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braries. We demonstrate how BLIS acts as a productivity multiplier by using it to implement the level-3
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leverage extends to the multithreaded domain.
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1. INTRODUCTION
This paper discusses early results for BLIS (BLAS-like Library Instantiation Soft-
ware), a new framework for instantiating Basic Linear Algebra Subprograms
(BLAS) [Lawson et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990] libraries.
BLIS provides a novel infrastructure that refactors, modularizes, and expands exist-
ing BLAS implementations [Goto and van de Geijn 2008a; 2008b], thereby accelerating
portability of dense linear algebra (DLA) solutions across the wide range of current and
futures architectures. An overview of the framework is given in [Van Zee and van de
Geijn 2013].

This companion paper to [Van Zee and van de Geijn 2013] demonstrates the ways
in which BLIS is a productivity multiplier: it greatly simplifies the task of instanti-
ating BLAS functionality. We do so by focusing on the level-3 BLAS (a collection of
fundamental matrix-matrix operations). Here, the essence of BLIS is its micro-kernel,
in terms of which all level-3 functionality is expressed and implemented. Only this
micro-kernel needs to be customized for a given architecture; routines for packing as
well as the loops that block through matrices (to improve data locality) are provided as
part of the framework. Aside from coding the micro-kernel, the developer needs only
choose appropriate cache block sizes to instantiate highly-tuned DLA implementations
on a given architecture, with virtually no additional work.1

A team of BLAS developers, most with no previous exposure to BLIS, was asked to
evaluate the framework. They wrote only the micro-kernel for double-precision real
general matrix multiplication (DGEMM) for architectures of their choosing. The archi-
tectures on which we report include general-purpose multicore processors (AMD A10,
Intel R© Xeon

TM
E3-1220 “Sandy Bridge E3”, and IBM Power7), low-power processors2

(ARM Cortex-A9, Loongson 3A, and Texas Instruments C6678 DSP), and many-core
architectures (IBM Blue Gene/Q PowerPC A2 and Intel R© Xeon Phi

TM
). We believe this

selection of architectures is illustrative of the main solutions available in the HPC
arena, with the exception of GPUs (which we will investigate in the future). With mod-
erate effort, not only were full implementations of DGEMM created for all of these ar-
chitectures, but the implementations attained performance that rivals that of the best
available BLAS libraries. Furthermore, the same micro-kernels, without modification,
are shown to support high performance for the remaining level-3 BLAS3. Finally, by
introducing simple OpenMP [OpenMP Architecture Review Board 2008] pragma direc-
tives, multithreaded parallelism was extracted from DGEMM.

1In the process of coding the micro-kernel, the developer also chooses a set of register block sizes, which
subsequently do not change since their values are typically reflected in the degree of assembly-level loop
unrolling within the micro-kernel implementation.
2Actually, these low-power processors also feature multiple cores, but for grouping purposes we have chosen
to distinguish them from the other processors because of their relatively low power requirements.
3These other level-3 BLAS operations are currently supported within BLIS for single-threaded execution
only. However, given that we report on parallelized DGEMM, multithreaded extensions for the remaining
level-3 operations are, by our assessment, entirely feasible and planned for a future version of the frame-
work.
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2. WHY A NEW OPEN SOURCE LIBRARY?
Open source libraries for BLAS-like functionality provide obvious benefits to the com-
putational science community. While vendor libraries like ESSL from IBM, MKL from
Intel, and AMCL from AMD provide high performance at nominal or no cost, they
are proprietary implementations. As a result, when new architectures arrive, a vendor
must either (re)implement a library or depend on an open source implementation that
can be re-targeted to the new architecture. This is particularly true when a new vendor
joins the high-performance computing scene.

In addition, open source libraries can facilitate research. For example, as architec-
tures strive to achieve lower power consumption, hardware support for fault detection
and correction may be sacrificed. Incorporation of algorithmic fault-tolerance [Huang
and Abraham 1984] into BLAS libraries is one possible solution [Gunnels et al. 2001b].
Thus, a well-structured open source implementation would facilitate research related
to algorithmic fault-tolerance.

Prior to BLIS, there were two open source options for high-performance BLAS: AT-
LAS [Whaley and Dongarra 1998] and OpenBLAS [OpenBLAS 2012], the latter of
which is a fork of the widely used GotoBLAS4 [Goto and van de Geijn 2008a; 2008b]
implementation. The problem is that neither is easy to maintain or modify and we
would argue that neither will easily facilitate such research5.

As a framework, BLIS has commonality with ATLAS. In practice, ATLAS requires
a hand-optimized kernel. Given this kernel, ATLAS tunes the blocking of the compu-
tation in an attempt to optimize the performance of matrix-matrix routines (although
in [Yotov et al. 2005] it is shown parameters can be determined analytically). Simi-
larly, BLIS requires a kernel to be optimized. But there are many important differ-
ences. BLIS mimics the algorithmic blocking performed in the GotoBLAS, and, to our
knowledge, on nearly all architectures the GotoBLAS outperforms ATLAS, often by
a wide margin. This out-performance is rooted in the fact that GotoBLAS and BLIS
implement a fundamentally better approach—one which is based on theoretical in-
sights [Gunnels et al. 2001a]. Another key difference is that we believe BLIS is layered
in a way that makes the code easier to understand than both the auto-generator that
generates ATLAS implementations and those generated implementations themselves.
ATLAS-like approaches have other drawbacks. For example, some architectures re-
quire the use of cross compilation processes, in which case auto-tuning is not possible
because the build system (the system which generates the object code) differs from the
host system (the system which executes the object code). ATLAS is also impractical
for situations where execution occurs within a virtual (rather than physical) machine,
such as when simulators are used to design future processors.

