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Abstract— SuperMatrix out-of-order scheduling leverages
high-level abstractions and straightforward data dependency
analysis to provide a general-purpose mechanism for obtaining
parallelism from a wide range of linear algebra operations.
Viewing submatrices as the fundamental unit of data allows
us to decompose operations into component tasks that operate
upon these submatrices. Data dependencies between tasks are
determined by observing the submatrix blocks read from and
written to by each task. We employ the same dynamic out-
of-order execution techniques traditionally exploited by modern
superscalar micro-architectures to execute tasks in parallel ac-
cording to data dependencies within linear algebra operations.
This paper provides a general explanation of the SuperMatrix
implementation followed by empirical evidence of its broad ap-
plicability through performance results of several standard linear
algebra operations on a wide range of computer architectures.

I. INTRODUCTION

This paper explores the broad applicability of SuperMatrix
out-of-order scheduling. In [7] we used storage by blocks [8],
[18], [24] to view submatrices as the basic unit of data
and tasks that perform operations on those blocks as the
basic unit of computation, which results in algorithms-by-
blocks [2], [9], [10], [17], [19]. After calculating all data
dependencies between tasks, dynamic out-of-order execution
techniques similar to Tomasulo’s algorithm [26] can be used
to exploit parallelism within linear algebra operations.

The main contributions of the present paper include:
• Using the simple high-level abstractions [6], [16], [22]

presented in [7], we apply SuperMatrix to a wide range of
linear algebra operations to exploit parallelism sometimes
unattainable by traditional methods [1], [20], [25] without
adding additional complexity to the code [27].

• The implementation details of the SuperMatrix mecha-
nism are exposed.

• We provide empirical evidence that the performance
of generalized SuperMatrix implementations match or
even exceed the performance of linear algebra operations
linked with multithreaded BLAS libraries [3], [11] across
several different computer architectures.

• The next phase of research to improve performance and
expand SuperMatrix functionality is discussed.

The rest of the paper is organized as follows. In Section II
we explain the general implementation of SuperMatrix out-
of-order scheduling. Section III provides a wide variety of
performance graphs. We conclude the paper in Section IV.

II. SUPERMATRIX OUT-OF-ORDER SCHEDULING

We designed the SuperMatrix mechanism to resemble the
inspector–executor method for parallelism [23], [29]. We
delay the execution of tasks during the analyzer phase to
calculate data dependencies. We then execute the tasks in
parallel according the explicit data flow specified by their data
dependencies during the scheduler/dispatcher phase.

A. Analyzer
Currently the SuperMatrix mechanism assumes that the

input matrices are stored hierarchically with one level of block-
ing where submatrices are square. We provide the FLASH
API [22] to create and access these hierarchical matrices since
users do not need to know the underlying storage of matrices.
Using this API, users create a matrix of matrices where each
element in the top level matrix is a pointer to another matrix.
Given this level of indirection, the SuperMatrix mechanism
appends information detailing the tasks that read from and
write to each block.

As each task is enqueued onto the task queue in sequential
program order, each submatrix structure tracks the tasks that
read from and write to its data in order to compute flow,
anti, and output data dependencies between all tasks. This
data dependency information is stored explicitly within the
SuperMatrix task structure.

In Fig. 1 (left), we present the SuperMatrix implemen-
tation of LU factorization without pivoting. The calls to
FLASH LU nopiv, FLASH Trsm, and FLASH Gemm de-
compose themselves into component tasks operating on square
blocks and then place those tasks onto the task queue. In
a corresponding sequential implementation, those routines
would execute the operations without delay.

B. Scheduler/Dispatcher
Once all the tasks are enqueued onto the task queue, the

call to FLASH Queue exec initiates the parallel execution,



FLA_Error FLASH_LU_nopiv_var5( FLA_Obj A )
{

FLA_Obj ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) &&
FLA_Obj_width ( ATL ) < FLA_Obj_width ( A ) )

{
FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */
&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR );

/*------------------------------------------------------------*/

FLASH_LU_nopiv( A11 );

FLASH_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
FLA_ONE, A11, A12 );

FLASH_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11, A21 );

FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A21, A12, FLA_ONE, A22 );

/*------------------------------------------------------------*/

FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* ************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL );

}
FLASH_Queue_exec( );

return FLA_SUCCESS;
}

Stage Scheduled Tasks
1 LU

2 TRSM TRSM TRSM TRSM

3 TRSM TRSM TRSM TRSM

4 GEMM GEMM GEMM GEMM

5 GEMM GEMM GEMM GEMM

6 GEMM GEMM GEMM GEMM

7 GEMM GEMM GEMM GEMM

8 LU

9 TRSM TRSM TRSM TRSM

10 TRSM TRSM GEMM GEMM

11 GEMM GEMM GEMM GEMM

12 GEMM GEMM GEMM LU

13 TRSM TRSM TRSM TRSM

14 GEMM GEMM GEMM GEMM

15 LU

16 TRSM TRSM

17 GEMM

18 LU

Fig. 1. Left: SuperMatrix implementation of LU factorization without pivoting. Right: Simulated SuperMatrix execution of LU factorization without pivoting
on a 5× 5 matrix of blocks using 4 threads. Each column represents the tasks executed on separate threads.

which we implemented using a global FIFO waiting queue
separate from the task queue.

