
Floating Point Architecture Extensions
for Optimized Matrix Factorization

Ardavan Pedram, Andreas Gerstlauer
Department of Electrical and Computer Engineering

The University of Texas at Austin
{ardavan,gerstl}@utexas.edu

Robert A. van de Geijn
Department of Computer Science
The University of Texas at Austin

rvdg@cs.utexas.edu

Abstract—This paper examines the mapping of algorithms
encountered when solving dense linear systems and linear least-
squares problems to a custom Linear Algebra Processor. Specif-
ically, the focus is on Cholesky, LU (with partial pivoting), and
QR factorizations. As part of the study, we expose the benefits
of redesigning floating point units and their surrounding data-
paths to support these complicated operations. We show how
adding moderate complexity to the architecture greatly alleviates
complexities in the algorithm. We study design trade-offs and the
effectiveness of architectural modifications to demonstrate that
we can improve power and performance efficiency to a level that
can otherwise only be expected of full-custom ASIC designs.

A feasibility study shows that our extensions to the MAC units
can double the speed of required vector-norm operations while
reducing energy by 60%. Similarly, up to 20% speedup with
15% savings in energy can be achieved for LU factorization. We
show how such efficiency is maintained even in the complex inner
kernels of these operations.

I. INTRODUCTION

Modern computers use floating-point representations for
real numbers, which cause errors such as round-off, overflow,
and underflow in computations. Quality implementations of
numerical algorithms aim to ensure numerical stability and
try to prevent spurious overflow and underflow errors. As a
result, algorithms become more complex. The question is how
to accommodate such changes when mapping these algorithms
onto accelerators and/or into custom hardware.

A problem is that although the additional complexity does
not constitute the bulk of the total operational cost, it often
falls into the critical path of the algorithm. On general purpose
processors, the performance overhead could include extra
instructions, more memory traffic, and the cost of memory
synchronization in the system. Overall, the complexities in
the algorithm result in inherent overhead.

By contrast, accelerator designs achieve orders of magnitude
improvement in power and area efficiency by specializing the
compute data-path for only a specific application domain [1],
[2]. They remove unnecessary overheads in general purpose
architectures and use more fine-grain compute engines instead.
The resulting architecture is less flexible but very efficient,
both in terms of area and power consumption. For such archi-
tectures the mapping of algorithms with extra complexities can
lead to significant implementation overhead due to their lack
of flexibility. In the worst case, some of the most complex
computations have to be offloaded to a (conventional) host
processor.

Within the dense linear algebra domain, a typical compu-
tation can be blocked into sub-problems that expose highly
parallelizable parts like GEneral Matrix-matrix Multiplica-
tion (GEMM). These can be mapped very efficiently to accel-
erators. However, many current solutions use heterogeneous
computing for more complicated algorithms like Cholesky,
QR, and LU factorization [3], [4]. Often, only the most
parallelizable and simplest parts of these algorithms, which
exhibit ample parallelism, are performed on the accelerator.
Other more complex parts, which are added to the algorithm
to overcome floating point limitations or which would require
complex hardware to exploit fine grain parallelism, are off-
loaded to a general purpose processor.

The problem with heterogeneous solutions is the overhead
for communication back and forth with a general purpose
processor. In the case of current GPUs, data has to be copied to
the device memory and then back to the host memory through
slow off-chip buses. Even when GPUs are integrated on the
chip, data has to be moved all the way to off-chip memory
in order to perform transfers between (typically) incoherent
CPU and GPU address spaces. While the CPU could be
used to perform other tasks efficiently, it is wasting cycles
synchronizing with the accelerator and copying data. Often
times the accelerator remains idle waiting for the data to be
processed by the CPU, also wasting cycles. This is particularly
noticeable for computation with small matrices.

In this paper, we propose a new solution that tries to avoid
all inefficiencies caused by limitations in current architectures
and thereby overcomes the complexities in matrix factoriza-
tion algorithms. The problem is that architecture designers
typically only have a high-level understanding of algorithms,
while algorithm designers try to optimize for already existing
architectures. Our solution is to revisit the whole system design
by relaxing the architecture design space. By this we mean
allowing architectural changes to the design in order to reduce
complexity directly in the algorithm whenever possible. Thus,
the solution is to exploit algorithm/architecture co-design.

We choose three complex linear algebra algorithms: the
Cholesky, LU (with partial pivoting), and QR factorizations.
In our methodology, we study these algorithms, their potential
parallelism, and their mapping to current heterogeneous multi-
core architectures. This exposes the limitations in current
architectures that cause additional complexities. We start from
a minimal-hardware Linear Algebra Processor (LAP) [5] that

was designed for GEMM and other similar matrix-matrix oper-
ations (level-3 BLAS [6]). Then, we add minimal, necessary
but sufficient logic to avoid the need for running complex
computations on a general purpose core.

The rest of the paper is organized as follows: in Section II,
we present some of the related work on the implementations
of the same algorithms on different platforms. In Section III,
a brief description of the baseline accelerator is given. Sec-
tion IV then describes the algorithms as well as the limitations
and mapping challenges for the proposed accelerator. Sec-
tion V proposes modifications to the conventional designs so
that all computation can be performed on the accelerator itself.
The evaluation of the proposed architecture with sensitivity
studies of energy efficiency, area overheads, and utilization
gains are followed in Section VI. Finally, we conclude with a
summary of contributions and future work in Section VII.

II. RELATED WORK

Implementation of matrix factorizations on both conven-
tional high performance platforms and accelerators has been
widely studied. Many existing solutions perform more com-
plex kernels on a more general purpose (host) processor while
the high-performance engine only computes paralellizable
blocks of the problem [3], [4].

The typical solution for LU factorization on GPUs is
presented in [4]. The details of multi-core, multi-GPU QR
factorization scheduling are discussed in [3]. A solution for
QR factorization that can be entirely run on the GPU is
presented in [7]. For LU factorization on GPUs, a technique
to reduce matrix decomposition and row operations to a series
of rasterization problems is used [8]. There, pointer swapping
is used instead of data swapping for pivoting operations.

On FPGAs, [9] discusses LU factorization without pivoting.
However, when pivoting is needed, the algorithm mapping be-
comes more challenging and less efficient due to complexities
of the pivoting process and wasted cycles. LAPACKrc [10] is
a FPGA library with functionality that includes Cholesky, LU
and QR factorizations. The architecture has similarities to the
LAP. However, due to limitations of FPGAs, it does not have
enough local memory. Similar concepts as in this paper for
FPGA implementation and design of a unified, area-efficient
unit that can perform the necessary computations (division,
square root and inverse square root operations that will be
discussed later) for calculating Householder QR factorization
is presented in [11]. Finally, a tiled matrix decomposition
based on blocking principles is presented in [12].

