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Preface

Over the years, we have noticed that many ideas that underlie programming
for high performance can be illustrated through a very simple example: the
computation of a matrix-matrix multiplication. It is perhaps for this reason
that papers that expose the intricate details of how to optimize matrix-matrix
multiplication are often used in the classroom [2] [10]. In this course, we have
tried to carefully scaffold the techniques that lead to a high performance matrix-
matrix multiplication implementation with the aim to make the materials of
use to a broad audience.

It is our experience that some really get into this material. They dive in
to tinker under the hood of the matrix-matrix multiplication implementation
much like some tinker under the hood of a muscle car. Others merely become
aware that they should write their applications in terms of libraries that provide
high performance implementations of the functionality they need. We believe
that learners who belong to both extremes, or in between, benefit from the
knowledge this course shares.

Robert van de Geijn
Maggie Myers
Devangi Parikh
Austin, 2019
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Week 0

Getting Started

0.1 Opening Remarks

0.1.1 Welcome to LAFF-On Programming for High Performance

YouTube: https://www.youtube.com/watch?v=CaaGjkQF4rU
These notes were written for a Massive Open Online Course (MOOC) that

is offered on the edX platform. The first offering of this course starts on June
5, 2019 at 00:00 UTC (which is late afternoon or early evening on June 4 in the
US). This course can be audited for free or you can sign up for a Verified Certifi-
cate. Register at https://www.edx.org/course/laff-on-programming-for-high-performance.

While these notes incorporate all the materials available as part of the
course on edX, being enrolled there has the following benefits:

• It gives you access to videos with more convenient transcripts. They
are to the side so they don’t overwrite material and you can click on a
sentence in the transcript to move the video to the corresponding point
in the video.

• You can interact with us and the other learners on the discussion forum.

• You can more easily track your progress through the exercises.

Most importantly: you will be part of a community of learners that is also
studying this subject.

0.1.2 Outline Week 0

Each week is structured so that we give the outline for the week immediately
after the "launch:"

1

https://www.youtube.com/watch?v=CaaGjkQF4rU
https://www.edx.org/course/laff-on-programming-for-high-performance
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• 0.1 Opening Remarks

◦ 0.1.1 Welcome to LAFF-On Programming for High Performance

◦ 0.1.2 Outline Week 0

◦ 0.1.3 What you will learn

• 0.2 Navigating the Course

◦ 0.2.1 What should we know?

◦ 0.2.2 How to navigate the course

◦ 0.2.3 When to learn

◦ 0.2.4 Homework

◦ 0.2.5 Grading

• 0.3 Setting Up

◦ 0.3.1 Hardware requirements

◦ 0.3.2 Operating system

◦ 0.3.3 Installing BLIS

◦ 0.3.4 Cloning the LAFF-On-PfHP repository

◦ 0.3.5 Get a copy of the book

◦ 0.3.6 Matlab

◦ 0.3.7 Setting up MATLAB Online

• 0.4 Experimental Setup

◦ 0.4.1 Programming exercises

◦ 0.4.2 MyGemm

◦ 0.4.3 The driver

◦ 0.4.4 How we use makefiles

• 0.5 Enrichments

◦ 0.5.1 High-performance computers are for high-performance com-
puting

• 0.6 Wrap Up

◦ 0.6.1 Additional Homework

◦ 0.6.2 Summary
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0.1.3 What you will learn

This unit in each week informs you of what you will learn in the current week.
This describes the knowledge and skills that you can expect to acquire. By
revisiting this unit upon completion of the week, you can self-assess if you have
mastered the topics.

Upon completion of this week, you should be able to

• Recognize the structure of a typical week.

• Navigate the different components of LAFF-On Programming for High
Performance.

• Set up your computer.

• Activate MATLAB Online (if you are taking this as part of an edX
MOOC).

• Better understand what we expect you to know when you start and intend
for you to know when you finish.

0.2 Navigating the Course

0.2.1 What should we know?

The material in this course is intended for learners who have already had an
exposure to linear algebra, programming, and the Linux operating system. We
try to provide enough support so that even those with a rudimentary exposure
to these topics can be successful. This also ensures that we all "speak the same
language" when it comes to notation and terminology. Along the way, we try
to give pointers to other materials.

The language in which we will program is C. However, programming as-
signments start with enough of a template that even those without a previous
exposure to C can be successful.

0.2.2 How to navigate the course

Remark 0.2.1 Some of the comments below regard the MOOC, offered on the
edX platform, based on these materials.

YouTube: https://www.youtube.com/watch?v=bYML2j3ECxQ

https://www.youtube.com/watch?v=bYML2j3ECxQ
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0.2.3 When to learn

Remark 0.2.2 Some of the comments below regard the MOOC, offered on the
edX platform, based on these materials.

The beauty of an online course is that you get to study when you want,
where you want. Still, deadlines tend to keep people moving forward. There
are no intermediate due dates but only work that is completed by the closing of
the course will count towards the optional Verified Certificate. Even when the
course is not officially in session, you will be able to use the notes to learn.

0.2.4 Homework

Remark 0.2.3 Some of the comments below regard the MOOC, offered on the
edX platform, based on these materials.

You will notice that homework appears both in the notes and in the corre-
sponding units on the edX platform. Auditors can use the version in the notes.
Most of the time, the questions will match exactly but sometimes they will be
worded slightly differently so as to facilitate automatic grading.

Realize that the edX platform is ever evolving and that at some point we had
to make a decision about what features we would embrace and what features
did not fit our format so well. As a result, homework problems have frequently
been (re)phrased in a way that fits both the platform and our course.

Some things you will notice:

• "Open" questions in the text are sometimes rephrased as multiple choice
questions in the course on edX.

• Sometimes we simply have the video with the answer right after a home-
work because edX does not support embedding videos in answers.

Please be patient with some of these decisions. Our course and the edX plat-
form are both evolving, and sometimes we had to improvise.

0.2.5 Grading

Remark 0.2.4 Some of the comments below regard the MOOC, offered on the
edX platform, based on these materials.

How to grade the course was another decision that required compromise.
Our fundamental assumption is that you are taking this course because you
want to learn the material, and that the homework and other activities are
mostly there to help you learn and self-assess. For this reason, for the home-
work, we

• Give you an infinite number of chances to get an answer right;

• Provide you with detailed answers;

• Allow you to view the answer any time you believe it will help you master
the material efficiently;
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• Include some homework that is ungraded to give those who want extra
practice an opportunity to do so while allowing others to move on.

In other words, you get to use the homework in whatever way helps you learn
best.
Remark 0.2.5 Don’t forget to click on "Check" or you don’t get credit for the
exercise!

To view your progress while the course is in session, click on "Progress" in
the edX navigation bar. If you find out that you missed a homework, scroll
down the page and you will be able to identify where to go to fix it. Don’t
be shy about correcting a missed or incorrect answer. The primary goal is to
learn.

Some of you will be disappointed that the course is not more rigorously
graded, thereby (to you) diminishing the value of a certificate. The fact is
that MOOCs are still evolving. People are experimenting with how to make
them serve different audiences. In our case, we decided to focus on quality
material first, with the assumption that for most participants the primary goal
for taking the course is to learn.

Remark 0.2.6 Let’s focus on what works, and please be patient with what
doesn’t!

0.3 Setting Up

0.3.1 Hardware requirements

While you may learn quite a bit by simply watching the videos and reading
these materials, real comprehension comes from getting your hands dirty with
the programming assignments.

We assume that you have access to a computer with a specific instruction
set: AVX2. In our discussions, we will assume you have access to a computer
with an Intel Haswell processor or a more recent processor. More precisesly,
you will need access to one of the following "x86_64" processors:

• Intel architectures: Haswell, Broadwell, Skylake, Kaby Lake, Coffee Lake.

• AMD architectures: Ryzen/Epyc

How do can you tell what processor is in your computer?

• On the processor.
Instructions on how to interpret markings on an Intel processor can
be found at https://www.intel.com/content/www/us/en/support/articles/

000006059/processors.html.

• From a label.
Instructions on how to interpret some labels you may find on your com-
puter can be also be found at https://www.intel.com/content/www/us/en/

support/articles/000006059/processors.html.

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://www.intel.com/content/www/us/en/support/articles/000006059/processors.html
https://www.intel.com/content/www/us/en/support/articles/000006059/processors.html
https://www.intel.com/content/www/us/en/support/articles/000006059/processors.html
https://www.intel.com/content/www/us/en/support/articles/000006059/processors.html
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• Windows.

Instructions for computers running a Windows operating system can,
once again, be found at https://www.intel.com/content/www/us/en/support/
articles/000006059/processors.html.

• Apple Mac.

◦ In the terminal session type

sysctl -n machdep.cpu.brand_string

◦ Cut and paste whatever is reported into a Google search.

• Linux.

In a terminal window execute

more /proc/cpuinfo

Through one of these means, you will determine the model name of your pro-
cessor. In our case, we determined the model name

Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz

After a bit of digging, we discovered that i7-8850H belongs to the "Coffee Lake"
family of processors: https://ark.intel.com/content/www/us/en/ark/products/

134899/intel-core-i7-8850h-processor-9m-cache-up-to-4-30-ghz.html. With a
bit more digging, we find out that it supports AVX2 instructions.

Remark 0.3.1 As pointed out by a learner, the following commands give a
list of the features of your CPU if you are running Linux:
sysctl -a | grep machdep.cpu.features
sysctl -a | grep machdep.cpu.leaf7_features

If one of these yields a list that includes AVX2, you’re set. On my mac, the
second command works did the trick.

0.3.2 Operating system

We assume you have access to some variant of the Linux operating system on
your computer.

0.3.2.1 Linux

If you are on a computer that already uses Linux as its operating system, you
are all set. (Although... It has been reported that some linux installations don’t
automatically come with the gcc compiler, which you will definitely need.)

https://www.intel.com/content/www/us/en/support/articles/000006059/processors.html
https://www.intel.com/content/www/us/en/support/articles/000006059/processors.html
https://ark.intel.com/content/www/us/en/ark/products/134899/intel-core-i7-8850h-processor-9m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/134899/intel-core-i7-8850h-processor-9m-cache-up-to-4-30-ghz.html
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0.3.2.2 Windows

Sorry, we don’t do Windows... But there are options.

• In theory, there is some way of installing a native version of Linux if
you are using Windows 10. Instructions can be found at https://docs.

microsoft.com/en-us/windows/wsl/install-win10.

• Alternatively, you can install an open-source version of Linux instead of,
or in addition to, your Windows OS. Popular versions include Ubuntu,
for which instructions can be found at https://www.ubuntu.com/download/

desktop.

• Finally, you may want to use a Virtual Machine (see below).

0.3.2.3 Mac OS-X

Mac OS-X comes with Darwin, an open-source Unix-like operating system
(https://en.wikipedia.org/wiki/Darwin_(operating_system)).

A complication on the Max OS-X operating system is that the gcc compiler
defaults to their clang compiler, which does not by default include the ability to
use OpenMP directives, which we will need for the material on using multiple
threads and cores in Week 4.

There are a few tools that you will want to install to have the complete
toolchain that we will use. We will walk you through how to set this up in
Unit 0.3.3

Again, alternatively you may want to use a Virtual Machine (see below).

0.3.2.4 Virtual box alternative

Remark 0.3.2 Note: if you run into problems, you will need to ask someone
with more expertise with virtual machines that we have (for example, on the
edX discussion board).

Non-Linux users can also install a Linux virtual machine onto bothWindows
and macOS using VirtualBox from Oracle, which is free to download.

Essentially, you can run a Linux OS from within Windows / macOS without
having to actually install it on the hard drive alongside Windows / macOS, and
(for Windows users) without having to go through Microsoft Store.

The basic process looks like this:

• Install VirtualBox.

• Download an .iso of an Ubuntu distribution. UbuntuMATE is a safe
choice. Make sure to download the 64-bit version.

• In VirtualBox.

◦ Create a New Machine by clicking on the “New” button.
◦ Give your virtual machine (VM) a name. For the Type, select
“Linux” and for the Version, select “Ubuntu (64-bit)”
◦ On the next page, set the memory to 2048 MB.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://en.wikipedia.org/wiki/Darwin_(operating_system)
https://ubuntu-mate.org/
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◦ Continue through the prompts, opting for the default selections.
◦ Once your VM is created, click on Settings -> System -> Processor.
Under the “Processor(s)” menu select upto 4 processors.
◦ Load the .iso you downloaded above.
Under Settings->Storage->Controller IDE Select the “Empty” disk
on the left panel. On the right panel under “Optical Drive”, click on
the icon that looks like a CD. Select “Choose Virtual Optical Disk
File”, and select the .iso you downloaded from the web.
◦ Start the VM.
◦ Go through the prompts of installing Ubuntu on the VM, opting for
the default selections.
◦ Once Ubuntu is set up (this may take a few minutes), start a terminal
and install gcc, make, and git.
sudo apt-get install gcc
sudo apt-get install make
sudo apt-get install git

Now you are set up to continue with the installation of BLIS.
Note: The VM does not automatically detect the hardware of the host

machine, hence when configuring BLIS, you will have to explicitly configure
using the correct configuration for your architectures (e.g., Haswell). That can
be done with the following configure options (in this example for the Haswell
architecture)::

./configure -t openmp -p ~/blis haswell

Then the user can access the virtual machine as a self-contained contained
Linux OS.

0.3.3 Installing BLIS

For our programming assignments, we will need to install the BLAS-like Library
Instantiation Software (BLIS). You will learn more about this library in the
enrichment in Unit 1.5.2.

The following steps will install BLIS if you are using the Linux OS (on a
Mac, there may be a few more steps, which are discussed later in this unit.)

• Visit the BLIS Github repository.

• Click on

and copy https://github.com/flame/blis.git.

• In a terminal session, in your home directory, enter

git clone https://github.com/flame/blis.git

https://github.com/flame/blis
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(to make sure you get the address right, you will want to paste the address
you copied in the last step.)

• Change directory to blis:

cd blis

• Indicate a specific version of BLIS so that we all are using the same
release:

git checkout pfhp

• Configure, build, and install with OpenMP turned on.

./configure -t openmp -p ~/blis auto
make -j8
make check -j8
make install

The -p ~/blis installs the library in the subdirectory ~/blis of your home
directory, which is where the various exercises in the course expect it to
reside.

• If you run into a problem while installing BLIS, you may want to consult
https://github.com/flame/blis/blob/master/docs/BuildSystem.md.

On Mac OS-X
• You may need to install Homebrew, a program that helps you install

various software on you mac. Warning: you may need "root" privileges
to do so.

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Keep an eye on the output to see if the “Command Line Tools” get
installed. This may not be installed if you already have Xcode Command
line tools installed. If this happens, post in the "Discussion" for this unit,
and see if someone can help you out.

• Use Homebrew to install the gcc compiler:

$ brew install gcc

Check if gcc installation overrides clang:

$ which gcc

The output should be /usr/local/bin. If it isn’t, you may want to add
/usr/local/bin to "the path." I did so by inserting

export PATH="/usr/local/bin:$PATH"

into the file .bash_profile in my home directory. (Notice the "period"
before "bash_profile"

• Now you can go back to the beginning of this unit, and follow the in-
structions to install BLIS.

https://github.com/flame/blis/blob/master/docs/BuildSystem.md
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0.3.4 Cloning the LAFF-On-PfHP repository

We have placed all materials on GitHub. GitHub is a development environment
for software projects. In our case, we use it to disseminate the various activities
associated with this course.

On the computer on which you have chosen to work, "clone" the GitHub
repository for this course:

• Visit https://github.com/ULAFF/LAFF-On-PfHP

• Click on

and copy https://github.com/ULAFF/LAFF-On-PfHP.git.

• On the computer where you intend to work, in a terminal session on
the command line in the directory where you would like to place the
materials, execute

git clone https://github.com/ULAFF/LAFF-On-PfHP.git

This will create a local copy (clone) of the materials.

• Sometimes we will update some of the files from the repository. When
this happens you will want to execute, in the cloned directory,

git stash save

which saves any local changes you have made, followed by

git pull

which updates your local copy of the repository, followed by

git stash pop

which restores local changes you made. This last step may require you to
"merge" files that were changed in the repository that conflict with local
changes.

Upon completion of the cloning, you will have a directory structure similar to
that given in Figure 0.3.3.

https://github.com/ULAFF/LAFF-On-PfHP
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Figure 0.3.3: Directory structure for your basic LAFF-On-PfHP materials.
In this example, we cloned the repository in Robert’s home directory, rvdg.

Homework 0.3.4.1 We start by checking whether your environment is set up
correctly for the programming exercises. In a terminal window, change to the
directory Assignments/Week0/C/. In it, at the prompt, type
make HelloWorld

This will compile, link, and execute the driver in file main.c.
Solution. If all went well, you will see output that looks like

gcc -O3 -I/Users/rvdg/blis/include/blis -m64 -mavx2 -std=c99 -march=native -fopenmp -D_POSIX_C_SOURCE=200809L -c -o driver.o driver.c
gcc -O3 -I/Users/rvdg/blis/include/blis -m64 -mavx2 -std=c99 -march=native -fopenmp -D_POSIX_C_SOURCE=200809L -c -o FLA_Clock.o FLA_Clock.c
gcc -O3 -I/Users/rvdg/blis/include/blis -m64 -mavx2 -std=c99 -march=native -fopenmp -D_POSIX_C_SOURCE=200809L -c -o MaxAbsDiff.o MaxAbsDiff.c
gcc -O3 -I/Users/rvdg/blis/include/blis -m64 -mavx2 -std=c99 -march=native -fopenmp -D_POSIX_C_SOURCE=200809L -c -o RandomMatrix.o RandomMatrix.c
gcc driver.o FLA_Clock.o MaxAbsDiff.o RandomMatrix.o /Users/rvdg/blis/lib/libblis.a -o driver.x -lpthread -m64 -lm -fopenmp
echo

./driver.x
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
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(The number of times "Hello World" is printed may vary depending on how
many cores your processor has.)

Remark 0.3.4
• If make HelloWorld indicates libblis.a is not found, then you likely did

not install that library correction in Unit 0.3.3. In particular, you likely
skipped make install.

• If you get the error message

clang: error: unsupported option '-fopenmp'

Then you need to set the path to the gcc compiler. See Unit 0.3.3.

0.3.5 Get a copy of the book

Remark 0.3.5 We are still working on putting the mechanism in place by
which you can obtain your own copy of the book. So, this section is merely a
preview of what will become available in the future.

For now, you can access a PDF of these notes at http://www.cs.utexas.edu/
users/flame/laff/pfhp/LAFF-On-PfHP.pdf. Expect this PDF to be frequently
updated.

By now, you will have experienced the electronic book we have authored
with PreTeXt for this course. We host a copy of that book at http://www.

cs.utexas.edu/users/flame/laff/pfhp/LAFF-On-PfHP.html so that you can use it,
free of charge, either as part of the course on edX or independent of that.

We make the book available at http://ulaff.net to those who also want a
copy local on their computer, in a number of formats:

• As the online document, except now downloaded to your computer.

• As a PDF that incorporates the solutions to all the homeworks embedded
in the text.

• As a more concise PDF that has all the homeworks, but not the solutions.

• As a PDF that includes only the solutions.

IN THE FUTURE: By following the directions at http://ulaff.net, you can
download a "ZIP" file. First clone the LAFF-On-PfHP repository as described
earlier. Then unzip the "ZIP" file in the directory LAFF-On-PfHP it created,
then you end up with the materials illustrated in Figure 0.3.6.

http://www.cs.utexas.edu/users/flame/laff/pfhp/LAFF-On-PfHP.pdf
http://www.cs.utexas.edu/users/flame/laff/pfhp/LAFF-On-PfHP.pdf
http://www.cs.utexas.edu/users/flame/laff/pfhp/LAFF-On-PfHP.html
http://www.cs.utexas.edu/users/flame/laff/pfhp/LAFF-On-PfHP.html
http://ulaff.net
http://ulaff.net
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Figure 0.3.6: Directory structure for your basic LAFF-On-PfHP materials
after unzipping LAFF-On-PfHP.zip from http://ulaff.net in the directory cre-
ated by cloning the LAFF-On-PfHP repository. The materials you obtained
by cloning are highlighted in red.

You will now have the material self-contained on your computer.

Remark 0.3.7 For the online book to work properly, you will still have to be
connected to the internet.

http://ulaff.net
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0.3.6 Matlab

We will use Matlab to create performance graphs for your various implemen-
tations of matrix-matrix multiplication.

There are a number of ways in which you can use Matlab:

• Via MATLAB that is installed on the same computer as you will exe-
cute your performance experiments. This is usually called a "desktop
installation of Matlab."

• Via MATLAB Online. You will have to transfer files from the computer
where you are performing your experiments to MATLAB Online. You
could try to set up MATLAB Drive, which allows you to share files easily
between computers and with MATLAB Online. Be warned that there
may be a delay in when files show up, and as a result you may be using
old data to plot if you aren’t careful!

If you are using these materials as part of an offering of the Massive Open Online
Course (MOOC) titled "LAFF-On Programming for High Performance" on the
edX platform, you will be given a temporary license to Matlab, courtesy of
MathWorks.

You need relatively little familiarity with MATLAB in order to learn what
we want you to learn in this course. So, you could just skip these tutorials
altogether, and come back to them if you find you want to know more about
MATLAB and its programming language (M-script).

Below you find a few short videos that introduce you to MATLAB. For
a more comprehensive tutorial, you may want to visit MATLAB Tutorials at
MathWorks and click "Launch Tutorial".

What is MATLAB?

https://www.youtube.com/watch?v=2sB-NMD9Qhk

Getting Started with MAT-
LAB Online

https://www.youtube.com/watch?v=4shp284pGc8

MATLAB Variables

https://www.youtube.com/watch?v=gPIsIzHJA9I

https://matlab.mathworks.com/
https://www.mathworks.com/products/matlab-drive.html
https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html?confirmation_page
https://www.youtube.com/watch?v=2sB-NMD9Qhk
https://www.youtube.com/watch?v=4shp284pGc8
https://www.youtube.com/watch?v=gPIsIzHJA9I
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MATLAB as a Calculator

https://www.youtube.com/watch?v=K9xy5kQHDBo

Managing Files with MAT-
LAB Online

https://www.youtube.com/watch?v=mqYwMnM-x5Q

0.3.7 Setting up MATLAB Online

Once you have watched "Getting started with MATLAB Online" and set up
your account, you will want to set up the directory in which you will place the
materials for the course. Follow these steps:

• While logged into MATLAB online, create a folder "LAFF-On-PfHP" (or
with a name of your choosing).

• Click on the folder name to change directory to that folder.

• On your computer, download http://www.cs.utexas.edu/users/flame/laff/

pfhp/Assignments.zip. It doesn’t really matter where you store it.

• In the MATLAB Online window, click on the "HOME" tab.

• Double click on "Upload" (right between "New" and "Find Files") and
upload Assignments.zip from wherever you stored it.

• In the MATLAB Online window, find the "COMMAND WINDOW" (this
window should be in the lower-right corner of the MATLAB Online win-
dow).

• In the "COMMAND WINDOW" execute

ls

Thus should print the contents of the current directory. If Assignments.zip
is not listed as a file in the directory, you will need to fix this by changing
to the appropriate directory.

• Execute

unzip Assignments

in the command window. This may take a while

• In the "CURRENT FOLDER" window, you should now see a new folder
"Assignments." If you double click on that folder name, you should see
five folders: Week0, Week1, Week2, Week3, and Week4.

You are now set up for the course.

https://www.youtube.com/watch?v=K9xy5kQHDBo
https://www.youtube.com/watch?v=mqYwMnM-x5Q
http://www.cs.utexas.edu/users/flame/laff/pfhp/Assignments.zip
http://www.cs.utexas.edu/users/flame/laff/pfhp/Assignments.zip
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Remark 0.3.8 If you also intend to use a desktop copy of MATLAB, then you
may want to coordinate the local content with the content on MATLAB Online
with MATLAB Drive: https://www.mathworks.com/products/matlab-drive.html.
However, be warned that there may be a delay in files being synchronized. So, if
you perform a performance experiment on your computer and move the result-
ing file into the MATLAB Drive directory, the data file may not immediately
appear in your MATLAB Online session. This may lead to confusion if you are
visualizing performance and are looking at graphs created from stale data.

Remark 0.3.9 We only use MATLAB Online (or your desktop MATLAB) to
create performance graphs. For this, we recommend you use the Live Scripts
that we provide. To work with Live Scripts, you will want to make sure the
"LIVE EDITOR" tab is where you are working in MATLAB Online. You can
ensure this is the case by clicking on the "LIVE EDITOR" tab.

0.4 Experimental Setup

0.4.1 Programming exercises

For each week, we will explore high-performance programming through a num-
ber of programming exercises. To keep the course accessible to a wide audience,
we limit the actual amount of coding so as to allow us to focus on the key issues.
Typically, we will only program a few lines of code. In the remainder of this
section, we discuss the setup that supports this.

Most of the material in the section is here for reference. It may be best to
quickly scan it and then revisit it after you have completed the first program-
ming homework in Unit 1.1.1.

0.4.2 MyGemm

The exercises revolve around the optimization of implementations of matrix-
matrix multiplication. We will write and rewrite the routine

MyGemm( m, n, k, A, ldA, B, ldB, C, ldC )

which computes C := AB +C, where C is m× n, A is m× k, and B is k × n.
"Gemm" is a commonly used acronym that stands for "Ge"neral "m"atrix

"m"ultiplication. More on this in the enrichment in Unit 1.5.1.

0.4.3 The driver

The term "driver" is typically used for a main program that exercises (tests and/
or times) functionality implemented in a routine. In our case, the driver tests
a range of problem sizes by creating random matrices C, A, and B. You will
want to look through the file "driver.c" in Week 1. Hopefully the comments are
self-explanatory. If not, be sure to ask questions on the discussion board.

https://www.mathworks.com/products/matlab-drive.html
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0.4.4 How we use makefiles

YouTube: https://www.youtube.com/watch?v=K0Ymbpvk59o

Example 0.4.1 When one wants to execute an implementation of matrix-
matrix multiplication in, for example, file Gemm_IJP.c that will be discussed
in Unit 1.1.1, a number of steps need to come together.

• We have already discussed the driver routine in Assignments/Week1/C/

driver.c. It is compiled into an object file (an intermediate step towards
creating an executable file) with

gcc <options> -c -o driver.o driver.c

where <options> indicates a bunch of options passed to the gcc compiler.

• The implementation of matrix-matrix multiplication is in file Gemm_IJP.c
which is compiled into an object file with

gcc <options> -c -o Gemm_IJP.o Gemm_IJP.c

• A routine for timing the executions (borrowed from the libflame library
is in file FLA_Clock.c and is compiled into an object file with

gcc <options> -c -o FLA_Clock.o FLA_Clock.c

• A routine that compares two matices so that correctness can be checked
is in file MaxAbsDiff.c and is compiled into an object file with

gcc <options> -c -o MaxAbsDiff.o MaxAbsDiff.c

• A routine that creates a random matrix is in file RandomMatrix.c and is
compiled into an object file with

gcc <options> -c -o RandomMatrix.o RandomMatrix.c

• Once these object files have been created, they are linked with

gcc driver.o Gemm_IJP.o FLA_Clock.o MaxAbsDiff.o RandomMatrix.o
-o driver_IJP.x <libraries>

where <libraries> is a list of libraries to be linked.

Together, these then create the executable driver_IJP.x that can be executed
with

./driver_IJP.x

https://www.youtube.com/watch?v=K0Ymbpvk59o
Assignments/Week1/C/driver.c
Assignments/Week1/C/driver.c
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This should be interpreted as "executed the file driver.x in the current direc-
tory." The driver is set up to take input:

% number of repeats:3
% 3
% enter first, last, inc:100 500 100
% 100 500 100

where "3" and "100 500 100" are inputs. �

Many decades ago, someone came up with the idea of creating a file in
which the rules of how to, in this situation, create an executable from parts
could be spelled out. Usually, these rules are entered in a Makefile. Below is a
video that gives a quick peek into the Makefile for the exercises in Week 1.

YouTube: https://www.youtube.com/watch?v=K0Ymbpvk59o
The bottom line is: by using that Makefile, to make the executable for the

implementation of matrix-matrix multiplication in the file Gemm_IJP.c all one
has to do is type

make IJP

Better yet, this also then "pipes" input to be used by the driver, and redirects
the output into a file for later use when we plot the results.

You can read up on Makefiles on, where else, Wikipedia: https://en.

wikipedia.org/wiki/Makefile.
Remark 0.4.2 Many of us have been productive software developers without
ever reading a manual on how to create a Makefile. Instead, we just copy one
that works, and modify it for our purposes. So, don’t be too intimidated!

0.5 Enrichments
> In each week, we include "enrichments" that allow the participant to go
beyond.

0.5.1 High-performance computers are for high-performance com-
puting

Some of the fastest computers in the world are used for scientific computing.
At UT-Austin, the Texas Advanced Computing Center (TACC) has some of
the fastest academic machines.

You may enjoy the following video on Stampede, until recently the workhorse
machine at TACC.

https://www.youtube.com/watch?v=K0Ymbpvk59o
https://en.wikipedia.org/wiki/Makefile
https://en.wikipedia.org/wiki/Makefile
https://www.tacc.utexas.edu/systems/stampede;jsessionid=F8DB6C0F50FABD021AF1691D4888269E
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YouTube: https://www.youtube.com/watch?v=HMEL1RVa1E8
This is actually not the most recent machine. It was succeeded by Stam-

pede2.
Now, what if these machines, which cost tens of millions of dollars, only

achieved a fraction of their peak performance? As a taxpayer, you would be
outraged. In this course, you find out how, for some computations, near-peak
performance can be attained.

0.6 Wrap Up

0.6.1 Additional Homework

For a typical week, additional assignments may be given in this unit.

0.6.2 Summary

In a typical week, we provide a quick summary of the highlights in this unit.

https://www.youtube.com/watch?v=HMEL1RVa1E8
https://www.tacc.utexas.edu/systems/stampede2;jsessionid=F8DB6C0F50FABD021AF1691D4888269E
https://www.tacc.utexas.edu/systems/stampede2;jsessionid=F8DB6C0F50FABD021AF1691D4888269E
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Week 1

Loops and More Loops

1.1 Opening Remarks

1.1.1 Launch

Homework 1.1.1.1 Compute

 1 −2 2
1 1 3
−2 2 1


 −2 1

1 3
−1 2

+

 1 0
−1 2
−2 1

 =

Answer.

 1 −2 2
1 1 3
−2 2 1


 −2 1

1 3
−1 2

+

 1 0
−1 2
−2 1

 =

 −5 −1
−5 12

3 7



YouTube: https://www.youtube.com/watch?v=knTLy1j-rco
Let us explicitly define some notation that we will use to discuss matrix-

matrix multiplication more abstractly.
Let A, B, and C be m × k, k × n, and m × n matrices, respectively. We

can expose their individual entries as

A =


α0,0 α0,1 · · · α0,k−1
α1,0 α1,1 · · · α1,k−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,k−1

 , B =


β0,0 β0,1 · · · β0,n−1
β1,0 β1,1 · · · β1,n−1
...

...
...

βk−1,0 βk−1,1 · · · βk−1,n−1

 ,

and

C =


γ0,0 γ0,1 · · · γ0,n−1
γ1,0 γ1,1 · · · γ1,n−1
...

...
...

γm−1,0 γm−1,1 · · · γm−1,n−1

 .

21

https://www.youtube.com/watch?v=knTLy1j-rco
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The computation C := AB + C, which adds the result of matrix-matrix mul-
tiplication AB to a matrix C, is defined as

γi,j :=
k−1∑
p=0

αi,pβp,j + γi,j (1.1.1)

for all 0 ≤ i < m and 0 ≤ j < n. Why we add to C will become clear later.
This leads to the following pseudo-code for computing C := AB + C:

for i := 0, . . . ,m− 1
for j := 0, . . . , n− 1

for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j

end
end

end

The outer two loops visit each element of C, and the inner loop updates γi,j
with (1.1.1).

YouTube: https://www.youtube.com/watch?v=yq6-qN8QXz8

#define alpha( i,j ) A[ (j)*ldA + i ] // map alpha( i,j ) to array A
#define beta( i,j ) B[ (j)*ldB + i ] // map beta( i,j ) to array B
#define gamma( i,j ) C[ (j)*ldC + i ] // map gamma( i,j ) to array C

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i++ )
for ( int j=0; j<n; j++ )

for ( int p=0; p<k; p++ )
gamma( i,j ) += alpha( i,p ) * beta( p,j );

}

Figure 1.1.1: Implementation, in the C programming language, of the IJP
ordering for computing matrix-matrix multiplication.

Homework 1.1.1.2 In the file Assignments/Week1/C/Gemm_IJP.c you will find
the simple implementation given in Figure 1.1.1 that computes C := AB + C.
In the directory Assignments/Week1/C execute
make IJP

https://www.youtube.com/watch?v=yq6-qN8QXz8
Assignments/Week1/C/Gemm_IJP.c
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to compile, link, and execute it. You can view the performance attained on your
computer with the Matlab Live Script in Assignments/Week1/C/data/Plot_IJP.

mlx (Alternatively, read and execute Assignments/Week1/C/data/Plot_IJP_m.m.)

YouTube: https://www.youtube.com/watch?v=3BPCfpqWWCk
On Robert’s laptop, Homework 1.1.1.2 yields the graph

as the curve labeled with IJP. The time, in seconds, required to compute
matrix-matrix multiplication as a function of the matrix size is plotted, where
m = n = k (each matrix is square). The "dips" in the time required to complete
can be attributed to a number of factors, including that other processes that
are executing on the same processor may be disrupting the computation. One
should not be too concerned about those.

YouTube: https://www.youtube.com/watch?v=cRyVMrNNRCk
The performance of a matrix-matrix multiplication implementation is mea-

sured in billions of floating point operations (flops) per second (GFLOPS). The
idea is that we know that it takes 2mnk flops to compute C := AB +C where
C is m × n, A is m × k, and B is k × n. If we measure the time it takes to
complete the computation, T (m,n, k), then the rate at which we compute is

Assignments/Week1/C/data/Plot_IJP.mlx
Assignments/Week1/C/data/Plot_IJP.mlx
Assignments/Week1/C/data/Plot_IJP_m.m
https://www.youtube.com/watch?v=3BPCfpqWWCk
https://www.youtube.com/watch?v=cRyVMrNNRCk
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given by
2mnk

T (m,n, k) × 10−9 GFLOPS.

For our implementation and the reference implementation, this yields

Again, don’t worry too much about the dips in the curves. If we controlled
the environment in which we performed the experiments, (for example, by
making sure few other programs are running at the time of the experiments)
these would largely disappear.

YouTube: https://www.youtube.com/watch?v=lNEIVq5_DW4

Remark 1.1.2 The Gemm in the name of the routine stands for General
Matrix-Matrix multiplication. Gemm is an acronym that is widely used in sci-
entific computing, with roots in the Basic Linear Algebra Subprograms (BLAS)
discussed in the enrichment in Unit 1.5.1.

1.1.2 Outline Week 1

• 1.1 Opening Remarks

◦ 1.1.1 Launch
◦ 1.1.2 Outline Week 1
◦ 1.1.3 What you will learn

• 1.2 Loop Orderings

https://www.youtube.com/watch?v=lNEIVq5_DW4
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◦ 1.2.1 Mapping matrices to memory
◦ 1.2.2 The leading dimension
◦ 1.2.3 A convention regarding the letters used for the loop index
◦ 1.2.4 Ordering the loops

• 1.3 Layering Matrix-Matrix Multiplication

◦ 1.3.1 Notation
◦ 1.3.2 The dot product (inner product)
◦ 1.3.3 Matrix-vector multiplication via dot products
◦ 1.3.4 The axpy operation
◦ 1.3.5 Matrix-vector multiplication via axpy operations
◦ 1.3.6 Matrix-matrix multiplication via matrix-vector multiplications

• 1.4 Layering Matrix-Matrix Multiplication: Alternatives

◦ 1.4.1 Rank-1 update (rank-1)
◦ 1.4.2 Matrix-matrix multiplication via rank-1 updates
◦ 1.4.3 Row-times-matrix multiplications
◦ 1.4.4 Matrix-matrix multiplication via row-times-matrix multiplica-
tions

• 1.5 Enrichments

◦ 1.5.1 The Basic Linear Algebra Subprograms
◦ 1.5.2 The BLAS-like Library Instantiation Software
◦ 1.5.3 Counting flops

• 1.6 Wrap Up

◦ 1.6.1 Additional exercises
◦ 1.6.2 Summary

1.1.3 What you will learn

In this week, we not only review matrix-matrix multiplication, but we also start
thinking about this operation in different ways.

