
This programming assignment may seem really long. However, we are giving a very detailed explanation to help
you become familiar with MATLAB®’s languageM and the way we will be building a small library of functions.

This particular exercise does everything for you if you follow along with the video and type in the code that is
discussed there. In future exercises you will do more of the programming yourself.

Preliminaries

Start MATLAB® and in the Command Window start by creating vectors

x =

1

2

3

 and y =

0

−1

−2

 .

Type

1 >> x = [
2 1
3 2
4 3
5]
6 >> y = [
7 0
8 −1
9 −2

10]

into the Command Window:

1

One could instead type

1 x = [1 ; 2 ; 3] ;
2 y = [0;−1;−2] ;

This still creates column vectors. The “;”s separate rows in x and y) and the “;” at the end of the line suppresses
the printing of the result. However, we usually like to emphasize that x and y are column vectors by entering
them as columns.

At this point, you may want to have a look at what is in variables x and y:

1 >> x
2

3 x =
4

5 1
6 2
7 3
8

9 >> y
10

11 y =
12

13 0
14 −1
15 −2

Now, copying one vector into another is easy with MATLAB®:

1 >> x o l d = x
2

3 x o l d =
4

5 1
6 2
7 3
8

9 >> y o l d = y ;
10 >>

Notice how if one adds “;” after a command, the result of that command is not printed.

We have created new variables x old and y old because this will make it convenient later to restore the contents of
x and y.

Indexing into a vector

In our course we index starting at 0:

x =

1

2

3

=

χ0

χ1

χ2

2

so that in this example χ0 = 1, χ1 = 2, and χ2 = 3. MATLAB® instead starts indexing at 1:

1 >> x (1)
2

3 ans =
4

5 1

Mathematicians typically start indexing at 1 while computer scientists typically start at 0. The famous computer
scientist Edsger W. Dijkstra used to wear a T-shirt that declared “Counting starts at zero”. Get used to it!
What you will find is that later this week we introduce a way of referencing parts of vectors and matrices that
mostly avoids the whole indexing of individual elements issues.

The point of most of our exercises that use MATLAB® is to link coding algorithms to the abstractions that we
use. An abstraction on the math side is the notion of the vector, x, as an ordered list of numbers that we call elements
and that we index starting at 0: χ0, . . . ,χn−1. The corresponding abstraction in MATLAB® is the array x that we
index into starting at 1: x(1), x(2), x(3).

On the math side, we can assign the elements of a vector x to another vector y. To do so, the sizes of vectors x
and y have to be equal and then assigning y := x (y becomes x) means that

ψ0 := χ0

ψ0 := χ0
...

...

ψn−1 := χn−1

After the assignment y := x, the equalities

ψ0 = χ0

ψ0 = χ0
...

...

ψn−1 = χn−1

hold. Another way of saying this uses the “for all” quantifier (universal quantifier):

∀n−1
i=0 (ψi = χi),

which one should read as “ψi equals χi for all indexes i from 0 to n−1.” This is shorthand for

ψ0 = χ0 and ψ1 = χ1 and · · · and ψn−1 = χn−1.

We can code the assignment of one vector to another as

1 >> y = x ;

In this case, the output array y is automatically made of the same size as x. If we want to more explicitly assign
individual elements, we could instead execute

1 >> y (1) = x (1) ;
2 >> y (2) = x (2) ;
3 >> y (3) = x (3) ;

3

Using a for loop

Simple assignment works fine if x and y have only a few elements. But if they are long and/or you don’t know how
many elements they have, you may want to write a loop:

1 >> f o r i =1:3
2 y (i) = x (i)
3 end
4

5 y =
6

7 1
8 −1
9 −2

10

11

12 y =
13

14 1
15 2
16 −2
17

18

19 y =
20

21 1
22 2
23 3

The “for all” abstraction in the math translates to a for loop in MATLAB®. The array y is printed every time. This
can be avoided by executing

1 >> f o r i =1:3
2 y (i) = x (i) ;
3 end
4 >> y
5

6 y =
7

8 1
9 2

10 3

instead (notice the “;”s).

Notice how the “for all” abstraction ∀n−1
i=0 translates into the MATLAB® loop

1 f o r i =1 : n
2 . . .
3 end

4

Functions

IMPORTANT. MATLAB has a whole bunch of “intrinsic” functions in various directories. If you are curious,
you can time “path” in the Command Window to see all the directories in which there are files that are on the “path”
meaning that they are “known” when you work in the Command Window. Now, when you unzipped LAFF-2.0xM, that
directory and all its subdirectories were also placed on the path. Unfortunately, some of the names of functions will
conflict with functions that you will be writing. For this reason, you will want to start by first removing LAFF-2.0xM
from the path. You do this by right-clicking on the directory LAFF-2.0xM and then choosing the indicated option:

You will notice that LAFF-2.0xM turns gray. Any directory or file that is gray is NOT on the path.