III. ARCHITECTURE

We study opportunities for floating-point extensions to an
already highly-optimized accelerator. The microarchitecture of
the Linear Algebra Core (LAC) is illustrated in Figure 1. LAC
achieves orders of magnitude better efficiency in power and
area consumption compared to conventional general purpose
architectures [5]. It is specifically optimized to perform rank-
1 updates that form the inner kernels of parallel matrix
multiplication. The LAC architecture consists of a 2D array

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

`

MEM B

Address Regs

Row Bus
Write

Column Bus
Write

A B

µ programmed
Controller

Column
Bus Read

Row Bus
Read

MAC
Accumulator

Cin

Memory Interface

RF
MEM A

Fig. 1. LAC architecture is optimized for rank-1 updates to perform matrix
multiplication [5].

of nr × nr Processing Elements (PEs), with nr = 4 in the
figure. Each PE has a Multiply-ACcumulate (MAC) unit with
a local accumulator, and local Static Random-Access Memory
(SRAM) storage divided into a bigger single-ported and a
smaller dual-ported memory. PEs are connected by simple,
low-overhead horizontal and vertical broadcast buses.

MAC units perform the inner dot-product computations
central to almost all level-3 BLAS operations. Apart from
preloading accumulators with initial values, all accesses to
elements of a nr × nr matrix being updated are performed
directly inside the MAC units, avoiding the need for any
register file or memory accesses. To achieve high performance
and register level locality, the LAC utilizes pipelined MAC
units that can achieve a throughput of one MAC operation per
cycle [13]. Note that this is not the case in current general-
purpose architectures which require extra data handling to
alternate computation of multiple sub-blocks of the matrix
being updated [14].

IV. FACTORIZATION ALGORITHMS

In this section, we show the challenges and limitations in
current architectures to perform efficient matrix factorizations.
We examine the three most commonly-used operations related
to the solution of linear systems: Cholesky, LU (with partial
pivoting), and QR factorization. Here, we focus on small
problems that fit into the LAC memory. Bigger problem
sizes can be blocked into smaller problems that are mainly
composed of level-3 BLAS operations (discussed in [3]) and
algorithms for smaller problems discussed here. We briefly
review the relevant algorithms and their microarchitecture
mappings. The purpose is to expose specialized operations,
utilized by these algorithms, that can be supported in hardware.

A. Cholesky Factorization

Cholesky factorization is the most straightforward factor-
ization operation. It is representative of a broad class of
linear algebra operations and their complexities. Given a
symmetric positive definite matrix1, A ∈ Rn×n, the Cholesky
factorization produces a lower triangular matrix, L ∈ Rn×n

such that A = LLT .

1A condition required to ensure that the square root of a non-positive
number is never encountered.

2

Sub

LAPACK

Sub

BLAS
Packing

Host OS

LAPHost Processor

BLAS

LAPACK

LA Library

Host Application

Assembly Code Device Driver

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

1/x

(S1)

Broadcast

Mult
Feed 1/x

Broadcast

Inverse

Broadcast

TRSM Coef

(S2) (S3) (S3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)(1)

(2)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Broadcast a1 !
Broadcast a1

Broadcast a0
T

Rank-1 update C+=a0a0
T

(S1)

(S1)

(S1)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

1/!

(b)

c

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

1/!x

(S1)

Broadcast

Mult
Feed 1/!x

Broadcast

Inverse Sqrt

(S2) (S3)

Fig. 2. 4× 4 Cholesky decomposition mapping on the LAC, 2nd iteration.

The algorithm we will utilize can be motivated as follows:
partition

A =

(
α11 aT12
a21 A22

)
and L =

(
λ11 0
l21 L22

)
,

where α11 and λ11 are scalars. Then A = LLT means that(
α11 αT

12

a21 A22

)
=

(
λ211 ∗
λ11l21 L22L

T
22 + l21l

T
21

)
which in turn means that

α11 = λ211 ?
a21 = λ11l21 A22 − l21lT12 = L22L

T
22

.

We can compute L from A via the operations

α11 :=λ11=
√
α11 ?

a21 := l21=(1/λ11)a21 A22 :=L22=Chol(A22 − l21lT12)
,

overwriting A with L. For high performance, it is beneficial to
also derive a blocked algorithm that casts most computations
in terms of matrix-matrix operations, but we will not need
these in our discussion. The observation is that the “square-
root-and-reciprocal” operation α11 :=

√
α11; t = 1/α11 is

important, and that it should therefore be beneficial to augment
the microarchitecture with a unit that computes f(x) = 1/

√
x

when mapping the Cholesky factorization onto the LAC.
We now focus on how to factor a nr × nr submatrix when

stored in the registers of the LAC (with nr × nr PEs). In
Figure 2, we show the second iteration of the algorithm. For
this subproblem, the matrix has also been copied to the upper
triangular part, which simplifies the design.

In each iteration i = 0, . . . , nr − 1, the algorithm performs
three steps S1 through S3. In S1, the invert-square-root is
computed. In S2, the element in PE(i,i) is updated with its
inverse square root. The result is broadcast within the ith
PE row and ith PE column. It is then multiplied into all
elements of the column and row which are below and to the
right of PE(i,i). In S3, the results of these computations are
broadcast within the columns and rows to be multiplied by
each other as part of a rank-1 update of the remaining part of
matrix A. This completes one iteration, which is repeated for
i = 0, . . . , nr − 1. Given a MAC unit with p pipeline stages
and an inverse square root unit with q stages, this nr × nr
Cholesky factorization takes 2p(nr − 1) + q(nr) cycles. Due

to the data dependencies between different PEs within and
between iterations, each element has to go through p stages
of MAC units while other stages are idle. The last iteration
only replaces the PE(nr − 1,nr − 1) value by its square root,
which only requires q additional cycles.

Clearly, there are a lot of dependencies and there will be
wasted cycles. However, what we will see is that this smaller
subproblem is not where most computations happen when
performing a larger Cholesky factorization. For this reason,
we do not discuss details of how to fully optimize the LAC
for this operation here.

The important idea is that by introducing an inverse square-
root unit, that operation needs not to be performed on a host
nor in software or emulation on the LAC, which yields a
substantial savings in cycles.

B. LU Factorization with Partial Pivoting

LU factorization with partial pivoting is a more general
solution for decomposing matrices. The LU factorization of a
square matrix A is the first and most computationally intensive
step towards solving Ax = b. It decomposes a matrix A into a
unit lower-triangular matrix L and an upper-triangular matrix
U such that A = LU .

