Λ(AT).
True/False

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/a8db363a903a4e799c9c8b7108540cdd/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/7dec1cf7e7f34a9199954fd3e548c3ab/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/7dec1cf7e7f34a9199954fd3e548c3ab/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/7dec1cf7e7f34a9199954fd3e548c3ab/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/7dec1cf7e7f34a9199954fd3e548c3ab/1

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 450

Homework 12.4.1.2 λ ∈ Λ(A) if and only if λ ∈ Λ(AT).
True/False

Ah! It seems like we may have stumbled upon a possible method for computing an eigenvector for this matrix:

• Start with a first guess x(0).

• for k = 0, . . . , until x(k) doesn’t change (much) anymore

– x(k+1) := Px(k).

Can we use what we have learned about eigenvalues and eigenvectors to explain this? In the video, we give one explanation.
Below we give an alternative explanation that uses diagonalization.

Let’s assume that P is diagonalizable:

P =V ΛV−1, where Λ =


λ0 0 0

0 λ1 0

0 0 λ2

.

Here we use the letter V rather than X since we already use x(k) in a different way.
Then we saw before that

x(k) = Pkx(0) = (V ΛV−1)kx(0) =V Λ
kV−1x(0)

= V


λ0 0 0

0 λ1 0

0 0 λ2


k

V−1x(0)

= V


λk

0 0 0

0 λk
1 0

0 0 λk
2

V−1x(0).

Now, let’s assume that λ0 = 1 (since we noticed that P has one as an eigenvalue), and that |λ1| < 1 and |λ2| < 1. Also, notice
that V =

(
v0 v1 v2

)
where vi equals the eigenvector associated with λi. Finally, notice that V has linearly independent columns and that therefore

there exists a vector w such that V w = x(0).
Then

x(k) = V


λk

0 0 0

0 λk
1 0

0 0 λk
2

V−1x(0)

= V


1 0 0

0 λk
1 0

0 0 λk
2

V−1V w

=
(

v0 v1 v2

)
1 0 0

0 λk
1 0

0 0 λk
2

w

=
(

v0 v1 v2

)
1 0 0

0 λk
1 0

0 0 λk
2




ω0

ω1

ω2

 .

12.4. Practical Methods for Computing Eigenvectors and Eigenvalues 451

Now, what if k gets very large? We know that limk→∞ λk
1 = 0, since |λ1|< 1. Similarly, limk→∞ λk

2 = 0. So,

lim
k→∞

x(k) = lim
k→∞

(v0 v1 v2

)
1 0 0

0 λk
1 0

0 0 λk
2




ω0

ω1

ω2




=
(

v0 v1 v2

)
lim
k→∞




1 0 0

0 λk
1 0

0 0 λk
2





ω0

ω1

ω2



=
(

v0 v1 v2

)
1 0 0

0 limk→∞ λk
1 0

0 0 limk→∞ λk
2




ω0

ω1

ω2



=
(

v0 v1 v2

)
1 0 0

0 0 0

0 0 0




ω0

ω1

ω2



=
(

v0 v1 v2

)
ω0

0

0

= ω0v0.

Ah, so x(k) eventually becomes arbitrarily close (converges) to a multiple of the eigenvector associated with the eigenvalue
1 (provided ω0 6= 0).

12.4.2 The Power Method

* View at edX
So, a question is whether the method we described in the last unit can be used in general. The answer is yes. The resulting

method is known as the Power Method.
First, let’s make some assumptions. Given A ∈ Rn×n,

• Let λ0,λ1, . . . ,λn−1 ∈ Λ(A). We list eigenvalues that have algebraic multiplicity k multiple (k) times in this list.

• Let us assume that |λ0| > |λ1| ≥ |λ2| ≥ · · · ≥ λn−1. This implies that λ0 is real, since complex eigenvalues come in
conjugate pairs and hence there would have been two eigenvalues with equal greatest magnitude. It also means that there
is a real valued eigenvector associated with λ0.

• Let us assume that A ∈ Rn×n is diagonalizable so that

A =V ΛV−1 =
(

v0 v1 · · · vn−1

)


λ0 0 · · · 0

0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λn−1


(

v0 v1 · · · vn−1

)−1
.

This means that vi is an eigenvector associated with λi.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/7dec1cf7e7f34a9199954fd3e548c3ab/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4fa9fa79f2544d5e82b341c1db1836ef/7dec1cf7e7f34a9199954fd3e548c3ab/2

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 452

These assumptions set the stage.

Now, we start with some vector x(0) ∈Rn. Since V is nonsingular, the vectors v0, . . . ,vn−1 form a linearly independent bases
for Rn. Hence,

x(0) = γ0v0 + γ1v1 + · · ·+ γn−1vn−1 =
(

v0 v1 · · · vn−1

)


γ0

γ1
...

γn−1

=V c.

Now, we generate

x(1) = Ax(0)

x(2) = Ax(1)

x(3) = Ax(2)

...

The following algorithm accomplishes this

for k = 0, . . . , until x(k) doesn’t change (much) anymore
x(k+1) := Ax(k)

endfor

Notice that then

x(k) = Ax(k−1) = A2x(k−2) = · · ·= Akx(0).

But then

Akx(0) = Ak(γ0v0 + γ1v1 + · · ·+ γn−1vn−1︸ ︷︷ ︸
V c

)

= Ak
γ0v0 +Ak

γ1v1 + · · ·+Ak
γn−1vn−1

= γ0Akv0 + γ1Akv1 + · · ·+ γn−1Akvn−1

= γ0λ
k
0v0 + γ1λ

k
1v1 + · · ·+ γn−1λ

k
n−1vn−1︸ ︷︷ ︸

(
v0 v1 · · · vn−1

)


λk
0 0 · · · 0

0 λk
1 · · · 0

...
...

. . .
...

0 0 · · · λk
n−1




γ0

γ1

· · ·
γn−1


︸ ︷︷ ︸

V Λkc

12.4. Practical Methods for Computing Eigenvectors and Eigenvalues 453

Now, if λ0 = 1, then |λ j|< 1 for j > 0 and hence

lim
k→∞

x(k) = lim
k→∞

(
γ0v0 + γ1λ

k
1v1 + · · ·+ γn−1λ

k
n−1vn−1

)
︸ ︷︷ ︸

lim
k→∞

(
v0 v1 · · · vn−1

)


1 0 · · · 0

0 λk
1 · · · 0

...
...

. . .
...

0 0 · · · λk
n−1




γ0

γ1
...

γn−1


︸ ︷︷ ︸

(
v0 v1 · · · vn−1

)


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




γ0

γ1
...

γn−1


︸ ︷︷ ︸

(
v0 0 · · · 0

)


γ0

γ1
...

γn−1


︸ ︷︷ ︸

γ0v0

= γ0v0

which means that x(k) eventually starts pointing towards the direction of v0, the eigenvector associated with the eigenvalue that
is largest in magnitude. (Well, as long as γ0 6= 0.)

Homework 12.4.2.1 Let A ∈ Rn×n and µ 6= 0 be a scalar. Then λ ∈ Λ(A) if and only if λ/µ ∈ Λ(1
µ A).