Upon completion of this week, we will be able to

• Map matrices to memory.

• Apply conventions to describe how to index into arrays that store matri-
ces.

• Observe the effects of loop order on performance.

• Recognize that simple implementations may not provide the performance
that can be achieved.
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• Realize that compilers don’t automagically do all the optimization.

• Think about matrix-matrix multiplication in terms of matrix-vector mul-
tiplications and rank-1 updates.

• Understand how matrix-matrix multiplication can be layered in terms of
simpler operations with matrices and/or vectors.

• Relate execution time of matrix-matrix multiplication to the rate of com-
putation achieved by the implementation.

• Plot performance data with Matlab.

The enrichments introduce us to

• The Basic Linear Algebra Subprograms (BLAS), an interface widely used
in the computational science.

• The BLAS-like Library Instantiation Software (BLIS) framework for im-
plementing the BLAS.

• How to count floating point operations.

1.2 Loop Orderings

1.2.1 Mapping matrices to memory

Matrices are usually visualized as two-dimensional arrays of numbers while
computer memory is inherently one-dimensional in the way it is addressed. So,
we need to agree on how we are going to store matrices in memory.

YouTube: https://www.youtube.com/watch?v=7dUEghwlwt0
Consider the matrix  1 −2 2

−1 1 3
−2 2 −1


from the opener of this week. In memory, this may be stored in a one-

https://www.youtube.com/watch?v=7dUEghwlwt0
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dimentional array A by columns:

A[0] −→ 1
A[1] −→ −1
A[2] −→ −2
A[3] −→ −2
A[4] −→ 1
A[5] −→ 2
A[6] −→ 2
A[7] −→ 3
A[8] −→ −1

which is known as column-major ordering.

YouTube: https://www.youtube.com/watch?v=lAxUYWCEeDM
More generally, consider the matrix


α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

 .

Column-major ordering would store this in array A as illustrated by Fig-
ure 1.2.1.

https://www.youtube.com/watch?v=lAxUYWCEeDM
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.

A[0] A[0 ∗ m + 0] −→ α0,0
A[1] A[0 ∗ m + 1] −→ α1,0

...
A[m− 1] A[0 ∗ m + (m− 1)] −→ αm−1,0
A[m] A[1 ∗ m + 0] −→ α0,1
A[m + 1] A[1 ∗ m + 1] −→ α1,1

...
A[1 ∗ m + (m− 1)] −→ αm−1,1

...
A[j ∗ m + i] −→ αi,j

...
A[(n− 1) ∗ m + 0] −→ α0,n−1
A[(n− 1) ∗ m + 1] −→ α1,n−1

...
A[(n− 1) ∗ m + (m− 1)] −→ αm−1,n−1

Figure 1.2.1: Mapping of m × n matrix A to memory with column-major
order.

Obviously, one could use the alternative known as row-major ordering.

Homework 1.2.1.1 Let the following picture represent data stored in memory
starting at address A:

3
A[0] −→ 1

−1
−2
−2

1
2
2

and let A be the 2× 3 matrix stored there in column-major order. Then
A =

Answer.
A =

(
1 −2 1
−1 −2 2

)

Homework 1.2.1.2 Let the following picture represent data stored in memory
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starting at address A.
3

A[0] −→ 1
−1
−2
−2

1
2
2

and let A be the 2× 3 matrix stored there in row-major order. Then

A =

Answer.
A =

(
1 −1 −2
−2 1 2

)

1.2.2 The leading dimension

YouTube: https://www.youtube.com/watch?v=PhjildK5oO8
Very frequently, we will work with a matrix that is a submatrix of a larger

matrix. Consider Figure 1.2.2.

https://www.youtube.com/watch?v=PhjildK5oO8
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ldA



1 2 3 ×
4 5 6 ×
7 8 9 ×
10 11 12 ×
× × × ×
...

...
...

...
× × × ×

A[0 ∗ ldA + 0] −→ 1 ←− alpha(0, 0)
A[0 ∗ ldA + 1] −→ 4 ←− alpha(1, 0)
A[0 ∗ ldA + 2] −→ 7 ←− alpha(2, 0)
A[0 ∗ ldA + 3] −→ 10 ←− alpha(3, 0)

×
...

...
×

A[1 ∗ ldA + 0] −→ 2 ←− alpha(0, 1)
A[1 ∗ ldA + 1] −→ 5 ←− alpha(1, 1)
A[1 ∗ ldA + 2] −→ 8 ←− alpha(2, 1)
A[1 ∗ ldA + 3] −→ 11 ←− alpha(3, 1)

×
...
×

A[2 ∗ ldA + 0] −→ 3 ←− alpha(0, 2)
A[2 ∗ ldA + 1] −→ 6 ←− alpha(1, 2)
A[2 ∗ ldA + 2] −→ 9 ←− alpha(2, 2)
A[2 ∗ ldA + 3] −→ 12 ←− alpha(3, 2)

×
...
×
×
×
×
×
×
...
×

Figure 1.2.2: Addressing a matrix embedded in an array with ldA rows. At
the left we illustrate a 4× 3 submatrix of a ldA× 4 matrix. In the middle, we
illustrate how this is mapped into an linear array a. In the right, we show how
defining the C macro #define alpha(i,j) A[ (j)∗ldA + (i)] allows us to address
the matrix in a more natural way.

What we depict there is a matrix that is embedded in a larger matrix. The
larger matrix consists of ldA (the leading dimension) rows and some number
of columns. If column-major order is used to store the larger matrix, then
addressing the elements in the submatrix requires knowledge of the leading
dimension of the larger matrix. In the C programming language, if the top-left
element of the submatrix is stored at address A, then one can address the (i, j)
element as A[ j∗ldA + i ]. In our implementations, we define a macro that
makes addressing the elements more natural:

#define alpha(i,j) A[ (j)*ldA + (i) ]
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where we assume that the variable or constant ldA holds the leading dimension
parameter.

Remark 1.2.3 Learn more about macro definitions in C at https://gcc.gnu.

org/onlinedocs/cpp/Macro-Arguments.html. (We’d be interested in a better tu-
torial).

Homework 1.2.2.1 Consider the matrix
0.0 0.1 0.2 0.3
1.0 1.1 1.2 1.3
2.0 2.1 2.2 2.3
3.0 3.1 3.2 3.3
4.0 4.1 4.2 4.3


If this matrix is stored in column-major order in a linear array A,

1. The highlighted submatrix starts at A[...].

2. The number of rows (height) of the highlighted submatrix equals ....

3. The number of columns (width) of the highlighted submatrix equals ....

4. The leading dimension of the highlighted submatrix is ....

Solution.

1. The highlighted submatrix starts at A[ 6 ].

2. The number of rows of the boxed submatrix is 2.

3. The number of columns of the boxed submatrix is 3.

4. The leading dimension of the boxed submatrix is 5.

1.2.3 A convention regarding the letters used for the loop index

YouTube: https://www.youtube.com/watch?v=l8XFfkoTrHA
When we talk about loops for matrix-matrix multiplication, it helps to keep

in mind the picture

https://gcc.gnu.org/onlinedocs/cpp/Macro-Arguments.html
https://gcc.gnu.org/onlinedocs/cpp/Macro-Arguments.html
https://www.youtube.com/watch?v=l8XFfkoTrHA
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which illustrates which loop index (variable name) is used for what row or
column of the matrices.

• Index i is used to index the row of C and corresponding row of A.

• Index j is used to index the column of C and corresponding column of
B.

• Index p is used to index the column of A and corresponding row of B.

We try to be consistent in this use, as should you.

Remark 1.2.4 In the literature, people often use i, j, and k for indexing the
three loops and talk about the ijk loop ordering when we talk about the IJP
ordering (later in Week 1). The problem with that convention is that k is also
used for the "inner size" of the matrices (the column size of A and the row size
of B). It is for this reason that we use p instead.

Our convention comes with its own problems, since p is often used to in-
dicate the number of processors involved in a computation. No convention is
perfect!

1.2.4 Ordering the loops

Consider again a simple algorithm for computing C := AB + C:

for i := 0, . . . ,m− 1
for j := 0, . . . , n− 1

for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j

end
end

end

Given that we now embrace the convention that i indexes rows of C and A, j
indexes columns of C and B, and p indexes "the other dimension," we can call
this the IJP ordering of the loops around the assignment statement.

Different orders in which the elements of C are updated, and the order in
which terms of

αi,0β0,j + · · ·+ αi,k−1βk−1,j
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are added to γi,j , are mathematically equivalent as long as each
γi,j := αi,pβp,j + γi,j

is performed exactly once. That is, in exact arithmetic, the result does not
change. (Computation is typically performed in floating point arithmetic, in
which case roundoff error may accumulate slightly differently, depending on the
order of the loops. One tends to ignore this when implementing matrix-matrix
multiplication.) A consequence is that the three loops can be reordered without
changing the result.

Homework 1.2.4.1 The IJP ordering is one possible ordering of the loops.
How many distinct reorderings of those loops are there?
Answer.

3! = 6.

Solution.

• There are three choices for the outer-most loop: i, j, or p.

• Once a choice is made for the outer-most loop, there are two choices left
for the second loop.

• Once that choice is made, there is only one choice left for the inner-most
loop.

Thus, there are 3! = 3× 2× 1 = 6 loop orderings.

Homework 1.2.4.2 In directory Assignments/Week1/C make copies of Assignments/
Week1/C/Gemm_IJP.c into files with names that reflect the different loop order-
ings (Gemm_IPJ.c, etc.). Next, make the necessary changes to the loops in
each file to reflect the ordering encoded in its name. Test the implementions
by executing
make IPJ
make JIP

...

for each of the implementations and view the resulting performance by making
the indicated changes to the Live Script in Assignments/Week1/C/data/Plot_All_

Orderings.mlx (Alternatively, use the script in Assignments/Week1/C/data/Plot_

All_Orderings_m.m). If you have implemented them all, you can test them all
by executing
make All_Orderings

Solution.
• Assignments/Week1/Answers/Gemm_IPJ.c

• Assignments/Week1/Answers/Gemm_JIP.c

• Assignments/Week1/Answers/Gemm_JPI.c

• Assignments/Week1/Answers/Gemm_PIJ.c

• Assignments/Week1/Answers/Gemm_PJI.c

Assignments/Week1/C/Gemm_IJP.c
Assignments/Week1/C/Gemm_IJP.c
Assignments/Week1/C/data/Plot_All_Orderings.mlx
Assignments/Week1/C/data/Plot_All_Orderings.mlx
Assignments/Week1/C/data/Plot_All_Orderings_m.m
Assignments/Week1/C/data/Plot_All_Orderings_m.m
Assignments/Week1/Answers/Gemm_IPJ.c
Assignments/Week1/Answers/Gemm_JIP.c
Assignments/Week1/Answers/Gemm_JPI.c
Assignments/Week1/Answers/Gemm_PIJ.c
Assignments/Week1/Answers/Gemm_PJI.c
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YouTube: https://www.youtube.com/watch?v=13gSeXQwnrE

Figure 1.2.5: Performance comparison of all different orderings of the loops,
on Robert’s laptop.

Homework 1.2.4.3 In Figure 1.2.5, the results of Homework 1.2.4.2 on Robert’s
laptop are reported. What do the two loop orderings that result in the best
performances have in common? You may want to use the following worksheet
to answer this question:

Click here to enlarge.

Figure 1.2.6: You may want to print this figure, and mark how the algorithms
access memory, as you work through the homework.

https://www.youtube.com/watch?v=13gSeXQwnrE
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Hint. Here is how you may want to mark the answer for the first set of loops:

Solution.

Click here to enlarge.

Homework 1.2.4.4 In Homework 1.2.4.3, why do they get better perfor-
mance?
Hint. Think about how matrices are mapped to memory.
Solution. Matrices are stored with column major order, accessing contigu-
ous data usually yields better performance, and data in columns are stored
contiguously.

Homework 1.2.4.5 In Homework 1.2.4.3, why does the implementation that
gets the best performance outperform the one that gets the next to best per-
formance?
Hint. Think about how and what data get reused for each of the two imple-
mentations.
Solution. For both the JPI and PJI loop orderings, the inner loop accesses
columns of C and A. However,

• Each execution of the inner loop of the JPI ordering updates the same
column of C.

• Each execution of the inner loop of the PJI ordering updates a different
column of C.

In Week 2 you will learn about cache memory. The JPI ordering can keep the
column of C in cache memory, reducing the number of times elements of C
need to be read and written.

If this isn’t obvious to you, it should become clearer in the next unit and
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the next week.

Remark 1.2.7 One thing that is obvious from all the exercises so far is that
the gcc compiler doesn’t do a very good job of automatically reordering loops
to improve performance, at least not for the way we are writing the code.

1.3 Layering Matrix-Matrix Multiplication

1.3.1 Notation

YouTube: https://www.youtube.com/watch?v=mt-kOxpinDc
In our discussions, we use capital letters for matrices (A,B,C, . . .), lower

case letters for vectors (a, b, c, . . .), and lower case Greek letters for scalars
(α, β, γ, . . .). Exceptions are integer scalars, for which we will use k,m, n, i, j,
and p.

Vectors in our universe are column vectors or, equivalently, n×1 matrices if
the vector has n components (size n). A row vector we view as a column vector
that has been transposed. So, x is a column vector and xT is a row vector.

In the subsequent discussion, we will want to expose the rows or columns
of a matrix. If X is an m× n matrix, then we expose its columns as

X =
(
x0 x1 · · · xn−1

)
so that xj equals the column with index j. We expose its rows as

X =


x̃T0
x̃T1
...

x̃Tm−1


so that x̃Ti equals the row with index i. Here the T indicates it is a row (a
column vector that has been transposed). The tilde is added for clarity since xTi
would in this setting equal the column indexed with i that has been transposed,
rather than the row indexed with i. When there isn’t a cause for confusion, we
will sometimes leave the tilde off. We use the lower case letter that corresponds
to the upper case letter used to denote the matrix, as an added visual clue that
xj is a column of X and x̃Ti is a row of X.

We have already seen that the scalars that constitute the elements of a
matrix or vector are denoted with the lower Greek letter that corresponds to

https://www.youtube.com/watch?v=mt-kOxpinDc
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the letter used for the matrix of vector:

X =


χ0,0 χ0,1 · · · χ0,n−1
χ1,0 χ1,1 · · · χ1,n−1
...

...
...

χm−1,0 χm−1,1 · · · χm−1,n−1

 and x =


χ0
χ1
...

χm−1

 .

If you look carefully, you will notice the difference between x and χ. The latter
is the lower case Greek letter "chi."

Remark 1.3.1 Since this course will discuss the computation C := AB + C,
you will only need to remember the Greek letters α (alpha), β (beta), and γ
(gamma).

Homework 1.3.1.1 Consider

A =

 −2 −3 −1
2 0 1
3 −2 2

 .
Identify

• α1,2 =

• a0 =

• ãT2 =

Solution.

• α1,2 = 1.

• a0 =

 −2
2
3

.
• ãT2 =

(
3 −2 2

)
.

1.3.2 The dot product (inner product)

YouTube: https://www.youtube.com/watch?v=62GO5uCCaGU

https://www.youtube.com/watch?v=62GO5uCCaGU
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Given two vectors x and y of size n

x =


χ0
χ1
...

χn−1

 and y =


ψ0
ψ1
...

ψn−1

 ,

their dot product is given by

xT y = χ0ψ0 + χ1ψ1 + · · ·+ χn−1ψn−1 =
n−1∑
i=0

χiψi.

The notation xT y comes from the fact that the dot product also equals the
result of multiplying 1× n matrix xT times n× 1 matrix y.

Example 1.3.2 −1
2
3


T  1

0
−1


= < View first vector as a 3× 1 matrix and transpose it >(
−1 2 3

) 1
0
−1


= < multiply 1× 3 matrix times 3× 1 matrix >

(−1)× (1) + (2)× (0) +×(3)× (−1)
=

−4.

�

Pseudo-code for computing γ := xT y + γ is given by

for i := 0, . . . , n− 1
γ := χiψi + γ

end

YouTube: https://www.youtube.com/watch?v=f1_shSplMiY

https://www.youtube.com/watch?v=f1_shSplMiY


1.3. LAYERING MATRIX-MATRIX MULTIPLICATION 39

Homework 1.3.2.1 Consider

C =

 1 −2 2
−1 1 3
−2 2 −1


︸ ︷︷ ︸

A

 −2 1
1 3
−1 2


︸ ︷︷ ︸

B

.

Compute γ2,1.
Solution.

γ2,1 =
(
−2 2 −1

) 1
3
2

 = (−2)× (1) + (2)× (3) + (−1)× (2) = 2.

The point we are trying to make here is that γ2,1 is computed as the dot product
of the third row of A (the row indexed with 2) with the last column of B (the
column indexed with 1):

γ2,1 =

 −2
2
−1


T  1

3
2

 = (−2)× (1) + (2)× (3) + (−1)× (2) = 2.

Importantly, if you think back about how matrices are stored in column-major
order, marching through memory from one element to the next element in the
last row of A, as you access ãT2 , requires "striding" through memory.

YouTube: https://www.youtube.com/watch?v=QCjJA5jqnr0
A routine, coded in C, that computes xT y + γ where x and y are stored at

location x with stride incx and location y with stride incy, respectively, and γ
is stored at location gamma, is given by

#define chi( i ) x[ (i)*incx ] // map chi( i ) to array x
#define psi( i ) y[ (i)*incy ] // map psi( i ) to array y

void Dots( int n, double *x, int incx, double *y, int incy, double *gamma )
{
for ( int i=0; i<n; i++ )
*gamma += chi( i ) * psi( i );

}

in Assignments/Week1/C/Dots.c. Here stride refers to the number of items in
memory between the stored components of the vector. In particular, the stride

https://www.youtube.com/watch?v=QCjJA5jqnr0
Assignments/Week1/C/Dots.c
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when accessing a row of a matrix is ldA when the matrix is stored in column-
major order with leading dimension ldA, as illustrated in Figure 1.2.2.

Homework 1.3.2.2 Consider the following double precision values stored in
sequential memory starting at address A

3
A[0] −→ −1

0
2
3
−1

1
4
−1

3
5

and assume gamma initially contains the value 1. After executing
Dots( 3, &A[1], 4, &A[3], 1, &gamma )

What are the contents of variable gamma?
Answer. 5
Solution. The first 3 indicates that the vectors are of size 3. The &A[1], 4
identifies the vector starting at address &A[1] with stride 4:

−1
A[1] −→ 0

2
3
−1

A[1 + 4] −→ 1
4
−1

3
A[1 + 8] −→ 5

and the &A[3], 1 identifies the vector starting at address &A[3] with stride 1:

−1
0
2

A[3] −→ 3
A[3 + 1] −→ −1
A[3 + 2] −→ 1

4
−1

3
5
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Hence, upon completion, gamma contains

1 +

 0
1
5


T  3

−1
1

 = 1 + (0)× (3) + (1)× (−1) + (5)× (1) = 5.

1.3.3 Matrix-vector multiplication via dot products

Homework 1.3.3.1 Compute

 2 2 −1 2
2 1 0 −2
−2 −2 2 2




2
−1

0
−1

 =

Solution.

 2 2 −1 2
2 1 0 −2
−2 −2 2 2




2
−1

0
−1

 =



(
2 2 −1 2

)
2
−1

0
−1


(

2 1 0 −2
)

2
−1
0
−1


(
−2 −2 2 2

)
2
−1
0
−1




=

 0
5
−4


(Here we really care more about exposing the dot products of rows with the
vector than the final answer.)

YouTube: https://www.youtube.com/watch?v=lknmeBwMp4o
Consider the matrix-vector multiplication

y := Ax+ y.

The way one is usually taught to compute this operation is that each element
of y, ψi, is updated with the dot product of the corresponding row of A, ãTi ,

https://www.youtube.com/watch?v=lknmeBwMp4o
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with vector x. With our notation, we can describe this as


ψ0
ψ1
...

ψm−1

 :=


ãT0
ãT1
...

ãTm−1

x+


ψ0
ψ1
...

ψm−1



=


ãT0 x

ãT1 x
...

ãTm−1x

+


ψ0
ψ1
...

ψm−1

 =


ãT0 x+ ψ0
ãT1 x+ ψ1

...
ãTm−1x+ ψm−1

 .

Remark 1.3.3 The way we remember how to do the partitioned matrix-vector
multiplication 

ãT0
ãT1
...

ãTm−1

x =


ãT0 x

ãT1 x
...

ãTm−1x


is to replace the m with a specific integer, 3, and each symbol with a number: 1

−2
3

 (−1).

If you view the first as a 3 × 1 matrix and the second as a 1 × 1 matrix, the
result is  1

−2
3

 (−1) =

 (1)× (−1)
(−2)× (−1)

(3)× (−1)

 . (1.3.1)

You should then notice that multiplication with the partitioned matrix and
vector works the same way:

ãT0
ãT1
...

ãTm−1

x =


(ãT0 )× (x)
(ãT1 )× (x)

...
(ãTm−1)× (x)

 (1.3.2)

with the change that in (1.3.1) the multiplication with numbers commutes while
in (1.3.1) the multiplication does not (in general) commute:

(−2)× (−1) = (−1)× (−2)

but, in general,
ãTi x 6= xãTi .

Indeed, ãTi x is a dot product (inner product) while we will later be reminded
that xãTi is an outerproduct of vectors ãi and x.
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If we then expose the individual elements of A and y we get


ψ0
ψ1
...

ψm−1



:=


α0,0 χ0 + α0,1 χ1 + · · · α0,n−1 χn−1 + ψ0
α1,0 χ0 + α1,1 χ1 + · · · α1,n−1 χn−1 + ψ1

...
αm−1,0 χ0 + αm−1,1 χ1 + · · · αm−1,n−1 χn−1 + ψm−1


This discussion explains the IJ loop for computing y := Ax+ y:

for i := 0, . . . ,m− 1
for j := 0, . . . , n− 1

ψi := αi,jχj + ψi
end

 ψi := ãTi x+ ψi

end

where we notice that again the i index ranges over the rows of the matrix and
j index ranges over the columns of the matrix.

Homework 1.3.3.2 In directory Assignments/Week1/C complete the imple-
mentation of matrix-vector multiplication in terms of dot operations
#define alpha( i,j ) A[ (j)*ldA + i ] // map alpha( i,j ) to array A
#define chi( i ) x[ (i)*incx ] // map chi( i ) to array x
#define psi( i ) y[ (i)*incy ] // map psi( i ) to array y

void Dots( int, const double *, int, const double *, int, double * );

void MyGemv( int m, int n, double *A, int ldA,
double *x, int incx, double *y, int incy )

{
for ( int i=0; i<m; i++ )
Dots( , , , , , );

}

in file Assignments/Week1/C/Gemv_I_Dots.c. You can test it by executing

make I_Dots

Upon completion, this should print

It appears all is well

Admittedly, this is a very incomplete test of the routine. However, it doesn’t
play much of a role in the course, so we choose to be sloppy.
Solution. Assignments/Week1/Answers/Gemv_I_Dots.c.

Assignments/Week1/C/Gemv_I_Dots.c
Assignments/Week1/Answers/Gemv_I_Dots.c
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YouTube: https://www.youtube.com/watch?v=fGS9P_fgo6Q

Remark 1.3.4 The file name Gemv_I_Dots.c can be decoded as follows:
• The Gemv stands for "GEneral Matrix-Vector multiplication."

• The I indicates a loop indexed by i (a loop over rows of the matrix).

• The Dots indicates that the operation performed in the body of the loop
is a dot product (hence the Dot) with the result added to a scalar (hence
the s).

1.3.4 The axpy operation

Homework 1.3.4.1 Compute

(−2)

 2
−1

3

+

 2
1
0


Solution.

(−2)

 2
−1

3

+

 2
1
0

 =

 (−2)× (2)
(−2)× (−1)

(−2)× (3)

+

 2
1
0


=

 (−2)× (2) + 2
(−2)× (−1) + 1

(−2)× (3) + 0

 =

 −2
3
−6



YouTube: https://www.youtube.com/watch?v=O-D5l3OVstE
Given a scalar, α, and two vectors, x and y, of size n with elements

x =


χ0
χ1
...

χn−1

 and y =


ψ0
ψ1
...

ψn−1

 ,

https://www.youtube.com/watch?v=fGS9P_fgo6Q
https://www.youtube.com/watch?v=O-D5l3OVstE


1.3. LAYERING MATRIX-MATRIX MULTIPLICATION 45

the scaled vector addition (axpy) operation is given by

y := αx+ y

which in terms of the elements of the vectors equals


ψ0
ψ1
...

ψn−1

 := α


χ0
χ1
...

χn−1

+


ψ0
ψ1
...

ψn−1



=


αχ0
αχ1
...

αχn−1

+


ψ0
ψ1
...

ψn−1

 =


αχ0 + ψ0
αχ1 + ψ1

...
αχn−1 + ψn−1

 .

The name axpy comes from the fact that in Fortran 77 only six characters and
numbers could be used to designate the names of variables and functions. The
operation αx + y can be read out loud as "scalar alpha times x plus y" which
yields the acronym axpy.

Homework 1.3.4.2 An outline for a routine that implements the axpy oper-
ation is given by
#define chi( i ) x[ (i)*incx ] // map chi( i ) to array x
#define psi( i ) y[ (i)*incy ] // map psi( i ) to array y

void Axpy( int n, double alpha, double *x, int incx, double *y, int incy )
{
for ( int i=0; i<n; i++ )
psi(i) +=

}

in file Assignments/Week1/C/Axpy.c.
Complete the routine and test the implementation by using it in the next

unit.
Solution. Assignments/Week1/Answers/Axpy.c

1.3.5 Matrix-vector multiplication via axpy operations

Homework 1.3.5.1 Complete

Assignments/Week1/C/Axpy.c
Assignments/Week1/Answers/Axpy.c
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Click here to enlarge.
Solution.

YouTube: https://www.youtube.com/watch?v=_yx9c5OyITI

We now discuss how matrix-vector multiplication can be cast in terms of
axpy operations.

YouTube: https://www.youtube.com/watch?v=1uryOws5320
We capture the insights from this last exercise: Partition m × n matrix A

by columns and x by individual elements.

y :=
(
a0 a1 · · · an−1

)


χ0
χ1
...

χn−1

+ y

= χ0a0 + χ1a1 + · · ·+ χn−1an−1 + y.

https://www.youtube.com/watch?v=_yx9c5OyITI
https://www.youtube.com/watch?v=1uryOws5320
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If we then expose the individual elements of A and y we get
ψ0
ψ1
...

ψm−1



:= χ0


α0,0
α1,0
...

αm−1,0

+ χ1


α0,1
α1,1
...

αm−1,1

+ · · ·+ χn−1


α0,n−1
α1,n−1

...
αm−1,n−1

+


ψ0
ψ1
...

ψm−1



=


χ0 α0,0 + χ1 α0,1 + · · · χn−1 α0,n−1 + ψ0
χ0 α1,0 + χ1 α1,1 + · · · χn−1 α1,n−1 + ψ1

...
χ0 αm−1,0 + χ1 αm−1,1 + · · · χn−1 αm−1,n−1 + ψm−1



=


α0,0 χ0 + α0,1 χ1 + · · · α0,n−1 χn−1 + ψ0
α1,0 χ0 + α1,1 χ1 + · · · α1,n−1 χn−1 + ψ1

...
αm−1,0 χ0 + αm−1,1 χ1 + · · · αm−1,n−1 χn−1 + ψm−1

 .
This discussion explains the JI loop for computing y := Ax+ y:

for j := 0, . . . , n− 1
for i := 0, . . . ,m− 1

ψi := αi,jχj + ψi
end

 y := χjaj + y

end

What it also demonstrates is how matrix-vector multiplication can be imple-
mented as a sequence of axpy operations.

Homework 1.3.5.2 In directory Assignments/Week1/C complete the imple-
mentation of matrix-vector multiplication in terms of axpy operations
#define alpha( i,j ) A[ (j)*ldA + i ] // map alpha( i,j ) to array A
#define chi( i ) x[ (i)*incx ] // map chi( i ) to array x
#define psi( i ) y[ (i)*incy ] // map psi( i ) to array y

void Axpy( int, double, double *, int, double *, int );

void MyGemv( int m, int n, double *A, int ldA,
double *x, int incx, double *y, int incy )

{
for ( int j=0; j<n; j++ )
Axpy( , , , , , );

}

in file Assignments/Week1/C/Gemv_J_Axpy.c. You can test your implementation
by executing

make J_Axpy

Assignments/Week1/C/Gemv_J_Axpy.c
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Remember: you implemented the Axpy routine in the last unit, and we did
not test it... So, if you get a wrong answer, the problem may be in that
implementation.
Hint.

YouTube: https://www.youtube.com/watch?v=EYHkioY639c

Solution. Assignments/Week1/Answers/Gemv_J_Axpy.c.

Remark 1.3.5 The file name Gemv_J_Axpy.c can be decoded as follows:
• The Gemv stands for "GEneral Matrix-Vector multiplication."

• The J indicates a loop indexed by j (a loop over columns of the matrix).

• The Axpy indicates that the operation performed in the body of the loop
is an axpy operation.

1.3.6 Matrix-matrix multiplication via matrix-vector multiplica-
tions

Homework 1.3.6.1 Fill in the blanks:

Click here to enlarge.
Solution.

https://www.youtube.com/watch?v=EYHkioY639c
Assignments/Week1/Answers/Gemv_J_Axpy.c
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Click here to enlarge.

YouTube: https://www.youtube.com/watch?v=sXQ-QDne9uw

YouTube: https://www.youtube.com/watch?v=6-OReBSHuGc
Now that we are getting comfortable with partitioning matrices and vectors,

we can view the six algorithms for C := AB + C in a more layered fashion. If
we partition C and B by columns, we find that(

c0 c1 · · · cn−1
)

:= A
(
b0 b1 · · · bn−1

)
+
(
c0 c1 · · · cn−1

)
=

(
Ab0 + c0 Ab1 + c1 · · · Abn−1 + cn−1

)
A picture that captures this is given by

This illustrates how the JIP and JPI algorithms can be layered as a loop
around matrix-vector multiplications, which itself can be layered as a loop

https://www.youtube.com/watch?v=sXQ-QDne9uw
https://www.youtube.com/watch?v=6-OReBSHuGc
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around dot products or axpy operations:

for j := 0, . . . , n− 1

for p := 0, . . . , k − 1

for i := 0, . . . ,m− 1
γi,j := αi,pβp,j + γi,j

end

 cj := βp,jap + cj︸ ︷︷ ︸
axpy

end


cj := Abj + cj︸ ︷︷ ︸

mv mult

end

and

for j := 0, . . . , n− 1

for i := 0, . . . ,m− 1

for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j

end

 γi,j := ãTi bj + γi,j︸ ︷︷ ︸
dots

end


cj := Abj + cj︸ ︷︷ ︸

mv mult

end

Homework 1.3.6.2 Complete the code in Assignments/Week1/C/Gemm_J_Gemv.c.
Test two versions:
make J_Gemv_I_Dots
make J_Gemv_J_Axpy

View the resulting performance by making the necessary changes to the
Live Script in Assignments/Week1/C/Plot_Outer_J.mlx. (Alternatively, use the
script in Assignments/Week1/C/data/Plot_Outer_J_m.m.)
Solution. Assignments/Week1/Answers/Gemm_J_Gemv.c.

Remark 1.3.6 The file name Gemm_J_Gemv.c can be decoded as follows:
• The Gemm stands for "GEneral Matrix-Matrix multiplication."

• The J indicates a loop indexed by j (a loop over columns of matrix C).

• The Gemv indicates that the operation performed in the body of the loop
is matrix-vector multiplication.

Similarly, J_Gemv_I_Dots means that the implementation of matrix-matrix
multiplication being compiled and executed consists of a loop indexed by j (a
loop over the columns of matrix C) which itself calls a matrix-vector multipli-
cation that is implemented as a loop indexed by i (over the rows of the matrix
with which the matrix-vector multiplication is performed), with a dot product
in the body of the loop.

Remark 1.3.7 Hopefully you are catching on to our naming convention. It is
a bit adhoc and we are probably not completely consistent. They give some

Assignments/Week1/C/Plot_Outer_J.mlx
Assignments/Week1/C/data/Plot_Outer_J_m.m
Assignments/Week1/Answers/Gemm_J_Gemv.c
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hint as to what the implementation looks like.
Going forward, we refrain from further explaining the convention.

1.4 Layering Matrix-Matrix Multiplication: Alterna-
tives

1.4.1 Rank-1 update (rank-1)

An operation that will become very important in future discussion and opti-
mization of matrix-matrix multiplication is the rank-1 update:

A := xyT +A.

Homework 1.4.1.1 Fill in the blanks:

Click here to enlarge.
Solution.
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Click here to enlarge.

YouTube: https://www.youtube.com/watch?v=5YxKCoUEdyM

YouTube: https://www.youtube.com/watch?v=0Emae-CWkNo

YouTube: https://www.youtube.com/watch?v=FsdMId76ejE
More generally,

A := xyT +A

https://www.youtube.com/watch?v=5YxKCoUEdyM
https://www.youtube.com/watch?v=0Emae-CWkNo
https://www.youtube.com/watch?v=FsdMId76ejE
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is computed as
α0,0 α0,1 · · · α0,k−1
α1,0 α1,1 · · · α1,k−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,k−1

 :=


χ0
χ1
...

χm−1


(
ψ0 ψ1 · · · ψn−1

)
+


α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1



=


χ0ψ0 + α0,0 χ0ψ1 + α0,1 · · · χ0ψn−1 + α0,n−1
χ1ψ0 + α1,0 χ1ψ1 + α1,1 · · · χ1ψn−1 + α1,n−1

...
...

...
χm−1ψ0 + αm−1,0 χm−1ψ1 + αm−1,1 · · · χm−1ψn−1 + αm−1,n−1

 .
so that each entry αi,j is updated by

αi,j := χiψj + αi,j .

If we now focus on the columns in this last matrix, we find that
χ0ψ0 + α0,0 χ0ψ1 + α0,1 · · · χ0ψn−1 + α0,n−1
χ1ψ0 + α1,0 χ1ψ1 + α1,1 · · · χ1ψn−1 + α1,n−1

...
...

...
χm−1ψ0 + αm−1,0 χm−1ψ1 + αm−1,1 · · · χm−1ψn−1 + αm−1,n−1



=




χ0
χ1
...

χm−1

ψ0 +


α0,0
α1,0
...

αm−1,0

 · · ·


χ0
χ1
...

χm−1

ψn−1 +


α0,n−1
α1,n−1

...
αm−1,n−1




=

 ψ0


χ0
χ1
...

χm−1

+


α0,0
α1,0
...

αm−1,0

 · · · ψn−1


χ0
χ1
...

χm−1

+


α0,n−1
α1,n−1

...
αm−1,n−1


 .

What this illustrates is that we could have partitioned A by columns and y by
elements to find that(

a0 a1 · · · an−1
)

:= x
(
ψ0 ψ1 · · · ψn−1

)
+
(
a0 a1 · · · an−1

)
=
(
xψ0 + a0 xψ1 + a1 · · · xψn−1 + an−1

)
=
(
ψ0x+ a0 ψ1x+ a1 · · · ψn−1x+ an−1

)
.

This discussion explains the JI loop ordering for computing A := xyT +A:

for j := 0, . . . , n− 1
for i := 0, . . . ,m− 1

αi,j := χiψj + αi,j
end

 aj := ψjx+ aj

end
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It demonstrates is how the rank-1 operation can be implemented as a sequence
of axpy operations.

Homework 1.4.1.2 In Assignments/Week1/C/Ger_J_Axpy.c complete the
implementation of rank-1 in terms of axpy operations. You can test it by
executing
make Ger_J_Axpy

Solution. Assignments/Week1/Answers/Ger_J_Axpy.c

Homework 1.4.1.3 Fill in the blanks:

Click here to enlarge.
Solution.

Click here to enlarge.

