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Abstract—Achieving high-performance while reducing power
consumption is a key concern as technology scaling is reaching
its limits. It is well-accepted that application-specific custom
hardware can achieve orders of magnitude improvements in
efficiency. The question is whether such efficiency can be
maintained while providing enough flexibility to implement a
broad class of operations. In this paper, we aim to answer this
question for the domain of matrix computations. We propose
a design of a novel linear algebra core and demonstrate that
it can achieve orders of magnitude improvements in efficiency
for matrix-matrix multiplication, an operation that is indicative
for a broad class of matrix computations. A feasibility study
shows that 47 double- and 104 single-precision GFLOPS/W can
be achieved in 19.5 and 15.6 GFLOPS/mm2, respectively with
current components and standard 45nm technology.

I. INTRODUCTION

It is predicted that advances in semiconductor technology
will allow for many billions of transistors on a single chip
while power concerns will limit the number of transistors
that can be active at any given time. The key question going
forward is how to minimize, or at least greatly reduce, the
power consumption while retaining or improving the achieved
performance per unit area. Required efficiencies and optimality
requires specialization. At the same time, dark silicon provides
us with the opportunity to include such heterogeneous cores
on a chip that can be effectively utilized only when needed.

It is well known that full custom, application-specific de-
sign of on-chip hardware accellerators can provide orders of
magnitude improvements in efficiencies for a wide variety
of application domains [1], [2]. The flexibility provided by
programmable general purpose machines comes at the expense
of inherent instruction handling inefficiencies. Both control
and data paths are designed to process an unknown, sequential
stream of general fine-grain operations. To achieve perfor-
mance, aggressive architectural optimizations, such as deep
caching and pipelining with associated speculation, reordering
and prediction are applied in an effort to dynamically recover
inherent parallelism and locality. However, these techniques
tend to incur tremendous overheads.

By contrast, in application-specific designs, the order and
type of operations to be performed is known at design time.
Both control and data paths are hardwired to directly realize
the desired computation. This is possible in domains, such
as multimedia or signal processing, where applications are
standardized. There, functionality can be realized into fixed

hardware, and exponentially growing costs of chip design can
be reaped across a large volume of units. The question is
whether these concepts can be applied to a broader class of
other, more general applications. If in the future neither fine-
grain programmable computing nor full custom design are
feasible, can we design specialized on-chip cores that maintain
the efficiency of full custom hardware while providing enough
flexibility to execute whole classes of coarse-grain operations?

In this paper, we aim to answer these questions for the
domain of matrix computations, which build the basis for
many algorithms in communications, control and scientific
computing. It is well understood that linear algebra problems
can be efficiently reduced down to a canonical set of Basic
Linear Algebra Subroutines (BLAS), such as matrix-matrix
and matrix-vector operations [3]. Highly efficient realization
of matrix computations on existing general-purpose processors
have been studied extensively. Among the highest profile
efforts is the currently fastest method for (general) matrix-
matrix multiplications (GEMM) [4]. Among domain experts,
it is well known that GEMM is highly indicative for all linear
algebra operations. Any approach that performs GEMM well
can typically be generalized to the broader set of BLAS [5].
Such results have have shown that a single approach can
achieve high performance across this important set of oper-
ations on a broad range of traditional processors.

By contrast, the long-term vision of our project is to design
high-performance, low-power linear algebra processors by
essentially aiming to realize this method directly in specialized
hardware. In the present paper we examine how this can be
achieved for GEMM, with an eye on keeping the resulting
architecture sufficiently flexible to compute all operations in
this class. Our analysis suggests that it should be possible to
achieve a performance of 47 double- and 104 single-precision
GFLOPS/W in 15-19 GFLOPS/mm2 with currently available
components and technologies as published in literature. This
represents a two order of magnitude improvement over current
general purpose architectures and a one order of magnitude
improvement over current GPUs.

The paper is organized as follows: after a brief discussion
and reexamination of related work, we develop our proposed
matrix processor architecture aimed at removing such ineffi-
ciencies in Section III. In Section IV and Section V we show
the mapping of matrix multiplication onto this processor and
we analyze both its theoretical performance and performance



characteristics of a realistic implementation based on current
technology. The paper concludes with a summary and an
outlook on future work in Section VI.