True/False

What this last exercise shows is that if λ0 6= 1, then we can instead iterate with the matrix 1
λ0

A, in which case

1 =
λ0

λ0
>

∣∣∣∣λ1

λ0

∣∣∣∣≥ ·· · ≥ ∣∣∣∣λn−1

λ0

∣∣∣∣ .
The iteration then becomes

x(1) =
1
λ0

Ax(0)

x(2) =
1
λ0

Ax(1)

x(3) =
1
λ0

Ax(2)

...

The following algorithm accomplishes this

for k = 0, . . . , until x(k) doesn’t change (much) anymore
x(k+1) := Ax(k)/λ0

endfor

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 454

It is not hard to see that then

lim
k→∞

x(k) = lim
k→∞

(
γ0

(
λ0

λ0

)k

v0 + γ1

(
λ1

λ0

)k

v1 + · · ·+ γn−1

(
λn−1

λ0

)k

vn−1

)
︸ ︷︷ ︸

lim
k→∞

(
v0 v1 · · · vn−1

)


1 0 · · · 0

0 (λ1/λ0)
k · · · 0

...
...

. . .
...

0 0 · · · (λn−1/λ0)
k




γ0

γ1
...

γn−1


︸ ︷︷ ︸

(
v0 v1 · · · vn−1

)


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




γ0

γ1
...

γn−1


︸ ︷︷ ︸

(
v0 0 · · · 0

)


γ0

γ1
...

γn−1


︸ ︷︷ ︸

γ0v0

= γ0v0

So, it seems that we have an algorithm that always works as long as

|λ0|> |λ1| ≥ · · · ≥ |λn−1|.

Unfortunately, we are cheating... If we knew λ0, then we could simply compute the eigenvector by finding a vector in the
null space of A−λ0I. The key insight now is that, in x(k+1) = Ax(k)/λ0, dividing by λ0 is merely meant to keep the vector x(k)

from getting progressively larger (if |λ0| > 1) or smaller (if |λ0| < 1). We can alternatively simply make x(k) of length one at
each step, and that will have the same effect without requiring λ0:

for k = 0, . . . , until x(k) doesn’t change (much) anymore
x(k+1) := Ax(k)

x(k+1) := x(k+1)/‖x(k+1)‖2
endfor

This last algorithm is known as the Power Method for finding an eigenvector associated with the largest eigenvalue (in
magnitude).

12.4. Practical Methods for Computing Eigenvectors and Eigenvalues 455

Homework 12.4.2.2 We now walk you through a simple implementation of the Power Method, referring to files
in directory LAFF-2.0xM/Programming/Week12.
We want to work with a matrix A for which we know the eigenvalues. Recall that a matrix A is diagonalizable if
and only if there exists a nonsingular matrix V and diagonal matrix Λ such that A=V ΛV−1. The diagonal elements
of Λ then equal the eigenvalues of A and the columns of V the eigenvectors.
Thus, given eigenvalues, we can create a matrix A by creating a diagonal matrix with those eigenvalues on the
diagonal and a random nonsingular matrix V , after which we can compute A to equal V ΛV−1. This is accomplished
by the function

[A, V] = CreateMatrixForEigenvalueProblem(eigs)

(see file CreateMatrixForEigenvalueProblem.m).
The script in PowerMethodScript.m then illustrates how the Power Method, starting with a random vector, com-
putes an eigenvector corresponding to the eigenvalue that is largest in magnitude, and via the Rayleigh quotient (a
way for computing an eigenvalue given an eigenvector that is discussed in the next unit) an approximation for that
eigenvalue.
To try it out, in the Command Window type

>> PowerMethodScript
input a vector of eigenvalues. e.g.: [4; 3; 2; 1]
[4; 3; 2; 1]

The script for each step of the Power Method reports for the current iteration the length of the component orthogo-
nal to the eigenvector associated with the eigenvalue that is largest in magnitude. If this component becomes small,
then the vector lies approximately in the direction of the desired eigenvector. The Rayleigh quotient slowly starts
to get close to the eigenvalue that is largest in magnitude. The slow convergence is because the ratio of the second
to largest and the largest eigenvalue is not much smaller than 1.
Try some other distributions of eigenvalues. For example, [4; 1; 0.5; 0.25], which should converge faster,
or [4; 3.9; 2; 1], which should converge much slower.
You may also want to try PowerMethodScript2.m, which illustrates what happens if there are two eigenvalues
that are equal in value and both largest in magnitude (relative to the other eigenvalues).

12.4.3 In Preparation for this Week’s Enrichment

In the last unit we introduce a practical method for computing an eigenvector associated with the largest eigenvalue in magni-
tude. This method is known as the Power Method. The next homework shows how to compute an eigenvalue associated with
an eigenvector. Thus, the Power Method can be used to first approximate that eigenvector, and then the below result can be
used to compute the associated eigenvalue.

Given A ∈ Rn×n and nonzero vector x ∈ Rn, the scalar xT Ax/xT x is known as the Rayleigh quotient.

Homework 12.4.3.1 Let A ∈ Rn×n and x equal an eigenvector of A. Assume that x is real valued as is the eigen-
value λ with Ax = λx.
λ = xT Ax

xT x is the eigenvalue associated with the eigenvector x.
Always/Sometimes/Never

Notice that we are carefully avoiding talking about complex valued eigenvectors. The above results can be modified for the
case where x is an eigenvector associated with a complex eigenvalue and the case where A itself is complex valued. However,
this goes beyond the scope of this course.

The following result allows the Power Method to be extended so that it can be used to compute the eigenvector associated
with the smallest eigenvalue (in magnitude). The new method is called the Inverse Power Method and is discussed in this
week’s enrichment section.

Homework 12.4.3.2 Let A ∈ Rn×n be nonsingular, λ ∈ Λ(A), and Ax = λx. Then A−1x = 1
λ

x.
True/False

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 456

The Inverse Power Method can be accelerated by “shifting” the eigenvalues of the matrix, as discussed in this week’s enrich-
ment, yielding the Rayleigh Quotient Iteration. The following exercise prepares the way.

Homework 12.4.3.3 Let A ∈ Rn×n and λ ∈ Λ(A). Then (λ−µ) ∈ Λ(A−µI).
True/False

12.5 Enrichment

12.5.1 The Inverse Power Method

The Inverse Power Method exploits a property we established in Unit 12.3.4: If A is nonsingular and λ ∈ Λ(A) then 1/λ ∈
Λ(A−1).

Again, let’s make some assumptions. Given nonsingular A ∈ Rn×n,

• Let λ0,λ1, . . . ,λn−2,λn−1 ∈ Λ(A). We list eigenvalues that have algebraic multiplicity k multiple (k) times in this list.

• Let us assume that |λ0| ≥ |λ1| ≥ · · · ≥ |λn−2| > |λn−1| > 0. This implies that λn−1 is real, since complex eigenvalues
come in conjugate pairs and hence there would have been two eigenvalues with equal smallest magnitude. It also means
that there is a real valued eigenvector associated with λn−1.

• Let us assume that A ∈ Rn×n is diagonalizable so that

A =V ΛV−1 =
(

v0 v1 · · · vn−2 vn−1

)


λ0 0 · · · 0 0

0 λ1 · · · 0 0
...

...
. . .

...
...

0 0 · · · λn−2 0

0 0 · · · 0 λn−1


(

v0 v1 · · · vn−2 vn−1

)−1
.

This means that vi is an eigenvector associated with λi.