We again briefly motivate the algorithm that we utilize:
partition

A =

(
α11 aT12
a21 A22

)
, L =

(
1 0
l21 L22

)
, U =

(
υ11 uT12
0 U22

)
,

where α11, and υ11 are scalars. Then A = LU means that(
α11 aT12
a21 A22

)
=

(
υ11 uT12
l21υ11 L22U22 + l21u

T
12

)
so that

α11 = υ11 aT12 = uT12
a21 = υ11l21 A22 − l21uT12 = L22U22

.

We can thus compute L and U in place for matrix A. The
diagonal elements of L are not stored (all of them are ones).
The strictly lower triangular part of A is replaced by L. The
upper triangular part of A, including its diagonal elements, is
replaced by U as follows:

α11 := υ11 (no-op) aT12 := uT12 (no-op)
a21 := l21 = a21/υ11 A22 := LU(A22 − l21uT12)

.

Again, we do not need the blocked version of this algorithm
for the discussion in this paper.

In practice, the use of finite precision arithmetic yields this
naive algorithm for numerical accuracy reasons: the update to
matrix A in the first iteration is given by

α11 α12 · · · α1,n

0 α22 − λ21α12 · · · α2,n − λ21α1,n

0 α32 − λ31α12 · · · α3,n − λ31α1,n

...
...

. . .
...

0 αn,2 − λn,1α12 · · · αn,n − λn,1α1,n

 ,

where λi,1 = αi,1/α11, 2 ≤ i ≤ n. The algorithm clearly

3

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Find the Pivot Feed 1/x Broadcast Interchange Rows

(1) (4)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Find maximum
produced value in ith

column

Rank-1 update

(2)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Interchange
the pivot row
with ith row

(3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Scale the ith column
with pivot

1/x
1/x

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

(S1) (S4)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Find maximum in ith column Rank-1 update (S2)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Interchange the pivot row with ith row (S3)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

Scale the ith column with pivot

1/x 1/x

(S1) (S2) (S2) (S3,S4)

Fig. 3. Second iteration of a K × nr LU factorization with partial pivoting on the LAC.

(S1) (S2) (S2) (S3) (S4)
Fig. 4. Operations and data manipulation in the second iteration of a k×nr

LU factorization inner kernel.

fails if α11 = 0. If α11 6= 0 and |αi,1| � |α11|, then λi,1
will be large in magnitude and it can happen that for some i
and j the value |αi,j − λi,1αi,j | � |αi,j |, 2 ≤ j ≤ n; that
is, the update greatly increases the magnitude of αi,j . This
is a phenomenon known as large element growth and leads
to numerical instability. The problem of element growth can
be solved by rearranging (pivoting) the rows of the matrix
(as the computation unfolds). Specifically, the first column of
matrix A is searched for the largest element in magnitude. The
row that contains such element, the pivot row, is swapped
with the first row, after which the current step of the LU
factorization proceeds. The net effect is that |λi,1| ≤ 1 so that
|αi,j−λi,1α1,j | is of a magnitude comparable to the largest of
|αi,j | and |α1,j |, thus keeping element growth bounded. This
is known as the LU factorization with partial pivoting. The
observation is that finding the (index of the) largest value in
magnitude in a vector is important for this operation.

To study opportunities for corresponding architecture exten-
sions, we focus on how to factor a knr × nr submatrix (see
Figure 4) stored in a 2D round-robin fashion in the local store
and registers of the LAC (with nr × nr PEs). In Figure 3,
we show the second iteration of the right-looking unblocked
algorithm (i = 1).

In each iteration i = 0, . . . , nr − 1, the algorithm performs
four steps S1 through S4. In S1, the elements in the ith column
below the diagonal are searched for the maximum element in
magnitude. Note that this element can be in any of the ith
column’s PEs. Here, we just assume that it is in the row with
j = 2. After the row with maximum value (the pivot row) is
found, in S2, the pivot value is sent to the reciprocal (1/X)
unit and the pivot row is swapped with the diagonal (ith) row
concurrently. In S3, the reciprocal (1/X) is broadcast within the

ith column and multiplied into the elements below PE(i,i). In
S4, the results of the division (in the ith column) are broadcast
within the rows. Simultaneously, the values in the ith (pivot)
row to the right of the ith column are broadcast within the
columns. These values are multiplied as part of a rank-1 update
of the remaining part of matrix A. This completes the current
iteration, which is repeated for i = 0, . . . , nr − 1.

According to the above mapping, most of the operations
are cast as rank-1 updates and multiplications that are already
provided in the existing LAC architecture. In addition to these
operations, two other essential computations are required: first,
a series of floating-point comparisons to find the maximal
value in a vector (column); and second, a reciprocal (1/X)
operation needed to scale the values in the ith column by
the pivot. Due to these extra complexities, most existing
accelerators send the whole knr×nr block to a host processor
to avoid performing the factorization themselves [3], [4]. By
contrast, we will discuss a small set of extensions that will
allow us to efficiently perform all needed operations and hence
the complete LU factorization within dedicated hardware.

C. QR Factorization and Vector Norm

Householder QR factorization is often used when solving a
linear least-squares problem. The key to practical QR factor-
ization algorithms is the Householder transformation. Given
u 6= 0 ∈ Rn, the matrix H = I − uuT /τ is a reflector or
Householder transformation if τ = uTu/2. In practice, u is
scaled so that its first element is “1”. We will now show how
to compute A→ QR, the QR factorization, of m× n matrix
A as a sequence of Householder transformations applied to A.

In the first iteration, we partition A→
(
α11 aT12
a21 A22

)
. Let(

1
u1

)
and τ1 define the Householder transformation that

zeroes a21 when applied to the first column. Then, applying
this Householder transform to A yields:(

α11 aT12
a21 A22

)
:=

(
I −

(
1
u2

)(
1
u2

)T

/τ1

)(
α11 aT12
a21 A22

)

=

(
ρ11 aT12 − wT

12

0 A22 − u21wT
12

)
,

where wT
12 = (aT12 + uT21A22)/τ1. Computation of a full QR

4

Algorithm:
[(

ρ1
u2

)
, τ1

]
= HOUSEV

(
α1

a21

)
χ2 := ‖a21‖2
α :=

∥∥∥∥(α1

χ2

)∥∥∥∥
2

(= ‖x‖2)

ρ1 = −sign(α1)‖x‖2 ρ1 := −sign(α1)α
ν1 = α1 + sign(α1)‖x‖2 ν1 := α1 − ρ1
u2 = a21/ν1 u2 := a21/ν1

χ2 = χ2/|ν1|(= ‖u2‖2)
τ1 = (1 + uT2 u2)/2 τ1 = (1 + χ2

2)/2

Fig. 5. Computing the Householder transformation. Left: simple formulation.
Right: efficient computation.

factorization of A will now proceed with submatrix A22.
The new complexity introduced in this algorithm is in the

computation of u2, τ1, and ρ1 from α11 and a21, captured
in Figure 5, which require a vector-norm computation and
scaling (division). This is referred to as the computation of
the Householder vector. We first focus on the computation of
the vector norm.