II. RELATED WORKS

GEMM implementation on traditional general-purpose ar-
chitectures has received a lot of attention. Modern CPUs
include SIMD units that provide data parallelism without an
increased instruction count, which can be exploited for high
performance in matrix computations [5], [6], [7]. However,
general instruction handling overhead remains and even with
SIMD instructions, long computations have to be split into
individual operations that exchange data through a single, wide
register file.

In recent years, GPUs have become a popular target for
acceleration. Originally, GPUs were developed as specialized
hardware for graphics processing that provided massive paral-
lelism but was not a good match for matrix computations [8].
More recently, GPUs have shifted away from specialization
back towards general-purpose architectures. Such GPGPUs
essentially replicate a large number of SIMD processors on a
single shared memory chip. GPGPUs can be effectively used
for matrix computations [9], [10] with throughputs of more
than 300 GFLOPS for single-precision GEMM (SGEMM),
utilizing around 30-60% of the theoretical peak performance.
Since early GPGPUs only included a limited number of
double-precision units, their DGEMM performance is less
than 100 GLFOPS (at utilizations of 90-100%). In the latest
GPGPUs, single-precision units can be configured as half the
number of double-precision ones, achieving up to 600 or 300
GFLOPS at around 60% utilization, respectively [11]. In all
cases, however, utilization and achievable performance will
drop for smaller kernel sizes (e.g. matrix sizes less than 256).

Over the years, many other parallel architectures for high-
performance computing have been proposed and in most cases
benchmarked using GEMM as a prototypical application. Sys-
tolic arrays were popularized in the 80s [12]. With increasing
memory walls, recent approaches have brought the computa-
tion units closer to memory, including hierarchical clustering
of such combined tiles [13], [14]. Despite such optimization,
utilizations for GEMM range from 60% down to less than 40%
with increasing number of tiles. Instead of a shared memory
hierarchy, the approach in [15] utilizes a dedicated network-
on-chip interconnect with associated routing flexibility and
overhead. However, it is not specifically designed for matrix
multiplication and is reported to only achieve around 40%
utilization for this application. Finally, ClearSpeed CSX700
is an accelerator that specifically targets scientific computing
with BLAS and LAPACK library facilities. It delivers up to
75 DGEMM GFLOPS at 78% of its theoretical peak [16].

As utilization numbers indicate in all these cases, inherent
general-purpose characteristics of data paths and interconnects,
coupled with associated instruction inefficiencies make it
difficult to fully exploit all available parallelism and locality.
By contrast, while we will build on the SIMD and GPU
concept of massive parallelism, we aim to provide a natural

extension that is further targeted at leveraging the specifics of
matrix operations. We can recognize that our class of linear
algebra operations essentially consists entirely of multiply-
accumulate (MAC) computations with regular and predictable
access patterns. A crucial factor for efficient matrix computa-
tions, and often a limiting aspect in existing architectures, is
the careful management of data movements. We can develop
a data path that consists of specialized MAC units with
local accumulators, partitioned memories and interconnect
specifically designed to realize available locality and required
access patterns. Furthermore, control can be predominantly
hardwired with a minimal set of micro-coded commands
to switch between different coarse-grain matrix processing
modes. All combined, we present the design of an improved
linear algebra core that can replace traditional SIMD cores for
the domain of matrix computations and in the same manner as
in GPGPUs can be replicated and dropped into a larger linear
algebra processor arrangement.

Specialized hardware implementations of GEMM on
FPGAs have been explored before, either as dedicated hard-
ware implementations [17], [18] or in combination with a flex-
ible host architecture [19]. Such approaches show promising
results (up to 99% utilization) but are limited by the perfor-
mance and size restrictions in FPGAs. By contrast, we target
an ASIC implementation that will allow us to fully exploit
state-of-the-art technologies. Within this context, our goal is
to develop a fixed architecture that is flexible yet specialized
enough to optimally execute many matrix operations.

III. BASIC DESIGN OF A LINEAR ALGEBRA CORE

A high-level design for a Linear Algebra Core (LAC) is
shown in Figure 1. It consists of a 2D array of nr × nr
processing elements (PEs), each of which has a MAC unit with
a local accumulator, local storage, simple distributed control,
and bus interfaces to communicate data within rows and
columns. For illustrative purposes we will focus our discussion
on the case of a mesh with nr × nr = 4× 4 PEs.