These assumptions set the stage.
Now, we again start with some vector x(0) ∈Rn. Since V is nonsingular, the vectors v0, . . . ,vn−1 form a linearly independent

bases for Rn. Hence,

x(0) = γ0v0 + γ1v1 + · · ·+ γn−2vn−2 + γn−1vn−1 =
(

v0 v1 · · · vn−2 vn−1

)


γ0

γ1
...

γn−2

γn−1


=V c.

Now, we generate

x(1) = A−1x(0)

x(2) = A−1x(1)

x(3) = A−1x(2)

...

The following algorithm accomplishes this

for k = 0, . . . , until x(k) doesn’t change (much) anymore
Solve Ax(k+1) := x(k)

endfor

12.5. Enrichment 457

(In practice, one would probably factor A once, and reuse the factors for the solve.) Notice that then

x(k) = A−1x(k−1) = (A−1)2x(k−2) = · · ·= (A−1)kx(0).

But then

(A−1)kx(0) = (A−1)k(γ0v0 + γ1v1 + · · ·+ γn−2vn−2 + γn−1vn−1︸ ︷︷ ︸
V c

)

= (A−1)k
γ0v0 +(A−1)k

γ1v1 + · · ·+(A−1)k
γn−2vn−2 +(A−1)k

γn−1vn−1

= γ0(A−1)kv0 + γ1(A−1)kv1 + · · ·+ γn−2(A−1)kvn−2 + γn−1(A−1)kvn−1

= γ0

(
1
λ0

)k

v0 + γ1

(
1
λ1

)k

v1 + · · ·+ γn−2

(
1

λn−2

)k

vn−2 + γn−1

(
1

λn−1

)k

vn−1︸ ︷︷ ︸
(

v0 · · · vn−2 vn−1

)


(
1

λ0

)k
· · · 0 0

...
. . .

...
...

0 · · ·
(

1
λn−2

)k
0

0 · · · 0
(

1
λn−1

)k




γ0
...

γn−2

γn−1


︸ ︷︷ ︸

V (Λ−1)kc

Now, if λn−1 = 1, then
∣∣∣ 1

λ j

∣∣∣< 1 for j < n−1 and hence

lim
k→∞

x(k) = lim
k→∞

(
γ0

(
1
λ0

)k

v0 + · · ·+ γn−2

(
1

λn−2

)k

vn−2 + γn−1vn−1

)
︸ ︷︷ ︸

lim
k→∞

(
v0 · · · vn−2 vn−1

)


(
1

λ0

)k
· · · 0 0

...
. . .

...
...

0 · · ·
(

1
λn−2

)k
0

0 · · · 0 1




γ0
...

γn−2

γn−1


︸ ︷︷ ︸

(
v0 · · · vn−2 vn−1

)


0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 1




γ0
...

γn−2

γn−1


︸ ︷︷ ︸

(
0 · · · 0 vn−1

)


γ0
...

γn−2

γn−1


︸ ︷︷ ︸

γn−1vn−1

= γn−1vn−1

which means that x(k) eventually starts pointing towards the direction of vn−1, the eigenvector associated with the eigenvalue
that is smallest in magnitude. (Well, as long as γn−1 6= 0.)

Similar to before, we can instead iterate with the matrix λn−1A−1, in which case∣∣∣∣λn−1

λ0

∣∣∣∣≤ ·· · ≤ ∣∣∣∣λn−1

λn−2

∣∣∣∣< ∣∣∣∣λn−1

λn−1

∣∣∣∣= 1.

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 458

The iteration then becomes

x(1) = λn−1A−1x(0)

x(2) = λn−1A−1x(1)

x(3) = λn−1A−1x(2)

...

The following algorithm accomplishes this

for k = 0, . . . , until x(k) doesn’t change (much) anymore
Solve Ax(k+1) := x(k)

x(k+1) := λn−1x(k+1)

endfor

It is not hard to see that then

lim
k→∞

x(k) = lim
k→∞

(
γ0

(
λn−1

λ0

)k

v0 + · · ·+ γn−2

(
λn−1

λn−2

)k

vn−2 + γn−1vn−1

)
︸ ︷︷ ︸

lim
k→∞

(
v0 · · · vn−2 vn−1

)


(λn−1/λ0)
k · · · 0 0

...
...

. . .
...

0 · · · (λn−1/λn−2)
k 0

0 · · · 0 1




γ0
...

γn−2

γn−1


︸ ︷︷ ︸

(
v0 · · · vn−2 vn−1

)


0 0 · · · 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 1




γ0
...

γn−2

γn−1


︸ ︷︷ ︸

(
0 · · · 0 vn−1

)


γ0
...

γn−2

γn−1


︸ ︷︷ ︸

γn−1vn−1

= γn−1vn−1

So, it seems that we have an algorithm that always works as long as

|λ0| ≥ · · · ≥ |λn−1|> |λn−1|.

Again, we are cheating... If we knew λn−1, then we could simply compute the eigenvector by finding a vector in the null
space of A−λn−1I. Again, the key insight is that, in x(k+1) = λn−1Ax(k), multiplying by λn−1 is merely meant to keep the vector
x(k) from getting progressively larger (if |λn−1|< 1) or smaller (if |λn−1|> 1). We can alternatively simply make x(k) of length
one at each step, and that will have the same effect without requiring λn−1:

for k = 0, . . . , until x(k) doesn’t change (much) anymore
Solve Ax(k+1) := x(k)

x(k+1) := x(k+1)/‖x(k+1)‖2
endfor

This last algorithm is known as the Inverse Power Method for finding an eigenvector associated with the smallest eigenvalue
(in magnitude).

12.5. Enrichment 459

Homework 12.5.1.1 The script in InversePowerMethodScript.m illustrates how the Inverse Power Method,
starting with a random vector, computes an eigenvector corresponding to the eigenvalue that is smallest in magni-
tude, and (via the Rayleigh quotient) an approximation for that eigenvalue.
To try it out, in the Command Window type

>> InversePowerMethodScript
input a vector of eigenvalues. e.g.: [4; 3; 2; 1]
[4; 3; 2; 1]

If you compare the script for the Power Method with this script, you notice that the difference is that we now use
A−1 instead of A. To save on computation, we compute the LU factorization once, and solve LUz = x, overwriting
x with z, to update x := A−1x. You will notice that for this distribution of eigenvalues, the Inverse Power Method
converges faster than the Power Method does.
Try some other distributions of eigenvalues. For example, [4; 3; 1.25; 1], which should converge slower,
or [4; 3.9; 3.8; 1], which should converge faster.

Now, it is possible to accelerate the Inverse Power Method if one has a good guess of λn−1. The idea is as follows: Let µ be
close to λn−1. Then we know that (A−µI)x = (λ−µ)x. Thus, an eigenvector of A is an eigenvector of A−1 is an eigenvector of
A−µI is an eigenvector of (A−muI)−1. Now, if µ is close to λn−1, then (hopefully)

|λ0−µ| ≥ |λ1−µ| ≥ · · · ≥ |λn−2−µ|> |λn−1−µ|.