Assignments/Week1/Answers/Ger_J_Axpy.c
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YouTube: https://www.youtube.com/watch?v=r_l93XMfJ1Q
The last homework suggests that there is also an IJ loop ordering that can

be explained by partitioning A by rows and x by elements:


ãT0
ãT1
...

ãTm−1

 :=


χ0
χ1
...

χm−1

 yT +


ãT0
ãT1
...

ãTm−1

 =


χ0y

T + ãT0
χ1y

T + ãT1
...

χm−1y
T + ãTm−1



leading to the algorithm

for i := 0, . . . , n− 1
for j := 0, . . . ,m− 1

αi,j := χiψj + αi,j
end

 ãTi := χiy
T + ãTi

end

and corresponding implementation.

Homework 1.4.1.4 In Assignments/Week1/C/Ger_I_Axpy.c complete the
implementation of rank-1 in terms of axpy operations (by rows). You can test
it by executing
make Ger_I_Axpy

Solution. Assignments/Week1/Answers/Ger_I_Axpy.c

1.4.2 Matrix-matrix multiplication via rank-1 updates

Homework 1.4.2.1 Fill in the blanks:

https://www.youtube.com/watch?v=r_l93XMfJ1Q
Assignments/Week1/Answers/Ger_I_Axpy.c
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Click here to enlarge.
Solution.

Click here to enlarge.
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YouTube: https://www.youtube.com/watch?v=YxAiEueEfNk
Let us partition A by columns and B by rows, so that

C :=
(
a0 a1 · · · ak−1

)


b̃T0
b̃T1
...

b̃Tk−1

+ C

= a0b̃
T
0 + a1b̃

T
1 + · · ·+ ak−1b̃

T
k−1 + C

A picture that captures this is given by

This illustrates how the PJI and PIJ algorithms can be viewed as a loop
around rank-1 updates:

for p := 0, . . . , k − 1

for j := 0, . . . , n− 1

for i := 0, . . . ,m− 1
γi,j := αi,pβp,j + γi,j

end

 cj := βp,jap + cj︸ ︷︷ ︸
axpy

end


C := apb̃

T
p + C︸ ︷︷ ︸

rank-1 update

end

https://www.youtube.com/watch?v=YxAiEueEfNk
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and

for p := 0, . . . , k − 1

for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1
γi,j := αi,pβp,j + γi,j

end

 c̃Ti := αi,pb̃
T
p + c̃Ti︸ ︷︷ ︸

axpy
end


C := apb̃

T
p + C︸ ︷︷ ︸

rank-1 update

end

Homework 1.4.2.2 Complete the code in Assignments/Week1/C/Gemm_P_Ger.c.
Test two versions:
make P_Ger_J_Axpy
make P_Ger_I_Axpy

View the resulting performance by making the necessary changes to the
Live Script in Assignments/Week1/C/Plot_Outer_P.mlx. (Alternatively, use the
script in Assignments/Week1/C/data/Plot_Outer_P_m.m.)
Solution.

• Assignments/Week1/Answers/Gemm_P_Ger.c.

1.4.3 Row-times-matrix multiplication

YouTube: https://www.youtube.com/watch?v=eonBpl9XfAc
An operation that is closely related to matrix-vector multiplication is the

multipication of a row times a matrix, which in the setting of this course updates
a row vector:

yT := xTA+ yT .

If we partition A by columns and yT by elements, we get

(
ψ0 ψ1 · · · ψn−1

)
:= xT

(
a0 a1 · · · an−1

)
+
(
ψ0 ψ1 · · · ψn−1

)
=
(
xTa0 + ψ0 xTa1 + ψ1 · · · xTan−1 + ψn−1

)
.

Assignments/Week1/C/Plot_Outer_P.mlx
Assignments/Week1/C/data/Plot_Outer_P_m.m
Assignments/Week1/Answers/Gemm_P_Ger.c
https://www.youtube.com/watch?v=eonBpl9XfAc
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This can be implemented as a loop:

for j := 0, . . . , n− 1

for i := 0, . . . ,m− 1

ψj := χiαi,j + ψj
end

 ψj := xTaj + ψj︸ ︷︷ ︸
dot

end

YouTube: https://www.youtube.com/watch?v=2VWSXkg1kGk
Alternatively, if we partition A by rows and xT by elements, we get

yT :=
(
χ0 χ1 · · · χm−1

)


ãT0
ãT1
...

ãTm−1

+ yT

= χ0ã
T
0 + χ1ã

T
1 + · · ·+ χm−1ã

T
m−1 + yT .

This can be implemented as a loop:

for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1

ψj := χiαi,j + ψj
end

 yT := χiã
T
i + yT︸ ︷︷ ︸

axpy
end

There is an alternative way of looking at this operation:

yT := xTA+ yT

is equivalent to
(yT )T := (xTA)T + (yT )T

and hence
y := ATx+ y.

Thus, this operation is equivalent to matrix-vector multiplication with the
transpose of the matrix.

Remark 1.4.1 Since this operation does not play a role in our further discus-
sions, we do not include exercises related to it.

https://www.youtube.com/watch?v=2VWSXkg1kGk
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1.4.4 Matrix-matrix multiplication via row-times-matrix multi-
plications

YouTube: https://www.youtube.com/watch?v=4YhQ42fxevY
Finally, let us partition C and A by rows so that


c̃T0
c̃T1
...

c̃Tm−1

 :=


ãT0
ãT1
...

ãTm−1

B +


c̃T0
c̃T1
...

c̃Tm−1

 =


ãT0 B + c̃T0
ãT1 B + c̃T1

...
ãTm−1B + c̃Tm−1



A picture that captures this is given by

This illustrates how the IJP and IPJ algorithms can be viewed as a loop
around the updating of a row of C with the product of the corresponding row
of A times matrix B:

for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1

for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j

end

 γ̃i,j := ãTi bj + γ̃i,j︸ ︷︷ ︸
dot

end


c̃Ti := ãTi B + c̃Ti︸ ︷︷ ︸
row-matrix mult

end

https://www.youtube.com/watch?v=4YhQ42fxevY
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and

for i := 0, . . . ,m− 1

for p := 0, . . . , k − 1

for j := 0, . . . , n− 1
γi,j := αi,pβp,j + γi,j

end

 c̃Ti := αi,pb̃
T
p + c̃Ti︸ ︷︷ ︸

axpy
end


c̃Ti := ãTi B + c̃Ti︸ ︷︷ ︸
row-matrix mult

end

The problem with implementing the above algorithms is that Gemv_I_Dots
and Gemv_J_Axpy implement y := Ax + y rather than yT := xTA + yT .
Obviously, you could create new routines for this new operation. We will get
back to this in the "Additional Exercises" section of this chapter.

1.5 Enrichments

1.5.1 The Basic Linear Algebra Subprograms

Linear algebra operations are fundamental to computational science. In the
1970s, when vector supercomputers reigned supreme, it was recognized that if
applications and software libraries are written in terms of a standardized inter-
face to routines that implement operations with vectors, and vendors of com-
puters provide high-performance instantiations for that interface, then appli-
cations would attain portable high performance across different computer plat-
forms. This observation yielded the original Basic Linear Algebra Subprograms
(BLAS) interface [17] for Fortran 77, which are now referred to as the level-1
BLAS. The interface was expanded in the 1980s to encompass matrix-vector
operations (level-2 BLAS) [6] and matrix-matrix operations (level-3 BLAS) [5].

You should become familiar with the BLAS. Here are some resources:
An overview of the BLAS and how they are used to achieve portable high

performance is given in the article [28]:

• Robert van de Geijn and Kazushige Goto, BLAS (Basic Linear Algebra
Subprograms), Encyclopedia of Parallel Computing, Part 2, pp. 157-164,
2011. If you don’t have access, you may want to read an advanced draft.

If you use the BLAS, you should cite one or more of the original papers (as
well as the implementation that you use):

• C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic
Linear Algebra Subprograms for Fortran Usage, ACM Transactions on
Mathematical Software, Vol. 5, No. 3, pp. 308-323, Sept. 1979.

• Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson, An Extended Set of {FORTRAN} Basic Linear Algebra Sub-
programs, ACM Transactions on Mathematical Software, Vol. 14, No. 1,
pp. 1-17, March 1988.

http://www.cs.utexas.edu/users/flame/pubs/BLAS.pdf
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• Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff, A
Set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software, Vol. 16, No. 1, pp. 1-17, March 1990.

A handy reference guide to the BLAS:

• Basic Linear Algebra Subprograms: A Quick Reference Guide. http:

//www.netlib.org/blas/blasqr.pdf.

There are a number of implementations of the BLAS available for various
architectures:

• A reference implementation in Fortran is available from http://www.netlib.

org/blas/.
This is an unoptimized implementation: It provides the functionality
without high performance.

• The current recommended high-performance open-source implementation
of the BLAS is provided by the BLAS-like Library Instantiation Software
(BLIS) discussed in Unit 1.5.2. The techniques you learn in this course
underlie the implementation in BLIS.

• Different vendors provide their own high-performance implementations:

◦ Intel provides optimized BLAS as part of their Math Kernel Library
(MKL): https://software.intel.com/en-us/mkl.
◦ AMD’s open-source BLAS for their CPUs can be found at https:

//developer.amd.com/amd-cpu-libraries/blas-library/. Their imple-
mentation is based on BLIS.
AMD also has a BLAS library for its GPUs: https://github.com/

ROCmSoftwarePlatform/rocBLAS.
◦ Arm provides optimized BLAS as part of their Arm Performance Li-
brary https://developer.arm.com/products/software-development-tools/

hpc/arm-performance-libraries.
◦ IBM provides optimized BLAS as part of their Engineering and
Scientific Subroutine Library (ESSL): https://www.ibm.com/support/
knowledgecenter/en/SSFHY8/essl_welcome.html.
◦ Cray provides optimized BLAS as part of their Cray Scientific Li-
braries (LibSci) https://www.cray.com/sites/default/files/SB-Cray-Programming-Environment.
pdf.
◦ For their GPU accelerators, NVIDIA provides the cuBLAS https:

//developer.nvidia.com/cublas.

1.5.2 The BLAS-like Library Instantiation Software (BLIS)

BLIS provides the currently recommended open-source implementation of the
BLAS for traditional CPUs. It is the version used in this course. Its extensive
documentation (and source) can be found at https://github.com/flame/blis/.

http://www.netlib.org/blas/blasqr.pdf
http://www.netlib.org/blas/blasqr.pdf
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://software.intel.com/en-us/mkl
https://developer.amd.com/amd-cpu-libraries/blas-library/
https://developer.amd.com/amd-cpu-libraries/blas-library/
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html
https://www.cray.com/sites/default/files/SB-Cray-Programming-Environment.pdf
https://www.cray.com/sites/default/files/SB-Cray-Programming-Environment.pdf
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://github.com/flame/blis/
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The techniques you learn in this course underlie the implementation of matrix-
matrix multiplication in BLIS.

In addition to supporting the traditional BLAS interface, BLIS also exposes
two more interfaces:

• The BLIS Typed API, which is BLAS-like, but provides more function-
alility and what we believe to be a more flexible interface for the C and
C++ programming languages.

• The BLIS Object-Based API, which elegantly hides many of the details
that are exposed in the BLAS and Typed API interfaces.

BLIS is described in the paper

• Field G. Van Zee and Robert A. van de Geijn, BLIS: A Framework for
Rapidly Instantiating BLAS Functionality, ACM Journal on Mathemati-
cal Software, Vol. 41, No. 3, June 2015. You can access this article for free
by visiting the Science of High-Performance Computing group publica-
tion webpage (http://shpc.ices.utexas.edu/publications.html) and click-
ing on the title of Journal Article 39.

Many additional related papers can be found by visiting the BLIS GitHub
repository (https://github.com/flame/blis) or the Science of High-Performance
Computing group publication webpage (http://shpc.ices.utexas.edu/publications.
html).

1.5.3 Counting flops

Floating point multiplies or adds are examples of floating point operation
(flops). What we have noticed is that for all of our computations (dots, axpy,
gemv, ger, and gemm) every floating point multiply is paired with a floating
point add into a fused multiply-add (FMA).

Determining how many floating point operations are required for the dif-
ferent operations is relatively straight forward: If x and y are of size n, then

• γ := xT y + γ = χ0ψ0 + χ1ψ1 + · · ·+ χn−1ψn−1 + γ requires n FMAs and
hence 2n flops.

• y := αx+ y requires n FMAs (one per pair of elements, one from x and
one from y) and hence 2n flops.

Similarly, it is pretty easy to establish that if A is m× n, then

• y := Ax+ y requires mn FMAs and hence 2mn flops.
n axpy operations each of size m for n× 2m flops or m \dots\ operations
each of size n for m× 2n flops.

• A := xyT +A required mn FMAs and hence 2mn flops.
n axpy operations each of size m for n× 2m flops or m axpy operations
each of size n for m× 2n flops.

http://shpc.ices.utexas.edu/publications.html
https://github.com/flame/blis
http://shpc.ices.utexas.edu/publications.html
http://shpc.ices.utexas.edu/publications.html
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Finally, if C is m× n, A is m× k, and B is k × n, then C := AB +C requires
2mnk flops. We can estiblish this by recognizing that if C is updated one
column at a time, this takes n matrix-vector multiplication operations each
with a matrix of size m × k, for a total of n × 2mk. Alternatively, if C is
updated with rank-1 updates, then we get k × 2mn.

When we run experiments, we tend to execute with matrices that are n×n,
where n ranges from small to large. Thus, the total operations required equal

nlast∑
n=nfirst

2n3 flops,

where nfirst is the first problem size, nlast the last, and the summation is in
increments of ninc.

If nlast = ninc ×N and ninc = nfirst, then we get

nlast∑
n=nfirst

2n3 =
N∑
i=1

2(i× ninc)3 = 2n3
inc

N∑
i=1

i3.

A standard trick is to recognize that

N∑
i=1

i3 ≈
∫ N

0
x3dx = 1

4N
4.

So,
nlast∑

n=nfirst

2n3 ≈ 1
2n

3
incN

4 = 1
2
n4

incN
4

ninc
= 1

2ninc
n4

last.

The important thing is that every time we double nlast, we have to wait,
approximately, sixteen times as long for our experiments to finish...

An interesting question is why we count flops rather than FMAs. By now,
you have noticed we like to report the rate of computation in billions of floating
point operations per second, GFLOPS. Now, if we counted FMAs rather than
flops, the number that represents the rate of computation would be cut in
half. For marketing purposes, bigger is better and hence flops are reported!
Seriously!

1.6 Wrap Up

1.6.1 Additional exercises

We start with a few exercises that let you experience the BLIS typed API and
the traditional BLAS interface.
Homework 1.6.1.1 (Optional). In Unit 1.3.3 and Unit 1.3.5, you wrote
implementations of the routine
MyGemv( int m, int n, double *A, int ldA, double *x, int incx, double *y, int incy )

The BLIS typed API (Unit 1.5.2) includes the routine

bli_dgemv( trans_t transa, conj_t conjx, dim_t m, dim_t n,
double* alpha, double* a, inc_t rsa, inc_t csa,

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md
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double* x, inc_t incx,
double* beta, double* y, inc_t incy );

which supports the operations

y := αAx+ βy
y := αATx+ βy

and other variations on matrix-vector multiplication.
To get experience with the BLIS interface, copy Assignments/Week1/C/

Gemm_J_Gemv.c into Gemm_J_bli_dgemv.c and replace the call to MyGemv
with a call to bli_dgemv instead. You will also want to include the header file
blis.h,

#include "blis.h"

replace the call to MyGemv with a call to bli_dgemv and, if you wish, comment
out or delete the now unused prototype for MyGemv. Test your implementation
with

make J_bli_dgemv

You can then view the performance with Assignments/Week1/C/data/Plot_Outer_J.mlx.
Hint. Replace

MyGemv( m, k, A, ldA, &beta( 0, j ), 1, &gamma( 0,j ), 1 );

with

double d_one=1.0;
bli_dgemv( BLIS_NO_TRANSPOSE, BLIS_NO_CONJUGATE, m, k,
&d_one, A, 1, ldA, &beta( 0,j ), 1, &d_one, &gamma( 0,j ), 1 );

Note: the BLIS_NO_TRANSPOSE indicates we want to compute y := αAx+
βy rather than y := αATx + βy. The BLIS_NO_CONJUGATE parameter
indicates that the elements of x are not conjugated (something one may wish
to do with complex valued vectors).

The ldA parameter in MyGemv now becomes two paramters: 1, ldA. The
first indicates the stride in memory between elements in the same column by
consecutive rows (which we refer to as the row stride) and the second refers
to the stride in memory between elements in the same row and consecutive
columns (which we refer to as the column stride).
Solution. Assignments/Week1/Answers/Gemm_J_bli_dgemv.c

Homework 1.6.1.2 (Optional). The traditional BLAS interface (Unit 1.5.1)
includes the Fortran call
DGEMV( TRANSA, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )

which also supports the operations
y := αAx+ βy
y := αATx+ βy

Assignments/Week1/Answers/Gemm_J_bli_dgemv.c
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and other variations on matrix-vector multiplication.
To get experience with the BLAS interface, copy Assignments/Week1/C/

Gemm_J_Gemv.c (or Gemm_J_bli_dgemv) into Gemm_J_dgemv and re-
place the call to MyGemv with a call to dgemv. Some hints:

• In calling a Fortran routine from C, you will want to call the routine using
lower case letters, and adding an underscore:

dgemv_

• You will need to place a "prototype" for dgemv_ near the beginning of
Gemm_J_dgemv:

void dgemv_( char *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int * );

• Fortran passes parameters by address. So,

MyGemv( m, k, A, ldA, &beta( 0, j ), 1, &gamma( 0,j ), 1 );

becomes

{
int i_one=1;
double d_one=1.0;
dgemv_( "No transpose", &m, &k, &d_one, A, &ldA, &beta( 0, j ), &i_one, &d_one, &gamma( 0,j ), &i_one );

}

Test your implementation with

make J_dgemv

You can then view the performance with Assignments/Week1/C/data/Plot_Outer_J.mlx.
Solution. Assignments/Week1/Answers/Gemm_J_dgemv.c

On Robert’s laptop, the last two exercises yield

Assignments/Week1/Answers/Gemm_J_dgemv.c
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Notice

• Linking to an optmized implementation (provided by BLIS) helps.

• The calls to bli_dgemv and dgemv are wrappers to the same implemen-
tations of matrix-vector multiplication within BLIS. The difference in
performance that is observed should be considered "noise."

• It pays to link to a library that someone optimized.

Homework 1.6.1.3 (Optional). In Unit 1.4.1, You wrote the routine
MyGer( int m, int n, double *x, int incx, double *y, int incy, double *A, int ldA )

that compues a rank-1 update. The BLIS typed API (Unit 1.5.2) includes the
routine

bli_dger( conj_t conjx, conj_t conjy, dim_t m, dim_t n,
double* alpha, double* x, inc_t incx, double* y, inc_t incy,
double* A, inc_t rsa, inc_t csa );

which supports the operation

A := αxyT +A

and other variations on rank-1 update.
To get experience with the BLIS interface, copy Assignments/Week1/C/

Gemm_P_Ger.c into Gemm_P_bli_dger and replace the call to MyGer with
a call to bli_dger. Test your implementation with

make P_bli_dger

https://github.com/flame/blis/blob/master/docs/BLISTypedAPI.md
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You can then view the performance with Assignments/Week1/C/data/Plot_Outer_P.mlx.
Hint. Replace

MyGer( m, n, &alpha( 0, p ), 1, &beta( p,0 ), ldB, C, ldC );

with

double d_one=1.0;
bli_dger( BLIS_NO_CONJUGATE, BLIS_NO_CONJUGATE, m, n,
&d_one, &alpha( 0, p ), 1, &beta( p,0 ), ldB, C, 1, ldC );

The BLIS_NO_CONJUGATE parameters indicate that the elements of x and
y are not conjugated (something one may wish to do with complex valued
vectors).

The ldC parameter in MyGer now becomes two paramters: 1, ldC. The
first indicates the stride in memory between elements in the same column by
consecutive rows (which we refer to as the row stride) and the second refers
to the stride in memory between elements in the same row and consecutive
columns (which we refer to as the column stride).
Solution. Assignments/Week1/Answers/Gemm_P_bli_dger.c

Homework 1.6.1.4 (Optional). The traditional BLAS interface (Unit 1.5.1)
includes the Fortran call
DGER( M, N, ALPHA, X, INCX, Y, INCY, A, LDA );

which also supports the operation

A := αxyT +A.

To get experience with the BLAS interface, copy Assignments/Week1/C/
Gemm_P_Ger.c (or Gemm_P_bli_dger) into Gemm_P_dger and replace
the call to MyGer with a call to dger. Test your implementation with

make P_dger

You can then view the performance with Assignments/Week1/C/data/???.
Hint. Replace

Ger( m, n, &alpha( 0,p ), 1, &beta( p,0 ), ldB, C, ldC );

with

double d_one=1.0;
int i_one=1;
dger_( m, n, &d_one, &alpha( 0,p ), &i_one, &beta( p,0 ), \amp;ldB, C, \amp;ldC );

The _ (underscore) allows C to call the Fortran routine. (This is how it works
for most compilers, but not all.) The "No transpose" indicates we want to
compute y := αAx+βy rather than y := αATx+βy. Fortran passes parameters
by address, which is why d_one and i_one are passed as in this call.
Solution. Assignments/Week1/Answers/Gemm_P_dger.c

Assignments/Week1/Answers/Gemm_P_bli_dger.c
Assignments/Week1/Answers/Gemm_P_dger.c
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On Robert’s laptop, the last two exercises yield

Notice

• Linking to an optmized implementation (provided by BLIS) does not
seem to help (relative to PJI).

• The calls to bli_dger and dger are wrappers to the same implementa-
tions of matrix-vector multiplication within BLIS. The difference in per-
formance that is observed should be considered "noise."

• It doesn’t always pay to link to a library that someone optimized.

Next, we turn to computing C := AB +C via a series of row-times-matrix
multiplications.

Recall that the BLAS include the routine dgemv that computes

y := αAx+ βy or y := αATx+ βy.

What we want is a routine that computes

yT := xTA+ yT .

What we remember from linear algebra is that if A = B then AT = BT , that
(A+ B)T = AT + BT , and that (AB)T = BTAT . Thus, starting with the the
equality

yT = xTA+ yT ,

and transposing both sides, we get that

(yT )T = (xTA+ yT )T
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which is equivalent to
y = (xTA)T + (yT )T

and finally
y = ATx+ y.

So, updating
yT := xTA+ yT

is equivalent to updating
y := ATx+ y.

It this all seems unfamiliar, you may want to look at Linear Algebra: Founda-
tions to Frontiers

Now, if

• m× n matrix A is stored in array A with its leading dimension stored in
variable ldA,

• m is stored in variable m and n is stored in variable n,

• vector x is stored in array x with its stride stored in variable incx,

• vector y is stored in array y with its stride stored in variable incy, and

• α and β are stored in variables alpha and beta, respectively,

then y := αATx+ βy translates, from C, into the call

dgemv_( "Transpose", &m, &n, &alpha, A, &ldA, x, &incx, &beta, y, &incy );

Homework 1.6.1.5 In directory Assignments/Week1/C complete the code in
file Gemm_I_dgemv.c that casts matrix-matrix multiplication in terms of the
dgemv BLAS routine, but compute the result by rows. Compile and execute it
with
make I_dgemv

View the resulting performance by making the necessary changes to the Live
Script in Assignments/Week1/C/Plot_All_Outer.mlx. (Alternatively, use the script
in Assignments/Week1/C/data/Plot_All_Outer_m.mlx.)
Solution. Assignments/Week1/Answers/Gemm_I_dgemv.c.
The BLIS native call that is similar to the BLAS dgemv routine in this setting
translates to

bli_dgemv( BLIS_TRANSPOSE, BLIS_NO_CONJUGATE, m, n,
&alpha, A, ldA, 1, x, incx, &beta, y, incy );

Because of the two parameters after A that capture the stride between
elements in a column (the row stride) and elements in rows (the column stride),
one can alternatively swap these parameters:

bli_dgemv( BLIS_NO_TRANSPOSE, BLIS_NO_CONJUGATE, m, n,
&alpha, A, ldA, 1, x, incx, &beta, y, incy );

Assignments/Week1/C/Plot_All_Outer.mlx
Assignments/Week1/C/data/Plot_All_Outer_m.mlx
Assignments/Week1/Answers/Gemm_I_dgemv.c
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Homework 1.6.1.6 In directory Assignments/Week1/C complete the code in
file Gemm_I_bli_dgemv.c that casts matrix-matrix mulitplication in terms of
the bli_dgemv BLIS routine. Compile and execute it with
make I_bli_dgemv

View the resulting performance by making the necessary changes to the
Live Script in Assignments/Week1/C/Plot_All_Outer.mlx. (Alternatively, use the
script in Assignments/Week1/C/data/Plot_All_Outer_m.mlx.)
Solution. Assignments/Week1/Answers/Gemm_I_bli_dgemv.c.
On Robert’s laptop, the last two exercises yield

Notice

• Casting matrix-matrix multiplication in terms of matrix-vector multipli-
cations attains the best performance. The reason is that as columns of
C are computed, they can stay in cache, reducing the number of times
elements of C have to be read and written from main memory.

• Accessing C and A by rows really gets in the way of performance.

1.6.2 Summary

The building blocks for matrix-matrix multiplication (and many matrix algo-
rithms) are

• Vector-vector operations:

◦ Dot: xT y.

Assignments/Week1/C/Plot_All_Outer.mlx
Assignments/Week1/C/data/Plot_All_Outer_m.mlx
Assignments/Week1/Answers/Gemm_I_bli_dgemv.c
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◦ Axpy: y := αx+ y.

• Matrix-vector operations:

◦ Matrix-vector multiplication: y := Ax+ y and y := ATx+ y.
◦ Rank-1 update: A := xyT +A.

Partitioning the matrices by rows and colums, with these operations, the
matrix-matrix multiplication C := AB+C can be described as one loop around

• multiple matrix-vector multiplications:(
c0 · · · cn−1

)
:=
(
Ab0 + c0 · · · Abn−1 + cn−1

)
illustrated by

.
This hides the two inner loops of the triple nested loop in the matrix-
vector multiplication:

for j := 0, . . . , n− 1

for p := 0, . . . , k − 1

for i := 0, . . . ,m− 1
γi,j := αi,pβp,j + γi,j

end

 cj := βp,jap + cj︸ ︷︷ ︸
axpy

end


cj := Abj + cj︸ ︷︷ ︸

mv mult

end

and

for j := 0, . . . , n− 1

for i := 0, . . . ,m− 1

for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j︸ ︷︷ ︸

axpy
end

 γi,j := ãTi bj + γi,j

end


cj := Abj + cj︸ ︷︷ ︸

mv mult

end
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• multiple rank-1 updates:

C := a0b̃
T
0 + a1b̃

T
1 + · · ·+ ak−1b̃

T
k−1 + C

illustrated by

This hides the two inner loops of the triple nested loop in the rank-1
update:

for p := 0, . . . , k − 1

for j := 0, . . . , n− 1

for i := 0, . . . ,m− 1
γi,j := αi,pβp,j + γi,j

end

 cj := βp,jap + cj︸ ︷︷ ︸
axpy

end


C := apb̃

T
p + C︸ ︷︷ ︸

rank-1 update

end

and
for p := 0, . . . , k − 1

for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1
γi,j := αi,pβp,j + γi,j

end

 c̃Ti := αi,pb̃
T
p + c̃Ti︸ ︷︷ ︸

axpy
end


C := apb̃

T
p + C︸ ︷︷ ︸

rank-1 update

end

• multiple row times matrix multiplications:
c̃T0
c̃T1
...

c̃Tm−1

 :=


ãT0 B + c̃T0
ãT1 B + c̃T1

...
ãTm−1B + c̃Tm−1
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illustrated by

This hides the two inner loops of the triple nested loop in multiplications
of rows with matrix B:

for i := 0, . . . ,m− 1

for j := 0, . . . , n− 1

for p := 0, . . . , k − 1
γi,j := αi,pβp,j + γi,j

end

 γ̃i,j := ãTi bj + γ̃i,j︸ ︷︷ ︸
dot

end


c̃Ti := ãTi B + c̃Ti︸ ︷︷ ︸
row-matrix mult

end

and

for i := 0, . . . ,m− 1

for p := 0, . . . , k − 1

for j := 0, . . . , n− 1
γi,j := αi,pβp,j + γi,j

end

 c̃Ti := αi,pb̃
T
p + c̃Ti︸ ︷︷ ︸

axpy
end


c̃Ti := ãTi B + c̃Ti︸ ︷︷ ︸
row-matrix mult

end

This summarizes all six loop orderings for matrix-matrix multiplication.

While it would be tempting to hope that a compiler would translate any of
the six loop orderings into high-performance code, this is an optimistic dream.
Our experiments shows that the order in which the loops are ordered has a
nontrivial effect on performance:
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We have observed that accessing matrices by columns, so that the most
frequently loaded data is contiguous in memory, yields better performance.

Those who did the additional exercises in Unit 1.6.1 found out that casting
compution in terms of matrix-vector or rank-1 update operations in the BLIS
typed API or the BLAS interface, when linked to an optimized implementation
of those interfaces, yields better performance.
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Week 2

Start Your Engines

2.1 Opening Remarks

2.1.1 Launch

YouTube: https://www.youtube.com/watch?v=YJasouTMgXg
Last week, you compared the performance of a number of different im-

plementations of matrix-matrix multiplication. At the end of Unit 1.2.4 you
found that the JPI ordering did much better than the other orderings, and you
probably felt pretty good with the improvement in performance you achieved:

77

https://www.youtube.com/watch?v=YJasouTMgXg
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Homework 2.1.1.1 In directory Assignments/Week2/C/ execute
make JPI

and view the results with the Live Script in Assignments/Week2/C/data/Plot_Opener.mlx.
(This may take a little while, since the Makefile now specifies that the largest
problem to be executed is m = n = k = 1500.)

Next, change that Live Script to also show the performance of the reference
implementation provided by BLIS: Change

% Optionally show the reference implementation performance data
if ( 0 )

to

% Optionally show the reference implementation performance data
if ( 1 )

and rerun the Live Script. This adds a plot to the graph for the reference
implementation.

What do you observe? Now are you happy with the improvements you
made in Week 1?
Solution. On Robert’s laptop:
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Left: Plotting only simple implementations from Week 1. Right: Adding
the performance of the reference implementation provided by BLIS.

Note: the performance in the graph on the left may not exactly match that
in the graph earlier in this unit. My laptop does not always attain the same
performance. When a processor gets hot, it "clocks down." This means the
attainable performance goes down. A laptop is not easy to cool, so one would
expect more fluxuation than when using, for example, a desktop or a server.

YouTube: https://www.youtube.com/watch?v=eZaq451nuaE

Remark 2.1.1 What you notice is that we have a long way to go... By the end
of Week 3, you will discover how to match the performance of the "reference"
implementation.

It is useful to understand what the peak performance of a processor is. We
always tell our students "What if you have a boss who simply keeps insisting
that you improve performance. It would be nice to be able convince such a
person that you are near the limit of what can be achieved." Unless, of course,
you are paid per hour and have complete job security. Then you may decide
to spend as much time as your boss wants you to!

Later this week, you learn that modern processors employ parallelism in
the floating point unit so that multiple flops can be executed per cycle. In the
case of the CPUs we target, 16 flops can be executed per cycle.

Homework 2.1.1.2 Next, you change the Live Script so that the top of the
graph represents the theoretical peak of the core. Change
% Optionally change the top of the graph to capture the theoretical peak

if ( 0 )
turbo_clock_rate = 4.3;
flops_per_cycle = 16;

to

https://www.youtube.com/watch?v=eZaq451nuaE
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% Optionally change the top of the graph to capture the theoretical peak
if ( 1 )
turbo_clock_rate = ?.?;
flops_per_cycle = 16;

where ?.? equals the turbo clock rate (in GHz) for your processor. (See
Unit 0.3.1 on how to find out information about your processor).

Rerun the Live Script. This changes the range of the y-axis so that the top
of the graph represents the theoretical peak of one core of your processor.

What do you observe? Now are you happy with the improvements you
made in Week 1?
Solution. Robert’s laptop has a turbo clock rate of 4.3 GHz:

Notice that the clock rate of your processor changes with circumstances.
The performance in the different graphs is not consistent and when one runs this
experiment at different times on my laptop, it reports different performance.
On a properly cooled Linux desktop or server, you will probably see much more
consistent performance.

YouTube: https://www.youtube.com/watch?v=XfwPVkDnZF0

https://www.youtube.com/watch?v=XfwPVkDnZF0
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2.1.2 Outline Week 2

• 2.1 Opening Remarks

◦ 2.1.1 Launch
◦ 2.1.2 Outline Week 2
◦ 2.1.3 What you will learn

• 2.2 Blocked Matrix-Matrix Multiplication

◦ 2.2.1 Basic idea
◦ 2.2.2 Haven’t we seen this before?

• 2.3 Blocking for Registers

◦ 2.3.1 A simple model of memory and registers
◦ 2.3.2 Simple blocking for registers
◦ 2.3.3 Streaming Ai,p and Bp,j
◦ 2.3.4 Combining loops
◦ 2.3.5 Alternative view

• 2.4 Optimizing the Micro-kernel

◦ 2.4.1 Vector registers and instructions
◦ 2.4.2 Implementing the micro-kernel with vector instructions
◦ 2.4.3 Details
◦ 2.4.4 More options
◦ 2.4.5 Optimally amortizing data movement

• 2.5 Enrichments

◦ 2.5.1 Lower bound on data movement

• 2.6 Wrap Up

◦ 2.6.1 Additional exercises
◦ 2.6.2 Summary

2.1.3 What you will learn

In this week, we learn how to attain high performance for small matrices by
exploiting instruction-level parallelism.

Upon completion of this week, we will be able to

• Realize the limitations of simple implementations by comparing their per-
formance to that of a high-performing reference implementation.

• Recognize that improving performance greatly doesn’t necessarily yield
good performance.
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• Determine the theoretical peak performance of a processing core.

• Orchestrate matrix-matrix multiplication in terms of computations with
submatrices.

• Block matrix-matrix multiplication for registers.

• Analyze the cost of moving data between memory and registers.

• Cast computation in terms of vector intrinsic functions that give access
to vector registers and vector instructions.

• Optimize the micro-kernel that will become our unit of computation for
future optimizations.

The enrichments introduce us to

• Theoretical lower bounds on how much data must be moved between
memory and registers when executing a matrix-matrix multiplication.

• Strassen’s algorithm for matrix-matrix multiplication.

2.2 Blocked Matrix-Matrix Multiplication

2.2.1 Basic idea

YouTube: https://www.youtube.com/watch?v=9t_Ux_7K-8M

Remark 2.2.1 If the material in this section makes you scratch your head, you
may want to go through the materials in Week 5 of our other MOOC: Linear
Algebra: Foundations to Frontiers.

Key to understanding how we are going to optimize matrix-matrix multi-
plication is to understand blocked matrix-matrix multiplication (the multipli-
cation of matrices that have been partitioned into submatrices).

Consider C := AB+C. In terms of the elements of the matrices, this means
that each γi,j is computed by

γi,j :=
k−1∑
p=0

αi,pβp,j + γi,j .

https://www.youtube.com/watch?v=9t_Ux_7K-8M
http://ulaff.net
http://ulaff.net
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Now, partition the matrices into submatrices:

C =


C0,0 C0,1 · · · C0,N−1
C1,0 C1,1 · · · C1,N−1
...

...
...

CM−1,0 CM−1,1 · · · CM−1,N−1

 ,

A =


A0,0 A0,1 · · · A0,K−1
A1,0 A1,1 · · · A1,K−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,K−1

 ,
and

B =


B0,0 B0,1 · · · B0,N−1
B1,0 B1,1 · · · B1,N−1
...

...
...

BK−1,0 BK−1,1 · · · BK−1,N−1

 ,
where Ci,j is mi× nj , Ai,p is mi× kp, and Bp,j is kp× nj , with

∑M−1
i=0 mi = m,∑N−1

j=0 ni = n, and
∑K−1
p=0 ki = k. Then

Ci,j :=
K−1∑
p=0

Ai,pBp,j + Ci,j .