A. Basic Algorithm
A special case of GEMM will be used in this section to

demonstrate the operation of the Linear Algebra Core: Let C,
A, and B be 4× 4, 4× kc, and kc × 4 matrices, respectively.
Then C += AB can be computed asγ0,0 · · · γ0,3

...
. . .

...
γ3,0 · · · γ3,3

 +=

kc−1∑
i=0

α0,i

...
α3,i

(βi,0 · · · βi,3
)

so that C is updated in the ith iteration with γ0,0 + α0,iβi,0 · · · γ0,3 + α0,iβi,3
...

. . .
...

γ3,0 + α3,iβi,0 · · · γ3,3 + α3,iβi,3

 . (1)

Each such update is known as a rank-1 update. In our dis-
cussions, upper case letters denote (sub)matrices while Greek
lower case letters denote scalars.

Let us assume that 4×kc matrix A and kc×4 matrix B are
distributed to the array in a 2D cyclic round-robin fashion,
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Fig. 1. LAC Architecture. The highlighted PEs on the left illustrate the PEs that own the current column of 4× kc matrix A and the current row of kc × 4
matrix B for the second rank-1 update (p = 1). It is illustrated how the roots (the PEs in second columns and row) write elements of A and B to the buses
and the other PEs read these.

much like one distributes matrices on distributed memory
architectures [20], [21]. In other words, αi,j and βi,j are
assigned to PE (i mod 4, j mod 4). Also, element γi,j of
matrix C is assumed to reside in an accumulator of PE (i, j).
Then a simple algorithm for performing this special case of
GEMM among the PEs is to, for p = 0, . . . , kc−1, broadcast
the pth column of A within PE rows, the pth row of B within
PE columns, after which a local MAC operation on each PE
updates the local element of C.

B. LAC Architecture

The prototypical rank-1 update given in Eqn. 1 gives a clear
indication of possible parallelism: all updates to elements of
C can be performed in parallel. We also note that elements of
C are repeatedly updated by a multiply-add operation. This
suggests a natural top-level design for a processor performing
repeated rank-1 updates as a 2D mesh of PEs, depicted in
Figure 1 (left). Each PE (i, j) will update element γi,j .

Details of the PE-internal architecture are shown in
Fig. 1 (right). At the core of each PE is a MAC unit to perform
the computations γi,j += αi,pβp,j . Each MAC unit has a
local accumulator register that holds the intermediate and final
values of one inner dot product of the result matrix C being
updated. Apart from preloading accumulators with initial val-
ues of γ, all accesses to elements of C are performed directly
inside the MAC units, avoiding the need for any register file or
memory accesses. We utilize pipelined units that can achieve a
throughput of one MAC operation per cycle. Such throughputs
can be achieved by postponing normalization of results until
the last accumulation [22]. Being able to leverage a fused
MAC unit with delayed normalization will also significantly
decrease power consumption while increasing precision.

As outlined in Section III-A, we store the 4 × kc matrix
A and the kc × 4 matrix B distributed among the PEs
in local memories. It is well-understood for dense matrix
operations [21], [20] that communication is greatly simplified
and its cost is reduced if it is arranged to be only within PE
rows and columns. When considering γi,j += αi,pβp,j , one
notes that if αi,p is stored in the same PE row as γi,j , it
only needs to be communicated within that row. Similarly, if
βp,j is stored in the same column as γi,j , it only needs to
be communicated within that PE column. This naturally leads
to the choice of a 2D round-robin assignment of elements,
where αi,p is assigned to PE (i, p mod nr) and βp,j to PE
(p mod nr, j).

Each rank-1 update (fixed p, Eqn. 1) then requires simul-
taneous broadcast of elements αi,p from PE (i, p mod nr)
within PE rows and of elements βp,j from PE (p mod nr, j)
within PE columns. This is illustrated for the p = 1 update
in Figure 1. In our design, we connect PEs by horizontal and
vertical broadcast busses. Interconnect is realized as simple,
data-only busses that do not require overhead for address
decoding or complex control. PEs are connected to horizontal
and vertical data wires via separate read and write latches. This
allows for simultaneous one-cycle broadcast of two elements
αi,p and βp,j to all PEs in the same row and column.