Let us pretend that MATLAB® does not have the built-in (instrinsic) ability to copy one array to another by
executing y = x. It sure would be inconvenient to always write a loop every time we wanted to copy one array to
another. For this reason, programming languages typically include the ability to create functions. To do so, create a
new function in MATLAB®:

5

yielding

6

We now create a function that copies one vector to another:

which is now saved in laff copy.m.

7

Execute y = laff copy(x, y) in the Command Window:

We are going to use the laff copy routine to copy not just column vectors to column vectors, but also row
vectors to column vectors, row vectors to row vectors, and column vector to row vectors. Adding this functionality
to the function we just wrote makes the function a bit more complex, as illustrated in Figure 1. Here we notice that
in MATLAB® vectors are special cases of matrices, which have row and column sizes. Thus, treating x and y as
arrays that store matrices (that happen to be column or row vectors), we can extract the row and column size (e.g.,
m x and n x for x) with the MATLAB® function size. This can then be used to determine whether x and/or y are
row and/or column vectors.

Testing

Change the directory in which you are working to LAFF-2.0xM -> Programming -> Week01. You do so by double
clicking on that directory. This means that the Command Window views that directory as the current directory meaning
that any ”.m” file there (and associated function) is used before any such function that is elsewhere in the path. You
can check what the Command Window considers to be the current directory by typing pwd (print current directory) in
the command window.

We now test this routine. In the Command Window type

1 >> x = [
2 1
3 2
4 3
5] ;
6

7 >> y o l d = [
8 0
9 −1

8

1 f u n c t i o n [y o u t] = l a f f c o p y (x , y)
2

3 % y = copy (x , y) c o p i e s v e c t o r x i n t o v e c t o r y
4 % V e c t o r s x and y can be a m i x t u r e o f column and / o r row v e c t o r . In o t h e r
5 % words , x and y can be n x 1 or 1 x n a r r a y s . However , one s i z e must
6 % e q u a l 1 and t h e o t h e r s i z e e q u a l n .
7

8 % E x t r a c t t h e row and column s i z e s o f x and y
9 [m x , n x] = s i z e (x) ;

10 [m y , n y] = s i z e (y) ;
11

12 % Make s u r e x and y a r e (row or column) v e c t o r s o f e q u a l l e n g t h
13 i f (m x ˜= 1 & n x ˜= 1) | (m y ˜= 1 & n y ˜= 1)
14 y o u t = ' FAILED ' ;
15 r e t u r n
16 end
17 i f (m x * n x ˜= m y * n y)
18 y o u t = ' FAILED ' ;
19 r e t u r n
20 end
21

22 i f (n x == 1) % x i s a column v e c t o r
23 i f (n y == 1) % y i s a column v e c t o r
24 % Copy t h e e l e m e n t s o f x i n t o t h e e l e m e n t s o f y
25 f o r i =1 : m x
26 y (i , 1) = x (i , 1) ;
27 end
28 e l s e % y i s a row v e c t o r
29 % Copy t h e e l e m e n t s o f x i n t o t h e e l e m e n t s o f y
30 f o r i =1 : m x
31 y (1 , i) = x (i , 1) ;
32 end
33 end
34 e l s e % x i s a row v e c t o r
35 i f (n y == 1) % y i s a column v e c t o r
36 % Copy t h e e l e m e n t s o f x i n t o t h e e l e m e n t s o f y
37 f o r i =1 : n x
38 y (i , 1) = x (1 , i) ;
39 end
40 e l s e % y i s a row v e c t o r
41 % Copy t h e e l e m e n t s o f x i n t o t h e e l e m e n t s o f y
42 f o r i =1 : n x
43 y (1 , i) = x (1 , i) ;
44 end
45 end
46 end
47

48 % Re tu rn t h e u p d a t e d y i n y o u t
49 y o u t = y ;
50

51 r e t u r n
52 end

Figure 1: Implementation of laff copy that can copy a row or column vectors x to row or column vectors y. For
the complete routine, see LAFFSpring2015 -> Code -> laff -> vecvec -> laff copy.m.