Remark 2.2.2 In other words, provided the partitioning of the matrices is
"conformal," matrix-matrix multiplication with partitioned matrices proceeds
exactly as does matrix-matrix multiplication with the elements of the matrices
except that the individual multiplications with the submatrices do not neces-
sarily commute.

We illustrate how to block C into mb × nb submatrices, A into mb × kb
submatrices, and B into kb × nb submatrices in Figure 2.2.3

Figure 2.2.3: An illustration of a blocked algorithm where mb = nb = kb = 4.

The blocks used when updating C1,2 := A1,3B3,2 + C1,2 is highlighted in
that figure.

An implementation of one such algorithm is given in Figure 2.2.4.
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void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int j=0; j<n; j+=NB ){
int jb = min( n-j, NB ); /* Size for "fringe" block */
for ( int i=0; i<m; i+=MB ){

int ib = min( m-i, MB ); /* Size for "fringe" block */
for ( int p=0; p<k; p+=KB ){
int pb = min( k-p, KB ); /* Size for "fringe" block */
Gemm_PJI( ib, jb, pb, &alpha( i,p ), ldA, &beta( p,j ), ldB,

&gamma( i,j ), ldC );
}

}
}

}

void Gemm_PJI( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int p=0; p<k; p++ )
for ( int j=0; j<n; j++ )
for ( int i=0; i<m; i++ )

gamma( i,j ) += alpha( i,p ) * beta( p,j );
}

Figure 2.2.4: Simple blocked algorithm that calls Gemm_PJI which in this
setting updates a mb × nb submatrix of C with the result of multiplying an
mb × kb submatrix of A times a kb × nb submatrix of B.

Homework 2.2.1.1 In directory Assignments/Week2/C, examine the code in
file Assignments/Week2/C/Gemm_JIP_PJI.c. Time it by executing
make JIP_PJI

View its performance with Assignments/Week2/C/data/Plot_Blocked_MMM.mlx

Solution. When MB=4, NB=4, and KB=4 in Gemm_JIP_PJI, the performance
looks like

Assignments/Week2/C/Gemm_JIP_PJI.c
Assignments/Week2/C/data/Plot_Blocked_MMM.mlx
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on Robert’s laptop.

YouTube: https://www.youtube.com/watch?v=GIf4qRxYA6g

Homework 2.2.1.2 Examine the graph created by Plot_Blocked_MMM.mlx.
What block sizes MB and NB would you expect to yield better performance?
Change these in Gemm_JIP_PJI.c and execute
make JIP_PJI

View the updated performance with Assignments/Week2/C/data/Plot_Blocked_

MMM.mlx (Don’t worry about trying to pick the best block size. We’ll get to that
later.)
Solution. When we choose MB=100, NB=100, and KB=100 better performance
is maintained as the problem size gets larger:

https://www.youtube.com/watch?v=GIf4qRxYA6g
Assignments/Week2/C/data/Plot_Blocked_MMM.mlx
Assignments/Week2/C/data/Plot_Blocked_MMM.mlx
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This is because the subproblems now fit is one of the caches. More on this
later in this week.

YouTube: https://www.youtube.com/watch?v=o9YEFPgDek0

2.2.2 Haven’t we seen this before?

We already employed various cases of blocked matrix-matrix multiplication in
Section 1.3.

Homework 2.2.2.1 In Section 1.3, we already used the blocking of matri-
ces to cast matrix-matrix multiplications in terms of dot products and axpy
operations. This is captured in

https://www.youtube.com/watch?v=o9YEFPgDek0
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Figure 2.2.5: Click here to enlarge.

For each of partitionings in the right column, indicate how mb, nb, and kb
are chosen.

Homework 2.2.2.2 In Section 1.3 and Section 1.4, we also already used the
blocking of matrices to cast matrix-matrix multiplications in terms of matrix-
vector multiplication and rank-1 updates. This is captured in

Figure 2.2.6: Click here to enlarge.

For each of partitionings in the right column, indicate how mb, nb, and kb
are chosen.
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2.3 Blocking for Registers

2.3.1 A simple model of memory and registers

YouTube: https://www.youtube.com/watch?v=-DZuJfu1t1Q
For computation to happen, input data must be brought from memory into

registers and, sooner or later, output data must be written back to memory.
For now let us make the following assumptions:

• Our processor has only one core.

• That core only has two levels of memory: registers and main memory, as
illustrated in Figure 2.3.1.

Figure 2.3.1: A simple model of the memory hierarchy: slow memory and
fast registers.

• Moving data between main memory and registers takes time βR↔M per
double. The R ↔ M is meant to capture movement between registers
(R) and memory (M).

• The registers can hold 64 doubles.

• Performing a flop with data in registers takes time γR.

• Data movement and computation cannot overlap.

Later, we will refine some of these assumptions.

https://www.youtube.com/watch?v=-DZuJfu1t1Q
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2.3.2 Simple blocking for registers

YouTube: https://www.youtube.com/watch?v=9-cy_4JPLWw
Let’s first consider blocking C, A, and B into 4×4 submatrices. If we store

all three submatrices in registers, then 3 × 4 × 4 = 48 doubles are stored in
registers.

Remark 2.3.2 Yes, we are not using all registers (since we assume registers
can hold 64 doubles). We’ll get to that later.

Let us call the routine that computes with three blocks "the kernel". Now
the blocked algorithm is a triple-nested loop around a call to this kernel, as
captured by the following triple-nested loop

for j := 0, . . . , N − 1
for i := 0, . . . ,M − 1

for p := 0, . . . ,K − 1
Load Ci,j , Ai,p, and Bp,j into registers
Ci,j := Ai,pBp,j + Ci,j
Store Ci,j to memory

end
end

end

and illustrated by

where we use the subscript "R" to indicate it is a block size that targets
registers.

Remark 2.3.3 For our discussion, it is important to order the p loop last. Next
week, it will become even more important to order loops around the kernel in
a specific order. We are picking the JIP order here in preparation for that. If
you feel like it, you can play with the IJP order (around the kernel) to see how
it compares.

https://www.youtube.com/watch?v=9-cy_4JPLWw
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YouTube: https://www.youtube.com/watch?v=NurvjVEo9nA
The time required to execute this algorithm under our model is given by

MNK︸ ︷︷ ︸
numb.

of MMM
with blocks


(mRnR +mRkR + kRnR)βR↔M︸ ︷︷ ︸
Load blocks of A,B, and C

+ 2mRnRkRγR︸ ︷︷ ︸
multiplication
with blocks

+ mRnRβR↔M︸ ︷︷ ︸
Write block of C


= < rearrange >

2(MmR)(NnR)(KkR)γR + 2(MmR)(NnR)KβR↔M
+ (MmR)N(KkR)βR↔M +M(NnR)(KkR)βR↔M

= < simplify, distribute, commute, etc. >
2mnkγR︸ ︷︷ ︸

useful computation
+ mnk( 2

kR
+ 1
nR

+ 1
mR

)βR↔M ,︸ ︷︷ ︸
overhead

since M = m/mR , N = n/nR, and K = k/kR. (Here we assume that m, n,
and k are integer multiples of mR, nR, and kR.)

Remark 2.3.4 The time spent in computation,

2mnkγR,

is useful time and the time spent in loading and storing data,

mnk( 2
kR

+ 1
nR

+ 1
mR

)βR↔M ,

is overhead.

Next, we recognize that since the loop indexed with p is the inner-most
loop, the loading and storing of Ci,j does not need to happen before every call

https://www.youtube.com/watch?v=NurvjVEo9nA


2.3. BLOCKING FOR REGISTERS 91

to the kernel, yielding the algorithm

for i := 0, . . . ,M − 1
for j := 0, . . . , N − 1

Load Ci,j into registers
for p := 0, . . . ,K − 1

Load Ai,p, and Bp,j into registers
Ci,j := Ai,pBp,j + Ci,j

end
Store Ci,j to memory

end
end

as illustrated by

Homework 2.3.2.1 In detail explain the estimated cost of this modified algo-
rithm.
Solution.

MNK(2mRnRkR)γR + [MN(2mRnR) +MNK(mRkR + kRnR)]βR↔M
= 2mnkγR +

[
2mn+mnk( 1

nR
+ 1

mR
)
]
βR↔M .

Here

• 2mnkγR is time spent in useful computation.

•
[
2mn+mnk( 1

nR
+ 1

mR
)
]
βR↔M is time spent moving data around, which

is overhead.

YouTube: https://www.youtube.com/watch?v=hV7FmIDR4r8

Homework 2.3.2.2 In directory Assignments/Week2/C copy the file Assignments/
Week2/C/Gemm_JIP_PJI.c into Gemm_JI_PJI.c and combine the loops indexed by
P, in the process "removing" it from MyGemm. Think carefully about how the

https://www.youtube.com/watch?v=hV7FmIDR4r8
Assignments/Week2/C/Gemm_JIP_PJI.c
Assignments/Week2/C/Gemm_JIP_PJI.c
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call to Gemm_PJI needs to be changed:
• What is the matrix-matrix multiplication that will now be performed by

Gemm_PJI?

• How do you express that in terms of the parameters that are passed to
that routine?

(Don’t worry about trying to pick the best block size. We’ll get to that later.)
You can test the result by executing

make JI_PJI

View the performance by making the appropriate changes to Assignments/Week2/

C/data/Plot_Blocked_MMM.mlx.
Solution. Assignments/Week2/Answers/Gemm_JI_PJI.c

This is the performance on Robert’s laptop, with MB=NB=KB=100:

The performance you observe may not really be an improvement relative
to Gemm_JIP_PJI.c. What we observe here may be due to variation in the
conditions under which the performance was measured.

Assignments/Week2/C/data/Plot_Blocked_MMM.mlx
Assignments/Week2/C/data/Plot_Blocked_MMM.mlx
Assignments/Week2/Answers/Gemm_JI_PJI.c
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2.3.3 Streaming Ai,p and Bp,j

YouTube: https://www.youtube.com/watch?v=62WAIASy1BA
Now, if the submatrix Ci,j were larger (i.e., mR and nR were larger), then

the time spent moving data around (overhead),[
2mn+mnk( 1

nR
+ 1
mR

)
]
βR↔M ,

is reduced:
1
nR

+ 1
mR

decreases as mR and nR increase. In other words, the larger the submatrix of
C that is kept in registers, the lower the overhead (under our model). Before
we increase mR and nR, we first show how for fixed mR and nR the number
of registers that are needed for storing elements of A and B can be reduced,
which then allows mR and nR to (later this week) be increased in size.

Recall from Week 1 that if the p loop of matrix-matrix multiplication is the
outer-most loop, then the inner two loops implement a rank-1 update. If we
do this for the kernel, then the result is illustrated by

If we now consider the computation

we recognize that after each rank-1 update, the column of Ai,p and row
of Bp,j that participate in that rank-1 update are not needed again in the
computation of Ci,j := Ai,pBp,j + Ci,j . Thus, only room for one such column
of Ai,p and one such row of Bp,j needs to be reserved in the registers, reducing
the total number of doubles that need to be stored in registers to

mR × nR +mR + nR.

https://www.youtube.com/watch?v=62WAIASy1BA
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If mR = nR = 4 this means that 16 + 4 + 4 = 24 doubles in registers. If we
now view the entire computation performed by the loop indexed with p, this
can be illustrated by

and implemented as

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i+=MR ) /* m assumed to be multiple of MR */
for ( int j=0; j<n; j+=NR ) /* n assumed to be multiple of NR */

for ( int p=0; p<k; p+=KR ) /* k assumed to be multiple of KR */
Gemm_P_Ger( MR, NR, KR, &alpha( i,p ), ldA,

&beta( p,j ), ldB, &gamma( i,j ), ldC );
}

void Gemm_P_Ger( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int p=0; p<k; p++ )
MyGer( m, n, &alpha( 0,p ), 1, &beta( p,0 ), ldB, C, ldC );

}

Figure 2.3.5: Blocked matrix-matrix multiplication with kernel that casts
Ci,j = Ai,pBp,j + Ci,j in terms of rank-1 updates.

Homework 2.3.3.1 In directory Assignments/Week2/C examine the file Assignments/
Week2/C/Gemm_JIP_P_Ger.c Execute it with
make JIP_P_Ger

and view its performance with Assignments/Week2/C/data/Plot_register_blocking.

mlx.
Solution. This is the performance on Robert’s laptop, with MB=NB=KB=4:

Assignments/Week2/C/Gemm_JIP_P_Ger.c
Assignments/Week2/C/Gemm_JIP_P_Ger.c
Assignments/Week2/C/data/Plot_register_blocking.mlx
Assignments/Week2/C/data/Plot_register_blocking.mlx
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The performance is pathetic. It will improve!
It is tempting to start playing with the parameters MB, NB, and KB. How-

ever, the point of this exercise is to illustrate the discussion about casting the
multiplication with the blocks in terms of a loop around rank-1 updates.

Remark 2.3.6 The purpose of this implementation is to emphasize, again,
that the matrix-matrix multiplication with blocks can be orchestratred as a
loop around rank-1 updates, as you already learned in Unit 1.4.2.

2.3.4 Combining loops

YouTube: https://www.youtube.com/watch?v=H8jvyd0NO4M
What we now recognize is that matrices A and B need not be partitioned

into mR × kR and kR × nR submatrices (respectively). Instead, A can be
partitioned into mR × k row panels and B into k × nR column panels:

https://www.youtube.com/watch?v=H8jvyd0NO4M
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Another way of looking at this is that the inner loop indexed with p in
the blocked algorithm can be combined with the outer loop of the kernel. The
entire update of the mR × nR submatrix of C can then be pictured as

This is the computation that will later become instrumental in optimizing
and will be called the micro-kernel.

Homework 2.3.4.1 In directory Assignments/Week2/C copy the file Assignments/
Week2/C/Gemm_JIP_P_Ger.c into Gemm_JI_P_Ger.c and remove the p loop from
MyGemm. Execute it with
make JI_P_Ger

and view its performance with Assignments/Week2/C/data/Plot_register_blocking.

mlx

Solution.

• Assignments/Week2/Answers/Gemm_JI_P_Ger.c

This is the performance on Robert’s laptop, with MB=NB=KB=4:

Assignments/Week2/C/Gemm_JIP_P_Ger.c
Assignments/Week2/C/Gemm_JIP_P_Ger.c
Assignments/Week2/C/data/Plot_register_blocking.mlx
Assignments/Week2/C/data/Plot_register_blocking.mlx
Assignments/Week2/Answers/Gemm_JI_P_Ger.c
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The performance does not really improve, and continues to be pathetic.
Again, it is tempting to start playing with the parameters MB, NB, and KB.

However, the point of this exercise is to illustrate the discussion about how
the loops indexed with p can be combined, casting the multiplication with the
blocks in terms of a loop around rank-1 updates.

Homework 2.3.4.2 In detail explain the estimated cost of the implementation
in Homework 2.3.4.1.
Solution. Bringing Ai,p one column at a time into registers and Bp,j one row
at a time into registers does not change the cost of reading that data. So, the
cost of the resulting approach is still estimated as

MNK(2mRnRkR)γR + [MN(2mRnR) +MNK(mRkR + kRnR)]βR↔M
= 2mnkγR +

[
2mn+mnk( 1

nR
+ 1

mR
)
]
βR↔M .

Here

• 2mnkγR is time spent in useful computation.

•
[
2mn+mnk( 1

nR
+ 1

mR
)
]
βR↔M is time spent moving data around, which

is overhead.

The important insight is that now only the mR × nR micro-tile of C, one
small column A of size mR one small row of B of size nR need to be stored in
registers. In other words, mR × nR +mR + nR doubles are stored in registers
at any one time.

One can go one step further: Each individual rank-1 update can be imple-
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mented as a sequence of axpy operations:


γ0,0 γ0,1 γ0,2 γ0,3
γ1,0 γ1,1 γ1,2 γ1,3
γ2,0 γ2,1 γ2,2 γ2,3
γ3,0 γ3,1 γ3,2 γ3,3

+ :=


α0,p
α1,p
α2,p
α3,p

( βp,0 βp,1 βp,2 βp,3
)

=

 βp,0


α0,p
α1,p
α2,p
α3,p

 βp,1


α0,p
α1,p
α2,p
α3,p

 βp,2


α0,p
α1,p
α2,p
α3,p

 βp,3


α0,p
α1,p
α2,p
α3,p


 .

Here we note that if the block of C is updated one column at a time, the
corresponding element of B, βp,j in our discussion, is not reused and hence
only one register is needed for the elements of B. Thus, when mR = nR = 4,
we have gone from storing 48 doubles in registers to 24 and finally to only
21 doubles.. More generally, we have gone from mRnR + mRkR + kRnR to
mRnR +mR + nR to

mRnR +mR + 1

doubles.
Obviously, one could have gone further yet, and only store one element

αi,p at a time. However, in that case one would have to reload such elements
multiple times, which would adversely affect overhead.

2.3.5 Alternative view

YouTube: https://www.youtube.com/watch?v=FsRIYsoqrms
We can arrive at the same algorithm by partitioning

C =


C0,0 C0,1 · · · C0,N−1
C1,0 C1,1 · · · C1,N−1
...

...
...

CM−1,0 CM,1 · · · CM−1,N−1

 , A =


A0
A1
...

AM−1

 ,

and
B =

(
B0 B1 · · · B0,N−1

)
,

where Ci,j is mR × nR, Ai is mR × k, and Bj is k × nR. Then computing

https://www.youtube.com/watch?v=FsRIYsoqrms
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C := AB + C means updating Ci,j := AiBj + Ci,j for all i, j:

for j := 0, . . . , N − 1
for i := 0, . . . ,M − 1

Ci,j := AiBj + Ci,j Computed with the micro-kernel

end
end

Obviously, the order of the two loops can be switched. Again, the computation
Ci,j := AiBj + Ci,j where Ci,j fits in registers now becomes what we will call
the micro-kernel.

2.4 Optimizing the Micro-kernel

2.4.1 Vector registers and instructions

YouTube: https://www.youtube.com/watch?v=9L_0XNGuhv4
While the last unit introduced the notion of registers, modern CPUs ac-

celerate computation by computing with small vectors of of numbers (double)
simultaneously.

As the reader should have noticed by now, in matrix-matrix multiplication
for every floating point multiplication a corresponding floating point addition
is encountered to accumulate the result:

γi,j := αi,pβp,j + γi,j

For this reason, such floating point computations are usually cast in terms
of fused multiply add ( FMA) operations, performed by a floating point unit
(FPU) of the core.

What is faster than computing one FMA at a time? Computing multiple
FMAs at a time! For this reason, modern cores compute with small vectors of
data, performing the same FMA on corresponding elements in those vectors,
which is referred to as "SIMD" computation: Single-Instruction, Multiple Data.

https://www.youtube.com/watch?v=9L_0XNGuhv4
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This exploits instruction-level parallelism.
Let’s revisit the computation

γ0,0 γ0,1 γ0,2 γ0,3
γ1,0 γ1,1 γ1,2 γ1,3
γ2,0 γ2,1 γ2,2 γ2,3
γ3,0 γ3,1 γ3,2 γ3,3

+ :=


α0,p
α1,p
α2,p
α3,p

( βp,0 βp,1 βp,2 βp,3
)

= βp,0


α0,p
α1,p
α2,p
α3,p

+ βp,1


α0,p
α1,p
α2,p
α3,p

+ βp,2


α0,p
α1,p
α2,p
α3,p

+ βp,3


α0,p
α1,p
α2,p
α3,p


that is at the core of the micro-kernel.

If a vector register has length four, then it can store four (double precision)
numbers. Let’s load one such vector register with a column of the submatrix of
C, a second vector register with the vector from A, and a third with an element
of B that has been duplicated:

γ0,0
γ1,0
γ2,0
γ3,0

α0,p
α1,p
α2,p
α3,p

βp,0
βp,0
βp,0
βp,0

A vector instruction that simultaneously performs FMAs with each tuple (γi,0, αi,p, βp,0)
can then be performed:

γ0,0
γ1,0
γ2,0
γ3,0

+ :=
+ :=
+ :=
+ :=

α0,p
α1,p
α2,p
α3,p

×
×
×
×

βp,0
βp,0
βp,0
βp,0

You may recognize that this setup is ideal for performing an axpy operation
with a small vector (of size 4 in this example).

2.4.2 Implementing the micro-kernel with vector instructions

YouTube: https://www.youtube.com/watch?v=VhCUf9tPteU

Remark 2.4.1 This unit is one of the most important ones in the course.
Take your time to understand it. The syntax of the intrinsic library is less
important than the concepts: as new architectures become popular, new vector
instructions will be introduced.

https://www.youtube.com/watch?v=VhCUf9tPteU
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In this section, we are going to AVX2 vector instruction set to illustrate
the ideas. Vector intrinsic functions support the use of these instructions from
within the C programming language. You discover how the intrinsic operations
are used by incorporating them into an implemention of the micro-kernel for
the case where mR × nR = 4 × 4. Thus, for the remainder of this unit, C is
mR × nR = 4× 4, A is mR × k = 4× k, and B is k × nR = k × 4.

The architectures we target have 256 bit vector registers, which mean they
can store four double precision floating point numbers. Vector operations with
vector registers hence operate with vectors of size four.

Let’s recap: Partitioning

C =


C0,0 · · · C0,N−1
...

...
CM−1,0 · · · CM−1,N−1

 ,

A =


A0
...

AM−1

 , B =
(
B0 · · · BN−1

)
,

the algorithm we discovered in Section 2.3 is given by

for i := 0, . . . ,M − 1
for j := 0, . . . , N − 1

Load Ci,j into registers
Ci,j := AiBj + Ci,j with micro− kernel
Store Ci,j to memory

end
end

and translates into the code in Figure 2.4.2.

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
if ( m % MR != 0 || n % NR != 0 ){
printf( "m and n must be multiples of MR and NR, respectively \n" );
exit( 0 );

}

for ( int j=0; j<n; j+=NR ) /* n is assumed to be a multiple of NR */
for ( int i=0; i<m; i+=MR ) /* m is assumed to be a multiple of MR */
Gemm_MRxNRKernel( k, &alpha( i,0 ), ldA, &beta( 0,j ), ldB, &gamma( i,j ), ldC );

}

Figure 2.4.2: General routine for calling a mR × nR kernel in Assignments/

Week2/C/Gemm_JI_MRxNRKernel.c. The constants MR and NR are specified at com-
pile time by passing -D'MR=??' and -D'NR=??' to the compiler, where
the ??s equal the desired choices of mR and nR (see also the Makefile in
Assignments/Week2/C).

Assignments/Week2/C/Gemm_JI_MRxNRKernel.c
Assignments/Week2/C/Gemm_JI_MRxNRKernel.c
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Let’s drop the subscripts, and focus on computing C+ := AB when C is
4× 4, with the micro-kernel. This translates to the computation


γ0,0 γ0,1 γ0,2 γ0,3
γ1,0 γ1,1 γ1,2 γ1,3
γ2,0 γ2,1 γ2,2 γ2,3
γ3,0 γ3,1 γ3,2 γ3,3



+ :=


α0,0 α0,1 · · ·
α1,0 α1,1 · · ·
α2,0 α2,1 · · ·
α3,0 α3,1 · · ·


 β0,0 β0,1 β0,2 β0,3
β1,0 β1,1 β1,2 β1,3
...

...
...

...



=


α0,0β0,0+α0,1β1,0+· · · α0,0β0,1+α0,1β1,1+· · · α0,0β0,2+α0,1β1,2+· · · α0,0β0,2+α0,1β1,2+· · ·
α1,0β0,0+α1,1β1,0+· · · α1,0β0,1+α1,1β1,1+· · · α1,0β0,2+α1,1β1,2+· · · α1,0β0,3+α1,1β1,3+· · ·
α2,0β0,0+α2,1β1,0+· · · α2,0β0,1+α2,1β1,1+· · · α2,0β0,2+α2,1β1,2+· · · α2,0β0,3+α2,1β1,3+· · ·
α3,0β0,0+α3,1β1,0+· · · α3,0β0,1+α3,1β1,1+· · · α3,0β0,2+α3,1β1,2+· · · α3,0β0,3+α3,1β1,3+· · ·



=


α0,0
α1,0
α2,0
α3,0

( β0,0 β0,1 β0,2 β0,3
)

+


α0,1
α1,1
α2,1
α3,1

( β1,0 β1,1 β1,2 β1,3
)

+ · · ·

Thus, updating 4 × 4 matrix C can be implemented as a loop around rank-1
updates:

for p = 0, . . . , k − 1
γ0,0 γ0,1 γ0,2 γ0,3
γ1,0 γ1,1 γ1,2 γ1,3
γ2,0 γ2,1 γ2,2 γ2,3
γ3,0 γ3,1 γ3,2 γ3,3

+ :=


α0,p
α1,p
α2,p
α3,p

( βp,0 βp,1 βp,2 βp,3
)

end

or, equivalently to emphasize computations with vectors,

for p = 0, . . . , k − 1
γ0,0+ := α0,p × βp,0
γ1,0+ := α1,p × βp,0
γ2,0+ := α2,p × βp,0
γ3,0+ := α3,p × βp,0

γ0,1+ := α0,p × βp,1
γ1,1+ := α1,p × βp,1
γ2,1+ := α2,p × βp,1
γ3,1+ := α3,p × βp,1

γ0,2+ := α0,p × βp,2
γ1,2+ := α1,p × βp,2
γ2,2+ := α2,p × βp,2
γ3,2+ := α3,p × βp,2

γ0,3+ := α0,p × βp,3
γ1,3+ := α1,p × βp,3
γ2,3+ := α2,p × βp,3
γ3,3+ := α3,p × βp,3


end

This, once again, shows how matrix-matrix multiplication can be cast in terms
of a sequence of rank-1 updates, and that a rank-1 update can be implemented
in terms of axpy operations with columns of C. This micro-kernel translates
into the code that employs vector instructions, given in Figure 2.4.3. We hope
that the instrinsic function calls are relatively self-explanatory. However, you
may want to consult Intel’s Intrinsics Reference Guide. When doing so, you
may want to search on the name of the routine, without checking the AVX2
box on the left.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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#include <immintrin.h>

void Gemm_MRxNRKernel( int k, double *A, int ldA, double *B, int ldB,
double *C, int ldC )

{
/* Declare vector registers to hold 4x4 C and load them */
__m256d gamma_0123_0 = _mm256_loadu_pd( &gamma( 0,0 ) );
__m256d gamma_0123_1 = _mm256_loadu_pd( &gamma( 0,1 ) );
__m256d gamma_0123_2 = _mm256_loadu_pd( &gamma( 0,2 ) );
__m256d gamma_0123_3 = _mm256_loadu_pd( &gamma( 0,3 ) );

for ( int p=0; p<k; p++ ){
/* Declare vector register for load/broadcasting beta( p,j ) */
__m256d beta_p_j;

/* Declare a vector register to hold the current column of A and load
it with the four elements of that column. */

__m256d alpha_0123_p = _mm256_loadu_pd( &alpha( 0,p ) );

/* Load/broadcast beta( p,0 ). */
beta_p_j = _mm256_broadcast_sd( &beta( p, 0) );

/* update the first column of C with the current column of A times
beta ( p,0 ) */

gamma_0123_0 = _mm256_fmadd_pd( alpha_0123_p, beta_p_j, gamma_0123_0 );

/* REPEAT for second, third, and fourth columns of C. Notice that the
current column of A needs not be reloaded. */

}

/* Store the updated results */
_mm256_storeu_pd( &gamma(0,0), gamma_0123_0 );
_mm256_storeu_pd( &gamma(0,1), gamma_0123_1 );
_mm256_storeu_pd( &gamma(0,2), gamma_0123_2 );
_mm256_storeu_pd( &gamma(0,3), gamma_0123_3 );

}

Figure 2.4.3: Partially instantiated mR×nR kernel for the case where mR =
nR = 4 (see Assignments/Week2/C/Gemm_4x4Kernel.c).

An illustration of how Figure 2.4.2 and Figure 2.4.3 compute is found in
Figure 2.4.4.

Assignments/Week2/C/Gemm_4x4Kernel.c
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Figure 2.4.4: Illustration of how the routines in Figure 2.4.2 and Figure 2.4.3
indexes into the matrices.

2.4.3 Details

In this unit, we give details regarding the partial code in Figure 2.4.3 and
illustrated in Figure 2.4.4.

To use the intrinsic functions, we start by including the header file immintrin.h.

#include <immintrin.h>

The declaration

__m256d gamma_0123_0 = _mm256_loadu_pd( &gamma( 0,0 ) );

creates gamma_0123_0 as a variable that references a vector register with four
double precision numbers and loads it with the four numbers that are stored
starting at address

&gamma( 0,0 )

In other words, it loads that vector register with the original values
γ0,0
γ1,0
γ2,0
γ3,0

 .
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This is repeated for the other three columns of C:

__m256d gamma_0123_1 = _mm256_loadu_pd( &gamma( 0,1 ) );
__m256d gamma_0123_2 = _mm256_loadu_pd( &gamma( 0,2 ) );
__m256d gamma_0123_3 = _mm256_loadu_pd( &gamma( 0,3 ) );

The loop in Figure 2.4.2 implements

for p = 0, . . . , k − 1
γ0,0+ := α0,p × βp,0
γ1,0+ := α1,p × βp,0
γ2,0+ := α2,p × βp,0
γ3,0+ := α3,p × βp,0

γ0,1+ := α0,p × βp,1
γ1,1+ := α1,p × βp,1
γ2,1+ := α2,p × βp,1
γ3,1+ := α3,p × βp,1

γ0,2+ := α0,p × βp,2
γ1,2+ := α1,p × βp,2
γ2,2+ := α2,p × βp,2
γ3,2+ := α3,p × βp,2

γ0,3+ := α0,p × βp,3
γ1,3+ := α1,p × βp,3
γ2,3+ := α2,p × βp,3
γ3,3+ := α3,p × βp,3


end

leaving the result in the vector registers. Each iteration starts by declaring
vector register variable alpha_0123_p and loading it with the contents of

α0,p
α1,p
α2,p
α3,p

 .

__m256d alpha_0123_p = _mm256_loadu_pd( &alpha( 0,p ) );

Next, βp,0 is loaded into a vector register, broadcasting (duplicating) that value
to each entry in that register:

beta_p_j = _mm256_broadcast_sd( &beta( p, 0) );

This variable is declared earlier in the routine as beta_p_j because it is reused
for j = 0, 1, . . . ,.

The command

gamma_0123_0 = _mm256_fmadd_pd( alpha_0123_p, beta_p_j, gamma_0123_0 );

then performs the computation
γ0,0+ := α0,p × βp,0
γ1,0+ := α1,p × βp,0
γ2,0+ := α2,p × βp,0
γ3,0+ := α3,p × βp,0


illustrated by
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in Figure 2.4.3. Notice that we use beta_p_j for βp,0 because that same
vector register will be used for βp,j with j = 0, 1, 2, 3.

We leave it to the reader to add the commands that compute


γ0,1+ := α0,p × βp,1
γ1,1+ := α1,p × βp,1
γ2,1+ := α2,p × βp,1
γ3,1+ := α3,p × βp,1

 ,

γ0,2+ := α0,p × βp,2
γ1,2+ := α1,p × βp,2
γ2,2+ := α2,p × βp,2
γ3,2+ := α3,p × βp,2

 , and

γ0,3+ := α0,p × βp,3
γ1,3+ := α1,p × βp,3
γ2,3+ := α2,p × βp,3
γ3,3+ := α3,p × βp,3

 .

in Assignments/Week2/C/Gemm_4x4Kernel.c. Upon completion of the loop, the
results are stored back into the original arrays with the commands

_mm256_storeu_pd( &gamma(0,0), gamma_0123_0 );
_mm256_storeu_pd( &gamma(0,1), gamma_0123_1 );
_mm256_storeu_pd( &gamma(0,2), gamma_0123_2 );
_mm256_storeu_pd( &gamma(0,3), gamma_0123_3 );

Homework 2.4.3.1 Complete the code in Assignments/Week2/C/Gemm_4x4Kernel.

c and execute it with
make JI_4x4Kernel

View its performance with Assignments/Week2/C/data/Plot_register_blocking.

mlx

Solution. Assignments/Week2/Answers/Gemm_4x4Kernel.c

This is the performance on Robert’s laptop, with MB=NB=KB=4:

Assignments/Week2/C/Gemm_4x4Kernel.c
Assignments/Week2/C/Gemm_4x4Kernel.c
Assignments/Week2/C/Gemm_4x4Kernel.c
Assignments/Week2/C/data/Plot_register_blocking.mlx
Assignments/Week2/C/data/Plot_register_blocking.mlx
Assignments/Week2/Answers/Gemm_4x4Kernel.c
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YouTube: https://www.youtube.com/watch?v=hUW--tJPPcw

Remark 2.4.5 The form of parallelism illustrated here is often referred to as
Single Instruction, Multiple Data (SIMD) parallelism since the same opera-
tion (an FMA) is executed with multiple data (four values of C and A and a
duplicated value from B).

We are starting to see some progress towards higher performance

2.4.4 More options

You have now experienced the fact that modern architectures have vector reg-
isters and how to (somewhat) optimize the update of a 4 × 4 submatrix of C
with vector instructions.

In the implementation in Unit 2.4.2, the block of C kept in registers is 4×4.
In general, the block is mR × nR. If we assume we will use RC registers for
elements of the submatrix of C, what should mR and nR be to attain the best
performance?

A big part of optimizing is to amortize the cost of moving data over useful
computation. In other words, we want the ratio between the number of flops
that are performed to the number of data that are moved between, for now,
registers and memory to be high.

Let’s recap: Partitioning

C =


C0,0 · · · C0,N−1
...

...
CM−1,0 · · · CM−1,N−1

 ,

A =


A0
...

AM−1

 , B =
(
B0 · · · BN−1

)
,

the algorithm we discovered in Section 2.3 is given by

for i := 0, . . . ,M − 1
for j := 0, . . . , N − 1

Load Ci,j into registers
Ci,j := AiBj + Ci,j with micro− kernel
Store Ci,j to memory

end
end

https://www.youtube.com/watch?v=hUW--tJPPcw
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We analyzed that its cost is given by

2mnkγR +
[
2mn+mnk( 1

nR
+ 1
mR

)
]
βR↔M .

The ratio between flops and memory operations between the registers and mem-
ory is then

2mnk
2mn+mnk( 1

nR
+ 1

mR
)

If k is large, then 2mn (the cost of loading and storing themR×nR submatrices
of C) can be ignored in the denominator, yielding, approximately,

2mnk
mnk( 1

nR
+ 1

mR
)

= 2
1
nR

+ 1
mR

= 2
mR

mRnR
+ nR

mRnR

= 2mRnR
mR + nR

.

This is the ratio of floating point operations to memory operations that we
want to be high.

If mR = nR = 4 then this ratio is 4. For every memory operation (read) of
an element of A or B, approximately 4 floating point operations are performed
with data that resides in registers.

Homework 2.4.4.1 Modify Assignments/Week2/C/Gemm_4x4Kernel.c to imple-
ment the case wheremR = 8 and nR = 4, storing the result in Gemm_8x4Kernel.c.
You can test the result by executing
make JI_8x4Kernel

in that directory. View the resulting performance by appropriately modifying
Assignments/Week2/C/data/Plot_optimize_MRxNR.mlx.
Hint. A vector register can only hold four doubles... Each column now has
four doubles. How many vector registers do you need to store a column?
Solution.

YouTube: https://www.youtube.com/watch?v=aDFpX3PsfPA

Assignments/Week2/C/Gemm_4x4Kernel.c
Assignments/Week2/C/data/Plot_optimize_MRxNR.mlx
https://www.youtube.com/watch?v=aDFpX3PsfPA
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Assignments/Week2/Answers/Gemm_8x4Kernel.c.

Homework 2.4.4.2 Consider the implementation in Homework 2.4.4.1 with
mR × nR = 8× 4.

• How many vector registers are needed?

• Ignoring the cost of loading the registers with the 8× 4 submatrix of C,
what is the ratio of flops to loads?

Solution. Number of registers:

8 + 3 = 11

Ratio:
64 flops/12 loads ≈ 5.33 flops/load.