The simple, symmetric and regular 2D mesh is scalable and
easy to route during physical design and layout. However,
length and capacitive load of data busses is determined by
the number of PEs. As such, wire delays put limits on the
possible size nr of a LAC array that can perform one-cycle
broadcasts. In this case, busses can be pipelined and latencies
are hidden by overlapping with successive computations in the
pipelined MAC units. This would make the design reminiscent
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of a systolic array, with the major difference being that we
locally store inputs and results. Hence, we only pipeline a
subset of input data but no results through the array.

Column busses in the PE mesh are multiplexed to both
perform column broadcasts and transfer elements of A, B and
C to/from external memory during initial preloading of input
data and writing back of results at the end of computation. For
the latter purpose, PEs can internally read and write column
bus values from/to the MAC accumulator or local memory.
In regular operation, row and column busses carry αi,p and
βp,j values that continuously drive PE-internal MAC inputs
in a pipelined fashion. Sending PEs (i, p mod nr) and (p
mod nr, j) drive the busses in each row and column with
values out of their local memories, where diagonal PEs (i = j)
simultaneously load two values from local memory onto both
busses. For simplicity and regularity, sending PEs receive their
own broadcasted values back over the busses into the MAC
inputs like all other PEs. In such a setup, no additional registers
or control are necessary.

Alternatively, we can consider a setup in which all elements
βp,j , p = 0, . . . , kc − 1 of B are replicated among all PEs in
each row j. This eliminates the need to broadcast these values
across columns. Instead, elements of B are always accessed
locally through an additional local SRAM. Trading off storage
for communication requirements, this setup avoids all column
transfers, freeing up column busses for prefetching of subse-
quent input data in parallel to performing computations (see
Section IV).

Overall, the local storage in each PE consists of a dual-
ported memory and a small register file with one write and
two read ports1. Access patterns are predictable and in most
cases sequential. As such, only simple, auto-incrementing
address generators are required. Furthermore, memories can
be efficiently banked to increase bandwidth and reduce power.
All combined, the data path is regular and simple without any
overhead associated with tags, large multiplexers or complex
address computations to support random accesses.

C. LAC Control

LAC control is distributed and each PE has a state ma-
chine that drives a predetermined sequence of communication,
storage and computation operations. Local controllers in each
PE are equally smart and all agents operate in parallel and
in lock step. PE executions are implicitly coordinated and
synchronized without any additional handshaking. Instead,
inter- and intra-PE data movement is predetermined, and
each PE implicitly knows when and where to communicate.
Global control and handshaking is limited to coarse-grain
coordination for simultaneous triggering or stalling of all
PEs at the start of operation or in combination with external
memory accesses. State machines are microprogrammed via a

1We include a small, general register file that carries little additional
overhead but provides the flexibility of storing a number of intermediate values
that can be (re)used as MAC inputs and can be read or written from/to local
memory. This will be beneficial in supporting other linear algebra operations
in the future.

few external control bits to select the type of linear algebra
operation that the PE should perform. Using only these control
signals and counter presets, we expect to be able to support the
full flexibility we want for executing, for example, all level-3
BLAS (matrix-matrix operations) [3].

The basic state machine in each PE requires eight states,
two address registers and one loop counter. For space reasons,
we omit a details of the PE control logic, a detailed description
of which can be found in [23]. In the following sections,
we will discuss LAC and PE operation for bigger matrix
multiplications that are broken into a sequence of basic rank-k
updates using a hierarchical blocking of input matrices. Each
additional level of blocking will require an additional loop and
loop counter. Since there are no loop-carried dependencies,
we pipeline the outer loops to effectively overlap the rank-
k computation of the current kernel with prefetching of the
next kernel’s input data and writeback of the previous kernel’s
results. With B replicated and all of a larger A local, the
resulting state machine has a combined inner core state that
runs all operations in a single-cycle loop with full parallelism
and essentially 100% sustained LAC utilization. With three
levels of blocking, such PE control only requires a total of
four counters and ten states.