While BLIS mimics the algorithms that Goto developed for the GotoBLAS (and thus
OpenBLAS), we consider his implementations difficult to understand, maintain, and
extend. Thus, they will be harder to port to future architectures and more cumbersome
when pursuing new research directions. In addition, as we will discuss later, BLIS
casts Goto’s so-called “inner kernel” in terms of a smaller micro-kernel that requires
less code to be optimized and, importantly, facilitates the optimization of all level-3
BLAS. These extra loops also expose convenient opportunities for parallelism.

3. A LAYERED IMPLEMENTATION
In many ways, the BLIS framework is a reimplementation of the GotoBLAS software
that increases code reuse via careful layering. We now describe how the GotoBLAS

4The original GotoBLAS software is no longer supported by its author, Kazushige Goto.
5We acknowledge that in this paper we present no evidence that BLIS is any easier to decipher, maintain,
or extend. The reader will have to investigate the source code itself.
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Fig. 1. Illustration from [Van Zee and van de Geijn 2012] of the various levels of blocking and related
packing when implementing GEMM in the style of [Goto and van de Geijn 2008a]. The bottom layer shows
the general GEMM and exposes the special case where k = kc (known as a rank-k update, with k = kc).
The top layer shows the micro-kernel upon which the BLIS implementation is layered. Here, mc and kc

serve as cache block sizes used by the higher-level blocked algorithms to partition the matrix problem down
to a so-called “block-panel” subproblem (depicted in the middle of the diagram), implemented in BLIS as a
portable macro-kernel. (The middle layer corresponds to the “inner kernel” in the GotoBLAS.) Similarly, mr

and nr serve as register block sizes for the micro-kernel in the m and n dimensions, respectively, which also
correspond to the length and width of the individual packed panels of matrices Ãi and B̃, respectively.

approach layers the implementation of matrix-matrix multiplication. Then, we will
discuss ways in which BLIS employs this approach as well as how BLIS differs.

A layered approach. The GEMM operation computes C := αAB + βC, where C, A,
and B are m × n, m × k, and k × n, respectively. For simplicity, we will assume that
α = β = 1.

It is well-known that near-peak performance can already be attained for the case
where A and B are m×kc and kc×n, respectively [Goto and van de Geijn 2008a], where
block size kc will be explained shortly. A loop around this special case implements the
general case, as illustrated in the bottom layer of Figure 1.

To implement this special case (k = kc) matrix C is partitioned into row panels, Ci,
that are mc × n, while A (which is m× kc) is partitioned into mc × kc blocks, Ai. Thus,
the problem reduces to subproblems of the form of Ci := AiB + Ci. Now, B is first
“packed” into contiguous memory (array B̃ in Figure 1). The packing layout in memory
is indicated by the arrows in that array. Next, for each Ci and Ai, the block Ai is
packed into contiguous memory as indicated by the arrows in Ãi. Then, Ci := ÃiB̃+Ci

is computed with an “inner kernel,” which an expert codes in assembly language for a
specific architecture. In his approach, Ãi typically occupies half of the L2 cache and B̃
is in main memory (or the L3 cache).

The BLIS approach. The BLIS framework takes the inner kernel and breaks it down
into a double loop over what we call “the micro-kernel.” The outer loop of this is already
described above: it loops over the n columns of B, as stored in B̃, nr columns at a
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time. The inner loop views Ai, stored in Ãi, as panels of mr rows. These loops (as
well as all loops required to block down to this point) are coded in C99. It is then
the multiplication of the current row panel of Ãi times the current column panel of B̃
that updates the corresponding mr × nr block of C, which is typically kept in registers
during this computation. The dimensions mr and nr refer to the “register block sizes,”
which determine the size of the small block of Ci that is updated by the micro-kernel,
which is illustrated in the top layer of Figure 1. It is only this micro-kernel, which
contains a single loop over the k dimension, that needs to be highly optimized for a
new architecture. Notice that this micro-kernel is implicitly present within the inner
kernel of GotoBLAS. However, a key difference is that BLIS exposes the micro-kernel
explicitly as the only routine that needs to be highly optimized for high-performance
level-3 functionality. All loops implementing layers above the micro-kernel are written
in C and thus fully portable to other architectures.

Beyond C := AB + C. The BLAS GEMM operation supports many cases, including
those where A and/or B are [conjugate-]transposed. The BLIS interface allows even
more cases, namely, cases where only conjugation is needed as well as mappings to
memory beyond column- or row-major storage, in any combination. Other level-3 oper-
ations introduce further dimensions of variation, such as lower/upper storage for sym-
metric, Hermitian, and triangular matrices as well as multiplication of such matrices
from the left or right. The framework handles this burgeoning space of possible cases
in part by exploiting the fact that submatrices of A and B must always be packed to fa-
cilitate high performance. BLIS uses this opportunity to intelligently cast an arbitrary
special case into a common “base case” for which a high-performance implementation
is provided. Further flexibility and simplification is achieved by specifying both row
and column strides for each matrix (rather than a single “leading dimension”). Details
can be found in [Van Zee and van de Geijn 2012].

Other matrix-matrix operations. A key feature of the layering of BLIS in terms of
the micro-kernel is that it makes the porting of other matrix-matrix operations (level-
3 BLAS) simple. In [Kågström et al. 1998] it was observed that other level-3 BLAS can
be cast in terms of GEMM. The GotoBLAS took this one step further, casting the im-
plementation of most of the level-3 BLAS in terms of its inner kernel [Goto and van de
Geijn 2008b]. (ATLAS has its own, slightly different, inner kernel.) However, this ap-
proach still required coding separate inner kernels for some operations (HERK, HER2K,
SYRK, SYR2K, TRMM, and TRSM) due to the changing assumptions of the structure of
either the input matrix A or the output matrix (B or C). BLIS takes this casting of
computation in terms of fewer and smaller units to what we conjecture is the limit: the
BLIS micro-kernel.