The 2-norm of a vector x with elements χ0, · · · , χn−1 is
given by ‖x‖ := (

∑n
i=0 |χi|2)1/2 =

√
χ2
0 + χ2

2 + . . .+ χ2
n−1.

The problem is that intermediate values can overflow or
underflow. This is avoided by normalizing x and performing
the following operations instead.

t =
n−1
max
i=0
|xi| ; y = x/t; ‖x‖2 := t× ‖y‖2.

If not for overflow and underflow, the operation would be no
more complex than an inner product followed by a square
root. To avoid overflow and underflow, the maximum of
all inputs must be found, the vector be normalized, and an
extra multiplication is needed to scale the result back. As
such, with the exception of the mentioned normalization and
the introduction of a matrix-vector multiplication, the overall
mapping of QR factorization to the LAC is similar to that of
LU factorization. Due to space reasons, we focus our following
discussions on the computation of this Householder vector and
vector norm only.

To compute the vector norm, two passes over the data should
be performed: a first pass to search and find the largest value
in magnitude followed by a second pass to scale the vector
elements and accumulate the inner-product. On top of being
slow, “this algorithm also involves more rounding errors than
the unscaled evaluation, which could be obviated by scaling by
a power of the machine base [15]”. A one-pass algorithm has
been presented in [16]. It uses three accumulators for different
value sizes. This algorithm avoids overflow and underflow.
However, it still needs to perform division. More details about
how this is computed in software are discussed in [15], [17].

We now focus on how to perform a vector norm of a scaled
knr × 1 vector (see Figure 6) when stored in the local store
and registers of the LAC (with nr×nr PEs). Recall that such a
column is only stored in one column of the LAC. In Figure 6,
we show the iterations for calculating a vector norm that is
stored in the 3rd column of PEs. The algorithm performs three
steps, S1 through S3.

In S1, the third column of PEs starts computing the inner
product with half of the vector elements. Simultaneously,

CPU

L2 $

L3 $

Private On-chip Memory

Memory

LAC LAC

+=

C

x

:=

n

Ci+p,iT

Ci+p,i

Cholesky

C

C

Ci,i

Ci+p,i

Ci,i

PART 3: Symmetric Rank-K Update

PART 2: Triangular Solve
with Multiple right-hand side

PART 1: Cholesky Factorization

On-chip
Memory

C

Chol

Trsm SyrkGemm

Trsm Syrk

Syrk

Chol

CholTrsm

Syrk

Gemm SyrkGemm

Gemm Syrk

Chol

Trsm

Trsm

Trsm

Chol

Trsm SyrkGemm

Trsm Syrk

Syrk

Chol

CholTrsm

Syrk

Gemm SyrkGemm

Gemm Syrk

Chol

Trsm

Trsm

Trsm

Syrk

Gemm SyrkGemm

Gemm Syrk

Chol

Trsm

Trsm

Trsm

Syrk

Gemm

Gemm

Gemm

Trsm

CPU

L2 $

L3 $

Private On-chip Memory

Memory

LAC LAC

CPU

L2 $

L3 $

Memory

LAC

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

(S1)Share
 the Vector

(S3)Reduce All

(S2)Reduce
to the owner

Fig. 6. Mapping of the Vector Norm operation of a single vector stored in
the third column of the LAC.

the PEs in this row share the elements of the other half of
the vector with the adjacent PEs in the next column (fourth
column in Figure 6). PEs in the adjacent column also start
performing inner products. After all the PEs in both columns
have computed their parts, in S2 the partial inner products
are reduced back into the original LAC column, leaving that
column with nr partial results. In S3, a reduce-all operation
that requires nr broadcast operations across the corresponding
column bus produces the final vector norm result in all the
PEs of the owner column. Thus, performing a vector norm
in the LAC is straightforward. The real challenge is the extra
complexity to find the maximum value and to scale the vector
by it, which is introduced for avoiding overflow and underflow.
This will be discussed in the next section.

V. FLOATING POINT EXTENSIONS

In this section, we discuss how to overcome the challenges
that were introduced in the previous section in relation to
the mapping of factorization algorithms on an already very
efficient accelerator. These extensions allow an architecture to
perform more complex operations more efficiently. We will
introduce architecture extensions that provide such improve-
ments specifically for factorizations. However, such extensions
also introduce a base overhead in all operations, since they add
extra logic and cause more power and area consumption. Cor-
responding trade-offs will be analyzed in the results section.

A. Hardware Extensions

We start by analyzing opportunities for extensions targeting
Cholesky and LU factorization, followed by solutions to
complexities in vector norm operations.

1) Cholesky Factorization: In the previous section, we
observed that the key complexity when performing Cholesky
factorization is the inverse square-root operation. If we add
this ability to the core’s diagonal PEs, the LAC can perform
the inner kernel of the Cholesky factorization natively. The
last state of the nr × nr Cholesky factorization will save
even more cycles if a square-root function is available. The
nr × nr Cholesky factorization is purely sequential with
minimal parallelism in rank-1 updates. However, it is a very
small part of a bigger, blocked Cholesky factorization. Again,
the goal here is to avoid sending data back and forth to
a general purpose processor or performing this operation in

5

emulation on the existing MAC units, which would keep the
rest of the core largely idle.

2) LU Factorization with Partial Pivoting: For LU factor-
ization with partial pivoting, PEs in the LAC must be able
to compare floating-point numbers to find the pivot (S1 in
Section IV). In the blocked LU factorization, we have used
the left-looking algorithm, which is the most efficient variant
with regards to data locality [18]. In the left-looking LU
factorization, the PEs themselves are computing the temporary
values that they will compare in the next iteration of the
algorithm. Knowing this fact, the compare operation and its
latency could be done implicitly without any extra latency and
delay penalty.

The next operation that is needed for LU factorization is
the reciprocal (1/X). The reciprocal of the pivot needs to
be computed for scaling the elements by the pivot (S2 in
Section IV). This way, we avoid multiple division operations
and simply multiply all the values by the reciprocal of the
pivot and scale them.