Homework 2.4.4.3 We have consideredmR×nR = 4×4 andmR×nR = 8×4,
where elements of A are loaded without duplication into vector registers (and
hence mR must be a multiple of 4), and elements of B are loaded/broadcast.
Extending this approach to loading A and B, complete the entries in the fol-

Assignments/Week2/Answers/Gemm_8x4Kernel.c
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lowing table:
# of vector regs flops/load

4× 1 / =
4× 2 / =
4× 4 6 32/8 = 4
4× 8 / =
4× 12 / =
4× 14 / =
8× 1 / =
8× 2 / =
8× 4 / =
8× 6 / =
8× 8 / =
12× 1 / =
12× 2 / =
12× 4 / =
12× 6 / =

Solution.
# of vector regs flops/load

4× 1 3 8/ 5 = 1.60
4× 2 4 16/ 6 = 2.66
4× 4 6 32/ 8 = 4.00
4× 8 10 64/12 = 5.33
4× 12 14 96/16 = 6.00
4× 14 16 112/18 = 6.22
8× 1 5 16/ 9 = 1.78
8× 2 7 32/10 = 3.20
8× 4 11 64/12 = 5.33
8× 6 15 96/14 = 6.86
8× 8 19 128/16 = 8.00
12× 1 7 24/13 = 1.85
12× 2 10 48/14 = 3.43
12× 4 16 96/16 = 6.00
12× 6 22 144/18 = 8.00

Remark 2.4.6 Going forward, keep in mind that the cores of the architectures
we target only have 16 vector registers that can store four doubles each.

Homework 2.4.4.4 At this point, you have already implemented the following
kernels: Gemm_4x4Kernel.c and Gemm_8x4Kernel.c. Implement as many of
the more promising of the kernels you analyzed in the last homework as you
like. Your implementations can be executed by typing
make JI_?x?Kernel

where the ?’s are replaced with the obvious choices ofmR and nR. The resulting
performance can again be viewed with Live Script in Assignments/Week2/C/data/

Plot_optimize_MRxNR.mlx.
Solution.

Assignments/Week2/C/data/Plot_optimize_MRxNR.mlx
Assignments/Week2/C/data/Plot_optimize_MRxNR.mlx
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• Assignments/Week2/Answers/Gemm_4x1Kernel.c

• Assignments/Week2/Answers/Gemm_4x2Kernel.c

• Assignments/Week2/Answers/Gemm_4x4Kernel.c

• Assignments/Week2/Answers/Gemm_4x8Kernel.c

• Assignments/Week2/Answers/Gemm_4x12Kernel.c

• Assignments/Week2/Answers/Gemm_4x14Kernel.c

• Assignments/Week2/Answers/Gemm_8x1Kernel.c

• Assignments/Week2/Answers/Gemm_8x2Kernel.c

• Assignments/Week2/Answers/Gemm_8x4Kernel.c

• Assignments/Week2/Answers/Gemm_8x6Kernel.c

• Assignments/Week2/Answers/Gemm_8x8Kernel.c

• Assignments/Week2/Answers/Gemm_12x1Kernel.c

• Assignments/Week2/Answers/Gemm_12x2Kernel.c

• Assignments/Week2/Answers/Gemm_12x4Kernel.c

• Assignments/Week2/Answers/Gemm_12x6Kernel.c

On Robert’s laptop:
Performance of implementations for mR = 4 and various choices for nR:

Assignments/Week2/Answers/Gemm_4x1Kernel.c
Assignments/Week2/Answers/Gemm_4x2Kernel.c
Assignments/Week2/Answers/Gemm_4x4Kernel.c
Assignments/Week2/Answers/Gemm_4x8Kernel.c
Assignments/Week2/Answers/Gemm_4x12Kernel.c
Assignments/Week2/Answers/Gemm_4x14Kernel.c
Assignments/Week2/Answers/Gemm_8x1Kernel.c
Assignments/Week2/Answers/Gemm_8x2Kernel.c
Assignments/Week2/Answers/Gemm_8x4Kernel.c
Assignments/Week2/Answers/Gemm_8x6Kernel.c
Assignments/Week2/Answers/Gemm_8x8Kernel.c
Assignments/Week2/Answers/Gemm_12x1Kernel.c
Assignments/Week2/Answers/Gemm_12x2Kernel.c
Assignments/Week2/Answers/Gemm_12x4Kernel.c
Assignments/Week2/Answers/Gemm_12x6Kernel.c
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Performance of implementations for mR = 8 and various choices for nR:

Performance of implementations for mR = 12 and various choices for nR:
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2.4.5 Optimally amortizing data movement

Homework 2.4.5.1 In the discussion in the last unit, assume that a fixed
number of elements in mR × nR submatrix Ci,j can be stored in registers:
mRnR = K. What choices of mR and nR maximize

2mRnR
mR + nR

,

the ratio of useful operations (floating point operations) to overhead (memory
operations)?

Of course, our approach so far restricts mR to be an integer multiple of the
vector length, so that adds another contraint. Let’s not worry about that.
Hint. You want to maximize

2mRnR
mR + nR

,

under the constraint that mRnR = K.
If you took a course in calculus, you may have been asked to maximize xy

under the constraint that 2(x+ y) is constant. It might have been phrased as
"You have a fixed amount of fencing to enclose a rectangular area. How should
you pick the length, x, and width y of the rectangle?" If you think about it,
the answer to this homework is closely related to this question about fencing.
Answer.

mR = nR =
√
K.

Solution. Let’s use x for mR and y for nR. We want to find x and y that
maximize

2K
x+ y

under the constrant that xy = K. This is equivalent to finding x and y that
minimize x+ y under the constraint that xy = K.

Letting y = K/x we find that we need to minimize

f(x) = x+ K

x
.

By setting the derivative to zero, we find that the desired x must satisfy

1− K

x2 = 0.

Manipulating this yields
x2 = K

and hence x =
√
K and y = K/x =

√
K.

Strictly speaking, you should to check that it is a minimum of f(x) by ex-
amining the second derivative and checking that it is positive at the extremum.

Remark 2.4.7 In practice, we have seen that the shape of the block of C kept
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in registers is not square for a number of reasons:
• The formula for the number of vector registers that are used, when the

vector length is four, is
mR

4 nR + mR

4 + 1.

Even if the number of registers is a "nice number", it may not be optimal
for mR to equal nR.

• For now, mR has to be a multiple of the vector length. Later we will see
that we could instead choose nR to be a multiple of the vector length.
Regardless, this limits the choices.

• The (load and) broadcast may be a more expensive operation than the
load, on a per double that is loaded basis.

• There are other issues that have to do with how instructions are pipelined
that are discussed in a paper mentioned in Unit 2.5.1.

2.5 Enrichments

2.5.1 Lower bound on data movement

The discussion in this enrichment was inspired by the paper [23]
Tyler Michael Smith, Bradley Lowery, Julien Langou, Robert A. van de

Geijn. Tight I/O Lower Bound for Matrix Multiplication. Submitted to ACM
Transactions on Mathematical Software. Draft available from arXiv.org.

For more details, we encourage you to read that paper.

2.5.1.1 Reasoning about optimality

Early in our careers, we learned that if you say that an implementation is
optimal, you better prove that it is optimal.

In our empirical studies, graphing the measured performance, we can com-
pare our achieved results to the theoretical peak. Obviously, if we achieved
theoretical peak performance, then we would know that the implementation
is optimal. The problem is that we rarely achieve the theoretical peak perfor-
mance as computed so far (multiplying the clock rate by the number of floating
point operations that can be performed per clock cycle).

In order to claim optimality, one must carefully model an architecture and
compute, through analysis, the exact limit of what it theoretically can achieve.
Then, one can check achieved performance against the theoretical limit, and
make a claim. Usually, this is also not practical.

In practice, one creates a model of computation for a simplified architec-
ture. With that, one then computes a theoretical limit on performance. The
next step is to show that the theoretical limit can be (nearly) achieved by an
algorithm that executes on that simplified architecture. This then says some-
thing about the optimality of the algorithm under idealized circumstances. By

https://arxiv.org/abs/1702.02017
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finally comparing and contrasting the simplified architecture with an actual
architecture, and the algorithm that targets the simplified architecture with an
actual algorithm designed for the actual architecture, one can reason about the
optimality, or lack thereof, of the practical algorithm.

2.5.1.2 A simple model

Let us give a simple model of computation that matches what we have assumed
so far when programming matrix-matrix multiplication:

• We wish to compute C := AB+C where C, A, and C are m×n, m× k,
and k × n, respectively.

• The computation is cast in terms of FMAs.

• Our machine has two layers of memory: fast memory (registers) and slow
memory (main memory).

• Initially, data reside in main memory.

• To compute a FMA, all three operands must be in fast memory.

• Fast memory can hold at most S floats.

• Slow memory is large enough that its size is not relevant to this analysis.

• Computation cannot be overlapped with data movement.

Notice that this model matches pretty well how we have viewed our processor
so far.

2.5.1.3 Minimizing data movement

We have seen that matrix-matrix multiplication requires m × n × k FMA op-
erations, or 2mnk flops. Executing floating point operations constitutes useful
computation. Moving data between slow memory and fast memory is overhead
since we assume it cannot be overlapped. Hence, under our simplified model,
if an algorithm only performs the minimum number of flops (namely 2mnk),
minimizes the time spent moving data between memory layers, and we at any
given time are either performing useful computation (flops) or moving data,
then we can argue that (under our model) the algorithm is optimal.

We now focus the argument by reasoning about a lower bound on the num-
ber of data that must be moved from fast memory to slow memory. We will
build the argument with a sequence of observations.

Consider the loop

for p := 0, . . . , k − 1
for j := 0, . . . , n− 1

for i := 0, . . . ,m− 1
γi,j := αi,pβp,j + γi,j

end
end

end
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One can view the computations

γi,j := αi,pβp,j + γi,j

as a cube of points in 3D, (i, j, k) for 0 ≤ i < m, 0 ≤ j < n, 0 ≤ p < k. The
set of all possible algorithms that execute each such update only once can be
viewed as an arbitrary ordering on that set of points. We can this as indexing
the set of all such triples with ir, jr, pr, 0 ≤ r < m× n× k:

(ir, jr, kr).

so that the algorithm that computes C := AB + C can then be written as

for r := 0, . . . ,mnk − 1
γir,jr := αir,prβpr,jr + γir,jr

end

Obviously, this puts certain restrictions on ir, jr, and pr. Articulating those
exactly is not important right now.

We now partition the ordered set 0, . . . ,mnk − 1 into ordered contiguous
subranges (phases) each of which requires S +M distinct elements from A, B,
and C (e.g., S elements from A, M/3 elements of B, and 2M/3 elements of
C), except for the last phase, which will contain fewer. (Strictly speaking, it
is a bit more complicated than splitting the range of the iterations, since the
last FMA may require anywhere from 0 to 3 new elements to be loaded from
slow memory. Fixing this is a matter of thinking of the loads that are required
as separate from the computation (as our model does) and then splitting the
operations - loads, FMAs, and stores - into phases rather than the range. This
does not change our analysis.)

Recall that S equals the number of floats that fit in fast memory. A typical
phase will start with S elements in fast memory, and will in addition read M
elements from slow memory (except for the final phase). % We will call such an
ordered subset a phase of triples. Such a typical phase will start at r = R and
consists of F triples, (iR, jR, pR) through (iR+F−1, jR+F−1, pR+F−1). Let us
denote the set of these triples by D. These represent F FMAs being performed
in our algorithm. Even the first phase needs to read at least M elements since
it will require S +M elements to be read.

The key question now becomes what the upper bound on the number of
FMAs is that can be performed with S + M elements. Let us denote this
bound by Fmax. If we know Fmax as a function of S + M , then we know that
at least mnk

Fmax
− 1 phases of FMAs need to be executed, where each of those

phases requires at least S reads from slow memory. The total number of reads
required for any algorithm is thus at least(

mnk

Fmax
− 1

)
M. (2.5.1)

To find Fmax we make a few observations:

• A typical triple (ir, jr, pr) ∈ D represents a FMA that requires one ele-
ment from each of matrices C, A, and B: γi,j , αi,p, and βp,j .
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• The set of all elements from C, γir,jr , that are needed for the com-
putations represented by the triples in D are indexed with the tuples
CD = {(ir, jr) |R ≤ r < R+F}. If we think of the triples in D as points
in 3D, then CD is the projection of those points onto the i, j plane. Its
size, |CD|, tells us how many elements of C must at some point be in fast
memory during that phase of computations.

• The set of all elements from A, αir,pr , that are needed for the com-
putations represented by the triples in D are indexed with the tuples
AD = {(ir, pr) |R ≤ r < R + F}. If we think of the triples (ir, jr, pr)
as points in 3D, then AD is the projection of those points onto the i, p
plane. Its size, |AD|, tells us how many elements of A must at some point
be in fast memory during that phase of computations.

• The set of all elements from C, βpr,jr , that are needed for the com-
putations represented by the triples in D are indexed with the tuples
BD = {(pr, jr) |R ≤ r < R + F}. If we think of the triples (ir, jr, pr)
as points in 3D, then BD is the projection of those points onto the p, j
plane. Its size, |BD|, tells us how many elements of B must at some point
be in fast memory during that phase of computations.

Now, there is a result known as the discrete Loomis-Whitney inequality
that tells us that in our situation |D| ≤

√
|CD||AD||BD|. In other words,

Fmax ≤
√
|CD||AD||BD|. The name of the game now becomes to find the

largest value Fmax that satisfies

maximize Fmax such that


Fmax ≤

√
|CD||AD||BD|

|CD| > 0, |AD| > 0, |BD| > 0
|CD|+ |AD|+ |BD| = S +M.

An application known as Lagrange multipliers yields the solution

|CD| = |AD| = |BD| =
S +M

3 and Fmax = (S +M)
√
S +M

3
√

3
.

With that largest Fmax we can then establish a lower bound on the number of
memory reads given by (2.5.1):

(
mnk

Fmax
− 1

)
M =

(
3
√

3 mnk

(S +M)
√
S +M

− 1
)
M.

Now, M is a free variable. To come up with the sharpest (best) lower bound,
we want the largest lower bound. It turns out that, using techniques from
calculus, one can show that M = 2S maximizes the lower bound. Thus, the
best lower bound our analysis yields is given by(

3
√

3 mnk

(3S)
√

3S
− 1

)
(2S) = 2mnk√

S
− 2S.
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2.5.1.4 A nearly optimal algorithm

We now discuss a (nearly) optimal algorithm for our simplified architecture.
Recall that we assume fast memory can hold S elements. For simplicity, assume
S is a perfect square. Partition

C =

 C0,0 C0,1 · · ·
C1,0 C1,1 · · ·
...

...

 , A =

 A0
A1
...

 , and B =
(
B0 B1 · · ·

)
.

where Ci,j ismR×nR, Ai ismR×k, and Bj is k×nR. Here we choosemR×nR =
(
√
S−1)×

√
S so that fast memory can hold one submatrix Ci,j , one column of

Ai, and one element of Bj : mR×nR+mR+1 = (
√
S−1)×

√
S+
√
S−1+1 = S.

When computing C := AB+C, we recognize that Ci,j := AiBj+Ci,j . Now,
let’s further partition

Ai =
(
ai,0 ai,1 · · ·

)
and Bj =


bT0,j
bT1,j
...

 .
We now recognize that Ci,j := AiBj + Ci,j can be computed as

Ci,j := ai,0b
T
0,j + ai,1b

T
1,j + · · · ,

the by now very familiar sequence of rank-1 updates that makes up the micro-
kernel discussed in Unit 2.4.1. The following loop exposes the computation
C := AB + C, including the loads and stores from and to slow memory:

for j := 0, . . . , N − 1
for i := 0, . . . ,M − 1

Load Ci,j into fast memory
for p := 0, . . . , k − 1

Load ai,p and bTp,j into fast memory
Ci,j := ai,pb

T
p,j + Ci,j

end
Store Ci,j to slow memory

end
end

For simplicity, here M = m/mr and N = n/nr.
On the surface, this seems to require Ci,j , ai,p, and bTp,j to be in fast memory

at the same time, placingmR×nR+mR+nr = S+
√
S−1 floats in fast memory.

However, we have seen before that the rank-1 update Ci,j := ai,pb
T
p,j +Ci,j can

be implemented as a loop around axpy operations, so that the elements of bTp,j
only need to be in fast memory one at a time.

Let us now analyze the number of memory operations incurred by this
algorithm:

• Loading and storing all Ci,j incurs mn loads and mn stores, for a total
of 2mn memory operations. (Each such block is loaded once and stored
once, meaning every element of C is loaded once and stored once.)
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• Loading all ai,p requires

MNkmR = (MmR)Nk = m
n

nR
k = mnk√

S

memory operations.

• Loading all bTp,j requires

MNknR = M(NnR)k = m

mR
nk = mnk√

S − 1

memory operations.

The total number of memory operations is hence

2mn+ mnk√
S

+ mnk√
S − 1

= 2mnk√
S

+ 2mn+ mnk

S −
√
S
.

We can now compare this to the lower bound from the last unit:

2mnk√
S
− 2S.

The cost of reading and writing elements of C, 2mn, contributes a lower order
term, as does mnk

S−
√
S
if S (the size of fast memory) is reasonably large. Thus,

the proposed algorithm is nearly optimal with regards to the amount of data
that is moved between slow memory and fast memory.

2.5.1.5 Discussion

What we notice is that the algorithm presented in the last unit is quite similar
to the algorithm that in the end delivered good performance in [23]. It utilizes
most of fast memory (registers in [23]) with a submatrix of C. Both organize
the computation in terms of a kernel that performs rank-1 updates of that
submatrix of C.

The theory suggests that the number of memory operations are minimized
if the block of C is chosen to be (roughly) square. In Unit 2.4.1, the best
performance was observed with a kernel that chose the submatrix of C in
registers to be 8×6, so for this architecture, the theory is supported by practice.
For other architectures, there may be issues that skew the aspect ratio to be
less square.

2.5.2 Strassen’s algorithm

So far, we have discussed algorithms for computing C := AB + C via a triple-
nested loop that then perform 2mnk flops. A question is whether this is the
best we can do.

A classic result regarding this is Strassen’s algorithm [26]. It shows that,
for problems of size m = n = k = 2r for some integer r, matrix-matrix mul-
tiplication can be computed in time O(nlog2 7) ≈ O(n2.807). Since Strassen
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proposed this, a succession of results further improved upon the exponent. In
this discussion, we stick to the original result.

How can this be? For simplicity, assume m = n = k are all even. Partition

C =
(
C00 C01
C10 C11

)
, A =

(
A00 A01
A10 A11

)
, B =

(
B00 B01
B10 B11

)
,

where Xij are n/2×n/2 for X ∈ {C,A,B} and ij ∈ {00, 01, 10, 11}. Now that
you understand how partitioned matrix-matrix multiplication works, you know
that the following computations compute C := AB + C:

C00 = α(A00B00 +A01B10) + C00
C01 = α(A00B01 +A01B11) + C01
C10 = α(A10B00 +A11B10) + C10
C11 = α(A10B01 +A11B11) + C11.

Each of the eight matrix-matrix multiplications requires 2(n/2)3 = 1/4n3 flops
and hence the total cost is our usual 2n3 flops.

Surprisingly, the following computations also compute C := AB + C:

M0 =(A00 +A11)(B00 +B11); C00+= M0;C11+= M0;
M1 =(A10 +A11)B00; C10+= M1;C11−= M1;
M2 =A00(B01 −B11); C01+= M2;C11+= M2;
M3 =A11(B10 −B00); C00+= M3;C10+= M3;
M4 =(A00 +A01)B11; C01+= M4;C00−= M4;
M5 =(A10 −A00)(B00 +B01); C11+= M5;
M6 =(A01 −A11)(B10 +B11); C00+= M6.

If you count carefully, this requires 22 additions of n/2 × n/2 matrices and 7
multiplications with n/2 × n/2 matrices. Adding matrices together requires
O(n2) flops, which are insignificant if n is large. Ignoring this, the cost now
becomes

7× 2(n/2)3 = 27
8n

3

flops. The cost of the matrix-matrix multiplication is now 7/8 of what it was
before!

But it gets better! Each of the matrix-matrix multiplications can themselves
be computed via this scheme. If you do that, applying the idea at two levels,
the cost is reduced to

7× (7× 2(n/4)3) = 2
(7

8

)2
n3

flops. How many times can we do that? If n = 2r we can half the size of the
matrices r = log2(n) times. If you do that, the cost becomes

2
(7

8

)r
n3 flops.

Now,
(7/8)log2(n) 2n3 = nlog2(7/8)2n3 = 2nlog2 7 ≈ 2n2.807.

Here we ignored the cost of the additions. However, it can be analyzed that
this recursive approach requires O(n2.807) flops.
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Remark 2.5.1 Learn more about the Strassen’s algorithm entry on Wikipedia.
In Unit 3.5.4 we will discuss how our insights support a practical implementa-
tion of Strassen’s algorithm.

2.6 Wrap Up

2.6.1 Additional exercises

If you want to get more practice, you may want to repeat the exercises in this
week with single precision arithmetic. Note: this sounds like a simple sugges-
tion. However, it requires changes to essentially all programming assignments
you have encountered so far. This is a lot of work, to be pursued by only those
who are really interested in the details of this course.

2.6.2 Summary

2.6.2.1 The week in pictures

Figure 2.6.1: A simple model of the memory hierarchy, with registers and
main memory.

https://en.wikipedia.org/wiki/Strassen_algorithm
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Figure 2.6.2: A simple blocking for registers, where micro-tiles of C are loaded
into registers.

Figure 2.6.3: The update of a micro-tile with a sequence of rank-1 updates.
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Figure 2.6.4: Mapping the micro-kernel to registers.

2.6.2.2 Useful intrinsic functions

From Intel’s Intrinsics Reference Guide

• __m256d _mm256_loadu_pd (double const * mem_addr)

Description
Load 256-bits (composed of 4 packed double-precision (64-bit) floating-
point elements) from memory into dst (output). mem_addr does not need
to be aligned on any particular boundary.

• __m256d _mm256_broadcast_sd (double const * mem_addr)

Description
Broadcast a double-precision (64-bit) floating-point element from memory
to all elements of dst (output).

• __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c)

Description
Multiply packed double-precision (64-bit) floating-point elements in a and
b, add the intermediate result to packed elements in c, and store the
results in dst (output).

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Week 3

Pushing the Limits

3.1 Opening Remarks

3.1.1 Launch

Remark 3.1.1 As you may have noticed, some of the programming assign-
ments are still in flux. This means

• You will want to do

git stash save
git pull
git stash pop

in your LAFF-On-PfHP directory.

• You will want to upload the .mlx files form LAFF-On-PfHP.Assignments/
Week3/C/data/ to the corresponding folder of Matlab Online.

YouTube: https://www.youtube.com/watch?v=kOBCe3-B1BI
The inconvenient truth is that floating point computations can be performed

very fast while bringing data in from main memory is relatively slow. How slow?
On a typical architecture it takes two orders of magnitude more time to bring
a floating point number in from main memory than it takes to compute with
it.

The reason why main memory is slow is relatively simple: there is not
enough room on a chip for the large memories that we are accustomed to and
hence they are off chip. The mere distance creates a latency for retrieving
the data. This could then be offset by retrieving a lot of data simultaneously,
increasing bandwidth. Unfortunately there are inherent bandwidth limitations:

125

https://www.youtube.com/watch?v=kOBCe3-B1BI
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there are only so many pins that can connect the central processing unit (CPU)
with main memory.

Figure 3.1.2: Illustration of the memory hierarchy.

To overcome this limitation, a modern processor has a hierarchy of mem-
ories. We have already encountered the two extremes: registers and main
memory. In between, there are smaller but faster cache memories. These cache
memories are on-chip and hence do not carry the same latency as does main
memory and also can achieve greater bandwidth. The hierarchical nature of
these memories is often depicted as a pyramid as illustrated in Figure 3.1.2.

YouTube: https://www.youtube.com/watch?v=8u2wzTPZLtI
To put things in perspective: We have discussed that a core on the kind

of modern CPU we target in this course has sixteen vector registers that can
store 4 double precision floating point numbers (doubles) each, for a total of 64
doubles. Built into the CPU it has a 32Kbytes level-1 cache (L1 cache) that can
thus store 4,096 doubles. Somewhat further it has a 256Kbytes level-2 cache
(L2 cache) that can store 32,768 doubles. Further away yet, but still on chip,
it has an 8Mbytes level-3 cache (L3 cache) that can hold 1,048,576 doubles.

https://www.youtube.com/watch?v=8u2wzTPZLtI
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Remark 3.1.3 In further discussion, we will pretend that one can place data
in a specific cache and keep it there for the duration of computations. In
fact, caches retain data using some cache replacement policy that evicts data
that has not been recently used. By carefully ordering computations, we can
encourage data to remain in cache, which is what happens in practice.

You may want to read up on cache replacement policies on Wikipedia:
https://en.wikipedia.org/wiki/Cache_replacement_policies.

Homework 3.1.1.1 Since we compute with (sub)matrices, it is useful to have
some idea of how big of a matrix one can fit in each of the layers of cache.
Assuming each element in the matrix is a double precision number, which
requires 8 bytes, complete the following table:

Layer Size Largest n× n matrix
Registers 16× 4 doubles n =
L1 cache 32 Kbytes n =
L2 cache 256 Kbytes n =
L3 cache 8 Mbytes n =

Main Memory 16 Gbytes n =

Solution.

Layer Size Largest n× n matrix
Registers 16× 4 doubles n =

√
64 = 8

L1 cache 32 Kbytes n =
√

32× 1024/8 = 64
L2 cache 256 Kbytes n =

√
256× 1024/8 = 181

L3 cache 8 Mbytes n =
√

8× 1024× 1024/8 = 1024
Main memory 16 Gbytes n =

√
16× 1024× 1024× 1024/8 ≈ 46, 341

https://en.wikipedia.org/wiki/Cache_replacement_policies
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YouTube: https://www.youtube.com/watch?v=-nPXW8NiPmM

3.1.2 Outline Week 3

• 3.1 Opening Remarks

◦ 3.1.1 Launch
◦ 3.1.2 Outline Week 3
◦ 3.1.3 What you will learn

• 3.2 Leveraging the Caches

◦ 3.2.1 Adding cache memory into the mix
◦ 3.2.2 Streaming submatrices of C and B
◦ 3.2.3 Which cache to target?
◦ 3.2.4 Blocking for the L1 and L2 caches
◦ 3.2.5 Blocking for the L1, L2, and L3 caches
◦ 3.2.6 Translating into code

• 3.3 Packing

◦ 3.3.1 Stride matters
◦ 3.3.2 Packing blocks of A and panels of B
◦ 3.3.3 Implementation: packing row panel Bp,j
◦ 3.3.4 Implementation: packing block Ai,p
◦ 3.3.5 Implementation: five loops around the micro-kernel, with pack-
ing
◦ 3.3.6 Micro-kernel with packed data

• 3.4 Further Tricks of the Trade

◦ 3.4.1 Alignment
◦ 3.4.2 Avoiding repeated memory allocations
◦ 3.4.3 Play with the block sizes
◦ 3.4.4 Broadcasting elements of A and loading elements of B
◦ 3.4.5 Loop unrolling
◦ 3.4.6 Prefetching
◦ 3.4.7 Using in-lined assembly code

https://www.youtube.com/watch?v=-nPXW8NiPmM
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• 3.5 Enrichments

◦ 3.5.1 Goto’s algorithm and BLIS

◦ 3.5.2 How to choose the blocking parameters

◦ 3.5.3 Alternatives to Goto’s algorithm

◦ 3.5.4 Practical implementation of Strassen’s algorithm

• 3.6 Wrap Up

◦ 3.6.1 Additional exercises

◦ 3.6.2 Summary

3.1.3 What you will learn

In this week, we discover the importance of amortizing the cost of moving data
between memory layers.

Upon completion of this week, we will be able to

• Identify layers in the memory hierarchy.

• Orchestrate matrix-matrix multiplication in terms of computation with
submatrices (blocks) so as to improve the ratio of computation to memory
operations.

• Rearrange data to improve how memory is contiguously accessed.

• Organize loops so data is effectively reused at multiple levels of the mem-
ory hierarchy.

• Analyze the cost of moving data between memory layers.

• Improve performance by experimenting with different blocking parame-
ters.

The enrichments introduce us to

• The origins of the algorithm that you developed and how it is incorporated
into a widely used open source software library, BLIS.

• Analytical methods for determining optimal blocking sizes.

• Alternative algorithms that may become important when the ratio be-
tween the rate at which a processor computes and the bandwidth to
memory further deteriorates.

• Practical techniques, based on the approach exposed in this course, for
implementing Strassen’s algorithm.
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3.2 Leveraging the Caches

3.2.1 Adding cache memory into the mix

YouTube: https://www.youtube.com/watch?v=Kaq2WgLChv4
We now refine our model of the processor slightly, adding one layer of cache

memory into the mix.

• Our processor has only one core.

• That core has three levels of memory: registers, a cache memory, and
main memory.

• Moving data between the cache and registers takes time βC↔R per double
while moving it between main memory and the cache takes time βM↔C

• The registers can hold 64 doubles.

• The cache memory can hold one or more smallish matrices.

• Performing a floating point operation (multiply or add) with data in cache
takes time γC .

• Data movement and computation cannot overlap. (In practice, it can.
For now, we keep things simple.)

The idea now is to figure out how to block the matrices into submatrices and
then compute while these submatrices are in cache to avoid having to access

https://www.youtube.com/watch?v=Kaq2WgLChv4
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memory more than necessary.
A naive approach partitions C, A, and B into (roughly) square blocks:

C =


C0,0 C0,1 · · · C0,N−1
C1,0 C1,1 · · · C1,N−1
...

...
...

CM−1,0 CM,1 · · · CM−1,N−1

 ,

A =


A0,0 A0,1 · · · A0,K−1
A1,0 A1,1 · · · A1,K−1
...

...
...

AM−1,0 AM,1 · · · AM−1,K−1

 ,
and

B =


B0,0 B0,1 · · · B0,N−1
B1,0 B1,1 · · · B1,N−1
...

...
...

BK−1,0 BK,1 · · · BK−1,N−1

 ,
where Ci,j is mC × nC , Ai,p is mC × kC , and Bp,j is kC × nC . Then

Ci,j :=
K−1∑
p=0

Ai,pBp,j + Ci,j ,

which can be written as the triple-nested loop

for i := 0, . . . ,M − 1
for j := 0, . . . , N − 1

for p := 0, . . . ,K − 1
Ci,j := Ai,pBp,j + Ci,j

end
end

end

This is one of 3! = 6 possible loop orderings.
If we choosemC , nC , and kC such that Ci,j , Ai,p, and Bp,j all fit in the cache,

then we meet our conditions. We can then compute Ci,j := Ai,pBp,j + Ci,j by
"bringing these blocks into cache" and computing with them before writing out
the result, as before. The difference here is that while one can explicitly load
registers, the movement of data into caches is merely encouraged by careful
ordering of the computation, since replacement of data in cache is handled
by the hardware, which has some cache replacement policy similar to "least
recently used" data gets evicted.

Homework 3.2.1.1 For reasons that will become clearer later, we are going
to assume that "the cache" in our discussion is the L2 cache, which for the
CPUs we currently target is of size 256Kbytes. If we assume all three (square)
matrices fit in that cache during the computation, what size should they be?

In our discussions 12 becomes a magic number because it is a multiple of
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2, 3, 4, and 6, which allows us to flexibly play with a convenient range of block
sizes. Therefore we should pick the size of the block to be the largest multiple
of 12 less than that number. What is it?

Later we will further tune this parameter.
Solution.

• The number of doubles that can be stored in 256KBytes is

256× 1024/8 = 32× 1024

• Each of the three equally sized square matrices can contain 32
3 × 1024

doubles.

• Each square matrix can hence be at most√
32
3 ×
√

1024×
√

32
3 ×
√

1024 =
√

32
3 × 32×

√
32
3 ×
√

1024
≈ 104× 104.

• The largest multiple of 12 smaller than 104 is 96.
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#define MC 96
#define NC 96
#define KC 96

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
if ( m % MR != 0 || MC % MR != 0 ){
printf( "m and MC must be multiples of MR\n" );
exit( 0 );

}
if ( n % NR != 0 || NC % NR != 0 ){
printf( "n and NC must be multiples of NR\n" );
exit( 0 );

}

for ( int i=0; i<m; i+=MC ) {
int ib = min( MC, m-i ); /* Last block may not be a full block */
for ( int j=0; j<n; j+=NC ) {
int jb = min( NC, n-j ); /* Last block may not be a full block */
for ( int p=0; p<k; p+=KC ) {
int pb = min( KC, k-p ); /* Last block may not be a full block */
Gemm_JI_MRxNRKernel
( ib, jb, pb, &alpha( i,p ), ldA, &beta( p,j ), ldB, &gamma( i,j ), ldC );

}
}

}
}

void Gemm_JI_MRxNRKernel( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int j=0; j<n; j+=NR ) /* n is assumed to be a multiple of NR */
for ( int i=0; i<m; i+=MR ) /* m is assumed to be a multiple of MR */
Gemm_MRxNRKernel( k, &alpha( i,0 ), ldA, &beta( 0,j ), ldB, &gamma( i,j ), ldC );

}

Figure 3.2.1: Triple loop around Ci,j := Ai,pBp,j + Ci,j .

Homework 3.2.1.2 In Figure 3.2.1, we give an IJP loop ordering around
the computation of Ci,j := Ai,pBp,j + Ci,j , which itself is implemented by
Gemm_JI_4x4Kernel. It can be found in Assignments/Week3/C/Gemm_IJP_JI_

MRxNRKernel.c. Copy Gemm_4x4Kernel.c fromWeek 2 into Assignments/Week3/
C/ and then execute
make IJP_JI_4x4Kernel

in that directory. The resulting performance can be viewed with Live Script
Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx.

Assignments/Week3/C/Gemm_IJP_JI_MRxNRKernel.c
Assignments/Week3/C/Gemm_IJP_JI_MRxNRKernel.c
Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx
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Solution. On Robert’s laptop:

Notice that now performance is (mostly) maintained as the problem size
increases.

Homework 3.2.1.3 You can similarly link Gemm_IJP_JI_MRxNRKernel.c
with your favorite micro-kernel by copying it from Week 2 into this directory
and executing
make IJP_JI_??x??Kernel

where ??x?? reflects the mR × nR you choose. The resulting performance can
be viewed with Live Script Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.
mlx, by making appropriate changes to that Live Script.

The Live Script assumes ??x?? to be 12x4. If you choose (for example) 8x6
instead, you may want to do a global "search and replace." You may then want
to save the result into another file.
Solution. On Robert’s laptop, for mR × nR = 12× 4:

Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx
Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx
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Remark 3.2.2 Throughout the remainder of this course, we often choose to
proceed with mR×nR = 12×4, as reflected in the Makefile and the Live Script.
If you pick mR and nR differently, then you will have to make the appropriate
changes to the Makefile and the Live Script.

Homework 3.2.1.4 Create all six loop orderings by copying Assignments/

Week3/C/Gemm_IJP_JI_MRxNRKernel.c into
Gemm_JIP_JI_MRxNRKernel.c
Gemm_IPJ_JI_MRxNRKernel.c
Gemm_PIJ_JI_MRxNRKernel.c
Gemm_PJI_JI_MRxNRKernel.c
Gemm_JPI_JI_MRxNRKernel.c

(or your choice of mR and nR), reordering the loops as indicated by the XYZ.
Collect performance data by executing

make XYZ_JI_12x4Kernel

for XYZ ∈ {IPJ, JIP, JPI, PIJ, PJI}.
(If you don’t want to do them all, implement at least Gemm_PIJ_JI_MRxNRKernel.c.)
The resulting performance can be viewed with Live Script Assignments/

Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx.
Solution.

• Assignments/Week3/Answers/Gemm_IPJ_JI_MRxNRKernel.c

• Assignments/Week3/Answers/Gemm_JIP_JI_MRxNRKernel.c

• Assignments/Week3/Answers/Gemm_JPI_JI_MRxNRKernel.c

• Assignments/Week3/Answers/Gemm_PIJ_JI_MRxNRKernel.c

• Assignments/Week3/Answers/Gemm_PJI_JI_MRxNRKernel.c

Assignments/Week3/C/Gemm_IJP_JI_MRxNRKernel.c
Assignments/Week3/C/Gemm_IJP_JI_MRxNRKernel.c
Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx
Assignments/Week3/C/data/Plot_XYZ_JI_MRxNRKernel.mlx
Assignments/Week3/Answers/Gemm_IPJ_JI_MRxNRKernel.c
Assignments/Week3/Answers/Gemm_JIP_JI_MRxNRKernel.c
Assignments/Week3/Answers/Gemm_JPI_JI_MRxNRKernel.c
Assignments/Week3/Answers/Gemm_PIJ_JI_MRxNRKernel.c
Assignments/Week3/Answers/Gemm_PJI_JI_MRxNRKernel.c
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On Robert’s laptop, for mR × nR = 12× 4:

Things are looking up!