Once a task completes execution, all dependent tasks that
use blocks updated by the recently completed task are notified.
If a notified task has all of its dependencies fulfilled, it is
marked as ready and available. Those ready and available tasks
are enqueued at the tail of the waiting queue while idle threads
dequeue tasks from the head of the waiting queue until all tasks
have been executed. To begin execution, it is an invariant that
the first task in the task queue is always ready and available.

We used OpenMP to provide multithreading facilities where
each thread executes asynchronously. We have also imple-
mented SuperMatrix using the POSIX threads API to reach
a broader range of platforms.

In Fig. 1 (right), we show the simulated SuperMatrix
execution of LU factorization without pivoting on a 5 × 5
matrix of blocks using 4 threads. Each column represents tasks
that execute on separate threads. This simulation assumes that
each thread performs lock-step synchronization after executing
a single task, which we denote as a single stage, for illustration
purposes. The SuperMatrix mechanism uses asynchronous
threads via fine grained locking.

In the simulation, we can see the tasks from FLASH Trsm
and FLASH Gemm are interleaved in stage 10. Those
tasks represent intra-iterational parallelism since those op-
erations lie within the main while loop in Fig. 1 (left).
Stage 12 illustrates inter-iterational parallelism since a task
from FLASH LU nopiv is interleaved with tasks from
FLASH Gemm in the previous iteration.

SuperMatrix out-of-order scheduling derives its parallelism

Architecture PEs Peak (GFLOPS) BLAS
Itanium2 16 96.0 MKL 8.1
Xeon1 8 41.6 MKL 9.0
Opteron 8 41.6 ACML 3.6
POWER5 8 60.8 ESSL 4.2

TABLE I
ARCHITECTURES ON WHICH THE LINEAR ALGEBRA OPERATIONS ARE

PERFORMED. NOTE THAT ALL THESE ARCHITECTURES ALSO HAVE

GOTOBLAS 1.13 INSTALLED.

BLAS LAPACK
GEMM HEMM SYMM CHOL
TRMM HER2K SYR2K LU
TRSM HERK SYRK SPD-INV

TABLE II
THE LEVEL-3 BLAS AND LAPACK-LIKE OPERATIONS SUPPORTED BY

SUPERMATRIX. NOTE THAT WE HAVE LU FACTORIZATION without

pivoting.

from the data flow specified by data dependencies within the
operation. No other information specific to the linear algebra
operations is used to exploit parallelism.

III. PERFORMANCE

In this section, we provide empirical evidence of the wide
applicability of the SuperMatrix mechanism for several linear
algebra operations across different computer architectures.

1Four dual-core “Tulsa” processors



A. Target architectures and supported operations

We performed experiments on the four different architec-
tures listed in Table I where each has at least eight processing
elements (PEs). A processing element is a single core in multi-
core processors or a CPU in SMP systems. Peak performance
is listed in gigaflops/sec (GFLOPS). We installed the Goto-
BLAS 1.13 library [12] on each machine and also had access
to the commercial vendors’ BLAS libraries.

Table II lists the linear algebra operations that the Super-
Matrix mechanism currently supports, including all the level-3
BLAS operations along with several LAPACK-like operations.
The implementations of these operations took only a few days
to program thanks to the relative simplicity of the SuperMatrix
interface.

Inversion of a symmetric positive definite matrix (SPD-
INV) is one LAPACK operation composed of several other
LAPACK operations, which can be implemented by Cholesky
factorization followed by inversion of a triangular matrix and
then triangular matrix multiplication by its transpose [5].

B. Implementations

In this section, we provide the results for a subset of
the supported operations: Cholesky factorization (CHOL), LU
factorization without pivoting (LU), general matrix-matrix
multiplication (GEMM), symmetric rank-k update (SYRK),
triangular matrix-matrix multiplication (TRMM), and triangular
solve with multiple right-hand sides (TRSM).

We used an algorithmic block size b = 192 for all exper-
iments and created problem instances of CHOL, LU, TRMM,
and TRSM where all input matrices are square. We performed
GEMM, C = AB + C, where C is m×m, A is m× k, B is
k×m, and k is fixed to b, which is indicative of the instances
of GEMM typically encountered in practice. We also fixed the
k dimension of SYRK to b in similar fashion.

The LAPACK-like operations CHOL and LU have three
separate implementations:
• SuperMatrix + serial BLAS

The SuperMatrix implementation of CHOL is similar to
the one for LU in Fig. 1 (left). For the execution of
individual tasks on each thread, we linked to serial BLAS
libraries.
The results are reflective of our simplest SuperMatrix
mechanism. We did not use advanced scheduling tech-
niques such as data affinity described in [7].