The basic idea is that an optimal implementation will exploit symmetric, Hermitian,
and/or triangular structure when such a matrix is present (as is the case for all level-
3 operations except GEMM). Let us consider the case of the Hermitian rank-k update
(HERK), which computes C := AAH +C, where only the lower triangle of C is updated.
Because GotoBLAS expresses its fundamental kernel as the inner kernel (i.e., the mid-
dle layer of Figure 1), a plain GEMM kernel cannot be used when updating panels of
matrix C that intersect the diagonal, because such a kernel would illegally update
parts of the upper triangle. To address this, GotoBLAS provides a separate specialized
inner kernel that is used to update these diagonal blocks. (Yet another inner kernel is
needed for cases where C is stored in the upper triangle.) Similar kernel specialization
is required for other level-3 operations. These special, structure-aware kernels share
many similarities, yet they contribute to, in the humble opinion of the authors, the
worst kind of redundancy: assembly code bloat.
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Architecture Clock
(GHz)

DP flops
/cycle/FPU

#
cores

FPUs
/core

DP peak (GFLOPS) Cache (Kbytes) BLIS parameters
one core system L1 L2 L3 mr × nr mc × kc nc

AMD A10 5800K 3.7 8 4 0.5i 29.6 60.8 16 2048 – 4× 6 1088× 128 8192

Sandy Bridge E3 3.1 8 4 1 24.8 99.2 32 256 8092 8× 4 96× 256 3072

IBM Power7 3.864 2 8 4 30.9 247.3 32 256 4096 8× 4 64× 256 8192

ARM Cortex A9 1 1 2 1 1 2 32 512 – 4× 4 128× 256 512

Loongson 3A 0.8 4 4 2 3.2 12.8 64 4096 – 4× 4 32× 128 1024

TI C6678 1 1 8 4 4 32 32 512 4096 4× 4 128× 256 4096

IBM BG/Q A2 1.6 8 16 1ii 12.8 204.8 16 32K – 8× 8 1008× 2016 4096
Intel Xeon Phi 1.09 16 60 1 17.44 1046.4 32 512 – 30× 8 120× 240 –

i One FPU shared by 2 cores. ii Only one can be used in a given cycle.

Fig. 2. Architecture summary.

Architecture Compiler
(version)

Compiler optimizations and architecture-
specific flags Micro-kernel implementation

AMD A10 5800K gcc (4.7) -O3 -mavx -mfma3 -march=bdver2 C code + inline assembly code
Sandy Bridge E3 gcc (4.6) -O3 -mavx -march=nocona -mfpmath=sse C code + AVX intrinsics
IBM Power7 gcc (4.7.3) -O3 -mcpu=power7 -mtune=power7 C code + AltiVec instrinsics

ARM Cortex A9 gcc (4.6) -O3 -march=armv7-a -mtune=cortex-a9
-mfpu=neon -mfloat-abi=hard

C code

Loongson 3A gcc (4.6) -O3 -march=loongson3a -mtune-loongson3a
-mabi=64

C code + inline assembly code

TI C6678 cl6x (7.4.1) -O2 -mv6600 --abi=eabi C code

IBM BG/Q A2 gcc (4.4.6) -O3 C code + inline assembly code
Intel Xeon Phi icc (13.1.0) -O3 -mmic C code + inline assembly code

Fig. 3. Summary of compiler and micro-kernel implementation details.

BLIS eliminates most of this code bloat by simply requiring a smaller kernel. It
turns out that virtually all of the differences between these structure-aware kernels
reside in the two loops around the inner-most loop corresponding to the micro-kernel.
But because of its chosen design, the GotoBLAS implementation is forced to bury these
slight differences in assembly code, which significantly hinders the maintainer, or any-
one trying to read and understand (not to mention enhance or extend) the implemen-
tation. By contrast, since BLIS already compartmentalizes all architecture-sensitive
code within the micro-kernel, the framework naturally allows us to provide generic and
portable instances of these specialized inner kernels (which we call “macro-kernels”),
each of which builds upon the same micro-kernel in a slightly different way. Thus,
BLIS simultaneously reduces the size of the assembly kernel required as well as the
number of kernels required. This also has the side effect of improving the performance
of the instruction cache at run-time.

4. TARGETING A SINGLE CORE
The first BLIS paper [Van Zee and van de Geijn 2012] discussed preliminary per-
formance on only one architecture, the Intel Xeon 7400 “Dunnington” processor. This
section reports first impressions on many architectures, focusing first on single core
and/or single thread performance. Multithreaded, multicore performance is discussed
in the next section.

For all but two architectures, only the micro-kernel (which iterates over the kc di-
mension in Figure 1) was created and adapted to the architectural particularities of
the target platform. In addition, the various block sizes were each chosen based on the
target architecture (though for space reasons, we omit discussion of how they were cho-
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sen). Figure 2 summarizes the main BLIS parameters used. On two architectures, the
Blue Gene/Q PowerPC A2 and Intel Xeon Phi, a more extensive implementation was
attempted in order to examine modifications that may be required in order to support
many-core architectures.

The performance experiments examined double-precision (DP) real versions of the
following representative set of operations: DGEMM (C := AB+C); DSYMM (C := AB+C,
where A is stored in lower triangle); DSYRK and DSYR2K (C := ABT +BAT +C, where
C is stored in lower triangle); DTRMM (C := AB, where A is lower triangular) and
DTRSM (C := A−1B, where A is lower triangular). In all cases, the matrices were
stored in column-major order.