YouTube: https://www.youtube.com/watch?v=SwCYsVlo0lo
We can analyze the cost of moving submatrices Ci,j , Ai,p, and Bp,j into the

cache and computing with them:

mCnCβC↔M︸ ︷︷ ︸
load Ci,j

+ mCkCβC↔M︸ ︷︷ ︸
load Ai,p

+ kCnCβC↔M︸ ︷︷ ︸
load Bp,j

+ 2mCnCkCγC︸ ︷︷ ︸
update Ci,j+ := Ai,pBp,j

+ mCnCβC↔M︸ ︷︷ ︸
store Ci,j

which equals

(2mCnC +mCkC + kCnC)βC↔M︸ ︷︷ ︸
data movement overhead

+ 2mCnCkCγC .︸ ︷︷ ︸
useful computation

Hence, the ratio of time spent in useful computation and time spent in moving
data between main memory a cache is given by

2mCnCkCγC
(2mCnC +mCkC + kCnC)βC

.

https://www.youtube.com/watch?v=SwCYsVlo0lo
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Another way of viewing this is that the ratio between the number of floating
point operations and number of doubles loaded/stored is given by

2mCnCkC
2mCnC +mCkC + kCnC

.

If, for simplicity, we take mC = nC = kC = b then we get that

2mCnCkC
2mCnC +mCkC + kCnC

. = 2b3

4b2 = b

2 .

Thus, the larger b, the better the cost of moving data between main memory
and cache is amortized over useful computation.

Above, we analyzed the cost of computing with and moving the data back
and forth between the main memory and the cache for computation with three
blocks (a mC × nC block of C, a mC × kC block of A, and a kC × nC block of
B). If we analyze the cost of naively doing so with all the blocks, we get

m

mC

n

nC

k

kC

 (2mCnC +mCkC + kCnC)βC↔M︸ ︷︷ ︸
data movement overhead

+ 2mCnCkCγC︸ ︷︷ ︸
useful computation

 .
What this means is that the effective ratio is the same if we consider the entire
computation C := AB + C:

m
mC

n
nC

k
kC

(2mCnC +mCkC + kCnC)βC↔M
m
mC

n
nC

k
kC

2mCnCkCγC
= (2mCnC +mCkC + kCnC)βC↔M

2mCnCkCγC

Remark 3.2.3
• Retrieving a double from main memory into cache can easily take 100

times more time than performing a floating point operation does.

• In practice the movement of the data can often be overlapped with com-
putation (this is known as prefetching). However, clearly only so much
can be overlapped, so it is still important to make the ratio favorable.

3.2.2 Streaming submatrices of C and B

YouTube: https://www.youtube.com/watch?v=W-oDAQYUExE
We illustrate the execution of Gemm_JI_4x4Kernel with one set of three

submatrices Ci,j , Ai,p, and Bp,j in Figure 3.2.4 for the case where mR = nR = 4
and mC = nC = kC = 4×mR.

https://www.youtube.com/watch?v=W-oDAQYUExE
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J = 0 J = 1

J = 2 J = 3

Download PowerPoint source for illustration. PDF version.

Figure 3.2.4: Illustration of computation in the cache with one block from
each of A, B, and C.

Notice that

• The mR × nR micro-tile of Ci,j is not reused again once it has been
updated. This means that at any given time only one such matrix needs
to be in the cache memory (as well as registers).

• Similarly, a micro-panel of Bp,j is not reused and hence only one such

images/Week3/Loops1-2-Illustration.pptx
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panel needs to be in cache. It is submatrix Ai,p that must remain in
cache during the entire computation.

By not keeping the entire submatrices Ci,j and Bp,j in the cache memory, the
size of the submatrix Ai,p can be increased, which can be expected to improve
performance. We will refer to this as "streaming" micro-tiles of Ci,j and micro-
panels of Bp,j , while keeping all of block Ai,p in cache.

Remark 3.2.5 We could have chosen a different order of the loops, and then we
may have concluded that submatrix Bp,j needs to stay in cache while streaming
a micro-tile of C and small panels of A. Obviously, there is a symmetry here
and hence we will just focus on the case where Ai,p is kept in cache.

Homework 3.2.2.1 Reorder the updates in Figure 3.2.4 so that B stays in
cache while panels of A are streamed.

You may want to use the PowerPoint source for that figure: Download
PowerPoint source.
Answer. Answer (referring to the numbers in the top-right corner of each
iteration):

1 → 5 → 9 → 13 → 2 → 6 → 10 → 14 →
3 → 7 → 11 → 15 → 4 → 8 → 12 → 16

Solution. Here is the PowerPoint source for one solution: Download Power-
Point source.

YouTube: https://www.youtube.com/watch?v=CAqIC2ixDrM
The second observation is that now that Ci,j and Bp,j are being streamed,

there is no need for those submatrices to be square. Furthermore, for

Gemm_PIJ_JI_12x4Kernel.c

and

Gemm_IPJ_JI_12x4Kernel.c,

the larger nC , the more effectively the cost of bringing Ai,p into cache is amor-
tized over computation: we should pick nC = n. (Later, we will reintroduce
nC .) Another way of thinking about this is that if we choose the PIJ loop
around the JI ordering around the micro-kernel (in other words, if we consider
the Gemm_PIJ_JI_12x4Kernel implementation), then we notice that the in-
ner loop of PIJ (indexed with J) matches the outer loop of the JI double loop,
and hence those two loops can be combined, leaving us with an implementation
that is a double loop (PI) around the double loop JI.

images/Week3/Loops1-2-Illustration.pptx
images/Week3/Loops1-2-Illustration.pptx
images/Week3/Loops1-2-Illustration-B-in-L2-cache.pptx
images/Week3/Loops1-2-Illustration-B-in-L2-cache.pptx
https://www.youtube.com/watch?v=CAqIC2ixDrM
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Homework 3.2.2.2 Copy Assignments/Week3/C/Gemm_PIJ_JI_MRxNRKernel.c into
Gemm_PI_JI_MRxNRKernel.c and remove the loop indexed with j from
MyGemm, making the appropriate changes to the call to the routine that im-
plements the micro-kernel. Collect performance data by executing
make PI_JI_12x4Kernel

in that directory. The resulting performance can be viewed with Live Script
Assignments/Week3/C/data/Plot_XY_JI_MRxNRKernel.mlx.
Solution. Assignments/Week3/Answers/Gemm_PI_JI_MRxNRKernel.c.

On Robert’s laptop, for mR × nR = 12× 4:

By removing that loop, we are simplifying the code without it taking a
performance hit.

By combining the two loops we reduce the number of times that the blocks
Ai,p need to be read from memory:

mCnβC↔M︸ ︷︷ ︸
load Ci,j

+ mCkCβC↔M︸ ︷︷ ︸
load Ai,p

+ kCnβC↔M︸ ︷︷ ︸
load Bp,j

+ 2mCnkCγC︸ ︷︷ ︸
update Ci+ := Ai,pBp

+ mCnβC↔M︸ ︷︷ ︸
store Ci,j

which equals

mCkC + (2mCn+ kCn)βC↔M︸ ︷︷ ︸
data movement overhead

+ 2mCnkCγC .︸ ︷︷ ︸
useful computation

Hence, the ratio of time spent in useful computation, and time spent in moving
data between main memory and cache is given by

2mCnkCγC
(2mCn+mCkC + kCn)βC

.

Assignments/Week3/C/Gemm_PIJ_JI_MRxNRKernel.c
Assignments/Week3/C/data/Plot_XY_JI_MRxNRKernel.mlx
Assignments/Week3/Answers/Gemm_PI_JI_MRxNRKernel.c
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Another way of viewing this is that the ratio between the number of floating
point operations, and number of doubles loaded and stored is given by

2mCnkC
2mCn+mCkC + kCn

.

If, for simplicity, we take mC = kC = b then we get that

2mCnkC
2mCn+mCkC + kCn

. = 2b2n

3bn+ b2 ≈
2b2n

3bn ≈
2b
3

if b is much smaller than n. This is a slight improvement over the analysis from
the last unit.
Remark 3.2.6 In our future discussions, we will use the following terminology:

• A mR×nR submatrix of C that is being updated we will call a micro-tile.

• The mR × kC submatrix of A and kC × nR submatrix of B we will call
micro-panels.

• The routine that updates a micro-tile by multiplying two micro-panels
we will call the micro-kernel.

Remark 3.2.7 The various block sizes we will further explore are
• mR × nR: the sizes of the micro-tile of C that is kept in the registers.

• mC × kC : the sizes of the block of A that is kept in the L2 cache.

3.2.3 Which cache to target?

YouTube: https://www.youtube.com/watch?v=lm8hG3LpQmo

Homework 3.2.3.1 In Assignments/Week3/C, execute
make PI_JI_12x4_MCxKC

and view the performance results with Live Script Assignments/Week3/C/data/

Plot_MC_KC_Performance.mlx.
This experiment tries many different choices for mC and kC , and presents

them as a scatter graph so that the optimal choice can be determined and
visualized.

It will take a long time to execute. Go take a nap, catch a movie, and have
some dinner! If you have a relatively old processor, you may even want to run
it over night. Try not to do anything else on your computer, since that may
affect the performance of an experiment. We went as far as to place something
under the laptop to lift it off the table, to improve air circulation. You will

https://www.youtube.com/watch?v=lm8hG3LpQmo
Assignments/Week3/C/data/Plot_MC_KC_Performance.mlx
Assignments/Week3/C/data/Plot_MC_KC_Performance.mlx
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notice that the computer will start making a lot of noise, as fans kick in to try
to cool the core.
Solution. The last homework on Robert’s laptop yields the performance in
Figure 3.2.8.

Figure 3.2.8: Performance when mR = 12 and nR = 4 and mC and kC
are varied. The best performance is empirically determined by searching the
results. We notice that the submatrix Ai,p is sized to fit in the L2 cache. As we
apply additional optimizations, the optimal choice for mC and kC will change.
Notice that on Robert’s laptop, the optimal choice varies greatly from one
experiment to the next. You may observe the same level of variability on your
computer.

YouTube: https://www.youtube.com/watch?v=aw7OqLVGSUA
To summarize, our insights suggest

1. Bring an mC × kC submatrix of A into the cache, at a cost of mC ×
kCβM↔C , or mC × kC memory operations (memops). (It is the order
of the loops and instructions that encourages the submatrix of A to

https://www.youtube.com/watch?v=aw7OqLVGSUA
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stay in cache.) This cost is amortized over 2mCnkC flops for a ratio
of 2mCnkC/(mCkC) = 2n. The larger n, the better.

2. The cost of reading an kC×nR submatrix ofB is amortized over 2mCnRkC
flops, for a ratio of 2mCnRkC/(kCnR) = 2mC . Obviously, the greater
mC , the better.

3. The cost of reading and writing an mR × nR submatrix of C is now
amortized over 2mRnRkC flops, for a ratio of 2mRnRkC/(2mRnR) = kC .
Obviously, the greater kC , the better.

Item 2 and Item 3 suggest that mC × kC submatrix Ai,p be squarish.
If we revisit the performance data plotted in Figure 3.2.8, we notice that

matrix Ai,p fits in part of the L2 cache, but is too big for the L1 cache. What
this means is that the cost of bringing elements of A into registers from the L2
cache is low enough that computation can offset that cost. Since the L2 cache
is larger than the L1 cache, this benefits performance, since the mC and kC
can be larger.

3.2.4 Blocking for the L1 and L2 caches

YouTube: https://www.youtube.com/watch?v=pBtwu3E9lCQ

3.2.5 Blocking for the L1, L2, and L3 caches

YouTube: https://www.youtube.com/watch?v=U-tWXMAkmIs
The blocking for the various memory layers is captured in the following

figure:

https://www.youtube.com/watch?v=pBtwu3E9lCQ
https://www.youtube.com/watch?v=U-tWXMAkmIs
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Figure 3.2.9: Illustration of the five loops around the micro-kernel. Power-
Point source for figure.

YouTube: https://www.youtube.com/watch?v=wfaXtM376iQ
PowerPoint source used in video.

Homework 3.2.5.1 Using our prior naming convention, which of the imple-
mentations

• Gemm_IJP_JI_MRxNRKernel.c

• Gemm_JPI_JI_MRxNRKernel.c

• Gemm_PJI_JI_MRxNRKernel.c

best captures the loop structure illustrated in Figure 3.2.9?
Answer. Gemm_JPI_JI_MRxNRKernel.c

images/Week3/FiveLoopsAnimated.pptx
images/Week3/FiveLoopsAnimated.pptx
https://www.youtube.com/watch?v=wfaXtM376iQ
images/Week3/BLISPictureNoPack.pptx


3.2. LEVERAGING THE CACHES 145

3.2.6 Translating into code

We always advocate, when it does not substantially impede performance, to
instantiate an algorithm in code in a way that closely resembles how one
explains it. In this spirit, the algorithm described in Figure 3.2.9 can be
coded by making each loop (box) in the figure a separate routine. An out-
line of how this might be accomplished is illustrated next as well as in file
Assignments/Week3/C/Gemm_Five_Loops_MRxNRKernel.c. You are asked to com-
plete this code in the next homework.

void LoopFive( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int j=0; j<n; j+=NC ) {
int jb = min( NC, n-j ); /* Last loop may not involve a full block */

LoopFour( m, jb, k, A, ldA, &beta( , ), ldB, &gamma( , ), ldC );
}

}

void LoopFour( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int p=0; p<k; p+=KC ) {
int pb = min( KC, k-p ); /* Last loop may not involve a full block */

LoopThree( m, n, pb, &alpha( , ), ldA, &beta( , ), ldB, C, ldC );
}

}

Assignments/Week3/C/Gemm_Five_Loops_MRxNRKernel.c
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void LoopThree( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i+=MC ) {
int ib = min( MC, m-i ); /* Last loop may not involve a full block */

LoopTwo( ib, n, k, &alpha( , ), ldA, B, ldB, &gamma( , ), ldC );
}

}

void LoopTwo( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int j=0; j<n; j+=NR ) {
int jb = min( NR, n-j );

LoopOne( m, jb, k, A, ldA, &beta( , ), ldB, &gamma( , ), ldC );
}

}

void LoopOne( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i+=MR ) {
int ib = min( MR, m-i );
Gemm_MRxNRKernel( k, &alpha( , ), ldA, B, ldB, &gamma( , ), ldC );

}
}

Homework 3.2.6.1 Complete the code in Assignments/Week3/C/Gemm_Five_Loops_MRxNRKernel.c
and execute it with
make Five_Loops_4x4Kernel
make Five_Loops_12x4Kernel

View the performance with Live Script Assignments/Week3/C/data/Plot_Five_

Assignments/Week3/C/data/Plot_Five_Loops.mlx
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Loops.mlx.
Notice that these link the routines Gemm_4x4Kernel.c and Gemm_12x4Kernel.c

that you completed in Homework 2.4.3.1 and Homework 2.4.4.4.
You may want to play with the different cache block sizes (MB, NB, and

KB) in the Makefile. In particular, you may draw inspiration from Figure 3.2.8.
Pick them to be multiples of 12 to keep things simple. However, we are still
converging to a high-performance implementation, and it is still a bit prema-
ture to try to pick the optimal parameters (which will change as we optimize
further).
Solution. Assignments/Week3/Answers/Gemm_Five_Loops_MRxNRKernel.c.

On Robert’s laptop:

YouTube: https://www.youtube.com/watch?v=HUbbR2HTrHY

Assignments/Week3/C/data/Plot_Five_Loops.mlx
Assignments/Week3/C/data/Plot_Five_Loops.mlx
Assignments/Week3/C/data/Plot_Five_Loops.mlx
Assignments/Week3/Answers/Gemm_Five_Loops_MRxNRKernel.c
https://www.youtube.com/watch?v=HUbbR2HTrHY
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3.3 Packing

3.3.1 Stride matters

YouTube: https://www.youtube.com/watch?v=cEDMRH928CA

Homework 3.3.1.1 One would think that once one introduces blocking, the
higher performance attained for small matrix sizes will be maintained as the
problem size increases. This is not what you observed: there is still a decrease
in performance. To investigate what is going on, copy the driver routine in
Assignments/Week3/C/driver.c into driver_ldim.c and in that new file change
the line
ldA = ldB = ldC = size;

to

ldA = ldB = ldC = last;

This sets the leading dimension of matrices A, B, and C to the largest problem
size to be tested, for all experiments. Collect performance data by executing

make Five_Loops_12x4Kernel_ldim

in that directory. The resulting performance can be viewed with Live Script
Assignments/Week3/C/data/Plot_Five_Loops.mlx.
Solution. Assignments/Week3/Answers/driver_ldim.c.

On Robert’s laptop:

https://www.youtube.com/watch?v=cEDMRH928CA
Assignments/Week3/C/data/Plot_Five_Loops.mlx
Assignments/Week3/Answers/driver_ldim.c
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YouTube: https://www.youtube.com/watch?v=zBKo7AvF7-c
What is going on here? Modern processors incorporate a mechanism known

as "hardware prefetching" that speculatively preloads data into caches based
on observed access patterns so that this loading is hopefully overlapped with
computation. Processors also organize memory in terms of pages, for reasons
that have to do with virtual memory, details of which go beyond the scope of
this course. For our purposes, a page is a contiguous block of memory of 4
Kbytes (4096 bytes or 512 doubles). Prefetching only occurs within a page.
Since the leading dimension is now large, when the computation moves from
column to column in a matrix data is not prefetched.

The bottom line: early in the course we discussed that marching contigu-
ously through memory is a good thing. While we claim that we do block for
the caches, in practice the data is typically not contiguously stored and hence
we can’t really control how the data is brought into caches, where it exists at a
particular time in the computation, and whether prefetching is activated. Next,
we fix this through packing of data at strategic places in the nested loops.

Learn more:

• Memory page: https://en.wikipedia.org/wiki/Page_(computer_memory).

• Cache prefetching: https://en.wikipedia.org/wiki/Cache_prefetching.

https://www.youtube.com/watch?v=zBKo7AvF7-c
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Cache_prefetching
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3.3.2 Packing blocks of A and panels of B

YouTube: https://www.youtube.com/watch?v=UdBix7fYVQg
The next step towards optimizing the micro-kernel exploits that comput-

ing with contiguous data (accessing data with a "stride one" access pattern)
improves performance. The fact that the mR × nR micro-tile of C is not in
contiguous memory is not particularly important. The cost of bringing it into
the vector registers from some layer in the memory is mostly inconsequential
because a lot of computation is performed before it is written back out. It is
the repeated accessing of the elements of A and B that can benefit from stride
one access.

Two successive rank-1 updates of the micro-tile can be given by
γ0,0 γ0,1 γ0,2 γ0,3
γ1,0 γ1,1 γ1,2 γ0,3
γ2,0 γ2,1 γ2,2 γ0,3
γ3,0 γ3,1 γ3,2 γ0,3

+ :=


α0,p
α1,p
α2,p
α3,p

( βp,0 βp,1 βp,2 βp,3
)

+


α0,p+1
α1,p+1
α2,p+1
α3,p+1

( βp+1,0 βp+1,1 βp+1,2 βp+1,3
)
.

Since A and B are stored with column-major order, the four elements of α[0:3],p
are contiguous in memory, but they are (generally) not contiguously stored
with α[0:3],p+1. Elements βp,[0:3] are (generally) also not contiguous. The access
pattern during the computation by the micro-kernel would be much more fa-
vorable if the A involved in the micro-kernel was packed in column-major order
with leading dimension mR:

and B was packed in row-major order with leading dimension nR:

https://www.youtube.com/watch?v=UdBix7fYVQg
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If this packing were performed at a strategic point in the computation, so
that the packing is amortized over many computations, then a benefit might
result. These observations are captured in Figure 3.3.1.

Picture adapted from [27]. Click to enlarge. PowerPoint source (step-by-step).

Figure 3.3.1: Blocking for multiple levels of cache, with packing.

images/Week3/BLISPicturePackAnimated.pptx
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In the next units you will discover how to implement packing and how to
then integrate it into the five loops around the micro-kernel.

3.3.3 Implementation: packing row panel Bp,j

YouTube: https://www.youtube.com/watch?v=0ovhed0gzr4

We briefly discuss the packing of the row panel Bp,j into B̃p,j :

We break the implementation, in Assignments/Week3/C/PackB.c, down into
two routines. The first loops over all the panels that need to be packed

as illustrated in Figure 3.3.2.

void PackPanelB_KCxNC( int k, int n, double *B, int ldB, double *Btilde )
/* Pack a k x n panel of B in to a KC x NC buffer.
.

The block is copied into Btilde a micro-panel at a time. */
{
for ( int j=0; j<n; j+= NR ){
int jb = min( NR, n-j );

PackMicro-PanelB_KCxNR( k, jb, &beta( 0, j ), ldB, Btilde );
Btilde += k * jb;

}
}

Figure 3.3.2: A reference implementation for packing Bp,j .

That routine then calls a routine that packs the panel

https://www.youtube.com/watch?v=0ovhed0gzr4
Assignments/Week3/C/PackB.c
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Given in Figure 3.3.3.

void PackMicroPanelB_KCxNR( int k, int n, double *B, int ldB,
double *Btilde )

/* Pack a micro-panel of B into buffer pointed to by Btilde.
This is an unoptimized implementation for general KC and NR.
k is assumed to be less then or equal to KC.
n is assumed to be less then or equal to NR. */

{
/* March through B in row-major order, packing into Btilde. */
if ( n == NR ) {
/* Full column width micro-panel.*/
for ( int p=0; p<k; p++ )
for ( int j=0; j<NR; j++ )
*Btilde++ = beta( p, j );

}
else {
/* Not a full row size micro-panel. We pad with zeroes.
To be added */

}
}

Figure 3.3.3: A reference implementation for packing a micro-panel of Bp,j .

Remark 3.3.4 We emphasize that this is a “quick and dirty” implementa-
tion. It is meant to be used for matrices that are sized to be nice multiples
of the various blocking parameters. The goal of this course is to study how to
implement matrix-matrix multiplication for matrices that are nice multiples of
these blocking sizes. Once one fully understands how to optimize that case, one
can start from scratch and design an implementation that works for all matrix
sizes. Alternatively, upon completing this week one understands the issues well
enough to be able to study a high-quality, open source implementation like the
one in our BLIS framework [3].
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3.3.4 Implementation: packing block Ai,p

YouTube: https://www.youtube.com/watch?v=GDYA478W-f0

We next discuss the packing of the block Ai,p into Ãi,p:

We break the implementation, in Assignments/Week3/C/PackA.c, down into
two routines. The first loops over all the rows that need to be packed

as illustrated in Figure 3.3.5.

void PackBlockA_MCxKC( int m, int k, double *A, int ldA, double *Atilde )
/* Pack a m x k block of A into a MC x KC buffer. MC is assumed to

be a multiple of MR. The block is packed into Atilde a micro-panel
at a time. If necessary, the last micro-panel is padded with rows
of zeroes. */

{
for ( int i=0; i<m; i+= MR ){
int ib = min( MR, m-i );

PackMicro-PanelA_MRxKC( ib, k, &alpha( i, 0 ), ldA, Atilde );
Atilde += ib * k;

}
}

Figure 3.3.5: A reference implementation for packing Ai,p.

That routine then calls a routine that packs the panel

Given in Figure 3.3.6.

https://www.youtube.com/watch?v=GDYA478W-f0
Assignments/Week3/C/PackA.c
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void PackMicroPanelA_MRxKC( int m, int k, double *A, int ldA, double *Atilde )
/* Pack a micro-panel of A into buffer pointed to by Atilde.

This is an unoptimized implementation for general MR and KC. */
{
/* March through A in column-major order, packing into Atilde as we go. */

if ( m == MR ) {
/* Full row size micro-panel.*/
for ( int p=0; p<k; p++ )
for ( int i=0; i<MR; i++ )
*Atilde++ = alpha( i, p );

}
else {
/* Not a full row size micro-panel. We pad with zeroes. To be added */

}
}

Figure 3.3.6: A reference implementation for packing a micro-panel of Ai,p.

Remark 3.3.7 Again, these routines only work when the sizes are "nice". We
leave it as a challenge to generalize all implementations so that matrix-matrix
multiplication with arbitrary problem sizes works. To manage the complexity
of this, we recommend "padding" the matrices with zeroes as they are being
packed. This then keeps the micro-kernel simple.

3.3.5 Implementation: five loops around the micro-kernel, with
packing

YouTube: https://www.youtube.com/watch?v=Fye-IwGDTYA
Below we illustrate how packing is incorporated into the "Five loops around

the micro-kernel".

void LoopFive( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{

https://www.youtube.com/watch?v=Fye-IwGDTYA
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for ( int j=0; j<n; j+=NC ) {
int jb = min( NC, n-j ); /* Last loop may not involve a full block */

LoopFour( m, jb, k, A, ldA, &beta( 0,j ), ldB, &gamma( 0,j ), ldC );
}

}

void LoopFour( int m, int n, int k, double *A, int ldA, double *B, int ldB,
double *C, int ldC )

{
double *Btilde = ( double * ) malloc( KC * NC * sizeof( double ) );

for ( int p=0; p<k; p+=KC ) {
int pb = min( KC, k-p ); /* Last loop may not involve a full block */

PackPanelB_KCxNC( pb, n, &beta( p, 0 ), ldB, Btilde );
LoopThree( m, n, pb, &alpha( 0, p ), ldA, Btilde, C, ldC );

}
free( Btilde);

}

void LoopThree( int m, int n, int k, double *A, int ldA, double *Btilde, double *C, int ldC )
{
double *Atilde = ( double * ) malloc( MC * KC * sizeof( double ) );

for ( int i=0; i<m; i+=MC ) {
int ib = min( MC, m-i ); /* Last loop may not involve a full block */
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PackBlockA_MCxKC( ib, k, &alpha( i, 0 ), ldA, Atilde );
LoopTwo( ib, n, k, Atilde, Btilde, &gamma( i,0 ), ldC );

}

free( Atilde);
}

void LoopTwo( int m, int n, int k, double *Atilde, double *Btilde, double *C, int ldC )
{
for ( int j=0; j<n; j+=NR ) {
int jb = min( NR, n-j );

LoopOne( m, jb, k, Atilde, &Btilde[ j*k ], &gamma( 0,j ), ldC );
}

void LoopOne( int m, int n, int k, double *Atilde, double *Micro-PanelB, double *C, int ldC )
{
for ( int i=0; i<m; i+=MR ) {
int ib = min( MR, m-i );

Gemm_MRxNRKernel_Packed( k,&Atilde[ i*k ], Micro-PanelB, &gamma( i,0 ), ldC );
}

}

3.3.6 Micro-kernel with packed data

YouTube: https://www.youtube.com/watch?v=4hd0QnQ6JBo

https://www.youtube.com/watch?v=4hd0QnQ6JBo
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void Gemm_MRxNRKernel_Packed( int k,
double *MP_A, double *MP_B, double *C, int ldC )

{
__m256d gamma_0123_0 = _mm256_loadu_pd( &gamma( 0,0 ) );
__m256d gamma_0123_1 = _mm256_loadu_pd( &gamma( 0,1 ) );
__m256d gamma_0123_2 = _mm256_loadu_pd( &gamma( 0,2 ) );
__m256d gamma_0123_3 = _mm256_loadu_pd( &gamma( 0,3 ) );

__m256d beta_p_j;

for ( int p=0; p<k; p++ ){
/* load alpha( 0:3, p ) */
__m256d alpha_0123_p = _mm256_loadu_pd( MP_A );

/* load beta( p, 0 ); update gamma( 0:3, 0 ) */
beta_p_j = _mm256_broadcast_sd( MP_B );
gamma_0123_0 = _mm256_fmadd_pd( alpha_0123_p, beta_p_j, gamma_0123_0 );

/* load beta( p, 1 ); update gamma( 0:3, 1 ) */
beta_p_j = _mm256_broadcast_sd( MP_B+1 );
gamma_0123_1 = _mm256_fmadd_pd( alpha_0123_p, beta_p_j, gamma_0123_1 );

/* load beta( p, 2 ); update gamma( 0:3, 2 ) */
beta_p_j = _mm256_broadcast_sd( MP_B+2 );
gamma_0123_2 = _mm256_fmadd_pd( alpha_0123_p, beta_p_j, gamma_0123_2 );

/* load beta( p, 3 ); update gamma( 0:3, 3 ) */
beta_p_j = _mm256_broadcast_sd( MP_B+3 );
gamma_0123_3 = _mm256_fmadd_pd( alpha_0123_p, beta_p_j, gamma_0123_3 );

MP_A += MR;
MP_B += NR;

}

/* Store the updated results. This should be done more carefully since
there may be an incomplete micro-tile. */

_mm256_storeu_pd( &gamma(0,0), gamma_0123_0 );
_mm256_storeu_pd( &gamma(0,1), gamma_0123_1 );
_mm256_storeu_pd( &gamma(0,2), gamma_0123_2 );
_mm256_storeu_pd( &gamma(0,3), gamma_0123_3 );

}

Figure 3.3.8: Blocking for multiple levels of cache, with packing.

How to modify the five loops to incorporate packing was discussed in
Unit 3.3.5. A micro-kernel to compute with the packed data when mR × nR =
4× 4 is now illustrated in Figure 3.3.8.
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Homework 3.3.6.1 Examine the files Assignments/Week3/C/Gemm_Five_Loops_

Packed_MRxNRKernel.c and Assignments/Week3/C/Gemm_4x4Kernel_Packed.c. Col-
lect performance data with
make Five_Loops_Packed_4x4Kernel

and view the resulting performance with Live Script Plot_Five_Loops.mlx.
Solution. On Robert’s laptop:

Homework 3.3.6.2 Copy the file Gemm_4x4Kernel_Packed.c into file Gemm_12x4Kernel_Packed.c.
Modify that file so that it uses mR × nR = 12× 4. Test the result with
make Five_Loops_Packed_12x4Kernel

and view the resulting performance with Live Script Plot_Five_Loops.mlx.
Solution. Assignments/Week3/Answers/Gemm_12x4Kernel_Packed.c

On Robert’s laptop:

Assignments/Week3/C/Gemm_Five_Loops_Packed_MRxNRKernel.c
Assignments/Week3/C/Gemm_Five_Loops_Packed_MRxNRKernel.c
Assignments/Week3/C/Gemm_4x4Kernel_Packed.c
Assignments/Week3/Answers/Gemm_12x4Kernel_Packed.c
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Now we are getting somewhere!

Homework 3.3.6.3 In Homework 3.2.3.1, you determined the best block sizes
MC and KC. Now that you have added packing to the implementation of the
five loops around the micro-kernel, these parameters need to be revisited. You
can collect data for a range of choices by executing
make Five_Loops_Packed_?x?Kernel_MCxKC

where ?x? is your favorite choice for register blocking. View the result with
data/Plot_Five_loops.mlx.
Solution.

• Assignments/Week4/Answers/Gemm_Five_Loops_Packed_MRxNRKernel.c

3.4 Further Tricks of the Trade

The course so far has exposed you to the "big ideas" on how to highly optimize
matrix-matrix multiplication. You may be able to apply some of these ideas
(how to extract parallelism via vector instructions, the importance of reusing
data, and the benefits of accessing data with stride one) to your own compu-
tations. For some computations, there is no opportunity to reuse data to that
same extent, which means they are inherently bandwidth bound.

By now, you may also have discovered that this kind of programming is
just not your cup of soup. What we hope you will then have realized is that
there are high-performance libraries out there, and that it is important to cast
your computations in terms of calls to those libraries so that you benefit from
the expertise of others.

Some of you now feel "the need for speed." You enjoy understanding how
software and hardware interact and you have found a passion for optimizing

Assignments/Week4/Answers/Gemm_Five_Loops_Packed_MRxNRKernel.c
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computation. In this section, we give a laundry list of further optimizations that
can be tried by you and others like you. We merely mention the possibilities
and leave it to you to research the details and translate these into even faster
code. If you are taking this course as an edX MOOC, you can discuss the result
with others on the discussion forum.

3.4.1 Alignment (easy and worthwhile)

The vector intrinsic routines that load and/or broadcast vector registers are
faster when the data from which one loads is aligned.

Conveniently, loads of elements of A and B are from buffers into which
the data was packed. By creating those buffers to be aligned, we can ensure
that all these loads are aligned. Intel’s intrinsic library has a special memory
allocation and deallocation routines specifically for this purpose: _mm_malloc
and _mm_free. (align should be chosen to equal the length of a cache line, in
bytes: 64.)

3.4.2 Avoiding repeated memory allocations (may become im-
portant in Week 4)

In the final implementation that incorporates packing, at various levels workspace
is allocated and deallocated multiple times. This can be avoided by allocating
workspace immediately upon entering LoopFive (or in MyGemm). Alterna-
tively, the space could be "statically allocated" as a global array of appropriate
size. In "the real world" this is a bit dangerous: If an application calls multi-
ple instances of matrix-matrix multiplication in parallel (e.g., using OpenMP
about which we will learn next week), then these different instances may end
up overwriting each other’s data as they pack, leading to something called a
"race condition." But for the sake of this course, it is a reasonable first step.

3.4.3 Play with the block sizes (highly recommended)

As mentioned, there are many choices for mR × nR. In our discussions, we
focused on 12×4. That different choices for mR×nR yield better performance,
now that packing has been added into the implementation.

Once you have determined the best mR×nR you may want to go back and
redo Homework 3.3.6.3 to determine the best mC and kC . Then, collect final
performance data once you have updated the Makefile with the best choices.

3.4.4 Broadcasting elements of A and loading elements of B
(tricky and maybe not that worthwhile)

So far, we have focused on choices for mR × nR where mR is a multiple of
four. Before packing was added, this was because one loads into registers from
contiguous memory and for this reason loading from A, four elements at a
time, while broadcasting elements from B was natural because of how data was
mapped to memory using column-major order. After packing was introduced,
one could also contemplate loading from B and broadcasting elements of A,

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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which then also makes kernels like 6 × 8 possible. The problem is that this
would mean performing a vector instruction with elements that are in rows
of C, and hence when loading elements of C one would need to perform a
transpose operation, and also when storing the elements back to memory.

There are reasons why a 6× 8 kernel edges out even a 8× 6 kernel. On the
surface, it may seem like this would require a careful reengineering of the five
loops as well as the micro-kernel. However, there are tricks that can be played
to make it much simpler than it seems.

Intuitively, if you store matrices by columns, leave the data as it is so stored,
but then work with the data as if it is stored by rows, this is like computing
with the transposes of the matrices. Now, mathematically, if

C := AB + C

then
CT := (AB + C)T = (AB)T + CT = BTAT + CT .

If you think about it: transposing a matrix is equivalent to viewing the matrix,
when stored in column-major order, as being stored in row-major order.