The important thing is that if, as before,

x(0) = γ0v0 + γ1v1 + · · ·+ γn−2vn−2 + γn−1vn−1

where v j equals the eigenvector associated with λ j, then

x(k) = (λn−1−µ)(A−µI)−1x(k−1) = · · ·= (λn−1−µ)k((A−µI)−1)kx(0) =

= γ0(λn−1−µ)k((A−µI)−1)kv0 + γ1(λn−1−µ)k((A−µI)−1)kv1 + · · ·
+ γn−2(λn−1−µ)k((A−µI)−1)kvn−2 + γn−1(λn−1−µ)k((A−µI)−1)kvn−1

= γ0

∣∣∣∣λn−1−µ
λ0−µ

∣∣∣∣k v0 + γ1

∣∣∣∣λn−1−µ
λ1−µ

∣∣∣∣k v1 + · · ·+ γn−2

∣∣∣∣λn−1−µ
λn−2−µ

∣∣∣∣k vn−2 + γn−1vn−1

Now, how fast the terms involving v0, . . . ,vn−2 approx zero (become negligible) is dictated by the ratio

∣∣∣∣λn−1−µ
λn−2−µ

∣∣∣∣ .
Clearly, this can be made arbitrarily small by picking arbitrarily close to λn−1. Of course, that would require knowning λn−1...

The practical algorithm for this is given by

for k = 0, . . . , until x(k) doesn’t change (much) anymore
Solve (A−µI)x(k+1) := x(k)

x(k+1) := x(k+1)/‖x(k+1)‖2
endfor

which is referred to as the Shifted Inverse Power Method. Obviously, we would want to only factor A−µI once.

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 460

Homework 12.5.1.2 The script in ShiftedInversePowerMethodScript.m illustrates how shifting the matrix
can improve how fast the Inverse Power Method, starting with a random vector, computes an eigenvector corre-
sponding to the eigenvalue that is smallest in magnitude, and (via the Rayleigh quotient) an approximation for that
eigenvalue.
To try it out, in the Command Window type

>> ShiftedInversePowerMethodScript
input a vector of eigenvalues. e.g.: [4; 3; 2; 1]
[4; 3; 2; 1]

<bunch of output>

enter a shift to use: (a number close to the smallest eigenvalue) 0.9

If you compare the script for the Inverse Power Method with this script, you notice that the difference is that we
now iterate with (A− sigmaI)−1, where σ is the shift, instead of A. To save on computation, we compute the
LU factorization of A−σI once, and solve LUz = x, overwriting x with z, to update x := (A−1−σI)x. You will
notice that if you pick the shift close to the smallest eigenvalue (in magnitude), this Shifted Inverse Power Method
converges faster than the Inverse Power Method does. Indeed, pick the shift very close, and the convergence is
very fast. See what happens if you pick the shift exactly equal to the smallest eigenvalue. See what happens if you
pick it close to another eigenvalue.

12.5.2 The Rayleigh Quotient Iteration

In the previous unit, we explained that the Shifted Inverse Power Method converges quickly if only we knew a scalar µ close to
λn−1.

The observation is that x(k) eventually approaches vn−1. If we knew vn−1 but not λn−1, then we could compute the Rayleigh
quotient:

λn−1 =
vT

n−1Avn−1

vT
n−1vn−1

.

But we know an approximation of vn−1 (or at least its direction) and hence can pick

µ =
x(k)T Ax(k)

x(k)T x(k)
≈ λn−1

which will become a progressively better approximation to λn−1 as k increases.

This then motivates the Rayleigh Quotient Iteration:

for k = 0, . . . , until x(k) doesn’t change (much) anymore
µ := x(k)T Ax(k)

x(k)T x(k)

Solve (A−µI)x(k+1) := x(k)

x(k+1) := x(k+1)/‖x(k+1)‖2
endfor

Notice that if x(0) has length one, then we can compute µ := x(k)T Ax(k) instead, since x(k) will always be of length one.

The disadvantage of the Rayleigh Quotient Iteration is that one cannot factor (A− µI) once before starting the loop. The
advantage is that it converges dazingly fast. Obviously “dazingly” is not a very precise term. Unfortunately, quantifying how
fast it converges is beyond this enrichment.

12.6. Wrap Up 461

Homework 12.5.2.1 The script in RayleighQuotientIterationScript.m illustrates how shifting the matrix
by the Rayleigh Quotient can greatly improve how fast the Shifted Inverse Power Method, starting with a random
vector, computes an eigenvector. It could be that the random vector is close to an eigenvector associated with any
of the eigenvalues, in which case the method will start converging towards an eigenvector associated with that
eigenvalue. Pay close attention to how many digit are accurate from one iteration to the next.
To try it out, in the Command Window type

>> RayleighQuotientIterationScript
input a vector of eigenvalues. e.g.: [4; 3; 2; 1]
[4; 3; 2; 1]

12.5.3 More Advanced Techniques

The Power Method and its variants are the bases of algorithms that compute all eigenvalues and eigenvectors of a given matrix.
Details, presented with notation similar to what you have learned in this class, can be found in LAFF: Notes on Numerical
Linear Algebra.

Consider this unit a “cliff hanger”. You will want to take a graduate level course on Numerical Linear Algebra next!

12.6 Wrap Up

12.6.1 Homework

No additional homework this week.

12.6.2 Summary

The algebraic eigenvalue problem

The algebraic eigenvalue problem is given by
Ax = λx.

where A ∈ Rn×n is a square matrix, λ is a scalar, and x is a nonzero vector.

• If x 6= 0, then λ is said to be an eigenvalue and x is said to be an eigenvector associated with the eigenvalue λ.

• The tuple (λ,x) is said to be an eigenpair.

• The set of all vectors that satisfy Ax = λx is a subspace.

Equivalent statements:

• Ax = λx,, where x 6= 0.

• (A−λI)x = 0, where x 6= 0.
This is a matter of fractoring’ x out.

• A−λI is singular.

• N (A−λI) contains a nonzero vector x.

• dim(N (A−λI))> 0.

• det(A−λI) = 0.

If we find a vector x 6= 0 such that Ax = λx, it is certainly not unique.

• For any scalar α, A(αx) = λ(αx) also holds.

• If Ax = λx and Ay = λy, then A(x+ y) = Ax+Ay = λx+λy = λ(x+ y).

We conclude that the set of all vectors x that satisfy Ax = λx is a subspace.

http://www.ulaff.net
http://www.ulaff.net

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 462

Simple cases

• The eigenvalue of the zero matrix is the scalar λ = 0. All nonzero vectors are eigenvectors.

• The eigenvalue of the identity matrix is the scalar λ = 1. All nonzero vectors are eigenvectors.

• The eigenvalues of a diagonal matrix are its elements on the diagonal. The unit basis vectors are eigenvectors.

• The eigenvalues of a triangular matrix are its elements on the diagonal.

• The eigenvalues of a 2×2 matrix can be found by finding the roots of p2(λ) = det(A−λI) = 0.

• The eigenvalues of a 3×3 matrix can be found by finding the roots of p3(λ) = det(A−λI) = 0.

For 2×2 matrices, the following steps compute the eigenvalues and eigenvectors:

• Compute

det(

 (α0,0−λ) α0,1

α1,0 (α1,1−λ)

) = (α0,0−λ)(α1,1−λ)−α0,1α1,0.

• Recognize that this is a second degree polynomial in λ.

• It is called the characteristic polynomial of the matrix A, p2(λ).

• Compute the coefficients of p2(λ) so that
p2(λ) =−λ

2 +βλ+ γ.

• Solve
−λ

2 +βλ+ γ = 0

for its roots. You can do this either by examination, or by using the quadratic formula:

λ =
−β±

√
β2 +4γ

−2
.