We now describe a few details of our BLIS port to each architecture. Descriptions
focus on issues of interest for the BLIS developer, and are not intended to be exhaus-
tive. Our goal is to demonstrate how competitive performance can be reached with
basic optimizations using the BLIS framework. For all architectures, there is room for
improvement within the framework. The architectures selected for our evaluation are
briefly described in Figure 2. Details about compiler version and optimization flags are
reported in Figure 3.

On each architecture, we timed the BLIS implementations as well as the vendor
library, ATLAS, and/or OpenBLAS. In each set of graphs, the top graph reports the
performance of the different DGEMM implementations, the middle graph the perfor-
mance of BLIS for various level-3 BLAS operations, and the bottom graph speedup
attained by the BLIS implementation for the various level-3 BLAS operations, rel-
ative to the vendor implementation or, if no vendor implementation was available,
ATLAS or OpenBLAS. For the top and middle graphs, the uppermost point along the
y-axis represents the peak performance of the architecture. The top graph reports how
quickly the performance of DGEMM ramps up when m = n = 1000 and the k dimension
is varied in increments of 32. This matrix shape is important because a relatively large
matrix-matrix multiply with a relatively small k (known as a rank-k update) is often at
the heart of important higher-level operations that have been cast in terms of DGEMM,
such as the Cholesky, LU, and QR factorizations [Anderson et al. 1999; Van Zee et al.
2009]. Thus, the implementation should (ideally) ramp up quickly to its asymptote as
k increases. The middle and bottom graphs report performance for square matrices,
(also in increments of 32) up to problem sizes of 2000.

4.1. General-purpose architectures
The AMD A10 processor implements the Trinity micro-architecture, an APU (Acceler-
ated Processing Unit) that combines a reduced number of CPU cores (between two and
four) and a large number of GPU cores. The chosen processor (A10 5800K) incorporates
four CPU cores and 384 GPU cores. Our implementation targets the 64-bit, x86-based
CPU cores, which support out-of-order execution, and ignores the GPU cores. The CPU
cores are organized by pairs, where each pair shares a single floating-point unit (FPU).

The micro-kernel developed for the AMD A10 processor was written using assembly
code and the GNU toolchain. Optimization techniques such as loop unrolling and cache
prefetching were incorporated in the micro-kernel. The Trinity micro-architecture sup-
ports two formats of fused multiply-accumulate instructions: FMA3 and FMA4. We
found the FMA3 instructions to be the faster of the two, hence we used FMA3 in our
micro-kernel.

Initial performance is reported in Figure 4. We compare against ACML 5.3.0 (with
FMA3 instructions enabled) and ATLAS. Although our DGEMM implementation does
not (yet) match the performance of the ACML library, it is striking that the same
micro-kernel facilitates highly competitive implementations of the other level-3 BLAS
operations. Furthermore, it clearly outperforms ATLAS. The drop in performance for
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Fig. 4. Performance on one core of the AMD A10 (left) and the Sandy Bridge E3 (right) processors.
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Fig. 5. Performance on one core of the IBM Power7 (left) and the ARM Cortex-A9 (right) processors.
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problem sizes that are multiples of 128 can be fixed by adjusting the leading dimension
of C. (We will investigate how to more generally fix this problem as part of our broader
effort to improve the BLIS framework and/or the micro-kernel.) While ACML’s DGEMM
outperforms BLIS, for the other level-3 BLAS the BLIS implementation outperforms
ACML.

The Sandy Bridge E3 processor is a 64-bit, x86-based superscalar, out-of-order
micro-architecture. It features three different building blocks, namely the CPU cores,
GPU cores and System Agent. Each Sandy Bridge E3 core presents 15 different exe-
cution units, including general-purpose, vector integer and vector floating-point (FP)
units. Vector integer and floating-point units support multiply, add, register shuffling
and blending operations on up to 256-bit registers.

The micro-kernel developed for the Sandy Bridge E3 processor was written entirely
in plain C, using only AVX intrinsics and the GNU toolchain. Common optimization
techniques like loop unrolling, instruction reordering, and cache prefetching were in-
corporated in the micro-kernel.

Performance results for Sandy Bridge E3 are reported in Figure 4. The top graph
shows that the BLIS DGEMM implementation clearly outperforms that of ATLAS for
rank-k update. OpenBLAS yields the best performance, exceeding that of BLIS by
roughly 10% for large problem sizes, and attaining similar relative performance for
small values of k. Intel MKL DGEMM yields an intermediate performance and outper-
forms BLIS by a small margin for values of k > 256. (However, as shown in the bot-
tom graph, MKL’s DGEMM is superior for square problem sizes.) The performance for
the remaining level-3 BLAS routines provided by BLIS is comparable with that of its
DGEMM. On this architecture, the implementation of DTRSM can clearly benefit from
implementing the optional TRSM micro-kernel supported by the BLIS framework [Van
Zee and van de Geijn 2013].

The IBM Power7 processor is an eight-core server processor designed for both com-
mercial and scientific applications [Sinharoy et al. 2011]. Each Power7 core imple-
ments the full 64-bit Power architecture and supports up to four-way simultaneous
multithreading (SMT). Power7 includes support for Vector-Scalar Extension (VSX) in-
structions, which operate on 128-bit VSX registers, where each register can hold two
double-precision floating-point values. Each Power7 thread has 64 architected VSX
registers, but to conserve resources these are aliased on top of the existing FP and
VMX architected registers. Other relevant details are catalogued in Figures 2 and 3.