Consider the simplest implementation for computing C := AB + C from
Week 1:

#define alpha( i,j ) A[ (j)*ldA + i ]
#define beta( i,j ) B[ (j)*ldB + i ]
#define gamma( i,j ) C[ (j)*ldC + i ]

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i++ )
for ( int j=0; j<n; j++ )
for ( int p=0; p<k; p++ )

gamma( i,j ) += alpha( i,p ) * beta( p,j );
}

From this, a code that instead computes CT := BTAT + CT , with matrices
still stored in column-major order, is given by

#define alpha( i,j ) A[ (j)*ldA + i ]
#define beta( i,j ) B[ (j)*ldB + i ]
#define gamma( i,j ) C[ (j)*ldC + i ]

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i++ )
for ( int j=0; j<n; j++ )
for ( int p=0; p<k; p++ )
gamma( j,i ) += alpha( p,i ) * beta( j,p );

}
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Notice how the roles of m and n are swapped and how working with the trans-
pose replaces i,j with j,i, etc. However, we could have been clever: Instead of
replacing i,j with j,i, etc., we could have instead swapped the order of these in
the macro definitions: #define alpha( i,j ) becomes #define alpha( j,i ):

#define alpha( j,i ) A[ (j)*ldA + i ]
#define beta( j,i ) B[ (j)*ldB + i ]
#define gamma( j,i ) C[ (j)*ldC + i ]

void MyGemm( int m, int n, int k, double *A, int ldA,
double *B, int ldB, double *C, int ldC )

{
for ( int i=0; i<m; i++ )
for ( int j=0; j<n; j++ )
for ( int p=0; p<k; p++ )
gamma( i,j ) += alpha( i,p ) * beta( p,j );

}

Next, we can get right back to our original triple-nested loop by swapping the
roles of A and B:

#define alpha( j,i ) A[ (j)*ldA + i ]
#define beta( j,i ) B[ (j)*ldB + i ]
#define gamma( j,i ) C[ (j)*ldC + i ]

void MyGemm( int m, int n, int k, double *B, int ldB,
double *A, int ldA, double *C, int ldC )

{
for ( int i=0; i<m; i++ )
for ( int j=0; j<n; j++ )
for ( int p=0; p<k; p++ )
gamma( i,j ) += alpha( i,p ) * beta( p,j );

}

The point is: Computing C := AB +C with these matrices stored by columns
is the same as computing C := BA+ C viewing the data as if stored by rows,
making appropriate adjustments for the sizes of the matrix. With this insight,
any matrix-matrix multiplication implementation we have encountered can be
transformed into one that views the data as if stored by rows by redefining
the macros that translate indexing into the arrays into how the matrices are
stored, a swapping of the roles of A and B, and an adjustment to the sizes of
the matrix.

Because we implement the packing with the macros, they actually can be
used as is. What is left is to modify the inner kernel to use mR×nR = 6×8.

3.4.5 Loop unrolling (easy enough; see what happens)

There is some overhead that comes from having a loop in the micro-kernel.
That overhead is in part due to the cost of updating the loop index p and the
pointers to the buffers, MP_A and MP_B. It is also possible that "unrolling"
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the loop will allow the compiler to rearrange more instructions in the loop
and/or the hardware to better perform out-of-order computation because each
iteration of the loop involves a branch instruction, where the branch depends
on whether the loop is done. Branches get in the way of compiler optimizations
and out-of-order computation by the CPU.

What is loop unrolling? In the case of the micro-kernel, unrolling the loop
indexed by p by a factor two means that each iteration of that loop updates
the micro-tile of C twice instead of once. In other words, each iteration of the
unrolled loop performs two iterations of the original loop, and updates p+=2
instead of p++. Unrolling by a larger factor is the natural extension of this
idea. Obviously, a loop that is unrolled requires some care in case the number
of iterations was not a nice multiple of the unrolling factor. You may have
noticed that our performance experiments always use problem sizes that are
multiples of 48. This means that if you use a reasonable unrolling factor that
divides into 48, you are probably going to be OK.

Similarly, one can unroll the loops in the packing routines.
See what happens!

Homework 3.4.5.1 Modify your favorite implementation so that it unrolls
the loop in the micro-kernel with different unrolling factors.

(Note: I have not implemented this myself yet...)

3.4.6 Prefetching (tricky; seems to confuse the compiler...)

Elements of Ã in theory remain in the L2 cache. If you implemented the 6× 8
kernel, you are using 15 out of 16 vector registers and the hardware almost
surely prefetches the next element of Ã into the L1 cache while computing
with the current one. One can go one step further by using the last unused
vector register as well, so that you use two vector registers to load/broadcast
two elements of Ã. The CPU of most modern cores will execute "out of order"
which means that at the hardware level instructions are rescheduled so that a
"stall" (a hickup in the execution because, for example, data is not available)
is covered by other instructions. It is highly likely that this will result in the
current computation overlapping with the next element from Ã being prefetched
(load/broadcast) into a vector register.

A second reason to prefetch is to overcome the latency to main memory
for bringing in the next micro-tile of C. The Intel instruction set (and vector
intrinsic library) includes instructions to prefetch data into an indicated level
of cache. This is accomplished by calling the instruction

void _mm_prefetch(char *p, int i)

• The argument ∗p gives the address of the byte (and corresponding cache
line) to be prefetched.

• The value i is the hint that indicates which level to prefetch to.

◦ _MM_HINT_T0: prefetch data into all levels of the cache hierar-
chy.
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◦ _MM_HINT_T1: prefetch data into level 2 cache and higher.

◦ _MM_HINT_T2: prefetch data into level 3 cache and higher, or
an implementation-specific choice.

These are actually hints that a compiler can choose to ignore. In theory,
with this a next micro-tile of C can be moved into a more favorable
memory layer while a previous micro-tile is being updated. In theory, the
same mechanism can be used to bring a next micro-panel of B̃, which itself
is meant to reside in the L3 cache, into the L1 cache during computation
with a previous such micro-panel. In practice, we did not manage to
make this work. It may work better to use equivalent instructions with
in-lined assembly code.

For additional information, you may want to consult Intel’s Intrinsics
Guide.

3.4.7 Using in-lined assembly code

Even more control over where what happens can be attained by using in-lined
assembly code. This will allow prefetching and how registers are used to be
made more explicit. (The compiler often changes the order of the operations
even when intrinsics are used in C.) Details go beyond this course. You may
want to look at the BLIS micro-kernel for the Haswell achitecture, implemented
with in-lined assembly code.

3.5 Enrichments

3.5.1 Goto’s algorithm and BLIS

The overall approach described in Week 2 and Week 3 was first suggested by
Kazushige Goto and published in

• [9] Kazushige Goto and Robert van de Geijn, On reducing TLB misses in
matrix multiplication, Technical Report TR02-55, Department of Com-
puter Sciences, UT-Austin, Nov. 2002.

• [10] Kazushige Goto and Robert van de Geijn, Anatomy of High-Performance
Matrix Multiplication, ACM Transactions on Mathematical Software,
Vol. 34, No. 3: Article 12, May 2008.

We refer to it as Goto’s algorithm or the GotoBLAS algorithm (since he in-
corporated it in his implementation of the BLAS by the name GotoBLAS).
His innovations included staging the loops so that a block of A remains in the
L2 cache. He assembly-coded all the computation performed by the two loops
around the micro-kernel

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/flame/blis/blob/master/kernels/haswell/3/old/bli_gemm_haswell_asm_d6x8.c
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which he called the "inner-kernel". His accomplishments at the time were
impressive enough that the New York Times did an article on him in 2005:
"Writing the Fastest Code, by Hand, for Fun: A Human Computer Keeps
Speeding Up Chips."

The very specific packing by micro-panels that we discuss in this week was
also incorporated in Goto’s implementations but the idea should be attributed
to Greg Henry.

The BLIS library refactored Goto’s algorithm into the five loops around the
micro-kernel with which you are now very familiar, as described in a sequence
of papers:

• [32] Field G. Van Zee and Robert A. van de Geijn, BLIS: A Framework
for Rapidly Instantiating BLAS Functionality, ACM Journal on Mathe-
matical Software, Vol. 41, No. 3, June 2015.

• [31] Field G. Van Zee, Tyler Smith, Francisco D. Igual, Mikhail Smelyan-
skiy, Xianyi Zhang, Michael Kistler, Vernon Austel, John Gunnels, Tze
Meng Low, Bryan Marker, Lee Killough, and Robert A. van de Geijn, The
BLIS Framework: Experiments in Portability, ACM Journal on Mathe-
matical Software, Vol. 42, No. 2, June 2016.

• [27] Field G. Van Zee and Tyler M. Smith, Implementing High-performance
Complex Matrix Multiplication via the 3M and 4MMethods, ACMTrans-
actions on Mathematical Software, Vol. 44, No. 1, pp. 7:1-7:36, July
2017.

• [30] Field G. Van Zee, Implementing High-Performance Complex Ma-
trix Multiplication via the 1m Method, ACM Journal on Mathematical
Software, in review.

While Goto already generalized his approach to accommodate a large set of
special cases of matrix-matrix multiplication, known as the level-3 BLAS [5],
as described in

• [11] Kazushige Goto and Robert van de Geijn, High-performance im-
plementation of the level-3 BLAS, ACM Transactions on Mathematical
Software, Vol. 35, No. 1: Article 4, July 2008.

https://www.nytimes.com/2005/11/28/technology/writing-the-fastest-code-by-hand-for-fun-a-human-computer-keeps.html
https://www.nytimes.com/2005/11/28/technology/writing-the-fastest-code-by-hand-for-fun-a-human-computer-keeps.html
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His implementations required a considerable amount of assembly code to be
written for each of these special cases. The refactoring of matrix-matrix mul-
tiplication in BLIS allows the micro-kernel to be reused across these special
cases [32], thus greatly reducing the effort required to implement all of this
functionality, at the expense of a moderate reduction in performance.

3.5.2 How to choose the blocking parameters

As you optimized your various implementations of matrix-matrix multiplica-
tion, you may have wondered how to optimally pick the various block sizes
(MR,NR,MC, NC, and KC). Some believe that the solution is to explore the
space of possibilities, timing each choice and picking the one that attains the
best performance [33]. This is known as autotuning.

It has been shown that the block sizes for BLIS can be determined through
analysis instead, as discussed in

• [18] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique
S. Quintana-Orti, Analytical Modeling Is Enough for High-Performance
{BLIS}, ACM Journal on Mathematical Software, Vol. 43, No. 2, Aug.
2016.

3.5.3 Alternatives to Goto’s algorithm

In Unit 2.5.1, theoretical lower bounds on data movement incurred by matrix-
matrix multiplication were discussed. You may want to go back and read [23],
mentioned in that unit, in which it is discussed how Goto’s algorithm fits into
the picture.

In a more recent paper,

• [24] Tyler M. Smith and Robert A. van de Geijn, The MOMMS Family
of Matrix Multiplication Algorithms, arXiv, 2019.

a family of practical matrix-matrix multiplication algorithms is discussed, of
which Goto’s algorithm is but one member. Analytical and empirical results
suggest that for future CPUs, for which the ratio between the cost of a flop
and the cost of moving data between the memory layers becomes even worse,
other algorithms may become superior.

3.5.4 Practical implementation of Strassen’s algorithm

Achieving a high performing, practical implementation of Strassen’s algorithm,
which was discussed in Unit 2.5.2, is nontrivial:

• As the number of levels of Strassen increases, the extra overhead associ-
ated with the additions becomes nontrivial.

• Now that you understand the cost of moving data between memory lay-
ers, you can also appreciate that there is cost related to moving data
associated with the extra additions, if one is not careful.

• Accommodating matrices with sizes that are not a power of two (or a
multiple of a power of two) becomes a can of worms.
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Imagine trying to deal with the complexity of this recursive algorithm as you
try to apply what you have learned so far in the course...

Until recently, the approach was to only perform a few levels of Strassen’s
algorithm, and to call a high-performance conventional matrix-matrix multi-
plication for the multiplications at the leaves of the recursion.

• If one performs one level of Strassen, this would reduce the number of
flops required by 1− 7/8 = 1/8 = 0.125.

• If one performs two levels of Strassen, this would reduce the number of
flops required by 1− (7/8)2 ≈ 0.234.

This yields some potential for improved performance. It comes at the expense
of additional workspace due to the many intermediate matrices that need to
be computed, which reduces the largest problem that can fit in memory.

In the recent paper

• [14] Jianyu Huang, Tyler Smith, Greg Henry, and Robert van de Geijn,
Strassen’s Algorithm Reloaded, International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC’16), 2016.

it was shown that the additions and subtractions that appear in Unit 2.5.2
can be incorporated into the packing that is inherent in the optimizations of
matrix-matrix multiplication that you mastered so far in the course! This
observation makes Strassen’s algorithm much more practical than previously
thought. Those interested in the details can read that paper.

If that paper interests you, you may also want to read

• [12] Jianyu Huang, Leslie Rice, Devin A. Matthews, Robert A. van de
Geijn, Generating Families of Practical Fast Matrix Multiplication Algo-
rithms, in Proceedings of the 31st IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS17), Orlando, FL, May 29-June
2, 2017.which discusses a family of Strassen-like algorithms.

The code discussed in that paper can be found at https://github.com/flame/

fmm-gen.

3.6 Wrap Up

3.6.1 Additional exercises

The following are pretty challenging exercises. They stretch you to really think
through the details. Or you may want to move on to Week 4, and return to
these if you have extra energy in the end.

Homework 3.6.1.1 You will have noticed that we only time certain problem
sizes when we execute our performance experiments. The reason is that the im-
plementations of MyGemm do not handle "edge cases" well: when the problem
size is not a nice multiple of the blocking sizes that appear in the micro-kernel:
mR, nR, and kC .

SInce our final, highest-performing implementations pack panels of B and

https://github.com/flame/fmm-gen
https://github.com/flame/fmm-gen
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blocks of A, much of the edge case problems can be handled by "padding" micro-
panels with zeroes when the remaining micro-panel is not a "full" one. Also, one
can compute a full micro-tile of C and then add it to a partial such submatrix
of C, if a micro-tile that is encountered is not a full mR × nR submatrix.

Reimplement MyGemm using these tricks so that it computes correctly for
all sizes m, n, and k.

Homework 3.6.1.2 Implement the practical Strassen algorithm discussed in
Unit 3.5.4.

3.6.2 Summary

3.6.2.1 The week in pictures

Figure 3.6.1: A typical memory hierarchy, with registers, caches, and main
memory.
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Figure 3.6.2: The five loops, with packing.
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Figure 3.6.3: Performance on Robert’s laptop at the end of Week 3.
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Week 4

Multithreaded Parallelism

Only Weeks 0-2 have been released on edX. In order for our beta testers to
comment on the materials for Week 4, the notes for this week are available to
all. These notes are very much still under construction... Proceed at your own
risk!

4.1 Opening Remarks

4.1.1 Launch

In this launch, you get a first exposure to parallelizing implementations of
matrix-matrix multiplication with OpenMP. By examining the resulting per-
formance data in different ways, you gain a glimpse into how to interpret that
data.

Recall how the IJP ordering can be explained by partitioning matrices:
Starting with C := AB + C, partitioning C and A by rows yields

c̃T0
...

c̃Tm−1

 :=


ãT0
...

ãTm−1

B +


c̃T0
...

c̃Tm−1

 =


ãT0 B + c̃T0

...
ãTm−1B + c̃Tm−1

 .
What we recognize is that the update of each row of C is completely indepen-
dent and hence their computation can happen in parallel.

Now, it would be nice to simply tell the compiler "parallelize this loop,
assigning the iterations to cores in some balanced fashion." For this, we use a
standardized interface, OpenMP, to which you will be introduced in this week.

For now, all you need to know is:

• You need to include the header file omp.h

#include "omp.h"

at the top of a routine that uses OpenMP compiler directives and/or calls
to OpenMP routines and functions.

• You need to insert the line

173
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#pragma omp parallel for

before the loop the iterations of which can be executed in parallel.

• You need to set the environment variable OMP_NUM_THREADS to
the number of threads to be used in parallel

export OMP_NUM_THREADS=4

before executing the program.
The compiler blissfully does the rest.

Remark 4.1.1 In this week, we get serious about collecting performance data.
You will want to

• Make sure a laptop you are using is plugged into the wall, since running
on battery can do funny things to your performance.

• Close down browsers and other processes that are running on your ma-
chine. I noticed that Apple’s Activity Monitor can degrade performance
a few percent.

• Learners running virtual machines will want to assign enough virtual
CPUs.

Homework 4.1.1.1 In Assignments/Week4/C/ execute
export OMP_NUM_THREADS=1
make IJP

to collect fresh performance data for the IJP loop ordering.
Next, copy Gemm_IJP.c to Gemm_MT_IJP.c. (MT for Multithreaded).

Include the header file omp.h at the top and insert the directive discussed above
before the loop indexed with i. Compile and execute with the commands

export OMP_NUM_THREADS=4
make MT_IJP

ensuring only up to four cores are used by setting OMP_NUM_THREADS=4.
Examine the resulting performance with the Live Script data/Plot_MT_Launch.mlx.

You may want to vary the number of threads you use depending on how
many cores your processor has. You will then want to modify that number in
the Live Script as well.
Solution.

YouTube: https://www.youtube.com/watch?v=1M76YuKorlI

• Gemm_MT_IJP.c

https://www.youtube.com/watch?v=1M76YuKorlI
Assignments/Week4/Answers/Gemm_MT_IJP.c
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YouTube: https://www.youtube.com/watch?v=DXYDhNBGUjA
On Robert’s laptop (using 4 threads):

Time:

Speedup

https://www.youtube.com/watch?v=DXYDhNBGUjA
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Total GFLOPS

GFLOPS per
thread

Homework 4.1.1.2 In Week 1, you discovered that the JPI ordering of loops
yields the best performance of all (simple) loop orderings. Can the outer-most
loop be parallelized much like the outer-most loop of the IJP ordering? Justify
your answer. If you believe it can be parallelized, in Assignments/Week4/C/
execute
make JPI

to collect fresh performance data for the JPI loop ordering.
Next, copy Gemm_JPI.c to Gemm_MT_JPI.c. Include the header file

omp.h at the top and insert the directive discussed above before the loop in-
dexed with j. Compile and execute with the commands

export OMP_NUM_THREADS=4
make MT_JPI

Examine the resulting performance with the Live Script data/Plot_MT_Launch.mlx
by changing ( 0 ) to ( 1 ) (in four places).
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Solution.

YouTube: https://www.youtube.com/watch?v=415ZdTOt8bs
The loop ordering JPI also allows for convenient parallelization of the outer-

most loop. Partition C and B by columns. Then(
c0 · · · cn−1

)
:= A

(
b0 · · · bn−1

)
+
(
c0 · · · cn−1

)
=

(
Ab0 + c0 · · · Abn−1 + cn−1

)
.

This illustrates that the columns of C can be updated in parallel.

• Gemm_MT_JPI.c

On Robert’s laptop (using 4 threads):

Time:

https://www.youtube.com/watch?v=415ZdTOt8bs
Assignments/Week4/Answers/Gemm_MT_JPI.c
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Speedup

Total GFLOPS

GFLOPS per
thread
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Homework 4.1.1.3 With Live Script data/Plot_MT_Launch.mlx, modify
Plot_MT_Launch.mlx, by changing ( 0 ) to ( 1 ) (in four places), so that the re-
sults for the reference implementation are also displayed. Which multithreaded
implementation yields the best speedup? Which multithreaded implementation
yields the best performance?
Solution.

YouTube: https://www.youtube.com/watch?v=rV8AKjvx4fg
On Robert’s laptop (using 4 threads):

Time:

Speedup

https://www.youtube.com/watch?v=rV8AKjvx4fg
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Total GFLOPS

GFLOPS per
thread

Remark 4.1.2 In later graphs, you will notice a higher peak GFLOPS rate for
the reference implementation. Up to this point in the course, I had not fully
realized the considerable impact having other applications open on my laptop
has on the performance experiments. we get very careful with this starting in
Section 4.3.

Learn more:

• For a general discussion of pragma directives, you may want to visit
https://www.cprogramming.com/reference/preprocessor/pragma.html

4.1.2 Outline Week 4

• 4.1 Opening Remarks

◦ 4.1.1 Launch
◦ 4.1.2 Outline Week 4

https://www.cprogramming.com/reference/preprocessor/pragma.html
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◦ 4.1.3 What you will learn

• 4.2 OpenMP

◦ 4.2.1 Of cores and threads
◦ 4.2.2 Basics
◦ 4.2.3 Hello World!

• 4.3 Multithreading Matrix Multiplication

◦ 4.3.1 Lots of loops to parallelize
◦ 4.3.2 Parallelizing the first loop around the micro-kernel
◦ 4.3.3 Parallelizing the second loop around the micro-kernel
◦ 4.3.4 Parallelizing the third loop around the micro-kernel
◦ 4.3.5 Parallelizing the fourth loop around the micro-kernel
◦ 4.3.6 Parallelizing the fifth loop around the micro-kernel
◦ 4.3.7 Discussion

• 4.4 Parallelizing More

◦ 4.4.1 Speedup, efficiency, etc.
◦ 4.4.2 Ahmdahl’s law
◦ 4.4.3 Parallelizing the packing
◦ 4.4.4 Parallelizing multiple loops

• 4.5 Enrichments

◦ 4.5.1 Casting computation in terms of matrix-matrix multiplication
◦ 4.5.2 Family values
◦ 4.5.3 Matrix-matrix multiplication for Machine Learning
◦ 4.5.4 Matrix-matrix multiplication on GPUs
◦ 4.5.5 Matrix-matrix multiplication on distributed memory architec-
tures

• 4.6 Wrap Up

◦ 4.6.1 Additional exercises
◦ 4.6.2 Summary

4.1.3 What you will learn

In this week, we discover how to parallelize matrix-matrix multiplication among
multiple cores of a processor.

Upon completion of this week, we will be able to

• Exploit multiple cores by multithreading your implementation.

• Direct the compiler to parallelize code sections with OpenMP.
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• Parallelize the different loops and interpret the resulting performance.

• Experience when loops can be more easily parallelized and when more
care must be taken.

• Apply the concepts of speedup and efficiency to implementations of matrix-
matrix multiplication.

• Analyze limitations on parallel efficiency due to Ahmdahl’s law.

The enrichments introduce us to

• The casting of other linear algebra operations in terms of matrix-matrix
multiplication.

• The benefits of having a family of algorithms for a specific linear algebra
operation and where to learn how to systematically derive such a family.

• Operations that resemble matrix-matrix multiplication that are encoun-
tered in Machine Learning, allowing the techniques to be extended.

• Parallelizing matrix-matrix multiplication for distributed memory archi-
tectures.

• Applying the learned techniques to the implementation of matrix-matrix
multiplication on GPUs.

4.2 OpenMP

4.2.1 Of cores and threads

YouTube: https://www.youtube.com/watch?v=2V4HCXCPm0s
From Wikipedia: “A multi-core processor is a single computing component

with two or more independent processing units called cores, which read and
execute program instructions.”

A thread is a thread of execution.

• It is an stream of program instructions and associated data. All these
instructions may execute on a single core, multiple cores, or they may
move from core to core.

• Multiple threads can execute on different cores or on the same core.

In other words:

https://www.youtube.com/watch?v=2V4HCXCPm0s
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• Cores are hardware components that can compute simultaneously.

• Threads are streams of execution that can compute simultaneously.

What will give you your solution faster than using one core? Using multiple
cores!

4.2.2 Basics

OpenMP is a standardized API (Application Programming Interface) for cre-
ating multiple threads of execution from a single program. For our purposes,
you need to know very little:

• There is a header file to include in the file(s):

#include <omp.h>

• Directives to the compiler (pragmas):

#pragma omp parallel
#pragma omp parallel for

• A library of routines that can, for example, be used to inquire about the
execution environment:

omp_get_max_threads()
omp_get_num_threads()
omp_get_thread_num()

• Environment parameters that can be set before executing the program:

export OMP_NUM_THREADS=4

If you want to see what the value of this environment parameter is, exe-
cute

echo $OMP_NUM_THREADS

Learn more:

• Search for "OpenMP" on Wikipedia.

• Tim Mattson’s (Intel) “Introduction to OpenMP” (2013) on YouTube.

◦ Slides: Intro_To_OpenMP_Mattson.pdf

◦ Exercise files: Mattson_OMP_exercises.zip

We suggest you investigate OpenMP more after completing this week.

https://www.youtube.com/playlist?list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG
https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf
https://www.openmp.org/wp-content/uploads/Mattson_OMP_exercises.zip
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4.2.3 Hello World!

YouTube: https://www.youtube.com/watch?v=AEIYiu0wO5M
We will illustrate some of the basics of OpenMP via the old standby, the

"Hello World!" program:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
printf( "Hello World!\n" );

}

Homework 4.2.3.1 In Week4/C/ compile HelloWorld.c with the command
gcc -o HelloWorld.x HelloWorld.c

and execute the resulting executable with

export OMP_NUM_THREADS=4
./HelloWorld.x

Solution. The output is

Hello World!

even though we indicated four threads are available for the execution of the
program.

Homework 4.2.3.2 Copy the file HelloWorld.c to HelloWorld1.c. Modify it
to add the OpenMP header file:
#include "omp.h"

at the top of the file. Compile it with the command

gcc -o HelloWorld1.x HelloWorld1.c

and execute it with

export OMP_NUM_THREADS=4
./HelloWorld1.x

Next, recompile and execute with

https://www.youtube.com/watch?v=AEIYiu0wO5M
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gcc -o HelloWorld1.x HelloWorld1.c -fopenmp
export OMP_NUM_THREADS=4
./HelloWorld1.x

Pay attention to the -fopenmp, which links the OpenMP library. What do you
notice?

gcc -o HelloWorld1.x HelloWorld1.c -fopenmp
export OMP_NUM_THREADS=4
./HelloWorld1.x

(You don’t need to export OMP_NUM_THREADS=4 every time you ex-
ecute. We expose it so that you know exactly how many threads are available.)
Solution.

YouTube: https://www.youtube.com/watch?v=EcaLVnK_aws

• Assignments/Week4/Answers/HelloWorld1.c

In all cases, the output is

Hello World!

None of what you have tried so far resulted in any parallel execution because
an OpenMP program uses a "fork and join" model: Initially, there is just one
thread of execution. Multiple threads are deployed when the program reaches
a parallel region, initiated by

#pragma omp parallel
{
<command>

}

At that point, multiple threads are "forked" (initiated), each of which then
performs the command <command> given in the parallel section. The parallel
section here is the section of the code immediately after the #pragma directive
bracketed by the "{" and "}" which C views as a single command (that may
be composed of multiple commands within that region). Notice that the "{"
and "}" are not necessary if the parallel region consists of a single command.
At the end of the region, the threads are synchronized and "join" back into a
single thread.

Homework 4.2.3.3 Copy the file HelloWorld1.c to HelloWorld2.c. Before the
printf statement, insert
#pragma omp parallel

https://www.youtube.com/watch?v=EcaLVnK_aws
Assignments/Week4/Answers/HelloWorld1.c
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Compile and execute:

gcc -o HelloWorld2.x HelloWorld2.c -fopenmp
export OMP_NUM_THREADS=4
./HelloWorld2.x

What do you notice?
Solution.

YouTube: https://www.youtube.com/watch?v=7Sr8jfzGHtw

• Assignments/Week4/Answers/HelloWorld2.c

The output now should be

Hello World!
Hello World!
Hello World!
Hello World!

You are now running identical programs on four threads, each of which is
printing out an identical message. Execution starts with a single thread that
forks four threads, each of which printed a copy of the message. Obviously,
this isn’t very interesting since they don’t collaborate to make computation
that was previously performed by one thread faster.

Next, we introduce three routines with which we can extract information
about the environment in which the program executes and information about
a specific thread of execution:

• omp_get_max_threads() returns the maximum number of threads that
are available for computation. It equals the number assigned to OMP_NUM_THREADS
before executing a program.

• omp_get_num_threads() equals the number of threads in the current
team: The total number of threads that are available may be broken up
into teams that perform separate tasks.

• omp_get_thread_num() returns the index that uniquely identifies the
thread that calls this function, among the threads in the current team.
This index ranges from 0 to (omp_get_num_threads()-1). In other
words, the indexing of the threads starts at zero.

In all our examples, omp_get_num_threads() equals omp_get_max_threads()
in a parallel section.

https://www.youtube.com/watch?v=7Sr8jfzGHtw
Assignments/Week4/Answers/HelloWorld2.c
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Homework 4.2.3.4 Copy the file HelloWorld2.c to HelloWorld3.c. Modify the
body of the main routine to
int maxthreads = omp_get_max_threads();

#pragma omp parallel
{
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();

printf( "Hello World! from %d of %d max_threads = %d \n\n",
tid, nthreads, maxthreads );

}

Compile it and execute it:

export OMP_NUM_THREADS=4
gcc -o HelloWorld3.x HelloWorld3.c -fopenmp
./HelloWorld3.x

What do you notice?
Solution.

YouTube: https://www.youtube.com/watch?v=RsASfLwn4KM

• Assignments/Week4/Answers/HelloWorld3.c

The output:

Hello World! from 0 of 4 max_threads = 4

Hello World! from 1 of 4 max_threads = 4

Hello World! from 3 of 4 max_threads = 4

Hello World! from 2 of 4 max_threads = 4

In the last exercise, there are four threads available for execution (since
OMP_NUM_THREADS equals 4). In the parallel section, each thread assigns
its index (rank) to its private variable tid. Each thread then prints out its copy
of Hello World! Notice that the order of these printfs may not be in sequential
order. This very simple example demonstrates how the work performed by a
specific thread is determined by its index within a team.

https://www.youtube.com/watch?v=RsASfLwn4KM
Assignments/Week4/Answers/HelloWorld3.c
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4.3 Multithreading Matrix Multiplication

4.3.1 Lots of loops to parallelize

YouTube: https://www.youtube.com/watch?v=2lLDVS7fGTA
Let’s again consider the five loops around the micro-kernel:

What we notice is that there are lots of loops that can be parallelized. In
this section we examine how parallelizing each individually impacts parallel
performance.

https://www.youtube.com/watch?v=2lLDVS7fGTA
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Homework 4.3.1.1 In directory Assignments/Week4/C, execute
export OMP_NUM_THREADS=1
make Five_Loops_Packed_8x6Kernel

to collect fresh performance data. In the Makefile, MC and KC have been set
to values that yield reasonable performance in our experience. Transfer the
resulting output file (in subdirectory data) to Matlab Online Matlab Online
and test it by running

Plot_MT_Performance_8x6.mlx

If you decide also to test a 12x4 kernel or others, upload their data and run the
corresponding Plot_MT_Performance_??x??.mlx to see the results. (If the
.mlx file for your choice of mR × nR does not exist, you may want to copy one
of the existing .mlx files and do a global search and replace.)
Solution.

YouTube: https://www.youtube.com/watch?v=W7l7mxkEgg0
On Robert’s laptop:

This reminds us: we are doing really well on a single core!

https://www.youtube.com/watch?v=W7l7mxkEgg0
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Remark 4.3.1 Here and in future homework, you can substitute 12x4 for 8x6
if you prefer that size of micro-tile.

Remark 4.3.2 It is at this point in my in-class course that I emphasize that
one should be careful not to pronounce "parallelize" as "paralyze." You will
notice that sometimes if you naively parallelize your code, you actually end up
paralyzing it...

4.3.2 Parallelizing the first loop around the micro-kernel

Let us start by considering how to parallelize the first loop around the micro-
kernel:

The situation here is very similar to that considered in Unit 4.1.1 when
parallelizing the IJP loop ordering. There, we observed that if C and A are
partitioned by rows, the matrix-matrix multiplication can be described by

c̃T0
...

c̃Tm−1

 :=


ãT0
...

ãTm−1

B +


c̃T0
...

c̃Tm−1

 =


ãT0 B + c̃T0

...
ãTm−1B + c̃Tm−1

 .
We then observed that the update of each row of C could proceed in parallel.

The matrix-matrix multiplication with the block of A and micro-panels of
C and B performed by the first loop around the micro-kernel instead partitions
the block of A into row (micro-)panels and the micro-panel of C into micro-tiles.

C0
...

CM−1

 :=


A0
...

AM−1

B +


C0
...

CM−1

 =


A0B + C0

...
AM−1B + CM−1

 .
The bottom line: the updates of these micro-tiles can happen in parallel.

Homework 4.3.2.1 In directory Assignments/Week4/C,
• Copy Gemm_Five_Loops_Packed_MRxNRKernel.c into Gemm_MT_Loop1_MRxNRKernel.c.

• Modify it so that the first loop around the micro-kernel is parallelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop1_8x6Kernel

• Be sure to check if you got the right answer!
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• View the resulting performance with data/Plot_MT_performance_8x6.mlx,
uncommenting the appropriate sections.

Solution.

YouTube: https://www.youtube.com/watch?v=WQEumfrQ6j4

• Assignments/Week4/Answers/Gemm_MT_Loop1_MRxNRKernel.c

On Robert’s laptop (using 4 threads):

Parallelizing the first loop around the micro-kernel yields poor performance.
A number of issues get in the way:

• Each task (the execution of a micro-kernel) that is performed by a thread
is relatively small and as a result the overhead of starting a parallel section
(spawning threads and synchronizing upon their completion) is nontrivial.

• In our experiments, we chose MC=72 and MR=8 and hence there are at
most 72/8 = 9 iterations that can be performed by the threads. This
leads to load imbalance unless the number of threads being used divides
9 evenly. It also means that no more than 9 threads can be usefully

https://www.youtube.com/watch?v=WQEumfrQ6j4
Assignments/Week4/Answers/Gemm_MT_Loop1_MRxNRKernel.c
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employed. The bottom line: there is limited parallelism to be found in
the loop.
This has a secondary effect: Each micro-panel of B is reused relatively
few times by a thread, and hence the cost of bringing it into a core’s L1
cache is not amortized well.

• Each core only uses a few of the micro-panels of A and hence only a
fraction of the core’s L2 cache is used (if each core has its own L2 cache).

The bottom line: the first loop around the micro-kernel is not a good candidate
for parallelization.

4.3.3 Parallelizing the second loop around the micro-kernel

Let us next consider how to parallelize the second loop around the micro-kernel:

This time, the situation is very similar to that considered in Unit 4.1.1 when
parallelizing the JPI loop ordering. There, in Homework 4.1.1.2 we observed
that if C and B are partitioned by columns, the matrix-matrix multiplication
can be described by(

c0 · · · cn−1
)

:= A
(
b0 · · · bn−1

)
+
(
c0 · · · cn−1

)
=

(
Ab0 + c0 · · · Abn−1 + cn−1

)
.

We then observed that the update of each column of C can proceed in parallel.
The matrix-matrix multiplication

performed by the second loop around the micro-kernel instead partitions
the row panel of C and the row panel of B into micro-panels.(

C0 · · · CN−1
)

:= A
(
B0 · · · BN−1

)
+
(
C0 · · · CN−1

)
=

(
AB0 + C0 · · · ABN−1 + CN−1

)
.



4.3. MULTITHREADING MATRIX MULTIPLICATION 193

The bottom line: the updates of the micro-panels of C can happen in parallel.

Homework 4.3.3.1 In directory Assignments/Week4/C,
• Copy Gemm_MT_Loop1_MRxNRKernel.c. into Gemm_MT_Loop2_MRxNRKernel.c.

• Modify it so that only the second loop around the micro-kernel is paral-
lelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop2_8x6Kernel

• Be sure to check if you got the right answer!

• View the resulting performance with data/Plot_MT_performance_8x6.mlx,
changing 0 to 1 for the appropriate section.

Solution.

YouTube: https://www.youtube.com/watch?v=_v6OY4GLkHY

• Assignments/Week4/Answers/Gemm_MT_Loop2_MRxNRKernel.c

On Robert’s laptop (using 4 threads):

https://www.youtube.com/watch?v=_v6OY4GLkHY
Assignments/Week4/Answers/Gemm_MT_Loop2_MRxNRKernel.c
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Parallelizing the second loop appears to work very well. The granuarity of
the computation in each iteration is larger. The ratio between NC and NR is
typically large: in the makefile I set NC=2016 and NR=6, so that there are
2016/6 = 336 tasks that can be scheduled to the threads. The only issue is
that all cores load their L2 cache with the same block of A, which is a waste
of a valuable resource (the aggregate size of the L2 caches).

4.3.4 Parallelizing the third loop around the micro-kernel

Moving right along, consider how to parallelize the third loop around the micro-
kernel:

This reminds us of Unit 4.1.1 (parallelizing the IJP loop) and Unit 4.3.2
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(paralellizing the first loop around the micro-kernel),


C0
...

CM−1

 :=


A0
...

AM−1

B +


C0
...

CM−1

 =


A0B + C0

...
AM−1B + CM−1

 ,

except that now the sizes of the row panels of C and blocsk of A are larger.
The bottom line: the updates of the row-panels of C can happen in parallel.

Homework 4.3.4.1 In directory Assignments/Week4/C,
• Copy Gemm_MT_Loop2_MRxNRKernel.c. into Gemm_MT_Loop3_MRxNRKernel.c.

• Modify it so that only the third loop around the micro-kernel is paral-
lelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop3_8x6Kernel

• Be sure to check if you got the right answer! Parallelizing this loop is a
bit trickier... When you get frustrated, look at the hint. And when you
get really frustrated, watch the video in the solution.