IV. MAPPING GEMM TO THE LAC

In the previous section, we showed how a LAC can easily
compute with data that already resides in its memory. The
question is now how to compose the GEMM C += AB for
general (larger) matrices from the computation that can occur
on the LAC. The key is to amortize the cost of moving data
in and out of the LAC. We describe that in this section with
the aid of Figure 2, which depicts the proposed design and
use of the memory hierarchy.

A. Algorithm

Assume the matrices A, B, and C are stored in memory
external to the LAC. We can observe that C += AB can be
broken down into a sequence of smaller matrix multiplications
(rank-k updates with k = kc in our discussion):

C +=
(
A0 · · · AK−1

) B0

...
BK−1

 =

K−1∑
i=0

AiBi

so that the main operation to be mapped to the LAC becomes
C += ApBp. This partitioning of matrices is depicted in the
bottom layer in Figure 2.

In the next higher layer (third from the top), we then focus
on a single update C += ApBp. If one partitions

C =

 C0

...
CM−1

 and Ap =

 A0,p

...
AM−1,p

 ,

then each panel of C, Ci, must be updated by Ci += Ai,pBp

to compute C += ApBp.
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Let us further look at a typical Ci += Ai,pBp. At this point,
the mc × kc block Ai,p is loaded into the local memories
of the PEs using the previously described 2D round-robin
distribution. We partition Ci and Bp into panels of nr(= 4)
columns:

Ci =
(
Ci,0 · · · Ci,N−1

)
and Bp =

(
Bp,0 · · · Bp,N−1

)
.

Now Ci += Ai,pBp requires the update Ci,j += Ai,pBp,j

for all j. For each j, Bp,j is loaded into the local memories of
the PEs in a replicated column-wise fashion. The computation
to be performed is now described by the second layer (from
the top) of the pyramid, which is also magnified to its right.

Finally, Ai,p is partitioned into panels of four rows and Ci,j

into squares of 4×4, which are processed from top to bottom
in a blocked row-wise fashion across i. The multiplication of
each row panel of Ai,p with Bp,j to update the 4 × 4 block
of Ci,j is accomplished by the LAC via the rank-1 updates
described in Section III. What is still required is for the 4× 4
blocks Ci,j to be brought in from main memory.

The described blocking of the matrices facilitates reuse of
data, which reduces the need for high bandwidth between the
memory banks of the LAC and the external memory:

• Fetching of a 4× 4 block Ci,j is amortized over 4× 4×
kc MAC operations (4 × 4 of which can be performed
simultaneously).

• Fetching of a kc × 4 block Bp,j is amortized over mc ×
4× kc MAC operations.

• Fetching of a mc×kc block Ai,p is amortized over mc×
n× kc MAC operations.

Note that when this approach is mapped to a general purpose
architecture, Ai,p is stored in the L2 cache, Bp,j is kept in the
L1 cache, and the equivalent of the 4× 4 block of C is kept
in registers [4].

B. Architecture

We now translate the theoretical insights about the hierarchi-
cal implementation of GEMM into a practical implementation
in hardware. In doing so, we derive formulas for the size of the
local store, the bandwidth within the LAC, and the bandwidth

between the external memory and the LAC. Note that in our
subsequent discussion 4 × 4, the size of the submatrices of
Ci,j , is generalized to nr × nr.

The local memory requirements for the LAC are that matri-
ces Ai,p and Bp,j must be stored in the aggregate memories
of the PEs. It was decided to keep duplicates of Bp,j within
all PEs of a column. It was also decided that computation
with the current submatrix of Ci,j was to be overlapped with
the prefetching of the next such submatrix. Thus, the size of
the local store, aggregated over all PEs, is given by mc × kc
elements for Ai,j , and 2×kc×nr×nr elements for the current
and next Bp,j and Bp+1,j .

In total, the local memory must be able to hold mckc +
2kcn

2
r = (mc + 2n2r)kc single or double precision floating

point numbers. Note that the nr × nr submatrix of Ci,j

is always in the accumulators and never stored. However,
concurrent prefetching and streaming out of the next and
previous such submatrix, respectively, occupies two additional
entries in the register file of each PE. Together with a register
each for internal transfers of locally replicated βp,j , every PE
requires a register file of size 4 (rounded up).