The BLIS micro-kernel developed for Power7 was written almost entirely in plain C
with AltiVec intrinsics for vector operations [Freescale Semiconductor 1999]. We com-
piled BLIS with the GNU C compiler provided by version 6.0 of the Advance Toolchain,
an open source implementation that includes support for the latest features of IBM’s
Power architecture. The micro-kernel exploits the VSX feature of Power7 to perform
all operations on vector data.

We conducted our experiments on an IBM Power 780 system with two 3.864 GHz
Power7 processors running Red Hat Enterprise Linux 6.3. We configured ATLAS to
use the architectural defaults for Power7 and built with the same Advance Toolchain
compiler. All executions are performed on one core with large (16Mbyte) pages enabled.

Figure 5 presents BLIS performance on one core (executing one thread) of the IBM
Power7 processor. BLIS DGEMM performance falls short of ESSL by about 10%, but
with further optimization this gap could likely be narrowed considerably. The level-
3 BLAS performance, presented in the middle and bottom graphs, shows that all of
the level-3 operations except DTRSM achieve consistently high performance. TRSM per-
formance lags that of the other level-3 operations because a significant portion of its
computations do not employ the micro-kernel.
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Fig. 6. Performance on one core of the Loongson 3A (left) and the Texas Instruments C6678 DSP (right)
processors.
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4.2. Low-power architectures
The following architectures distinguish themselves by requiring low power relative to
the performance they achieve. It is well known that power consumption is now the is-
sue to overcome and hence an evaluation of how well BLIS ports to these architectures
is merited.

The ARM Cortex-A9 processor is a low-power RISC processor that implements a
dual-issue superscalar, out-of-order pipeline. Its features depend on the specific im-
plementation of the architecture; in our case, the Texas Instruments OMAP4-4430
selected for evaluation incorporates two Cortex-A9 cores.

The micro-kernel developed for the ARM Cortex-A9 processor was written exclu-
sively using plain C code and the GNU toolchain. As no NEON extensions for DP arith-
metic exist, no vector intrinsics were used in the micro-kernel. Common optimization
techniques like loop unrolling, a proper instruction reordering to hide memory latency,
and cache prefetching are incorporated in the micro-kernel.

Performance is reported in Figure 5. As of this writing, the only tuned BLAS imple-
mentation for the ARM processor is ATLAS [ATLAS for ARM home page 2013], and so
the top graph includes performance curves for only BLIS and ATLAS. In general, for
all tested routines and matrix dimensions, BLIS outperforms ATLAS; of special inter-
est is the gap in performance for small problem sizes of most level-3 operations (with
the exception of DGEMM, as shown in the top graph).

The Loongson 3A CPU is a general-purpose 64-bit MIPS64 quad-core proces-
sor, developed by the Institute of Computing Technology, Chinese Academy of Sci-
ences [Loongson Technology Corp. Ltd 2009]. Each core supports four-way superscalar
and out-of-order execution, and includes five pipelined execution units, two arithmetic
logic units (ALU), two floating-point units (FPU) and one address generation unit
(AGU). Every FPU is capable of executing single- and double-precision fused multiply-
add instructions.

For this architecture, we optimized the BLIS DGEMM micro-kernel by using exclu-
sively assembly code. Similar to our DGEMM optimization for the OpenBLAS [Xianyi
et al. 2012], we adopted loop unrolling and instruction reordering, software prefetch-
ing, and the Loongson 3A-specific 128-bit memory accessing extension instructions to
optimize the BLIS micro-kernel. We performed a limited search for the best blocksizes
mc, kc, and nc.

Performance is reported in Figure 6. In the case of the Loongson 3A processor, only
open source libraries are available. Focusing on DGEMM, BLIS outperforms ATLAS by
a wide margin, but this initial port of BLIS still does not perform quite at the same
level as the OpenBLAS. Interestingly, by choosing the parameters for BLIS slightly
different from those used for the OpenBLAS, the performance of BLIS improved some-
what. Clearly, this calls for further investigation and performance tuning.

The Texas Instruments C6678 DSP incorporates the C66x DSP core from Texas
Instruments [Texas Instruments 2012], a Very Long Instruction Word (VLIW) archi-
tecture with eight different functional units in two independent sides, with connected
but separate register files per side. This core can issue eight instructions in parallel
per cycle [Texas Instruments 2010]. The C66x instruction set includes SIMD instruc-
tions operating on 128-bit vector registers. Ideally, each core can perform up to eight
single-precision multiply-add (MADD) operations per cycle. In double-precision, this
number is reduced to two MADD operations per cycle. The C6678 DSP incorporates
eight C66x cores, with a peak power consumption of 10W. Each level of the cache hi-
erarchy can be configured either as software-managed RAM, cache, or part RAM/part
cache. DMA can be used to transfer data between off-chip and on-chip memory without
CPU participation.
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Fig. 7. Illustration of parallelism opportunities within the portion of the computation corresponding to the
GotoBLAS “inner kernel.” The equivalent of that inner kernel is implemented in BLIS as a portable macro-
kernel, written in C, consisting of two loops around the micro-kernel. This exposes two extra opportunities
for introducing loop parallelism.

The C66x architecture poses a number of challenges for BLIS; it is a completely
different architecture (VLIW), and the software infrastructure for the TI DSP is dra-
matically different from the rest of our target architectures: the TI DSP runs a native
real-time OS (SYS/BIOS), and an independent compiler (cl6x) is used to generate code.
Despite that, the reference implementation of BLIS compiled and ran “out-of-the-box”
with no further modifications.