9

10 −2
11] ;
12

13 >> z o l d = [
14 4
15 3
16 2
17 1
18]

This gives us a couple of vector with which to check the behavior of our function. Next, try the following:
1 >> y = y o l d ;
2 >> y = l a f f c o p y (x , y)

Does it give the expected output? Go on and also try
1 >> y = y o ld ' ;
2 >> y = l a f f c o p y (x , y)

Here y old’ (notice the ’) creates a row vector from the column vector y old. This is known as transposing the
(column) vector, which yields a row vector. Did you get the expected output? Finally, try

1 >> x row = x ' ;
2 >> y = y o l d ;
3 >> y = l a f f c o p y (x row , y)
4 >> y = y o ld ' ;
5 >> y = l a f f c o p y (x row , y)
6 >> z = z o l d ;
7 >> z = l a f f c o p y (x , z)

With this last command, you should getting a warning about the sizes of the vectors not matching by z equaling
’FAILED’.

Scripts

What if you had made a mistake in the implementation of laff copy? You would have had to test an updated
version all over again, executing all the commands to do so. Wouldn’t it be much more convenient to have a file of
commands that you can execute? This is called a script. To create one, you either use your favorite editor, or you
can click on New Script. You may want to enter the commands that we give in Figure 2. Alternatively, copy the
file · · · -> laff -> vecvec -> test copy.m. Save this script in test copy.m (don’t forget the .m) in directory
· · · -> and then in the Command Window execute

1 >> test_copy

While we use isequal to check whether two vector are equal in test copy, one must be careful using this
function: later in the course we will work with vectors that are real valued. In a computer, these are stored
as floating point numbers. This means that is often the case that two vectors would have been equal in exact
arithmetic, but due to round off error that is incurred when computing with floating point numbers, they many
not be exactly equal.

10

1 % C r e a t e some v e c t o r s
2 x = [1 ; 2 ; 3 ;]
3 y = [0 ; −1; −2]
4 z = [4 ; 3 ; 2 ; 1]
5

6 % t e s t column −> column copy
7 d i s p (' column −> column copy ')
8 i f (i s e q u a l (l a f f c o p y (x , y) , x))
9 d i s p ('PASSED ')

10 e l s e
11 d i s p (' FAILED ')
12 end
13

14 % t e s t column −> row copy
15 d i s p (' column −> row copy ')
16 i f (i s e q u a l (l a f f c o p y (x , y ') , x '))
17 d i s p ('PASSED ')
18 e l s e
19 d i s p (' FAILED ')
20 end
21

22 % t e s t row −> column copy
23 d i s p (' row −> column copy ')
24 i f (i s e q u a l (l a f f c o p y (x ' , y) , x))
25 d i s p ('PASSED ')
26 e l s e
27 d i s p (' FAILED ')
28 end
29

30 % t e s t row −> row copy
31 d i s p (' row −> row copy ')
32 i f (i s e q u a l (l a f f c o p y (x ' , y ') , x '))
33 d i s p ('PASSED ')
34 e l s e
35 d i s p (' FAILED ')
36 end
37

38 % t e s t column −> column copy (wrong s i z e)
39 d i s p (' column −> column copy (wrong s i z e) ')
40 i f (i s e q u a l (l a f f c o p y (x , z) , ' FAILED '))
41 d i s p ('PASSED ')
42 e l s e
43 d i s p (' FAILED ')
44 end
45

46 % t e s t column −> row copy (wrong s i z e)
47 d i s p (' column −> row copy (wrong s i z e) ')
48 i f (i s e q u a l (l a f f c o p y (x , z ') , ' FAILED '))
49 d i s p ('PASSED ')
50 e l s e
51 d i s p (' FAILED ')
52 end
53 %%%% MORE TESTS HERE %%%%%

Figure 2: Test script for laff copy. (The complete script can be found in LAFFSpring2015 -> Code -> laff ->
vecvec -> test copy.m.)

11

Summary

We have now created a routine laff copy that copies one vector to another as well as a script
to test it. In the process, you have learned a few things about MATLAB®.

If anything in MATLAB® that we did puzzles you, try using help in the MATLAB® Command Window:

1 >> h e l p f o r
2 >> h e l p i f
3 >> h e l p ==
4 >> h e l p i s e q u a l

function is

y out = laff copy(x, y).

The reasons are

• The input parameter y indicates whether the output variable y out is a row or a column vector.

• Almost always, we will use this routine to overwrite an existing (row or column) vector with the (row or
column) vector x. Thus, the typical use is

y = laff copy(x, y).

• If we were to use a language like the C programming language, as would be common practice in scientific
computing, then the routine would have been called as

laff copy(x, y)

where the vector y would be overwritten with vector x.

12