To analyze performance, let us assume an effective band-
width of x elements/cycle and focus on one computation
Ci + = Ai,pBp. Reading Ai,p requires mckc/x cycles.
Reading and writing the elements of Ci and reading the
elements of Bp requires (2mcn+kcn)/x cycles. Finally, com-
puting Ci += Ai,pBp assuming peak performance requires
(mckcn)/n

2
r cycles. Overlapping the communication of Ci

and Bp with the computation of Ci gives us an estimate for
computing Ci += Ai,pBp of

mckc
x

+max

(
(2mc + kc)n

x
,
mcnkc
n2r

)
cycles.

Given that at theoretical peak this computation would take
mckcn cycles, the attained efficiency is estimated as

mcnkc

n2
r

mckc

x +max
(

(2mc+kc)n
x , mcnkc

n2
r

) .
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Fig. 3. Estimated performance as a function of the external memory
bandwidth and the size of local memory with nr = 4, mc = kc, and
n = 512.

Notice that the complete computation C += AB requires
loops around this “inner kernel” for one Ci, which thus dictates
the performance of the overall matrix multiplication.

Figure 3 reports performance as a function of the size of
the local memory and the bandwidth to external memory. Here
we use nr = 4, mc = kc (the submatrix Ai,p is square) and
n = 512 (which is relatively small). This graph clearly shows
that a trade-off can be made between bandwidth and the size
of the local memory, which in itself is a function of the kernel
size (kc, mc and nr).

V. LAC IMPLEMENTATION

We validated LAC operation and its theoretical performance
analysis presented in the previous section by developing a
cycle-accurate LAC simulator. The simulator is configurable
in terms of PE pipeline stages, bus latencies, and memory
and register file sizes. Furthermore, by plugging in power
consumption numbers for MAC units, memories, register files
and busses, our simulator is able to produce an accurate power
profile of the overall execution. We accurately modeled the
cycle-by-cycle control and data movement for GEMM, and
we verified functional correctness of the produced results. The
simulator provides a testbed for investigation of other linear
algebra operations, and we were already able to successfully
realize Cholesky Factorization with minimal changes to the
LAC control and data paths.

A. Component Selection

To investigate and demonstrate the performance and power
benefits of the LAC, we have studied the feasibility of a
LAC implementation in current, standard 45nm bulk CMOS
technology using publicly available components and their
characteristics as published in literature. Overall area, power
and performance estimates for a single PE of our LAC
design at various operating points are shown in Table I.

Results provide evidence that high-performance and low power
consumption can be attained by our design using reasonable
technology and component choices.
MAC Units: State of the art implementations of Fused Mul-
tiply Add (FMA) units use many optimizations techniques
to reduce latency, area and power consumption [24]. Fused
Multiply Accumulate (FMAC) units use similar architectures
but can have delayed normalization to achieve a throughput
of one, accumulation per cycle [15], [22]. This technique can
also save around 15% of total power since it eliminates two
stages of the pipeline for the bulk of operation [25]. In most
current designs the number of pipeline stages typically ranges
between 5 and 9. Note that these same units can also do integer
operations and can be reconfigured to support either single- or
double-precision operations [26].

A precise and comprehensive study of different FMA units
across a wide range of both current and estimated future imple-
mentations, design points and technology nodes was presented
in [27]. The authors report efficiencies of 120 GFLOPS/W for
a standalone double-precision FMA unit in 45nm technology.
Furthermore, paired with a 3-port register file, efficiencies
of 90 GFLOPS/W are obtained. These numbers give us an
indication of the upper limits that can be achieved. For our
analysis, we use area and performance data reported in [27].
We estimate that a single- and double-precision FMAC unit
occupies an area of 0.04mm2 and 0.01mm2, respectively.
Furthermore, all recent literature reports similar power con-
sumption estimates of around 8-10mW and 40-50mW (at ≈
1GHz and 0.8V operation), respectively.