Figure 6 reports BLIS performance compared with the only optimized BLAS imple-
mentation available as of today: the native TI BLAS implementation [Ali et al. 2012],
which makes intensive use of DMA to overlap data movement between memory layers
with computation and an explicit management of scratchpad memory buffers at the
different levels of the memory hierarchy [Igual et al. 2012]. While this support is on
the BLIS roadmap, it is still not supported; hence, no DMA support is implemented
in our macro-kernel yet. Given the layered design of BLIS, this feature is likely to
be easily integrated into the framework, and may be applicable to other architectures
supporting DMA as well. Given the small gap in performance between BLIS and TI
BLAS, we expect BLIS to be highly competitive when DMA capabilities are integrated
in the framework.

5. TARGETING MULTICORE ARCHITECTURES
We now discuss basic techniques for introducing multithreaded parallelism into the
BLIS framework.

The GotoBLAS are implemented in terms of the inner kernel discussed in Section 3
and illustrated in Figure 1. If that inner kernel is taken as a basic unit of computation,
then parallelism is most easily extracted by parallelizing one or more of the loops
around the inner kernel. By contrast, the BLIS framework makes the micro-kernel
the fundamental unit of computation and implements Goto’s inner kernels as two loops
around the micro-kernel (Figure 8).

A complete study of how parallelism can be introduced by parallelizing one or
more of the loops is beyond the scope of this paper. Instead, we simply used
OpenMP [OpenMP Architecture Review Board 2008] pragma directives to parallelize
the second loop around the micro-kernel, as well as the routines that pack a block of
A and a row panel of B. Within the macro-kernel, individual threads work on mul-
tiplying the block Ã times a kc × nr panel of B̃, with the latter assigned to threads
in a round-robin fashion. The benefit of this approach is that the granularity of the
computation is quite small.

We choose to report how fast performance ramps up when m = n = 4000 and k
is varied. As discussed before, being able to attain high performance for small k is
important for algorithms that cast most computation in terms of a rank-k update, as
is the case for many algorithms incorporated in LAPACK [Anderson et al. 1999] and
libflame [Van Zee 2012].
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Fig. 8. Parallel performance. Performance of the Texas Instruments C6678 DSP on a single core drops from
Figure 6 because TI’s OpenMP implementation reduces the available L2 cache size to 128 Kbytes.
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For most of the architectures discussed in Section 4—that is, architectures with a
moderate number of cores—this approach turns out to be remarkably effective, as il-
lustrated in Figure 8. In each of the graphs, we show the performance attained when
using one thread per core, employing as many cores as are available, and we scale the
graphs so that the uppermost y-axis value coincides with the theoretical peak. Since
we report GFLOPS/core, we expect performance (per core) to drop slightly as more
cores are utilized.

5.1. Many-core architectures
We now examine the Blue Gene/Q PowerPC A2 and Intel Xeon Phi, two architectures
which provide the potential for high levels of parallelism on a single chip.

The IBM Blue Gene/Q PowerPC A2 processor is composed of 16 application cores,
one operating system core, and one redundant (spare) core. All 18 of the 64-bit Pow-
erPC A2 cores are identical and designed to be both reliable and energy-efficient [IBM
Blue Gene team 2013]. Mathematical acceleration for the kinds of kernels under study
in this paper is achieved through the use of the four-way double-precision Quad Pro-
cessing Extension (QPX) SIMD instructions that allow each core to execute up to eight
floating-point operations in a single cycle [Gschwind 2012]. Efficiency stems from the
use of multiple (up to four) symmetric hardware threads, each with their own regis-
ter file. Multiple hardware thread use enables dual-issue capabilities (a floating-point
and a load/store operation in a single cycle), latency tolerance, and the reduction of
bandwidth required. Other relevant details are catalogued in Figures 2 and 3.

The micro-kernel used for BLIS on Blue Gene/Q was written in C with QPX vector
intrinsics. Our experiments were carried out on a Blue Gene/Q node card wherein the
compute nodes run IBM’s CNK operating system. While a node card consists of 32 1.6
GHz processors (nodes), all results employed the use of a single node.

Parallelism was achieved within a single core as well as across cores. On a single
core, the four hardware threads were used to obtain two degrees of parallelism in
both the m and n dimensions—the first and second loops around the micro-kernel,
respectively. (This 2 × 2 thread parallelism was encoded into the micro-kernel itself.)
Thus, each core multiplies a pair of adjacent row panels of Â by a pair of adjacent
column panels of B̂ to update the corresponding four adjacent blocks of C. Additionally,
when utilizing all 16 cores, we parallelized in the n dimension with a degree of 16, with
round-robin assignment of data. Thus, each core iterates over the same block of Âwhile
streaming in different pairs of column panels of B̂.

Figure 9 reports multithreaded performance on a single core as well as on 16 cores,
with each core executing four hardware threads. We compare against the DGEMM
implementation provided by IBM’s ESSL library. Our single-core BLIS implementa-
tion outperforms that of ESSL for k > 256, with performance asymptoting at 10-15%
above the vendor library for large values. On 16 cores, the difference is even more pro-
nounced, with BLIS DGEMM exceeding that of ESSL by about 25% for most values of k
tested. Remarkably, the ratio of performance per core between the 16 and single core
results is quite high, indicating very good scalability.

The Intel Xeon Phi co-processor (Knights Corner) is the first production co-
processor in the Intel Xeon Phi product family. It features many in-order cores on
a single die; each core has four-way hyper-threading support to help hide memory
and multi-cycle instruction latency. To maximize area and power efficiency, these cores
are less aggressive: they have lower single-threaded instruction throughput than CPU
cores and run at a lower frequency. However, each core has 32 vector registers, each
512 bits wide, and its vector unit can sustain a full 16-wide (8-wide) single (double)
precision vector instructions in a clock cycle, and load 512 bits of data from the L1 data
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Fig. 9. Parallel performance on many-core architectures.

cache per cycle. Note that vector instructions can be paired with scalar instructions
and data prefetches. Each core further has two levels of cache: a single-cycle access
32 KB first level data cache (L1) and a larger 512 KB second level cache (L2), which is
globally coherent via directory-based MESI coherence protocol. The Intel Xeon Phi is
physically mounted on a PCIe slot and has 8GB of dedicated GDDR5 memory.