• For each of the roots, find an eigenvector that satisfies (α0,0−λ) α0,1

α1,0 (α1,1−λ)

 χ0

χ1

=

 0

0


The easiest way to do this is to subtract the eigenvalue from the diagonal, set one of the components of x to 1, and then
solve for the other component.

• Check your answer! It is a matter of plugging it into Ax = λx and seeing if the computed λ and x satisfy the equation.

General case

Theorem 12.12 A matrix A ∈ Rn×n is nonsingular if and only if det(A) 6= 0.

Theorem 12.13 Given A ∈ Rn×n,

pn(λ) = det(A−λI) = λ
n + γn−1λ

n−1 + · · ·+ γ1λ+ γ0.

for some coefficients γ1, . . . ,γn−1 ∈ R.

Definition 12.14 Given A ∈ Rn×n, pn(λ) = det(A−λI) is called the characteristic polynomial.

Theorem 12.15 Scalar λ satisfies Ax = λx for some nonzero vector x if and only if det(A−λI) = 0.

• The characteristic polynomial of A ∈ Rn×n is given by

pn(λ) = det(A−λI) =γ0 + γ1λ+ · · ·+ γn−1λ
n−1 +λ

n.

12.6. Wrap Up 463

• Since pn(λ) is an nth degree polynomial, it has n roots, counting multiplicity. Thus, matrix A has n eigenvalues, counting
multiplicity.

– Let k equal the number of distinct roots of pn(λ). Clearly, k ≤ n. Clearly, matrix A then has k distinct eigenvalues.

– The set of all roots of pn(λ), which is the set of all eigenvalues of A, is denoted by Λ(A) and is called the spectrum
of matrix A.

– The characteristic polynomial can be factored as

pn(λ) = det(A−λI) =(λ−λ0)
n0(λ−λ1)

n1 · · ·(λ−λk−1)
nk−1 ,

where n0 +n1 + · · ·+nk−1 = n and n j is the root λ j, which is known as that (algebraic) multiplicity of eigenvalue
λ j.

• If A ∈ Rn×n, then the coefficients of the characteristic polynomial are real (γ0, . . . ,γn−1 ∈ R), but

– Some or all of the roots/eigenvalues may be complex valued and

– Complex roots/eigenvalues come in “conjugate pairs”: If λ=Re(λ)+ iIm(λ) is a root/eigenvalue, so is λ=Re(λ)−
iIm(λ)

Galois theory tells us that for n≥ 5, roots of arbitrary pn(λ) cannot be found in a finite number of computations.
For every nthe degree polynomial

pn(λ) = γ0 + γ1λ+ · · ·+ γn−1λ
n−1 +λ

n,

there exists a matrix, C, called the companion matrix that has the property that

pn(λ) = det(C−λI) =γ0 + γ1λ+ · · ·+ γn−1λ
n−1 +λ

n.

In particular, the matrix

C =



−γn−1 −γn−2 · · · −γ1 −γ0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


is the companion matrix for pn(λ):

pn(λ) = γ0 + γ1λ+ · · ·+ γn−1λ
n−1 +λ

n = det(



−γn−1 −γn−2 · · · −γ1 −γ0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


−λI).

Diagonalization

Theorem 12.16 Let A ∈ Rn×n. Then there exists a nonsingular matrix X such that X−1AX = Λ if and only if A has n linearly
independent eigenvectors.

If X is invertible (nonsingular, has linearly independent columns, etc.), then the following are equivalent

X−1 A X = Λ

A X = X Λ

A = X Λ X−1

If Λ is in addition diagonal, then the diagonal elements of Λ are eigenvalues of A and the columns of X are eigenvectors of A.

Week 12. Eigenvalues, Eigenvectors, and Diagonalization 464

Defective matrices

It is not the case that for every A ∈ Rn×n there is a nonsingular matrix X ∈ Rn×n such that X−1AX = Λ, where Λ is diagonal.
In general, the k× k matrix Jk(λ) given by

Jk(λ) =



λ 1 0 · · · 0 0

0 λ 1 · · · 0 0

0 0 λ
. . . 0 0

...
...

...
. . .

...
...

0 0 0 · · · λ 1

0 0 0 · · · 0 λ


has eigenvalue λ of algebraic multiplicity k, but geometric multiplicity one (it has only one linearly independent eigenvector).
Such a matrix is known as a Jordan block.

Definition 12.17 The geometric multiplicity of an eigenvalue λ equals the number of linearly independent eigenvectors that
are associated with λ.

Theorem 12.18 Let A ∈ Rn×n. Then there exists a nonsingular matrix X ∈ Rn×n such that A = XJX−1, where

J =



Jk0(λ0) 0 0 · · · 0

0 Jk1(λ1) 0 · · · 0

0 0 Jk2(λ2) · · · 0
...

...
...

. . .
...

0 0 0 · · · Jkm−1(λm−1)


where each Jk j(λ j) is a Jordan block of size k j× k j.

The factorization A = XJX−1 is known as the Jordan Canonical Form of matrix A.

In the above theorem

• It is not the case that λ0,λ1, . . . ,λm−1 are distinct. If λ j appears in multiple Jordan blocks, the number of Jordan blocks in
which λ j appears equals the geometric multiplicity of λ j (and the number of linearly independent eigenvectors associated
with λ j).

• The sum of the sizes of the blocks in which λ j as an eigenvalue appears equals the algebraic multiplicity of λ j.

• If each Jordan block is 1×1, then the matrix is diagonalized by matrix X .

• If any of the blocks is not 1×1, then the matrix cannot be diagonalized.

Properties of eigenvalues and eigenvectors

Definition 12.19 Given A ∈ Rn×n and nonzero vector x ∈ Rn, the scalar xT Ax/xT x is known as the Rayleigh quotient.

Theorem 12.20 Let A∈Rn×n and x equal an eigenvector of A. Assume that x is real valued as is the eigenvalue λ with Ax = λx.
Then λ = xT Ax

xT x is the eigenvalue associated with the eigenvector x.

Theorem 12.21 Let A ∈ Rn×n, β be a scalar, and λ ∈ Λ(A). Then (βλ) ∈ Λ(βA).

Theorem 12.22 Let A ∈ Rn×n be nonsingular, λ ∈ Λ(A), and Ax = λx. Then A−1x = 1
λ

x.

Theorem 12.23 Let A ∈ Rn×n and λ ∈ Λ(A). Then (λ−µ) ∈ Λ(A−µI).

Appendix A
LAFF Routines (FLAME@lab)

Figure A summarizes the most important routines that are part of the laff FLAME@lab (MATLAB) library used in these
materials.

465

!!