In the superthreshold regime, frequency and voltage scaling
leads to a cubical drop in power consumption while per-
formance only decreases linearly. When aiming for the best
possible performance over power ratio, it is therefore beneficial
to operate the design at a low voltage and frequency point. In
doing so, however, we will also keep in mind that we want to
maintain or even exceed the raw performance per unit area of
existing processors.
Local Storage: Our design utilizes around 16 KBytes of
dual-ported SRAM per PE with no tags and no associativity.
Given the sequential nature of access patterns to 64-bit wide
double-precision numbers, we carefully selected memories
with one or two banks to minimize power consumption. Using
CACTI [28] with low-power ITRS models and aggressive
interconnect projection, we obtained area estimates of around
0.13mm2 and we calculated the dynamic power of local
SRAM at frequencies over 2.5 GHz to be around 13.5mW
per port. For the overall system estimation (see Section V-B),
we project the dynamic power results reported by CACTI to
the target frequencies of the MAC units. According to the
CACTI results, leakage power is estimated to be negligible in
relation to the dynamic power.
Interconnect: To estimate latencies and power consumption
of row and column busses, we use data reported in [29]
and [30]. Since we do not have any of the complex logic for
bus arbitration and address decoding, we only consider the
power consumption of the bus wires themselves as reported
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in the papers. With a nr × nr 2D array of PEs, our design
contains a total of 2 × nr 32-bit (single precision) or 64-
bit (double-precision) row and column busses. The numbers
reported in [30] are for a 32-bit wide AMBA AHB data bus
only and are around 1.5 mW. [29] reports around 1.2-2 mW
for the same scenario. However, per PE we only have 2/nr
of the power consumption of a single bus. Hence, the power
consumption of the bus wires is around 1.5-3 mW per PE,
where we take the upper limit and double it to account for
larger bus widths.

B. System Comparison

We compare single- and double-precision realizations of our
LAC design against other cores in state-of-the-art academic
and commercial systems, such as CPUs and GPUs2. With
efficiency as the primary optimization goal going forward,
we compare raw performance, raw power consumption and
the critical ratios for performance per unit power and unit
area. In relation to efficiency, it is crucial to not only analyze
peak performance and power, but to rather consider processor
utilization when running a particular application as a key
factor. With GEMM being an operation that exhibits amble
parallelism and locality and that has been studied extensively
through careful and tedious hand-tuning on conventional archi-
tectures, many systems, including our LAC, are able to achieve
close to peak performance. In contrast to other architectures,
however, we expect to be able to sustain such utilization rates
for almost all other, more complex linear algebra operations.

We developed a power model using the methods described
in [31], [32] and applied it to both our LAC and vari-
ous existing architectures. We calibrated our power model
and its parameters against power and performance numbers
presented for the NVidia GTX280 Tesla GP-GPU running
matrix multiplication [33], [34]. We used the sizes of different
GPU memory levels reported in [34] together with numbers
from [33] and [35] to match logic-level, FPU, CACTI and
leakage parameters and factors in order to achieve consistent
results across published work and our model. We then applied
this model to other architectures, such as the NVidia GTX480
Fermi GP-GPU [36], [37] or the Intel Penryn [38] dual-core
processor. We adapted our model to the architectural details as
far as reported in literature using calibrated numbers for basic
components such as scalar logic, FPUs or various memory
layers. In all cases, we performed sanity checks to ensure that
total power numbers match reported numbers in literature.

Table II summarizes key metrics for various systems run-
ning GEMM as a representative matrix computation. For
GPU and CPU architectures we compare the LAC to Stream-
ing Multiprocessors (SMs) and CPU cores, respectively. For
FPGAs we searched for the best GEMM implementation in
45nm technology, as reported on an Altera Stratix IV [39].
For the Cell Broadband Engine, we scaled the power reports
for the SPEs [40] to 45nm technology and used the utilization

2Note that comparisons have to be interpreted considering that our analysis
uses component numbers available in the public domain, which typically lag
several generations behind the state-of-the-art.

Architecture W
mm2

GFLOPS
mm2

GFLOPS
W

Utilization

Cell SPE 0.4 6.4 16 83%
Nvidia GTX280 SM 0.6 3.1 5.3 66%
Rigel cluster 0.3 4.5 15 40%
80-Tile @ 0.8V 0.2 1.2 8.3 38%
Nvidia GTX480 SM 0.5 3.8 7.0 58%
Altera Stratix IV 0.02 0.1 7.0 90+%
LAC (SP) 0.2 19.5 104 95+%
Intel Core 0.5 0.4 .85 95%
Nvidia GTX480 SM 0.5 1.7 3.4 58%
Altera Stratix IV 0.02 0.05 3.5 90+%
ClearSpeed CSX700 0.02 0.28 12.5 78+%
LAC (DP) 0.3 15.6 47 95+%

TABLE II
45NM SCALED PERFORMANCE AND AREA OF VARIOUS CORES RUNNING

GEMM.

numbers from [41]. We used the performance, power, and area
reports for ClearSpeed CSX700 cores in [16] and scaled them
to 45nm technology. Finally, we include core-level compar-
isons with tiles in a 80-tile network-on-chip architecture [15]
and clusters of the Rigel accelerator [14].