In our experimentation we used a Xeon Phi SE10P co-processor, which has 61 cores
running at 1.1 GHz, offering 17.1 GFLOPS of peak double-precision performance per
core. It runs MPSS version 2.1.4346-16.

The micro-kernel was written in C using GNU extended inline assembly, and incor-
porates many of the insights in [Heinecke et al. 2013]. Both the mc × kc block of Â and
the kc × nr block of B̂ are streamed from the L2 cache. Because of this, and because
prefetch instructions can be co-issued with floating-point operations, we aggressively
prefetch Â, B̂, and C in the micro-kernel.

Each thread can only issue instructions every other clock cycle, thus it is necessary to
use at least two threads per core to achieve maximum performance. In our implemen-
tation, we use four. These four threads share the same block of Â, so periodic thread
synchronization is used to ensure data reuse of Â within their shared L1 cache. For
this architecture, we parallelized the second loop around the micro-kernel in order to
utilize four threads per core and the first loop around the inner kernel (the third loop
around the micro-kernel) in order to increase the granularity of computation when
utilizing the 60 cores.

Performance for DGEMM is reported in Figure 9. This graph includes results for exe-
cution of 240 threads on 60 cores for both BLIS and MKL, as well as BLIS on a single
core. While the raw performance of our initial multithreaded BLIS implementation
falls short of the highly tuned MKL library (by about 15%), we once again see that,
when moving from one to 60 cores, BLIS facilitates impressive scalability.

Our experiment of porting BLIS to the Blue Gene/Q PowerPC A2 and Intel Xeon Phi
architectures allowed us to evaluate whether BLIS will have a role to play as multicore
becomes many-core.

Considerably more effort was dedicated to the port to the Blue Gene/Q and Intel
Xeon Phi. Also, some relatively minor but important changes were made to BLIS in
order to help hide the considerable latency to memory on the Intel Xeon Phi architec-
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Object of interest
Byte footprint

BLIS OpenBLAS ATLAS MKL

Executable that calls DGEMM 287K 32K 2.11M 2.80M
. . . and also DSYMM 292K 41K 2.13M 2.94M
. . . and also DSYRK 313K 56K 2.13M 3.16M
. . . and also DSYR2K 320K 72K 2.14M 3.22M
. . . and also DTRMM 364K 141K 2.17M 4.95M
. . . and also DTRSM 412K 210K 2.20M 5.57M
. . . and also ZGEMM 412K 253K 3.11M 7.98M
. . . and also ZHEMM 412K 262K 3.13M 8.03M
. . . and also ZHERK 412K 279K 3.15M 8.12M
. . . and also ZHER2K 412K 297K 3.16M 8.19M
. . . and also ZTRMM 412K 401K 3.20M 9.72M
. . . and also ZTRSM 412K 506K 3.25M 10.86M

Library archive 1.98M 6.18M 11.72M ??? 6

Total memory at run-time for executable
that calls DGEMM (m = n = k = 100)

25.7M 43.1M 13.2M 13.9M

Total memory at run-time for executable
that calls DGEMM (m = n = k = 4000)

391M 409M 415M 388M

Fig. 10. Various manifestations of library footprints when statically linked to each of: BLIS, OpenBLAS
0.2.6, ATLAS 3.10.1, and MKL 11.2. Here, “K” and “M” indicate 1024 and 1048576 bytes, respectively.

ture. The effort expended on the other architectures was minimal by comparison. Still,
only OpenMP pragma directives were needed to achieve the reported parallelism. And
Figure 9 shows that our multithreaded implementations for the Blue Gene/Q and Intel
Xeon Phi scale almost linearly when all 16 and 60 cores, respectively, are utilized.

For these many-core architectures, we did not similarly introduce parallelism into
the loops around the micro-kernel for the other level-3 operations. However, we do not
anticipate any technical difficulties in doing so.

What we learn from the experiments with multithreading is that the BLIS frame-
work appears to naturally support parallelization on such architectures via OpenMP.

6. LIBRARY FOOTPRINT
A concern with BLAS implementations can be their byte footprint. For example, on
embedded systems where memory is particularly limited, a large executable can be
problematic. BLIS is highly layered and designed to reuse code whenever possible,
leaving it relatively compact in size. We provide evidence of this in Figure 10, which
summarizes byte footprints of various executables and libraries on an Intel x86-64
architecture when statically linking to BLIS, OpenBLAS 0.2.67, ATLAS 3.10.1, and
MKL 11.0 Update 4.

We can see that when linking BLIS to a simple test driver that calls only DGEMM, the
resulting executable is 287Kbytes in size. Executables linked to OpenBLAS, ATLAS,

6MKL’s BLAS are accessed by linking to three libraries, which together occupy 303Mbytes. However, these
same libraries also provide other DLA functionality (such as LAPACK and ScaLAPACK) as well as signal
processing functions (such as FFT). Thus, it would be difficult to estimate the size of only the object code
needed by the BLAS.
7Here, OpenBLAS was configured as a sequential library, with CBLAS interfaces and built-in LAPACK
functionality both disabled.
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and MKL are 32Kbytes, 2.11Mbytes, and 2.80Mbytes, respectively. Thus, while BLIS
does not yield the absolute smallest executable, it is still an order of magnitude smaller
than a similar program linked to ATLAS or MKL.