3) QR Factorization and Vector Norm: In Section IV,
we showed how the vector norm operation is performed in
conventional computers to avoid overflow and underflow. The
extra operations that are needed to perform vector norm in
a conventional fashion are the following: a floating-point
comparator to find the maximum value in the vector just as
in LU factorization, a reciprocal function to scale the vector
by the maximum value, again just as in LU factorization,
and a square-root unit to compute the length of the scaled
vector just as what is needed to optimize the last iteration of a
nr×nr Cholesky factorization. However, we can observe that
all these extra operations are only necessary due to limitations
in hardware representations of real numbers.

Consider a floating number f that, according to the IEEE
floating-point standard, is represented as 1.m1 × 2e1 , where
1 ≤ 1.m1 < 2. Lets investigate the case of an overflow for
p = f2, and as a result p = (1.m2)× 2e2 = (1.m1)

2 × 22e1 ,
where 1 ≤ (1.m1)

2 < 4. If (1.m1)
2 ≤ 2, then e2 = 2e1.

But, if 2 ≤ (1.m1)
2, then 2 ≤ (1.m1)

2 = 2 × 1.m2 ≤ 2
and therefore e2 = 2e1 + 1. In both cases, a single extra
exponent bit suffices for avoiding overflow and underflow in
computations of the square of a floating-point number.

Still, there might be the possibility of overflow/underflow
due to accumulation of big/small numbers that could be
avoided by adding a second exponent bit. However, the square-
root of such inner product is still out of the bounds of a stan-
dard floating-point number. Therefore, only a single additional
bit suffices. Hence, what is needed is a floating-point unit
that has the ability to add one exponent bit for computing the
vector norm to avoid overflows and corresponding algorithm
complexities.

B. Architecture

In this section, we describe the proposed architecture for
our floating-point MAC unit and the extensions made to it for
matrix factorization applications. We start from a single-cycle
accumulating MAC unit and explain the modifications for LU

and vector norm operations. Then, we describe the extensions
for reciprocal, inverse square-root, and square-root operations.

1) Floating-Point MAC Unit: A floating-point MAC unit
with single-cycle accumulation is presented in [20]. Using the
same design principles, [13] presents a reconfigurable floating-
point MAC that is also able to perform multiplication, addition
and multiply-add operations. This design does not support
operations on denormalized numbers [20]. We describe our
modifications to the same design as shown in Figure 7(a).

The first extension is for LU factorization with partial
pivoting, where the LAC has to find the pivot by comparing
all the elements in a single column. We noted that PEs in the
same column have produced temporary results by performing
rank-1 updates. To find the pivot, we add a comparator after the
normalization stage in the floating-point unit of each PE. There
is also a register that keeps the maximum value produced by
the corresponding PE. If the new normalized result is greater
than the maximum, it replaces the maximum and its index
is saved by the external controller. An extra comparator is a
simple logic in terms of area/power overhead [21]. It is also
not a part of the critical path of the MAC unit and does not add
any delay to the original design. With this extension, finding
the pivot is simplified to a search among only nr elements
that are the maximum values produced by each PE in the
same column.

The second extension is for vector norm operations in the
Householder QR factorization. Previously, we have shown how
adding an extra exponent bit can overcome overflow/underflow
problems in computing the vector norm without the need for
performing extra operations to find the biggest value and scale
the vector by it. In Figure 7(a), the shaded blocks show where
the architecture has to change. These changes are minimal
and their cost is negligible. Specifically, with the architecture
in [20], the same shifting logic for a base-32 shifter can be
used. The only difference here is that the logic decides between
four exponent input bits instead of three.

2) Reciprocal and (Inverse) Square-root Units: In Cholesky
factorization, we observed that the LAC needs a way to
compute the inverse square-root of the diagonal elements
and scale the corresponding column with the result. Adding
a square-root unit can also save more cycles in the last
iteration of a nr × nr Cholesky factorization. Furthermore,
LU factorization needs a reciprocal operation to scale the
elements by the pivot. As discussed in [6], a reciprocal unit
is also mandatory for TRiangular Solve with Multiple right-
hand side (TRSM) operations to support the complete Level-3
BLAS. In this section, we will give details and design options
for such a unit.

Division, reciprocal, square-root, and inverse square-root
functions are used in many applications in the domain of signal
processing, computer graphics, and scientific computing [22],
[23]. Several floating-point divide and square-root units have
been introduced and studied in the literature [24], [25], [19].
There are mainly two categories of implementations in modern
architectures: multiplicative (iterative) and subtractive meth-
ods. An extensive presentation of these methods and their

6

Look-Up
Tables

1/Sqrt(X)

Look-Up
Tables

1/X

Squaring

CS2D

Fused
Accumulation Tree

CS2D

V=1-RW

CPA

G=RH

Z=G+GV

Look-Up
Tables

1/Sqrt(X)

Look-Up
Tables

1/X

Squaring

CS2D

Fused
Accumulation Tree

CS2DCPA

MAC

Mac
Input
Select
Logic

X1 X2 X1 X2

Ct0

Y X

Ct0

Ct1

Ct1

Ct0

Ct0
Ct1

Y X

X

Ct0

Multiplier

Alignment
Shift

Exp
comparison

Exp
Adder

Accumulator

NormalizationCorrection

Max Exp Max Mantissa

Comparator
Logic

EA

Exp
Control Shift

Sign
Inversion

EB MA MBEC MC

(b) (c)(a)

Fig. 7. Floating-point unit extensions: (a) extended reconfigurable single-cycle accumulation MAC unit [13] with addition of a comparator and extended
exponent bit-width, where shaded blocks show which logic should change for exponent bit extension; (b) original divide, reciprocal, square-root and inverse
square-root design with the Minimax logic [19] used for the isolate unit; (c) a single MAC unit design to support special functions. The overheads on top of
an existing MAC unit are encapsulated in the big rounded rectangle. PEs in the LAC with that overhead can perform special functions.

hardware implementations are presented in [23].
Two main multiplicative methods for calculating divide and

square-root functions are Newton-Raphson and Goldschmidt’s.
These algorithms work iteratively to refine an initial approxi-
mation. They utilize a look-up table for initial approximation
and the number of result digits doubles after each iteration
(converging at a quadratic rate). In each iteration, a series of
multiplication, subtraction, and shifts are performed, which
means a multiply-add unit could be utilized for these oper-
ations. Hence, they can be implemented as an enhancement
on top of such existing units. Goldschmidt’s method, which is
based on a Taylor series with two independent multiplication
operations, is more suitable for pipelined floating-point units
than the Newton-Raphson method.