O
pe

ra
tio

n
A

bb
re

v.
D

efi
ni

tio
n

Fu
nc

tio
n

A
pp

ro
x.

co
st

flo
ps

m
em

op
s

Ve
ct

or
-v

ec
to

r
op

er
at

io
ns

C
op

y
(C

O
P

Y
)

y
:=

x
y
=
la
ff

co
py
(
x,

y
)

0
2n

V
ec

to
rs

ca
lin

g
(S

C
A

L
)

x
:=

α
x

x
=
la
ff

sc
al
(
al
ph
a,

x
)

n
2n

V
ec

to
rs

ca
lin

g
(S

C
A

L
)

x
:=

x/
α

x
=
la
ff

in
vs
ca
l(

al
ph
a,

x
)

n
2n

Sc
al

ed
ad

di
tio

n
(A

X
P

Y
)

y
:=

α
x+

y
y
=
la
ff

ax
py
(
al
ph
a,

x,
y
)

2n
3n

D
ot

pr
od

uc
t(

D
O

T
)

α
:=

xT
y

al
ph
a
=
la
ff

do
t(

x,
y
)

2n
2n

D
ot

pr
od

uc
t(

D
O

T
S)

α
:=

xT
y+

α
al
ph
a
=
la
ff

do
ts
(
x,

y,
al
ph
a
)

2n
2n

L
en

gt
h

(N
O

R
M

2)
α

:=
‖x
‖ 2

al
ph
a
=
la
ff

no
rm
2(

x
)

2n
n

M
at

ri
x-

ve
ct

or
op

er
at

io
ns

G
en

er
al

m
at

ri
x-

ve
ct

or
y

:=
α

A
x+

β
y

y
=
la
ff

ge
mv
(
’N
o
tr
an
sp
os
e’
,
al
ph
a,

A,
x,

be
ta
,
y
)

2m
n

m
n

m
ul

tip
lic

at
io

n
(G

E
M

V
)

y
:=

α
A

T
x+

β
y

y
=
la
ff

ge
mv
(
‘T
ra
ns
po
se
’,

al
ph
a,

A,
x,

be
ta
,
y
)

2m
n

m
n

R
an

k-
1

up
da

te
(G

E
R

)
A

:=
α

xy
T
+

A
A
=
la
ff

ge
r(

al
ph
a,

x,
y,

A
)

2m
n

m
n

Tr
ia

ng
ul

ar
m

at
ri

x
b

:=
L−

1 b,
b

:=
U
−

1 b
ex

am
pl

e:

so
lv

e
(T

R
S

V
)

b
:=

L−
T

b,
b

:=
U
−

T
b

b
=
la
ff

tr
sv
(
’U
pp
er

tr
ia
ng
ul
ar
’,

’N
o
tr
an
sp
os
e’
,

’N
on
un
it

di
ag
on
al
’,

U,
b
)

n2
n2 /

2

Tr
ia

ng
ul

ar
m

at
ri

x-
x

:=
Lx

,x
:=

U
x

ex
am

pl
e:

ve
ct

or
m

ul
tip

ly
(T

R
M

V
)

x
:=

LT
x,

x
:=

U
T

x
x
=
la
ff

tr
mv
(
’U
pp
er

tr
ia
ng
ul
ar
’,

’N
o
tr
an
sp
os
e’
,

’N
on
un
it

di
ag
on
al
’,

U,
x
)

n2
n2 /

2

M
at

ri
x-

m
at

ri
x

op
er

at
io

ns

G
en

er
al

m
at

ri
x-

m
at

ri
x

C
:=

α
A

B
+

β
C

ex
am

pl
e:

m
ul

tip
lic

at
io

n
(G

E
M

M
)

C
:=

α
A

T
B
+

β
C

C
=
la
ff

ge
mm
(
‘T
ra
ns
po
se
’,

’N
o
tr
an
sp
os
e,

2m
nk

2m
n
+

m
k
+

nk

C
:=

α
A

B
T
+

β
C

al
ph
a,

A,
B,

be
ta
,
C
)

C
:=

α
A

T
B

T
+

β
C

Tr
ia

ng
ul

ar
so

lv
e

B
:=

α
L−

1 B
ex

am
pl

e:

w
ith

M
R

H
s

(T
R

S
M

)
B

:=
α

U
−

T
B

B
=
la
ff

tr
sm
(
’L
ef
t’
,
’L
ow
er

tr
ia
ng
ul
ar
’,

B
:=

α
B

L−
1

’N
o
tr
an
sp
os
e’
,
’N
on
un
it

di
ag
on
al
’,

m
2 n

m
2
+

m
n

B
:=

α
BU
−

T
al
ph
a,

U,
B
)

m
2 n

m
2
+

m
n

Index

0
matrix, 84

0m×n
matrix, 84

In
identity matrix, 85

R, 14
Rm×n, 68
Rn, 14
T , 94
χ, 14
e0, 17
e1, 17
e j, 16
:=, 17
=, 17

addition
matrix, 102–105

API
FLAME, 39–40

approximate solution, 369–377
approximation

low rank, 383
rank-1, 389–392
rank-2, 394–396
rank-k, 396–398

assignment
:=, 17–18

axpy, 23–24

back substitution, 197
cost, 220–225

base, 337–345
base case, 63
basis

canonical, 17
change of, 411–413
natural, 17
orthogonal, 398–411
orthonormal, 401–406

becomes, see assignment

canonical basis, 17
change of basis, 411–413
χ, 14
Cholesky factorization, 304–308, 377
component, 14

in the direction of, 386–389
conformal partitioning, 125
cost

back substitution, 220–225
forward substitution, 220–225
linear system solve, 220–225
LU factorization, 220–225
vector

assignment, 18

defective matrix, 447–448
deficient matrix, 447–448
Dijkstra, Edsger W., 76
direction, 14
DOT, 26–28
dot product, 26–28

e0, 17
e1, 17
e j, 16
element, 14
elimination

Gauss-Jordan, 278–302
Gaussian, 192–234

Euclidean length, 14

factorization
Cholesky, 304–308, 377
LDLT , 308
LU, 208–225, 308
LU with row pivoting, 308
other, 308
QR, 308, 377, 406–411

FLAME API, 39–40
FLAME notation, 38–39, 309
floating point number, 19
floating point operation, 19, 24

469

flop, see floating point operation
forward substitution, 204–205

cost, 220–225

Gauss transform, 201–204
Gauss-Jordan elimination, 278–302
Gaussian elimination, 192–234, 236–255

algorithm, 205–208
appended system, 199
breaks down, 240–255
with row pivoting, 249–254
with row swapping, 249–254

geometric multiplicity, 447, 464
Gram-Schmidt orthogonalization, 401–403
GS orthogonalization, 401–403

Householder transformation, 417

I
identity matrix, 85

I, 85
identity matrix, 43
In, 85
indefinite symmetric matrix, 308
induction, 62–65
inductive step, 63
inverse, 255–265, 272–304

matrix, 272–304
invert matrix

don’t do it, 302–304

Jordan block, 438
Jordan Canonical Form, 447, 464

LAFF
vector operations, 35–38

laff
routines, 465–466

laff operations, 158, 467
LDLT factorization, 308
length, 14

Euclidean, 14
linear combination, 24–26, 61–62

algorithm, 25
cost, 25

linear equations
system of, 196

linear independent, 337–345
linear least-squares

via QR factorization, 407–408
linear least-squares solution, 369–377
linear system

reduction to upper triangular system, 196–198
solve, 193, 218–220

cost, 220–225
linear transformation, 58–62

composition, 145

definition, 58
low rank approximation, 383
lower triangular solve, 212–214

cost, 220–225
LU factorization, 208–225, 308

cost, 220–225
row pivoting, 308
with row pivoting, 249–254
with row swapping, 249–254

magnitude, 14
Markov Process, 117–120

Example, 117–120
mathematical induction, 62–65

base case, 63
inductive step, 63
principle of, 63

matrix, 65–76
0, 84
0m×n, 84
In, 85
addition, 102–105
appended, 198–201
defective, 447–448
deficient, 447–448
diagonal, 88–91
I, 85
identity, 85–88
inverse, 255–265, 272–304
invert