The next observation we make is that adding calls to additional BLAS routines
causes relatively moderate increases in BLIS-linked executable size. Adding calls
to the other five double-precision real level-3 operations (DSYMM, DSYRK, DSYR2K,
DTRMM, and DTRSM) results in 125Kbytes of additional object code when linking to
BLIS, 178Kbytes when linking to OpenBLAS, 97Kbytes when linking to ATLAS, and
2.78Mbytes when linking to MKL.

However, some applications may need both real and complex domain flavors of the
same operations. Adding calls to the double-precision complex analogues of the afore-
mentioned level-3 routines causes OpenBLAS-, ATLAS-, and MKL-linked executables
to swell in size by 296Kbytes, 1.05Mbytes, and 5.29Mbytes, respectively. On the other
hand, adding these complex routine calls to a BLIS-linked executable causes no in-
crease in executable size. This is possible because the real-only executables linked
to BLIS already include all of the supporting infrastructure needed for computing in
the complex domain. This is a consequence of BLIS’s design, which defers the differ-
entiation of domain (real versus complex) and precision (single versus double) until
runtime.

Looking only at the library archives themselves, we see that BLIS8 is small-
est at 1.98Mbytes, with OpenBLAS and and ATLAS consuming 6.18Mbytes and
11.7Mbytes, respectively. ATLAS likely suffers, in general, from the fact that it is
auto-generated. Also, ATLAS’s design requires the compilation of many optimized
“edge-case” kernels—enough to handle any possible edge case size (that is, any size
less than the cache block size), which results in a very large kernel footprint. Sim-
ilarly, OpenBLAS contains significant non-kernel code duplication and redundancy;
however, this duplication also allows OpenBLAS-linked executables to stay exception-
ally small when only a few BLAS routines are called, as each BLAS routine is more
self-contained.

In some situations, executable size may not matter nearly as much as the total
amount of memory allocated at run-time. All BLAS implementations require substan-
tial workspace buffers, usually for creating packed copies of the matrix operands. The
last two rows of Figure 10 list the total memory footprint of running processes when
executing DGEMM for square problem sizes of 100 and 4000. For small problem sizes,
the largest contributing factor to the runtime footprints of BLIS and OpenBLAS are
packing buffers, which are statically sized at compile-time (as a function of the cache
block sizesmc, kc, and nc). ATLAS and MKL have similar workspace buffers. For larger
problem sizes, the memory associated with the input matrices begins to dwarf any dif-
ference in workspace requirements.

Thus, BLIS may be a better choice than ATLAS or MKL when the footprint of the
executable is an issue. Similarly, BLIS may be preferred when calling multiple BLAS
(or BLAS-like) routines.

7. CONCLUSION, CONTRIBUTIONS AND FUTURE DIRECTIONS
The purpose of this paper was to evaluate the portability of the BLIS framework. One
way to view BLIS is that it starts from the observation that all level-3 BLAS can

8This particular BLIS library was compiled with only optimized kernels for double-precision real computa-
tion. We estimate that the other kernels, were they to be written and included, would increase the size of the
BLIS library by approximately 70Kbytes, resulting in a total library size of approximately 2.05Mbytes. This
would also increase (by approximately the same amount) the sizes of the BLIS-linked executables listed in
the first 12 rows of Figure 10.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 0000.



The BLIS Framework: Experiments in Portability 0:19

be implemented in terms of matrix-matrix multiplication [Kågström et al. 1998], and
pushes this observation to its practical limit. At the bottom of the food chain is now
the micro-kernel, which implements a matrix-matrix multiplication with what we be-
lieve are the smallest submatrices that still allow high performance. We believe that
the presented experiments merit cautious optimism that BLIS will provide a highly
maintainable and competitive open source software solution.

The results are preliminary. The BLIS infrastructure seems to deliver as advertised
for the studied architectures for single-threaded execution. For that case, implement-
ing high-performance micro-kernels (one per floating-point datatype) brings all level-3
BLAS functionality online, achieving performance consistent with that of GEMM. We
pushed beyond this by examining how easily BLIS will support multithreaded paral-
lelism. The performance experiments show impressive speedup as the number of cores
is increased, even for architectures with a very large number of cores (by current stan-
dards).

A valid question is, how much effort did we put forth to realize our results? On
some architectures, only a few hours were invested. On other architectures, those
same hours yielded decent performance, but considerably more was invested in the
micro-kernel to achieve performance more closely rivaling that of vendors and/or the
OpenBLAS. We can also report that the experts involved (who were not part of our
FLAME project and who were asked to try BLIS) enthusiastically embraced the chal-
lenge, and we detected no reduction in that enthusiasm as they became more familiar
with BLIS.

The BLIS framework opens up a myriad of new research and development possibil-
ities. Can high-performance micro-kernels be derived analytically from fundamental
properties of the hardware? And/or, should automatic fine-tuning of parameters be in-
corporated? Will the framework port to GPUs? How easily can functionality be added?
Can the encoding of multithreading into the framework be generalized such that it
supports arbitrary levels of (possibly asymmetric) parallelism? Will it enable new re-
search, such as how to add algorithmic fault-tolerance [Gunnels et al. 2001a; Huang
and Abraham 1984]? to BLAS-like libraries? Will it be useful when DLA operations
are used to evaluate future architectures with simulators (where auto-tuning may be
infeasible due to time constraints)? It is our hope to investigate these and other ques-
tions in the future.

Availability
The BLIS framework source code is available under the “new” (also known as the
“modified” or “3-clause”) BSD license at

http://code.google.com/p/blis/ .
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