Subtractive (digit recurrence), which are also known as SRT
methods, directly calculate (multiple) digits of the desired
result. They have high latency and generally are implemented
as a dedicated, complex component. However, there are redun-
dancies between the division and square-root units that allow
a single unit to perform both operations. For the higher radix
implementations with lower latencies, these designs become
complex and area consuming.

In [23], [26], it is concluded that a separate SRT-based
subtractive divide and square-root unit is more efficient for
a Givens rotation application. This is because multiplicative
methods occupy the Multiply-Add (MAD) unit and prevent it
to do anything else, while subtractive methods work in parallel
with an existing MAC unit, resulting into a faster design.

Given the nature of linear algebra operations and the map-
ping of algorithms on the LAC, a multiplicative method is
chosen. The reason lies within the fact that there are many
MAC units in the core, and exploiting one of them for

divide or square-root will not harm performance. In our class
of applications, a divide and square-root operation is often
performed when other PEs are waiting in idle mode for the its
result. As the iterations of Cholesky and LU factorization go
forward, only a part of the LAC is utilized, and the top left
parts are idle. Therefore, a diagonal PE is the best candidate
for such extensions on top of its MAC unit.

The design we are considering for this work is the archi-
tecture presented in [19]. It uses a 29-30 bit approximation
with a second-degree minimax polynomial approximation that
is known as the optimal approximation of a function [27]. This
approximation is performed by using table look-ups. Then, a
single iteration of a modified Goldschmidt’s method is applied.
This architecture, which is shown in Figure 7(b), guarantees
the computation of exactly rounded IEEE double-precision
results [19]. It can perform all four operations: divide Y/X, re-
ciprocal 1/X, square-root

√
X , and inverse square-root 1/

√
X .

While utilizing the same architecture for all operations, the
divison/reciprocal operations take less time to be computed,
since computing G and V can be done in parallel. In case of
square-root/inverse square-root, all operations are sequential
and, as a result, the latency is higher. Figure 8 shows the type
of operations and control signals that are performed for all
four functions.

The design in Figure 7(b) could be reduced to use a single
reconfigurable MAC unit, which performs all the computations
itself. This strategy reduces the design area and overhead.
This reduction does not increase the latency, but reduces
the throughput. However, as indicated before, for our class
of linear algebra operations, there is no need for a high-
throughput division/square root unit. Therefore, the design
with a single reconfigurable MAC unit as shown in Figure 7(c)

7

Operation G = RH V = 1 − RW Z = G + GV Ct0 Ct1
Division G = RY V = 1 − RX Z = G + GV 00
Reciprocal − V = 1 − RX Z = R + RV 01
Squar-root G = RX V = 1 − GS Z = G + GV/2 10
Inv Sqrt G = RX V = 1 − GS Z = R + RV/2 11

Fig. 8. Operations of the divide and square-root unit with control signals [19].

is preferred. The extra overhead on top of an unmodified MAC
unit includes the approximation logic and its look-up tables.
A simple control logic performs the signal selection for the
MAC inputs.

In summary, the changes we apply to the PEs in the LAC
are as follows: all PEs in the LAC design will get the extra-
exponent bit and the comparator logic for vector norm and LU
with partial pivoting operations, respectively. There are three
options for the divide and square-root unit implementation in
the LAC: first, a separate unit can be used to be shared by
all of PEs, or the top-left PE can be modified to hold the
extra logic on top of its MAC unit. A third option is to add
the divide and square-root logic to all diagonal PEs. We will
evaluate these options and their trade-offs for our applications
in the next section.

VI. EXPERIMENTAL RESULTS AND IMPLEMENTATIONS

In this section, we present area, power and performance
estimates for the LAC with the modifications introduced in
previous sections. We will compare the performance to a
pure software-like (micro-coded) implementation of additional
complex operations using existing components and micro-
programmed state machines. We chose three different problem
sizes and we perform an area, power, and efficiency study to
evaluate the benefits of these architectural extensions.

A. Area and Power Estimation

Details of the basic PE and core-level implementation of a
LAC in 45nm bulk CMOS technology are reported in [5].
For floating-point units, we use the power and area data
from [28]. We combine it with complexity and delay reports
from [19]. CACTI [29] is used to estimate the power and area
consumption of memories, register files, look-up tables and
buses.

For our study, we assumed two types of extensions for
the MAC units in the LAC, which include the maximum
finder comparator and the extra exponent bit (Figure 7(a)).
We also assumed three different LAC architectures with three
options for divide/square-root extensions: first, a software-like
implementation that uses a micro-programmed state machine
to perform Goldschmidt’s operation on the MAC unit in the
PE; second, an isolated divide/square-root unit that performs
the operation with the architecture in Figure 7(b); and third,
an extension to the PEs that adds extra logic and uses the
available MAC units in the diagonal PEs (Figure 7(c)).

The comparator is not on the critical path of the MAC
pipeline and the extensions for the extra exponent bit are
negligible. Therefore, we assume that there is no extra latency
added to the existing MAC units with these extensions. The
divide and square-root unit’s timing, area, and power estima-
tions are calculated using the results in [19]. For a software
solution with multiple Godlschmidt iterations, we assume no

2"

2.1"

2.2"

2.3"

2.4"

2.5"

2.6"

2.7"

SW" Isolate" Diag"PEs"

"m
m
^2
"

Architecture"OpAons"

Logic"special"

LookEup"

Mac"Extension"

PEs"

Fig. 9. LAC area break-down with different divide/square-root extensions.

Problem Total Cycles Dynamic Energy
Size SW Isolated Diagonal SW Isolated Diagonal

Cholesky
4 496 192 176 4 nJ 1 nJ 1 nJ

LU Factorization
64 524 340 340 62 nJ 60 nJ 60 nJ
128 700 644 644 121 nJ 119 nJ 119 nJ
256 1252 1252 1252 239 nJ 236 nJ 236 nJ

LU Factorization With Comparator
64 500 316 316 53 nJ 51 nJ 51 nJ
128 612 556 556 103 nJ 101 nJ 101 nJ
256 1036 1036 1036 202 nJ 200 nJ 200 nJ

Vector norm
64 282 158 150 32 nJ 29 nJ 29 nJ
128 338 214 206 59 nJ 56 nJ 56 nJ
256 418 294 286 114 nJ 111 nJ 111 nJ

Vector norm With Comparator
64 276 152 144 23 nJ 20 nJ 20 nJ
128 308 184 176 41 nJ 38 nJ 38 nJ
256 372 248 240 78 nJ 75 nJ 75 nJ

Vector norm With Exponent bit extension
64 154 80 76 12 nJ 10 nJ 10 nJ
128 170 96 92 21 nJ 19 nJ 19 nJ
256 202 128 124 39 nJ 37 nJ 38 nJ

Fig. 10. Total cycle counts and dynamic energy consumption for different
architecture options (columns for divide/square-root options, and row sets for
MAC unit extension options), algorithms and problem sizes.

extra power or area overhead for the micro-programmed state
machine.