don’t do it, 302–304
lower triangular, 92
scaling, 99–102
SPD, 304–308, 377
strictly lower triangular, 92
strictly upper triangular, 92
sum, 102–105
symmetric, 97–99
symmetric positive definite, 304–308, 377
transition, 118
transpose, 94–97
triangular, 91–94
unit lower triangular, 92
unit upper triangular, 92
upper triangular, 92
zero, 84–85

matrix inverse, 255–265
matrix-matrix

multiplication, 143–154
product, 143–154

matrix-matrix multiplication, 143–154, 159–177
algorithms, 169–177
computation of, 145–148
cost, 153–154
high-performance, 181–183
motivation, 159

partitioned, 162–163, 177–181
properties, 163–164
slicing and dicing, 177–181
special matrices, 165–169
special shapes, 148–153

matrix-matrix operations, 467
matrix-matrix product, 143–154
matrix-vector

multiplication, 61
matrix-vector multiplication, 66–76

algorithms, 105–111
definition, 68
partitioned, 123–125
symmetric, 140–143
transpose, 132–134
triangular, 134–140

matrix-vector operations, 158, 467
matrix-vector product

definition, 68
memop, 18
memory operation, 18
MGS orthogonalization, 417
mirror, 55
Modified Gram-Schmidt orthogonalization, 417
multiplication

matrix-vector, 61
definition, 68

matrix-vector multiplication, 66–76
multiplicity

geometric, 447, 464

natural basis, 17
normal equations, 377–378

solving, 377–378
notation

FLAME, 38–39, 309

operations
laff, 158, 467
matrix-matrix, 467
matrix-vector, 158, 467

orthogonal basis, 398–411
orthogonal projection, 386–398
orthogonal spaces, 364–369
orthogonal vectors, 364–369
orthogonality, 364–369
orthogonalization

Gram-Schmidt, 401–403
Modified Gram-Schmidt, 417

orthonormal basis, 401–406
orthonormal vectors, 399–401

partitioned matrix
transposition, 125–129

partitioned matrix-vector multiplication, 123–125
partitioning

conformal, 125
preface, viii
product

matrix-vector
definition, 68

projection
onto subspace, 392–394
orthogonal, 386–398

QR factorization, 308, 377, 406–411
Householder transformation, 417
linear least-squares via, 407–408

R, 14
rank-1 approximation, 389–392
rank-2 approximation, 394–396
rank-k approximation, 396–398
reflection, 55
Rm×n, 68
rotation, 53–55
rotations

composing, 159
row echelon form, 359–364

scaling
matrix, 99–102

Singular Value Decomposition, 377, 413–417
size, 14
solution

approximate, 369–377
linear least-squares, 369–377

solve
linear system, 218–220
lower triangular

cost, 220–225
lower triangular solve, 212–214
upper triangular, 214–218

cost, 220–225
solving normal equations, 377–378
spaces

orthogonal, 364–369
span, 337–345
SPD, 377
SPD matrix, 304–308
state vector, 118
subspace

projection onto, 392–394
substitution

back, 197
forward, 204–205

sum
matrix, 102–105

SVD, 377, 413–417
symmetric positive definite, 377
symmetric positive definite matrix, 304–308
symmetrize, 99

T , 94
Timmy Two Space, 81
transition matrix, 118
transpose

product of matrices, 164–165
two-norm, 14

unit basis vector, 16–17, 43
e1, 17
e j, 16
e0, 17

unit vector, 29
upper triagular solve

cost, 220–225
upper triangular solve, 214–218

vector, 11–52
ADD, 18–19
addition, 18–19
assignment, 17–18

algorithm, 17
cost, 18

:=, 17–18
AXPY, 23–24
complex valued, 14
component, 14
copy, 17–18
definition, 14
direction, 14
dot product, 26–28
element, 14
equality, 17–18
=, 17–18

functions, 30–35
inner product, 26–28
length, 14, 28–30
linear combination of, 24–26
magnitude, 14
NORM2, 28–30
notation, 14–16
operations, 35, 52, 158, 467
SCAL, 19–21
scaled addition, 23–24

algorithm, 24
scaling, 19–21

algorithm, 20
cost, 21

size, 14
slicing and dicing, 38–42
state, 118
subtraction, 21–23
sum, see addition
two-norm, 14, 28–30
unit, 29
unit basis, 16–17
what is a, 14–17

vector spaces, 331–337
vector-vector operations, 35, 52, 158, 467
vectors

linear independent, 337–345
orthogonal, 364–369
orthonormal, 399–401
set of all, 14

zero
matrix, 84–85

	Getting Started
	Opening Remarks
	Welcome to LAFF
	Outline
	What You Will Learn

	How to LAFF
	When to LAFF
	How to Navigate LAFF
	Homework and LAFF
	Grading and LAFF
	Programming and LAFF
	Proving and LAFF
	Setting Up to LAFF

	Software to LAFF
	Why MATLAB
	Installing MATLAB
	MATLAB Basics

	Enrichments
	The Origins of MATLAB

	Wrap Up
	Additional Homework
	Summary

	Vectors in Linear Algebra
	Opening Remarks
	Take Off
	Outline Week 1
	What You Will Learn

	What is a Vector?
	Notation
	Unit Basis Vectors

	Simple Vector Operations
	Equality (=), Assignment (:=), and Copy
	Vector Addition (add)
	Scaling (scal)
	Vector Subtraction

	Advanced Vector Operations
	Scaled Vector Addition (axpy)
	Linear Combinations of Vectors
	Dot or Inner Product (dot)
	Vector Length (norm2)
	Vector Functions
	Vector Functions that Map a Vector to a Vector

	LAFF Package Development: Vectors
	Starting the Package
	A Copy Routine (copy)
	A Routine that Scales a Vector (scal)
	A Scaled Vector Addition Routine (axpy)
	An Inner Product Routine (dot)
	A Vector Length Routine (norm2)

	Slicing and Dicing
	Slicing and Dicing: Dot Product
	Algorithms with Slicing and Redicing: Dot Product
	Coding with Slicing and Redicing: Dot Product
	Slicing and Dicing: axpy
	Algorithms with Slicing and Redicing: axpy
	Coding with Slicing and Redicing: axpy

	Enrichment
	Learn the Greek Alphabet
	Other Norms
	Overflow and Underflow
	A Bit of History

	Wrap Up
	Homework
	Summary of Vector Operations
	Summary of the Properties of Vector Operations
	Summary of the Routines for Vector Operations

	Linear Transformations and Matrices
	Opening Remarks
	Rotating in 2D
	Outline
	What You Will Learn

	Linear Transformations
	What Makes Linear Transformations so Special?
	What is a Linear Transformation?
	Of Linear Transformations and Linear Combinations

	Mathematical Induction
	What is the Principle of Mathematical Induction?
	Examples

	Representing Linear Transformations as Matrices
	From Linear Transformation to Matrix-Vector Multiplication
	Practice with Matrix-Vector Multiplication
	It Goes Both Ways
	Rotations and Reflections, Revisited

	Enrichment
	The Importance of the Principle of Mathematical Induction for Programming
	Puzzles and Paradoxes in Mathematical Induction

	Wrap Up
	Homework
	Summary

	Matrix-Vector Operations
	Opening Remarks
	Timmy Two Space
	Outline Week 3
	What You Will Learn