• View the resulting performance with data/Plot_MT_performance_8x6.mlx,
uncommenting the appropriate sections.

Hint. Parallelizing the third loop is a bit trickier. Likely, you started by
inserting the #pragma statement and got the wrong answer. The problem lies
with the fact that all threads end up packing a different block of A into the
same buffer Ã. How do you overcome this?
Solution.

YouTube: https://www.youtube.com/watch?v=ijN0ORHroRo

• Assignments/Week4/Answers/Gemm_MT_Loop3_MRxNRKernel_simple.c

On Robert’s laptop (using 4 threads):

https://www.youtube.com/watch?v=ijN0ORHroRo
Assignments/Week4/Answers/Gemm_MT_Loop3_MRxNRKernel_simple.c
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YouTube: https://www.youtube.com/watch?v=Mwv1RpEoU4Q
So what is the zigzagging in the performance graph all about? This has to

do with the fact that m/MC is relatively small. If m = 650, MC = 72 (which
is what it is set to in the makefile), and we use 4 threads, then m/MC = 9.03
and hence two threads are assigned the computation related to two blocks of
A, one thread is assigned three such blocks, and one thead is assigned a little
more than two blocks. This causes load imbalance, which is the reason for the
zigzagging in the curve.

So, you need to come up with a way so that most computation is performed
using full blocks of A (with MC rows each) and the remainder is evenly dis-
tributed amongst the threads.

Homework 4.3.4.2
• Copy Gemm_MT_Loop3_MRxNRKernel.c. into Gemm_MT_Loop3_MRxNRKernel_simple.c

to back up the simple implementation. Now go back to Gemm_MT_Loop3_MRxNRKernel.c
and modify it so as to smooth the performance, inspired by the last video.

• Execute it with

export OMP_NUM_THREADS=4

https://www.youtube.com/watch?v=Mwv1RpEoU4Q
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make MT_Loop3_8x6Kernel

• Be sure to check if you got the right answer!

• View the resulting performance with data/Plot_MT_performance_8x6.mlx.

• You may want to store the new version, once it works, in Gemm_MT_Loop3_MRxNRKernel_smooth.c.

Solution.

• Assignments/Week4/Answers/Gemm_MT_Loop3_MRxNRKernel.c

On Robert’s laptop (using 4 threads):

What you notice is that the performance is much smoother. Each thread
now fills most of its own L2 cache with a block of A. They share the same
row panel of B (packed into B̃). Notice that the packing of that panel of B is
performed by a single thread. We’ll get back to that in Section 4.4.

4.3.5 Parallelizing the fourth loop around the micro-kernel

Next, consider how to parallelize the fourth loop around the micro-kernel:

Assignments/Week4/Answers/Gemm_MT_Loop3_MRxNRKernel.c
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We can describe this picture by partitioning A into column panels and B
into row panels:

C :=
(
A0 · · · Am−1

)
B0
...

Bm−1

+ C = A0B0 + · · ·+AK−1BK−1 + C.

Given, for example, four threads, the thread with id 0 can compute

A0B0 +A4B4 + · · ·+ C

while the thread with id 1 computes

A1B1 +A5B5 + · · ·+

and so forth.
Homework 4.3.5.1 In directory Assignments/Week4/C,

• Copy Gemm_MT_Loop3_MRxNRKernel.c. into Gemm_MT_Loop4_MRxNRKernel.c.

• Modify it so that only the fourth loop around the micro-kernel is paral-
lelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop4_8x6Kernel

• Be sure to check if you got the right answer! Parallelizing this loop is a
bit trickier... Even trickier than parallelizing the third loop around the
micro-kernel... Don’t spend too much time on it before looking at the
hint.

• View the resulting performance with data/Plot_MT_performance_8x6.mlx,
uncommenting the appropriate sections.

Hint. Initially you may think that parallelizing this is a matter of changing
how the temporary space B̃ is allocated and used. But then you find that even
that doesn’t give you the right answer... The problem is that all iterations
update the same part of C and this creates something called a "race" condition.
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To update C, you read a micro-tile of C into registers, you update it, and you
write it out. What if in the mean time another thread reads the same micro-tile
of C? It would be reading the old data...

The fact is that Robert has yet to find the courage to do this homework
himself... Perhaps you too should skip it.
Solution. I have no solution to share at this moment...

The problem is that in the end all these contributions need to be added
for the final result. Since all threads update the same array in which C is
stored, then you never know if a given thread starts updating an old copy of
a micro-tile of C while another thread is still updating it. This is known as a
race condition.

This doesn’t mean it can’t be done, nor that it isn’t worth pursuing. Think
of a matrix-matrix multiplication where m and n are relatively small and k is
large. Then this fourth loop around the micro-kernel has more potential for
parallelism than the other loops. It is just more complicated and hence should
wait until you learn more about OpenMP (in some other course).

4.3.6 Parallelizing the fifth loop around the micro-kernel

Finally, let us consider how to parallelize the fifth loop around the micro-kernel:

This time, the situation is very similar to those considered in Unit 4.1.1
(parallelizing the JPI loop ordering) and Unit 4.3.3 (parallelizing the second
loop around the micro-kernel). Here we again partition(

C0 · · · CN−1
)

:= A
(
B0 · · · BN−1

)
+
(
C0 · · · CN−1

)
=

(
AB0 + C0 · · · ABN−1 + CN−1

)
.

and observe that the updates of the submatrices of C can happen in parallel.

Homework 4.3.6.1 In directory Assignments/Week4/C,
• Copy Gemm_MT_Loop2_MRxNRKernel.c. into Gemm_MT_Loop5_MRxNRKernel.c.

• Modify it so that only the fifth loop around the micro-kernel is paral-
lelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop5_8x6Kernel

• Be sure to check if you got the right answer!
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• View the resulting performance with data/Plot_MT_performance_8x6.mlx,
uncommenting the appropriate sections.

Solution.

YouTube: https://www.youtube.com/watch?v=U9GqqOInHSA

• Assignments/Week4/Answers/Gemm_MT_Loop5x_MRxNRKernel.c

On Robert’s laptop (using 4 threads):

YouTube: https://www.youtube.com/watch?v=Pbt3525NixI
The zigzagging in the performance graph is now so severe that you can’t

https://www.youtube.com/watch?v=U9GqqOInHSA
Assignments/Week4/Answers/Gemm_MT_Loop5x_MRxNRKernel.c
https://www.youtube.com/watch?v=Pbt3525NixI
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even see it yet by the time you test matrices with m = n = k = 2000. This
has to do with the fact that n/NC is now very small. If n = 2000, NC = 2016
(which is what it is set to in the makefile), and we use 4 threads, then n/NC ≈ 1
and hence only one thread is assigned any computation.

So, you need to come up with a way so that most computation is performed
using full blocks of C (with NC columns each) and the remainder is evenly
distributed amongst the threads.

Homework 4.3.6.2
• Copy Gemm_MT_Loop5_MRxNRKernel.c. into Gemm_MT_Loop5_MRxNRKernel_simple.c

to back up the simple implementation. Now go back to Gemm_MT_Loop5_MRxNRKernel.c
and modify it so as to smooth the performance, inspired by the last video.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop5_8x6Kernel

• Be sure to check if you got the right answer!

• View the resulting performance with data/Plot_MT_performance_8x6.mlx.

Solution.

• Assignments/Week4/Answers/Gemm_MT_Loop5_MRxNRKernel_smooth.c

On Robert’s laptop (using 4 threads):

What we notice is that parallelizing the fifth loop gives good performance

Assignments/Week4/Answers/Gemm_MT_Loop5_MRxNRKernel_smooth.c
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when using four threads. However, once one uses a lot of threads, the part of
the row panel of B assigned to each thread becomes small, which means that
the any overhead associated with packing and/or bringing a block of A into
the L2 cache may not be amortized over enough computation.

4.3.7 Discussion

If we also show the performance on Robert’s laptop of the reference implemen-
tation when using multiple threads (4 in this graph) we get

The difference in performance between the multithreaded version of the
reference implementation and the performance of, for example, the version of
our implementation that parallelizes the fifth loop around the micro-kernel may
be due to the fact that for our implementation runs "hotter" in the sense that it
exercises the cores to the point where the architecture "clocks down" (reduces
the clock speed to reduce power consumption). It will be interesting to see
what happens on your computer. It requires further investigation that goes
beyond the scope of this course.

For now, let’s be satisfied with the excellent performance improvements we
have achieved. Here is a graph that shows GFLOPS along the y-axis instead of
GFLOPS/thread. Remember: we started by only getting a few GFLOPS back
in Week 1, so we have improved performance by two orders of magnitude!
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You can generate a similar graph for your own implementations with the
Live Script in Plot_MT_Aggregate_GFLOPS_8x6.mlx.

4.4 Parallelizing More

4.4.1 Speedup, efficiency, etc.

4.4.1.1 Sequential time

We denote the sequential time for an operation by

T (n),

where n is a parameter that captures the size of the problem being solved. For
example, if we only time problems with square matrices, then n would be the
size of the matrices. T (n) is equal the time required to compute the operation
on a single core. If we consider all three sizes of the matrices, then n might be
a vector with three entries.

A question is "Which sequential time?" Should we use the time by a spe-
cific implementation? Should we use the time for the fastest implementation?
That’s a good question! Usually it is obvious which to use from context.

4.4.1.2 Parallel time

The parallel time for an operation and a given implementation using t threads
is given by

Tt(n).
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This allows us to define the sequential time for a specific implementation by
T1(n). Itis the sequential time of the parallel implementation when using only
one thread.

4.4.1.3 Speedup

In the launch we already encountered the concept of speedup. There, we used
it more informally.

The speedup for an operation and a given implementation using t threads
is given by

St(n) = T (n)/Tt(n).

It measures how much speedup is attained by using t threads.
Often, the ratio

T1(n)/Tt(n)

is used to report speedup (as we did in Unit 4.1.1). We now understand that
this may give an optimistic result: If the sequential execution of the given im-
plementation yields poor performance, it is still possible to attain very good
speedup. The fair thing is to use T (n) of the best implementation when com-
puting speedup.

Remark 4.4.1 Intuitively, it would seem that

St(n) = T (n)/Tt(n) ≤ t.

when you have at least t cores. In other words, that speedup is less than or
equal to the number of threads/cores at your disposal. After all, it would seem
that T (n) ≤ tTt(n) since one could create a sequential implementation from the
parallel implementation by mapping all computations performed by the threads
to one thread, and this would remove the overhead of coordinating between the
threads.

Let’s use a simple example to show that speedup can be greater than t:
Generally speaking, when you make a bed with two people, it takes less than
half the time than when you do it by yourself. Why? Because usually two
people have two sets of hands and the "workers" can therefore be on both sides
of the bed simultaneously. Overhead incurrred when you make the bed by
yourself (e.g., walking from one side to the other) is avoided. The same is true
when using t threads on t cores: The task to be completed now has t sets of
registers, t L1 caches, etc.

Attaining better than a factor t speedup with t threads and cores is called
super-linear speedup. It should be viewed as the exception rather than the
rule.

4.4.1.4 Efficiency

The efficiency for an operation and a given implementation using t threads is
given by

Et(n) = St(n)/t.

It measures how efficiently the t threads are being used.
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4.4.1.5 GFLOPS/thread

We like to report GFLOPS (billions of floating point operations per second).
Notice that this gives us an easy way of judging efficiency: If we know what
the theoretical peak of a core is, in terms of GFLOPS, then we can easily judge
how efficiently we are using the processor relative to the theoretical peak. How
do we compute the theoretical peak? We can look up the number of cycles a
core can perform per second and the number of floating point operations it can
perform per cycle. This can then be converted to a peak rate of computation
for a single core (in billions of floating point operations per second). If there
are multiple cores, we just multiply this peak by the number of cores.

Remark 4.4.2 For current processors, it is almost always the case that as more
threads are used, the frequency (cycles/second) of the cores is "clocked down"
to keep the processor from overheating. This, obviously, complicates matters...

4.4.2 Ahmdahl’s law

YouTube: https://www.youtube.com/watch?v=pT_f4ngiAl0
Ahmdahl’s law is a simple observation about the limits on parallel speedup

and efficiency. Consider an operation that requires sequential time

T

for computation. What if fraction f of this time is not parallelized (or cannot
be parallelized), and the other fraction (1 − f) is parallelized with t threads.
We can then write

T = (1− f)T︸ ︷︷ ︸
part that is parallelized

+ fT︸︷︷︸
part that is not parallelized

and, assuming super-linear speedup is not expected, the total execution time
with t threads, Tt, obeys the inequality

Tt ≥
(1− f)T

t
+ fT ≥ fT.

This, in turn, means that the speedup is bounded by

St = T

Tt
≤ T

fT
= 1
f
.

What we notice is that the maximal speedup is bounded by the inverse of the
fraction of the execution time that is not parallelized. If, for example, 1/5 the

https://www.youtube.com/watch?v=pT_f4ngiAl0
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code is not optimized, then no matter how many threads you use, you can at
best compute the result 1/(1/5) = 5 times faster. This means that one must
think about parallelizing all parts of a code.

Remark 4.4.3 Ahmdahl’s law says that if one does not parallelize a part of
the sequential code in which fraction f time is spent, then the speedup attained
regardless of how many threads are used is bounded by 1/f .

The point is: so far, we have focused on parallelizing the computational
part of matrix-matrix multiplication. We should also parallelize the packing,
since it requires a nontrivial part of the total execution time.

YouTube: https://www.youtube.com/watch?v=EKnJEoGEo6g
For parallelizing matrix-matrix multiplication, there is some hope. In our

situation, the execution time is a function of the problem size, which we can
model by the computation time plus overhead. A high-performance implemen-
tation may have a cost function that looks something like

T (n) = 2n3γ + Cn2β,

where γ is the time required for executing a floating point operation, β is some
constant related to the time required to move a floating point number, and C
is some other constant. (Notice that we have not done a thorough analysis of
the cost of the final implementation in Week 3, so this formula is for illustrative
purposes.) If now the computation is parallelized perfectly among the threads
and, in a pessimistic situation, the time related to moving data is not at all,
then we get that

Tt(n) = 2n3γ

t
+ Cn2β.

so that the speedup is given by

St(n) = 2n3γ + Cn2β
2n3γ
t + Cn2β

and the efficiency is given by

Et(n) = St(n)
t

= 2n3γ + Cn2β

2n3γ + tCn2β
= 2n3γ

2n3γ + tCn2β
+ Cn2β

2n3γ + tCn2β

= 1
1 + tCn2β

2n3γ

+ 1
2n3γ
Cn2β + t

= 1
1 +

(
tCβ
2γ

)
1
n

+ 1(
2γ
Cβ

)
n+ t

.

https://www.youtube.com/watch?v=EKnJEoGEo6g
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Now, if t is also fixed, then the expressions in parentheses are constants and,
as n gets large, the first term converges to 1 while the second term converges
to 0. So, as the problem size gets large, the efficiency starts approaching 100%.

What this means is that whether all or part of the overhead can also be
parallelized affects how fast we start seeing high efficiency rather than whether
we eventually attain high efficiency for a large enough problem. Of course,
there is a limit to how large of a problem we can store and/or how large of a
problem we actually want to compute.

4.4.3 Parallelizing the packing

Since not parallelizing part of the computation can translate into a slow ramp-
ing up of performance, it is worthwhile to consider what else perhaps needs to
be parallelized. Packing can contribute significantly to the overhead (although
we have not analyzed this, nor measured it), and hence is worth a look. We
are going to look at each loop in our "five loops around the micro-kernel" and
reason through whether parallelizing the packing of the block of A and/or the
packing of the row panel of B should be considered.

4.4.3.1 Loop two and parallelizing the packing

Let’s start by considering the case where the second loop around the micro-
kernel has been parallelized. Notice that all packing happens before this loop
is reached. This means that, unless one explicitly parallelizes the packing of
the block of A and/or the packing of the row panel of B, these components of
the computation are performed by a single thread.

Homework 4.4.3.1
• Copy PackA.c into MT_PackA.c. Change this file so that packing is

parallelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop2_MT_PackA_8x6Kernel

• Be sure to check if you got the right answer! Parallelizing the packing,
the way PackA.c is written, is a bit tricky.

• View the resulting performance with data/Plot_MT_Loop2_MT_Pack_8x6.mlx.

Solution.

YouTube: https://www.youtube.com/watch?v=xAopdjhGXQA

https://www.youtube.com/watch?v=xAopdjhGXQA
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• Assignments/Week4/Answers/MT_PackA.c

On Robert’s laptop (using 4 threads), the performance is not noticeably
changed:

Homework 4.4.3.2
• Copy PackB.c into MT_PackB.c. Change this file so that packing is

parallelized.

• Execute it with

export OMP_NUM_THREADS=4
make MT_Loop2_MT_PackB_8x6Kernel

• Be sure to check if you got the right answer! Again, parallelizing the
packing, the way PackB.c is written, is a bit tricky.

• View the resulting performance with data/Plot_MT_Loop2_MT_Pack_8x6.mlx.

Solution.

• Assignments/Week4/Answers/MT_PackB.c

On Robert’s laptop (using 4 threads), the performance is again not notice-
ably changed:

Assignments/Week4/Answers/MT_PackA.c
Assignments/Week4/Answers/MT_PackB.c
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Homework 4.4.3.3 Now that you have parallelized both the packing of the
block of A and the packing of the row panel of B, you are set to check if doing
both shows a benefit.

• Execute

export OMP_NUM_THREADS=4
make MT_Loop2_MT_PackAB_8x6Kernel

• Be sure to check if you got the right answer!

• View the resulting performance with data/Plot_MT_Loop2_MT_Pack_8x6.mlx.

Solution. On Robert’s laptop (using 4 threads), the performance is still not
noticeably changed:

Why don’t we see an improvement? Packing is a memory intensive task.
Depending on how much bandwidth there is between cores and memory, pack-
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ing with a single core (thread) may already saturate that bandwidth. In that
case, parallelizing the operation so that multiple cores are employed does not
actually speed the process. It appears that on Robert’s laptop, the band-
width is indeed saturated. Those with access to beefier processors with more
bandwidth to memory may see some benefit from parallelizing the packing,
especially when utilizing more cores.

4.4.3.2 Loop three and parallelizing the packing

Next, consider the case where the third loop around the micro-kernel has been
parallelized. Now, each thread packs a different block of A and hence there
is no point in parallelizing the packing of that block. The packing of the row
panel of B happens before the third loop around the micro-kernel is reached,
and hence one can consider parallelizing that packing.

Homework 4.4.3.4 You already parallelized the packing of the row panel of
B in Homework 4.4.3.2

• Execute

export OMP_NUM_THREADS=4
make MT_Loop3_MT_PackB_8x6Kernel

• Be sure to check if you got the right answer!

• View the resulting performance with data/Plot_MT_Loop3_MT_Pack_8x6.mlx.

Solution. On Robert’s laptop (using 4 threads), the performance is again not
noticeably changed:

4.4.3.3 Loop five and parallelizing the packing

Next, consider the case where the fifth loop around the micro-kernel has been
parallelized. Now, each thread packs a different row panel of B and hence there
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is no point in parallelizing the packing of that block. As each thread executes
subsequent loops (loops four through one around the micro-kernel), they pack
blocks of A redundantly, since each allocates its own space for the packed
block. It should be possible to have them collaborate on packing a block, but
that would require considerable synchronization between loops... Details are
beyond this course. If you know a bit about OpenMP, you may want to try
this idea.

4.4.4 Parallelizing multiple loops

In Section 4.3, we only considered parallelizing one loop at a time. When one
has a processor with many cores, and hence has to use many threads, it may
become beneficial to parallelize multiple loops. The reason is that there is only
so much parallelism to be had in any one of the m, n, or k sizes. At some point,
computing with matrices that are small in some dimension starts affecting the
ability to amortize the cost of moving data.

OpenMP allows for "nested parallelism." Thus, one possibility would be to
read up on how OpenMP allows one to control how many threads to use in
a parallel section, and to then use that to achieve parallelism from multiple
loops. Another possibility is to create a parallel section (with #pragma omp
parallel rather than #pragma omp parallel for) when one first enters the "five
loops around the micro-kernel," and to then explicitly control which thread
does what work at appropriate points in the nested loops.

In [25]

• Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R.
Hammond, and Field G. Van Zee, Anatomy of High-Performance Many-
Threaded Matrix Multiplication, in the proceedings of the 28th IEEE In-
ternational Parallel & Distributed Processing Symposium (IPDPS 2014),
2014.

the parallelization of various loops is discussed, as is the need to parallelize
muiltiple loops when targeting "many-core" architectures like the Intel Xeon
Phi (KNC) and IBM PowerPC A2 processors. The Intel Xeon Phi has 60
cores, each of which has to execute four "hyperthreads" in order to achieve the
best performance. Thus, the implementation has to exploit 240 threads...

4.5 Enrichments

4.5.1 Casting computation in terms of matrix-matrix multipli-
cation

A key characteristic of matrix-matrix multiplication that allows it to achieve
high performance is that it performs O(n3) computations with O(n2) data (if
m = n = k). This means that if n is large, it may be possible to amortize
the cost of moving a data item between memory and faster memory over O(n)
computations.

There are many computations that also have this property. Some of these
are minor variations on matrix-matrix multiplications, like those that are part
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of the level-3 BLAS mentioned in Unit 1.5.1. Others are higher level operations
with matrices, like the LU factorization of an n×nmatrix we discuss later in this
unit. For each of these, one could in principle apply techniques you experienced
in this course. But you can imagine that this could get really tedious.

In the 1980s, it was observed that many such operations can be formulated
so that most computations are cast in terms of a matrix-matrix multiplication
[7] [15] [1]. This meant that software libraries with broad functionality could
be created without the burden of going through all the steps to optimize each
routine at a low level.

Let us illustrate how this works for the LU factorization, which, given an
n×n matrix A computes a unit lower triangular L and upper triangular matrix
U such that A = LU . If we partition

A→
(
A11 A12
A21 A22

)
, L→

(
L11 0
L21 L22

)
, and U →

(
U11 U12
0 U22

)
,

where A11, L11, and U11 are b× b, then A = LU means that(
A11 A12
A21 A22

)
=

(
L11 0
L21 L22

)(
U11 U12
0 U22

)

=
(
L11U11 L11U11
L21U11 L21U12 + L22U22

)
.

If one manipulates this, one finds that

A11 = L11U11
A12 = L11U12
A21 = L21U11

A22 − L21U12 = L22U22.

which then leads to the steps

• Compute the LU factoriation of the smaller matrix A11 → L11U11.
Upon completion, we know unit lower triangular L11 and upper triangular
matrix U11.

• Solve L11U12 → A12 for U12. This is known as a "triangular solve with
multiple right-hand sides," which is an operation supported by the level-3
BLAS.
Upon completion, we know U12.

• Solve L21U11 → A21 for L12. This is a different case of "triangular solve
with multiple right-hand sides," also supported by the level-3 BLAS.
Upon completion, we know L21.

• Update A22 := A22 − L21U12.

• Since before this update A22 − L21U12 = L22U22, this process can now
continue with A = A22.
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These steps, are presented as an algorithm in Figure 4.5.1, using the "FLAME"
notation developed as part of our research and used in our other two MOOCs
(Linear Algebra: Foundations to Frontiers [21] and LAFF-On Programming
for Correctness [20]). This leaves matrix A overwritten with the unit lower
triangular matrix L below the diagonal (with the ones on the diagonal implicit)
and U on and above the diagonal.

The important insight is that if A is n × n, then factoring A11 requires
approximately 2

3b
3 flops, computing U12 and L21 each require approximately

b2(n − b) flops, and updating A22 := A22 − L21U12 requires approximately
2b(n − b)2 flops. If b � n then most computation is in the update A22 :=
A22 − L21U12, which we recognize as a matrix-matrix multiplication (except
that the result of the matrix-matrix multiplication is subtracted rather than
added to the matrix). Thus, most of the computation is cast in terms of a
matrix-matrix multiplication. If it is fast, then the overall computation is fast
once n is large.

If you don’t know what an LU factorization is, you will want to have a
look at Week 6 of our MOOC titled "Linear Algebra: Foundations to Frontiers
[21]. There, it is shown that (Gaussian) elimination, which allows one to solve
systems of linear equations, is equivalent to LU factorization.

A = LU_blk_var5(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ABR) > 0(
ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 A12
A20 A21 A22


A11 → L11U11, overwriting A11 with L11 and U11
Solve L11U12 = A12, overwriting A12 with U12
Solve L21U11 = A21, overwriting A21 with L21
A22 := A22 − L21U21 (matrix-matrix multiplication)(
ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 A12
A20 A21 A22


endwhile

Figure 4.5.1: Blocked LU factorization.

Algorithms like the one illustrated here for LU factorization are referred to
as blocked algorithms. Unblocked algorithms are blocked algorithms for which
the block size has been chosen to equal 1. Typically, for the smaller subproblem
(the factorization of A11 in our example), an unblocked algorithm is used. A
large number of unblocked and blocked algorithms for different linear algebra
operations are discussed in the notes that we are preparing for our graduate
level course "Advanced Linear Algebra: Foundations to Frontiers," [19], which

http://ulaff.net
http://ulaff.net
http://ulaff.net
http://ulaff.net


214 WEEK 4. MULTITHREADED PARALLELISM

will be offered as part of the UT-Austin Online Masters in Computer Science.
We intend to offer it as an auditable course on edX as well.

A = LU_unb_var5(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ABR) > 0(
ATL ATR
ABL ABR

)
→

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


α11 := υ11 = α11 no-op
aT12 := uT12 = aT12, no-op
l21 := a21/α11 = a21/υ11
A22 := A22 − a21a

T
21 = A22 − l21u

T
21 (rank-1 update)(

ATL ATR
ABL ABR

)
←

 A00 a01 A02
aT10 α11 aT12
A20 a21 A22


endwhile

Figure 4.5.2: Unblocked LU factorization.

A question you may ask yourself is "What block size, b, should be used in
the algorithm (when n is large)?"

4.5.2 Family values

For most dense linear algebra operations, like LU factorization, there are mul-
tiple unblocked and corresponding blocked algorithms. Usually, each of the
blocked algorithms casts most computation in terms of an operation that is a
matrix-matrix multiplication, or a variant thereof. For example, there are five
blocked algorithms (variants) for computing the LU factorization, captured in
Figure 4.5.3.
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A = LU_blk(A)

A→
(
ATL ATR
ABL ABR

)
ATL is 0× 0

while n(ABR) > 0(
ATL ATR
ABL ABR

)
→

 A00 A01 A02
A10 A11 A12
A20 A21 A22


Variant 1: Variant 2: Variant 3:
A01 := L−1

00 A01
A10 := A10U

−1
00

A11 := A11 −A10A01
A11 := LU(A11)

A10 := A10U
−1
00

A11 := A11 −A10A01
A11 := LU(A11)
A12 := A12 −A10A02
A12 := L−1

11 A12

A10 := A10U
−1
00

A11 := A11 −A10A01
A11 := LU(A11)
A21 := A21 −A20A01
A21 := A21U

−1
11

Variant 4: Variant 5:
A11 := A11 −A10A01
A12 := A12 −A10A02
A12 := L−1

11 A12
A21 := A21 −A20A01
A21 := A21U

−1
11

A11 := LU(A11)
A12 := L−1

11 A12
A21 := A21U

−1
11

A22 := A22 −A21A12

(
ATL ATR
ABL ABR

)
←

 A00 A01 A02
A10 A11 A12
A20 A21 A22


endwhile

Figure 4.5.3: Five blocked LU factorizations. Lii and Uii denote the unit
lower triangular matrix and upper triangular matrix stored in Aii, respectively.
L−1
ii Aij is shorthand for solving the triangular system with right-hand sides

LiiUij = Aij and AijU−1
jj is shorthand for solving the triangular system with

right-hand sides LijUjj = Aij .

It turns out that different variants are best used under different circum-
stances.

• Variant 5, also known as Classical Gaussian Elimination and the algo-
rithm in Figure 4.5.1, fits well with the matrix-matrix multiplication that
we developed in this course, because it casts most computation in terms
of a matrix-multiplication with large matrix sizes m and n, and small
matrix size k (which equals b): A22 := A22 −A21A12.

• Variant 3, also known as the left-looking variant, can be easily check-
pointed (a technique that allows the computation to be restarted if, for
example, a computer crashes partially into a long calculation).

• Variants 3, 4, and 5 can all be modified to incorporate "partial pivot-
ing" which improves numerical stability (a topic covered in courses on
numerical linear algebra).
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Further details go beyond the scope of this course. But we will soon have a
MOOC for that: Advanced Linear Algebra: Foundations to Frontiers! [19].

What we are trying to give you a flavor of is the fact that it pays to have a
family of algorithms at one’s disposal so that the best algorithm for a situation
can be chosen. The question then becomes "How do we find all algorithms
in the family?" We have a MOOC for that too: LAFF-On Programming for
Correctness [20].

4.5.3 Matrix-matrix multiplication for Machine Learning

Matrix-matrix multiplication turns out to be an operation that is frequently
employed by algorithms in machine learning. In this unit, we discuss the all-
nearest-neighbor problem. Knowing how to optimize matrix-matrix multipli-
cation allows one to optimize a practical algorithm for computing it.

The k-nearest-neighbor problem (KNN) takes as input m points in Rn,
{xj}m−1

j=0 , and a reference point, x, and computes the k nearest neighbors of x
among the m points. The all-nearest-neighbor (ANN) problem computes the
k nearest neighbors of each of the points xj .

The trick to computing ANN is to observe that we need to compute the
distances between all points xi and xj , given by ‖xi − xj‖2. But,

‖xi − xj‖22 = (xi − xj)T (xi − xj) = xTi xi − 2xTi xj + xTj xj .

So, if one creates the matrix

X =
(
x0 x1 · · · xm−1

)
and computes

C = XTX =


xT0 x0 ? · · · ?

xT1 x0 xT1 x1 · · · ?
...

... . . . ...
xTm−1x0 xTm−1x1 · · · xTm−1xm−1

 .

Hence, if the lower triangular part of C is computed, then

‖xi − xj‖22 = γi,i − 2γi,j + γj,j .

By sorting this information, the nearest neighbors for each xi can be found.
There are three problems with this:

• Only the lower triangular part of C needs to be computed. This operation
is known as a symmetric rank-k update. (Here the k refers to the number
of rows in X rather than the k in k-nearest-neighbors.) How Goto’s
algorithm can be modified to compute the symmetric rank-k update is
discussed in [11].

• Typically m� n and hence the intermediate matrix C takes a very large
amount of space to store an intermediate result.

http://ulaff.net
http://www.ulaff.net
http://www.ulaff.net
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• Sorting the resulting information in order to determine the k nearest
neighbors for each point means reading and writing data multipliple times
from and to memory.

You can read up on how to achieve a high performance implementation for
solving the all-nearest-neighbor problem by exploiting what we know about
implementing matrix-matrix multiplication in [34]:

• Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, George Biros.
Performance Optimization for the K-Nearest Neighbors Kernel on x86
Architectures, proceedings of SC’15, 2015.

4.5.4 Matrix-matrix multiplication on GPUs

Matrix-matrix multiplications are often offloaded to GPU accellerators due to
their cost-effective performance achieved with low power consumption. While
we don’t target GPUs with the implementations explored in this course, the
basic principles that you now know how to apply when programming CPUs
also apply to the implementation of matrix-matrix multiplication on GPUs.

The recent CUDA Templates for Linear Algebra Subroutines (CUTLASS)
[16] from NVIDIA expose how to achieve high-performance matrix-matrix mul-
tiplication on NVIDIA GPUs, coded in C++.

Figure 4.5.4: Left: picture that captures the nested computation as imple-
mented in CUTLASS. Right: the picture that captures the BLIS "Five Loops
around the micro-kernel, with packing."

https://padas.oden.utexas.edu/static/papers/sc15nn.pdf
https://padas.oden.utexas.edu/static/papers/sc15nn.pdf
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
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The explanation in [16] is captured in Figure 4.5.4, taken from [13]

• Jianyu Huang, Chenhan D. Yu, and Robert A. van de Geijn, Strassen’s
Algorithm Reloaded on GPUs, ACM Transactions on Mathematics Soft-
ware, in review.

where it is compared to the by now familiar picture of the five loops around
the micro-kernel. The main focus of the paper is the practical implementation
on GPUs of Strassen’s algorithm from [14], discussed in Unit 3.5.4.

4.5.5 Matrix-matrix multiplication on distributed memory ar-
chitectures

We had intended to also cover the implementation of matrix-matrix multipli-
cation on distributed memory architectures. We struggled with how to give
learners access to a distributed memory computer and for this reason decided
to not yet tackle this topic. Here we point you to some papers that will fill
the void for now. These papers were written to target a broad audience, much
like the materials in this course. Thus, you should already be well-equipped to
study the distributed memory implementation of matrix-matrix multiplication
on your own.

Think of distributed memory architectures as a collection of processors, each
with their own cores, caches, and main memory, that can collaboratively solve
problems by sharing data via the explicit sending and receiving of messages via
a communication network. Such computers used to be called "multi-computers"
to capture that each "node" in the system has its own processor and memory
hierarchy.

Practical implementations of matrix-matrix multiplication on multi-computers
are variations on the Scalable Universal Matrix-Multiplication Algorithm (SUMMA)
[29]. While that paper should be easily understood upon completing this course,
a systematic treatment of the subject that yields a large family of algorithms
is given in [22]:

• Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson, Parallel
Matrix Multiplication: A Systematic Journey, SIAM Journal on Scientific
Computing, Volume 38, Issue 6, 2016.

which should also be easily understood by learners in this course.
Much like it is important to understand how data moves between the layers

in the memory hierarchy of a single processor, it is important to understand
how to share data between the memories of a multi-computer. Although the
above mentioned papers give a brief overview of the data movements that are
encounted when implementing matrix-matrix multiplication, orchestrated as
"collective communication", it helps to look at this topic in-depth. For this we
recommend the paper [4]

• Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn,
Collective communication: theory, practice, and experience, Concurrency
and Computation: Practice and Experience, Volume 19, Number 13,
2007.
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In the future, we may turn these materials into yet another Massive Open
Online Course. Until then, enjoy the reading.

4.5.6 High-Performance Computing BeyondMatrix-Matrix Mul-
tiplication

In this course, we took one example, and used that example to illustrate various
issues encountered when trying to achieve high performance. The course is an
inch wide and a mile deep!

For materials that treat the subject of high performance computing more
broadly, you may find [8] interesting:

• Victor Eijkhout, Introduction to High-Performance Scientific Computing.

4.6 Wrap Up

4.6.1 Additional exercises

You may want to dive deeper into our BLAS-like Library Instantiation Software
(BLIS) [3], discussed in Unit 1.5.2, which instantiates many of the fundamental
insights you have encountered in this course in a high quality, high performing
library. That library implements all of the BLAS functionality discussed in
Unit 1.5.1, and more.

4.6.2 Summary

4.6.2.1 The week in pictures

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
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4.6.2.2 OpenMP basics

OpenMP is a standardized API (Application Programming Interface) for cre-
ating multiple threads of execution from a single program. For our purposes,
you need to know very little:

• There is a header file to include in the file(s):

#include <omp.h>

• Directives to the compiler (pragmas):

#pragma omp parallel
#pragma omp parallel for

• A library of routines that can, for example, be used to inquire about the
execution environment:

omp_get_max_threads()
omp_get_num_threads()
omp_get_thread_num()

• Environment parameters that can be set before executing the program:

export OMP_NUM_THREADS=4

If you want to see what the value of this environment parameter is, exe-
cute

echo $OMP_NUM_THREADS



Appendix A

221



222 APPENDIX A.



Appendix B

GNU Free Documentation Li-
cense

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://www.fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, text-
book, or other functional and useful document “free” in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to
any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute
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the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Sec-
tion may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
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Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING. You may copy and distribute the Document
in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies
in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
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copies in quantity, to ensure that this Transparent copy will remain thus ac-
cessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version
of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.
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J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not con-
sidered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties — for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with
other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all
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of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection
consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A compila-
tion of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION. Translation is considered a kind of modification, so
you may distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all In-
variant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in
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the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and will automat-
ically terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software
Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes copyrightable works
and also provides prominent facilities for anybody to edit those works. A

http://www.gnu.org/copyleft/
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public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use
this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the
title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the “with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.
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