The area overhead on top of the LAC is shown in Figure 9.
The area overhead for diagonal PEs includes the selection
logic and the minimax function computation. In case of a
4× 4 LAC, we observe that the overhead for these extensions
is around 10% if an isolated unit is added to the LAC. If
the extensions are added to all the diagonal PEs, more area
is used. However, with an isolated unit more multipliers and
multiply-add unit logic is required. The benefit of using the
diagonal PEs is in avoiding the extra control logic and in less
bus overhead for sending and receiving data.

B. Performance and Efficiency Analysis

In this part, we analyze the unblocked inner kernels of the
three factorization algorithms. We study the performance and
efficiency behavior of our extensions for these algorithms and
different inner kernel problem sizes. A very important point
is that even larger problems sizes are usually blocked into
smaller subproblems that cast most of the operations into
a combination of highly efficient level-3 BLAS operations
and the complex inner kernels that we discuss here. Many
accelerators only support level-3 BLAS and perform more
complex kernels on the host processor. The overhead of

8

sending the data associated with these computations back and
forth is significant and affects the performance by wasting
cycles. However, such issues are out of the scope of this paper.
What we want to show here is how effective our proposed
extensions are in achieving high performance for the inner
kernels compared to the baseline architecture with a micro-
coded software solution.

Cholesky factorization can be blocked in a 2D fashion by
breaking the problem down to a few level-3 BLAS operations
and a Cholesky inner kernel. For our experiment, we evaluate
a 4× 4 unblocked Cholesky. We study the effects of different
divide/square-root schemes on the performance of this inner
kernel. The kernel performance and utilization is low because
of the dependencies and the latency of the inverse square-root
operation. We observe (Figure 10) that the number of cycles
drops by a third by switching from a software solution to
hardware extensions on the LAC.

LU factorization with partial pivoting is not a 2D-scalable
algorithm. The pivoting operation and scaling needs to be done
for all rows of a given problem size. Hence, for a problem size
of k × k, the inner kernel that should be implemented on the
LAC is a LU factorization of a k × nr block of the original
problem. For our studies, we use problems with different
k = 64, 128, 256, which are typical problem sizes that fit on
the LAC. We compare the performance of a LAC with different
divide/square-root unit extensions in different columns and
with/without the built-in comparator to find the pivot. As
we have shown in Section IV, the reciprocal operation and
pivoting (switching the rows) can be performed concurrently
in the LAC owing to the column broadcast buses. The pivoting
delay is the dominating term. Hence, bigger problem sizes are
not sensitive to the latency of the reciprocal unit architecture.
However, there is a 20% speed and 15% energy improvement
with the comparator added to the MAC units.

Vector norm as part of a Householder transformation only
utilizes a single column of PEs for the inner product and
reduce. To measure the maximum achievable efficiency, we
assume that there are four different vector norms completing
concurrently one in each column. Note that the baseline is
the original normalizing vector norm. We have three options
for divide/square-root operations, and three options for MAC
unit extensions. The first option is a micro-coded software
solution, the second option is utilizing the comparator in the
MAC unit without an exponent extension, and the last is a
MAC unit with an extra exponent bit. The problem sizes are
again k = 64, 128, 256 different vector lengths. As shown in
Figure 10, we can observe that the exponent extension halves
the total cycles, and the divide/square-root unit saves up to
30% cycles compared to the baseline. Energy savings reach up
to 60% with the exponent bit extension. By contrast, different
divide/square-root units do not differ in terms of dynamic
energy consumption.

We assume a clock frequency of 1GHz for the LAC.
Utilization and efficiency can be calculated from the number
of total cycles the hardware needs to perform an operation and
the number of operations in each factorization. Efficiency in

terms of power and area metrics are presented in Figure 11
and Figure 12, respectively. Another metric that we use is
the inverse energy-delay. It shows how extensions reduce
both latency and energy consumption. Note that for LU
factorization, the pivoting operation is also taken into account.
Therefore, we used GOPS instead of GFLOPS as performance
metric. For LU factorization problems with k = 64, 128, 256,
we estimated the corresponding total number of operations to
be 1560, 3096 and 6168, respectively. For the vector norm,
we use the original algorithm as the baseline, which requires
257, 769 or 1025 operations per corresponding vector norm
of size k = 64, 128, 256. Since our implementation will result
in an effective reduction in the number of actually required
computations, the extensions have higher GOPS/W than what
is reported as peak GFLOPS/W for the LAC in [5].

Results for LU factorization confirm that there is no im-
provement in efficiency with different reciprocal architectures
when solving big problem sizes. Given this fact, isolated unit
seems to be a better option for LU factorization. By contrast,
vector norm benefits from all types of extension. However,
the exponent bit is what brings significant improvements in
efficiency.

Since there are not many options for Cholesky, we only
summarize the numbers here in the text. The number of
operations in a 4 × 4 Cholesky kernel is 30. For different
divide/square unit architectures (software, isolated, and on
diagonal PEs), the achieved efficiencies are as follows: 1.95,
4.67 and 5.75 GFLOPS/W; 0.52, 4.95, and 5.15 GFLOPS2/W;
and 0.03, 0.06, 0.07 GFLOPS/mm2. The reason for the very
poor efficiency (less than 5 GFLOPS/W) is the small size of
the kernel and limited available parallelism. Still, adding the
special function unit improves efficiency around ten times,
while reducing dynamic energy consumption by 75%.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the mapping of matrix fac-
torizations on a highly efficient linear algebra accelerator.
We propose two modifications to the MAC unit designs to
decrease the complexity of the algorithm. We also show how
existing processing elements can be enhanced to perform
special functions such as divide and square-root operations.
To demonstrate the effectiveness of our proposed extensions,
we applied them to the mapping of Cholesky, LU and QR
factorizations on such an improved architecture. Results show
that our extensions significantly increase efficiency and perfor-
mance. Future work includes comparison and mapping of big,
tiled matrix factorization problems onto the LAC, including
its integration into a heterogeneous system architecture next
to general purpose CPUs and a heterogeneous shared memory
systems, which will allow comparisons between the trade-offs
of complexity and flexibility.

REFERENCES

[1] R. Hameed et al., “Understanding sources of inefficiency in general-
purpose chips,” ISCA ’10, 2010.