	Special Matrices
	The Zero Matrix
	The Identity Matrix
	Diagonal Matrices
	Triangular Matrices
	Transpose Matrix
	Symmetric Matrices

	Operations with Matrices
	Scaling a Matrix
	Adding Matrices

	Matrix-Vector Multiplication Algorithms
	Via Dot Products
	Via axpy Operations
	Compare and Contrast
	Cost of Matrix-Vector Multiplication

	Wrap Up
	Homework
	Summary

	From Matrix-Vector Multiplication to Matrix-Matrix Multiplication
	Opening Remarks
	Predicting the Weather
	Outline
	What You Will Learn

	Preparation
	Partitioned Matrix-Vector Multiplication
	Transposing a Partitioned Matrix
	Matrix-Vector Multiplication, Again

	Matrix-Vector Multiplication with Special Matrices
	Transpose Matrix-Vector Multiplication
	Triangular Matrix-Vector Multiplication
	Symmetric Matrix-Vector Multiplication

	Matrix-Matrix Multiplication (Product)
	Motivation
	From Composing Linear Transformations to Matrix-Matrix Multiplication
	Computing the Matrix-Matrix Product
	Special Shapes
	Cost

	Enrichment
	Markov Chains: Their Application

	Wrap Up
	Homework
	Summary

	Matrix-Matrix Multiplication
	Opening Remarks
	Composing Rotations
	Outline
	What You Will Learn

	Observations
	Partitioned Matrix-Matrix Multiplication
	Properties
	Transposing a Product of Matrices
	Matrix-Matrix Multiplication with Special Matrices

	Algorithms for Computing Matrix-Matrix Multiplication
	Lots of Loops
	Matrix-Matrix Multiplication by Columns
	Matrix-Matrix Multiplication by Rows
	Matrix-Matrix Multiplication with Rank-1 Updates

	Enrichment
	Slicing and Dicing for Performance
	How It is Really Done

	Wrap Up
	Homework
	Summary

	Gaussian Elimination
	Opening Remarks
	Solving Linear Systems
	Outline
	What You Will Learn

	Gaussian Elimination
	Reducing a System of Linear Equations to an Upper Triangular System
	Appended Matrices
	Gauss Transforms
	Computing Separately with the Matrix and Right-Hand Side (Forward Substitution)
	Towards an Algorithm

	Solving A x = b via LU Factorization
	LU factorization (Gaussian elimination)
	Solving L z = b (Forward substitution)
	Solving U x = b (Back substitution)
	Putting it all together to solve A x = b
	Cost

	Enrichment
	Blocked LU Factorization
	How Ordinary Elimination Became Gaussian Elimination

	Wrap Up
	Homework
	Summary

	More Gaussian Elimination and Matrix Inversion
	Opening Remarks
	Introduction
	Outline
	What You Will Learn

	When Gaussian Elimination Breaks Down
	When Gaussian Elimination Works
	The Problem
	Permutations
	Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting)
	When Gaussian Elimination Fails Altogether

	The Inverse Matrix
	Inverse Functions in 1D
	Back to Linear Transformations
	Simple Examples
	More Advanced (but Still Simple) Examples
	Properties

	Enrichment
	Library Routines for LU with Partial Pivoting

	Wrap Up
	Homework
	Summary

	More on Matrix Inversion
	Opening Remarks
	When LU Factorization with Row Pivoting Fails
	Outline
	What You Will Learn

	Gauss-Jordan Elimination
	Solving A x = b via Gauss-Jordan Elimination
	Solving A x = b via Gauss-Jordan Elimination: Gauss Transforms
	Solving A x = b via Gauss-Jordan Elimination: Multiple Right-Hand Sides
	Computing A-1 via Gauss-Jordan Elimination
	Computing A-1 via Gauss-Jordan Elimination, Alternative
	Pivoting
	Cost of Matrix Inversion

	(Almost) Never, Ever Invert a Matrix
	Solving A x = b
	But...

	(Very Important) Enrichment
	Symmetric Positive Definite Matrices
	Solving A x = b when A is Symmetric Positive Definite
	Other Factorizations
	Welcome to the Frontier

	Wrap Up
	Homework
	Summary

	Vector Spaces
	Opening Remarks
	Solvable or not solvable, that's the question
	Outline
	What you will learn

	When Systems Don't Have a Unique Solution
	When Solutions Are Not Unique
	When Linear Systems Have No Solutions
	When Linear Systems Have Many Solutions
	What is Going On?
	Toward a Systematic Approach to Finding All Solutions

	Review of Sets
	Definition and Notation
	Examples
	Operations with Sets

	Vector Spaces
	What is a Vector Space?
	Subspaces
	The Column Space
	The Null Space

	Span, Linear Independence, and Bases
	Span
	Linear Independence
	Bases for Subspaces
	The Dimension of a Subspace

	Enrichment
	Typesetting algorithms with the FLAME notation

	Wrap Up
	Homework
	Summary

	Vector Spaces, Orthogonality, and Linear Least Squares
	Opening Remarks
	Visualizing Planes, Lines, and Solutions
	Outline
	What You Will Learn

	How the Row Echelon Form Answers (Almost) Everything
	Example
	The Important Attributes of a Linear System

	Orthogonal Vectors and Spaces
	Orthogonal Vectors
	Orthogonal Spaces
	Fundamental Spaces

	Approximating a Solution
	A Motivating Example
	Finding the Best Solution
	Why It is Called Linear Least-Squares

	Enrichment
	Solving the Normal Equations

	Wrap Up
	Homework
	Summary

	Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases
	Opening Remarks
	Low Rank Approximation
	Outline
	What You Will Learn

	Projecting a Vector onto a Subspace
	Component in the Direction of ...
	An Application: Rank-1 Approximation
	Projection onto a Subspace
	An Application: Rank-2 Approximation
	An Application: Rank-k Approximation

	Orthonormal Bases
	The Unit Basis Vectors, Again
	Orthonormal Vectors
	Orthogonal Bases
	Orthogonal Bases (Alternative Explanation)
	The QR Factorization
	Solving the Linear Least-Squares Problem via QR Factorization
	The QR Factorization (Again)

	Change of Basis
	The Unit Basis Vectors, One More Time
	Change of Basis

	Singular Value Decomposition
	The Best Low Rank Approximation

	Enrichment
	The Problem with Computing the QR Factorization
	QR Factorization Via Householder Transformations (Reflections)
	More on SVD

	Wrap Up
	Homework
	Summary

	Eigenvalues, Eigenvectors, and Diagonalization
	Opening Remarks
	Predicting the Weather, Again
	Outline
	What You Will Learn

	Getting Started
	The Algebraic Eigenvalue Problem
	Simple Examples
	Diagonalizing
	Eigenvalues and Eigenvectors of 3 3 Matrices

	The General Case
	Eigenvalues and Eigenvectors of n n matrices: Special Cases
	Eigenvalues of n n Matrices
	Diagonalizing, Again
	Properties of Eigenvalues and Eigenvectors

	Practical Methods for Computing Eigenvectors and Eigenvalues
	Predicting the Weather, One Last Time
	The Power Method
	In Preparation for this Week's Enrichment

	Enrichment
	The Inverse Power Method
	The Rayleigh Quotient Iteration
	More Advanced Techniques

	Wrap Up
	Homework
	Summary

	LAFF Routines (FLAME@lab)
	Index