We note that for a single-precision LAC at around 1GHz
clock frequency, the estimated performance/power ratio is an
order of magnitude better than GPUs. The double-precision
LAC design shows around 55 times better efficiency compared
to CPUs. The power density is also significantly lower as
most of the LAC area is used for local store. Finally, the
performance/area ratio of our LAC is in all cases equal to or
better than other processors. All in all, with a double-precision
LAC we can get up to 40 times better performance in the same
area as a complex conventional core but using less than three
quarter the power.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents the algorithm/architecture co-design of a
linear algebra core, which provides initial evidence regarding
the benefits of finely tuned specialized hardware for linear
algebra computations. The basic conclusion is that, as had been
postulated [1], one to two orders of magnitude improvement
in power and performance density can be achieved. The paper
also suggests many possible extensions some of which we
discuss now. For example, Figure 3 clearly shows the tradeoff
between the size of the local memory and bandwidth to
external memory. One question that remains is the careful
optimization of this tradeoff across the multi-dimensioanl
power, performance, utilization and area design space. Using
a combination of simulations and further physical prototyping,
we plan to address these questions in our future work.

The choice of the size of the LAC, nr = 4 is arbitrary: it
allows our discussion to be more concrete. A natural study
will be how to utilize more PEs yet. As nr grows, the
busses that connect the rows and columns of PEs units will
likely become a limiting factor. This could be overcome by
pipelining the communication between PEs. In future work,
we will investigate requirements, such as external bandwidth
and associated overhead, for integration of LACs with other
cores and host processors into an overall system architecture.
Our ultimate goal is a hierarchical clustering of multiple
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Precision
Speed
[GHz]

Area
[mm2]

Memory
[mW]

FMAC
[mW]

PE
[mW]

PE
[W/mm2]

PE
[GFLOPS/mm2]

PE
[GFLOPS/W]

2.08 0.148 15.22 32.3 47.5 0.331 28.12 84.8
SP 1.32 0.146 9.66 13.4 23.1 0.168 18.07 107.5

0.98 0.144 7.17 8.7 15.9 0.120 13.56 113.0
0.50 0.144 3.66 3.3 7.0 0.059 6.94 117.9
1.81 0.181 13.25 105.5 118.7 0.670 19.92 29.7

DP 0.95 0.174 6.95 31.0 38.0 0.235 10.92 46.4
0.33 0.167 2.41 6.0 8.4 0.068 3.95 57.8
0.20 0.169 1.46 3.4 4.8 0.046 2.37 51.1

TABLE I
45NM SCALED PERFORMANCE AND AREA FOR LAC PE WITH 16KBYTES OF DUAL-PORTED SRAM.

LACs and second- or third-level memory into large arrays
that are combined with other cores to form a heterogeneous
architecture on a single chip.

The GEMM operation is in and by itself a sufficiently
important operation to warrant the proposed hardware support.
GEMM indirectly enables high performance for the level-3
Basic Linear Algebra Subprograms (BLAS) [3], [42] as well
as most important operations in packages like LAPACK [43]
and libflame [44]. For this purpose, we plan to investigate
integration of our proposed LAC with such libraries.

We have begun to generalize our design towards other linear
algebra operations. Our LAC simulator is already able to run
both matrix multiplication and Cholesky factorization. It is
well-understood that an approach that works for an operation
like Cholesky factorization and GEMM will also work for all
other level-3 BLAS. Additional evidence that the LAC given
in this paper can be extended to other such operations can be
found in [5], in which the techniques on which our GEMM
is based are extended to all level-3 BLAS. The conclusion,
which we will pursue in future work, is that with the addition
of a square-root unit, a scalar inversion unit, and some future
ability to further program the control unit, the LAC can be
generalized to accommodate this class of operations.
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