[2] A. Pedram et al., “Co-design tradeoffs for high-performance, low-power
linear algebra architectures,” IEEE Trans. on Computers, 2012.

9

0"

20"

40"

60"

80"

100"

120"

SW" Isolate" Diag" SW" Isolate" Diag" SW" Isolate" Diag"

GF
LO

PS
/W

"

Three"types"of"sqrt/division"units""with"kernel"heights"64,"128,"256"

Vnorm"No"Ext"

Vnorm+"
Comparator"
Vnorm+"Exp"Ext"

0"

5"

10"

15"

20"

25"

30"

35"

SW" Isolate" Diag" SW" Isolate" Diag" SW" Isolate" Diag"

G
O
PS
/W

"

Three"types"of"sqrt/division"units"with"kernel"heights"64,"128,"256"

LU"No"Ext"

LU+"Comparator"

Fig. 11. The effect of hardware extensions and problem sizes on the power efficiency. Left: vector norm, Right: LU factorization

0"

2"

4"

6"

8"

10"

12"

14"

SW" Isolate" Diag" SW" Isolate" Diag" SW" Isolate" Diag"

G
FL
O
PS
/m

m
^2
"

Three"types"of"sqrt/division"units""with"kernel"heights"64,"128,"256"

Vnorm"No"Ext"

Vnorm+"
Comparator"

Vnorm+"Exp"Ext"

0"

0.5"

1"

1.5"

2"

2.5"

3"

SW" Isolate" Diag" SW" Isolate" Diag" SW" Isolate" Diag"

G
O
PS
/m

m
^2
"

Three"types"of"sqrt/division"unit"with"kernel"heights"64,"128,"256"

LU"No"Ext"

LU+"Comparator"

Fig. 12. The effect of hardware extensions and problem sizes on the area efficiency. Left: vector norm, Right: LU factorization

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

SW" Isolate" Diag" SW" Isolate" Diag" SW" Isolate" Diag"

G
FL
O
PS
^2
/W

"

Three"types"of"sqrt/division"units""with"kernel"heights"64,"128,"256"

Vnorm"No"Ext"

Vnorm+"
Comparator"

Vnorm+"Exp"Ext"

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

SW" Isolate" Diag" SW" Isolate" Diag" SW" Isolate" Diag"

G
FL
O
P
S
^
2
/W

"

Three"types"of"sqrt/division"units""with"kernel"heights"64,"128,"256"

LU"No"Ext"

LU+"Comparator"

Fig. 13. The effect of hardware extensions and problem sizes on the inverse E-D metric. Left: vector norm, Right: LU factorization

[3] E. Agullo et al., “QR factorization on a multicore node enhanced with
multiple GPU accelerators,” in IPDPS2011, 2011.

[4] V. Volkov et al., “Benchmarking GPUs to tune dense linear algebra,”
SC 2008, 2008.

[5] A. Pedram et al., “A high-performance, low-power linear algebra core,”
in ASAP. IEEE, 2011.

[6] ——, “A linear algebra core design for efficient Level-3 BLAS,” in
ASAP. IEEE, 2012.

[7] A. Kerr et al., “QR decomposition on GPUs,” in Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing
Units, ser. GPGPU-2, 2009.

[8] N. Galoppo et al., “LU-GPU: Efficient algorithms for solving dense
linear systems on graphics hardware,” ser. SC ’05, 2005.

[9] G. Wu et al., “A high performance and memory efficient LU decomposer
on FPGAs,” IEEE Trans on Computers, 2012.

[10] J. Gonzalez et al., “LAPACKrc: fast linear algebra kernels/solvers for
FPGA accelerators,” SciDAC 2009, no. 180, 2009.

[11] S. Aslan et al., “Realization of area efficient QR factorization using
unified division, square root, and inverse square root hardware,” in EIT
’09, 2009.

[12] Y.-G. Tai et al., “Synthesizing tiled matrix decomposition on fpgas,” in
FPL2011, 2011.

[13] S. Jain et al., “A 90mW/GFlop 3.4GHz reconfigurable fused/continuous
multiply-accumulator for floating-point and integer operands in 65nm,”
VLSID ’10., 2010.

[14] A. Pedram et al., “On the efficiency of register file versus broadcast
interconnect for collective communications in data-parallel hardware
accelerators,” SBAC-PAD, 2012.

[15] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: SIAM, 2002.

[16] J. L. Blue, “A portable Fortran program to find the euclidean norm of
a vector,” ACM Trans. Math. Softw., vol. 4, no. 1, 1978.

[17] C. L. Lawson et al., “Basic linear algebra subprograms for Fortran
usage,” ACM Trans. Math. Soft., vol. 5, no. 3, pp. 308–323, Sept. 1979.

[18] P. Bientinesi et al., “Representing dense linear algebra algorithms: A
farewell to indices,” The University of Texas at Austin, Tech. Rep. TR-
2006-10, 2006.

[19] J. A. Piñeiro et al., “High-speed double-precision computation of
reciprocal, division, square root and inverse square root,” IEEE Trans.
Comput., 2002.

[20] S. Vangal et al., “A 6.2-GFlops floating-point multiply-accumulator with
conditional normalization,” IEEE J. of Solid-State Circuits, vol. 41,
no. 10, 2006.

[21] J. Stine et al., “A combined two’s complement and floating-point
comparator,” in ISCAS 2005, 2005.

[22] S. F. Oberman et al., “Design issues in division and other floating-point
operations,” IEEE Trans. Comput., vol. 46, no. 2, February 1997.

[23] P. Soderquist et al., “Area and performance tradeoffs in floating-point
divide and square-root implementations,” ACM Comput. Surv., vol. 28,
no. 3, 1996.

[24] M. D. Ercegovac et al., “Reciprocation, square root, inverse square root,
and some elementary functions using small multipliers,” IEEE Trans.
Comput., vol. 49, no. 7, July 2000.

[25] S. Oberman, “Floating point division and square root algorithms and
implementation in the AMD-K7TM microprocessor,” in Arith14th, 1999.

[26] P. Soderquist et al., “Division and square root: choosing the right
implementation,” IEEE Micro, 1997.

[27] J. A. Piñeiro et al., “High-speed function approximation using a minimax
quadratic interpolator,” IEEE Trans. Comput., 2005.

[28] S. Galal et al, “Energy-efficient floating point unit design,” IEEE Trans.
on Computers, vol. PP, no. 99, 2010.

[29] N. Muralimanohar et al., “Architecting efficient interconnects for large
caches with CACTI 6.0,” IEEE Micro, vol. 28, 2008.

10