• FLAME + multithreaded BLAS
We linked the sequential implementations of FLA Chol
and FLA LU nopiv provided by libFLAME 1.0 with
multithreaded BLAS libraries.
FLA Chol implements the right-looking algorithm,
which is rich with rank-k updates that are straightfoward
to parallelize. FLA LU nopiv implements the right-
looking algorithm, which is the blocked variant of classic
Gaussian elimination.

• LAPACK + multithreaded BLAS
LAPACK 3.0 only provides LU factorization with pivot-
ing as dgetrf. We edited that routine to eliminate piv-

oting and named it dgetnf, hence the label LAPACK-
like.
We linked LAPACK’s implementation of CHOL,
dpotrf, and dgetnf with multithreaded BLAS
libraries. We also modified both routines to use an
algorthmic block size of 192 instead of the block sizes
provided by LAPACK’s ilaenv routine.
dpotrf implements the left-looking algorithm, which
is rich in matrix-panel multiplication that does not paral-
lelize well. dgetnf, like dgetrf, implements the right-
looking algorithm.

The level-3 BLAS operations GEMM, SYRK, TRMM, and TRSM
have two implementations: SuperMatrix + serial BLAS and
multithreaded BLAS.

C. Results

Fig. 2 through Fig. 5 present the results for each of the four
architectures each using eight processing elements.

Since the level-3 BLAS operations are the main components
comprising both CHOL and LU, a few comments are due:
• GEMM and SYRK have no data dependencies between

their component tasks. SuperMatrix must still incur the
cost of finding potential data dependencies between tasks
despite GEMM and SYRK exhibiting abundant parallelism.
TRMM and TRSM on the other hand have a few data
dependencies between their component tasks.

• In order to get high performance, BLAS libraries pack
matrices into buffers to obtain stride one access during
execution [13]. Given large matrices, the cost of packing
is amortized over the computation. Since blocks are
generally accessed by several tasks, those blocks must
be repeatedly packed and unpacked during the execution
of each task for SuperMatrix.

• Despite these performance penalties, SuperMatrix re-
mains competitive for these operations compared to the
multithreaded implementations provided by architecture-
tuned BLAS libraries.

These results are also indicative of the comparative perfor-
mance attained by the other level-3 BLAS operations.

Because the level-3 BLAS operations have few, if any, data
dependencies, SuperMatrix can potentially extract parallelism
at a finer granularity for LAPACK-like operations than the tra-
ditional sequential algorithms linked to multithreaded BLAS
libraries. These results deserve several comments:
• The SYRK implementation in GotoBLAS typically per-

forms best when the k dimension is fixed. This instance
of SYRK is used in the right-looking algorithm for CHOL,
which gives rise to FLA Chol performing best when
linked to multithreaded GotoBLAS.

• In Fig. 4 (a) FLA Chol performs poorly since ACML
performance is nearly sequential for the instance of SYRK
shown in Fig. 4 (d).

• Despite our tuning the block size, dpotrf does not
perform as well as FLA Chol when linked with mul-
tithreaded BLAS. LAPACK uses an algorithmic variant
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Fig. 2. Results from the Itanium2 machine.
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Fig. 3. Results from the Xeon machine.
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Fig. 4. Results from the Opteron machine.
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Fig. 5. Results from the POWER5 machine.
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Fig. 6. Speedup and efficiency of the Cholesky factorization implemented with SuperMatrix linked with MKL on the Itanium2 machine with 16 processors.

that is rich in matrix-panel multiply, which does not
parallelize as well as the SYRK based variant used by
libFLAME.

• FLA LU nopiv and dgetnf implement the same algo-
rithm, so their performances match closely.

• FLA LU nopiv and dgetnf linked to multithreaded
GotoBLAS perform poorly compared to being linked
to the different vendors’ multithreaded BLAS libraries.
The second instance of TRSM called by the right-looking
algorithm is not a commonly utilized problem instance,
so GotoBLAS does not highly optimize that problem
instance of TRSM. When performing LU factorization
with pivoting, the pivoting occurs in the factorization of
the column panel, so the simple call to TRSM is not used
in that case.
We notified Kazushige Goto about the poor performance
of this problem instance of TRSM. Subsequent releases of
the GotoBLAS library have remedied this deficiency.

• SuperMatrix generally is one of the best performing
implementations for CHOL and LU because of its ability
to exploit parallelism between operations. The sequential
algorithms have implicit synchronization points between
each call to multithreaded BLAS operations.

D. Scalability

In Fig. 6 we show speedup and efficiency results for the
SuperMatrix implementation of CHOL linked with serial MKL
using 2, 4, 8, 12, 13, and 16 threads. We used FLA Chol
linked with serial MKL as the baseline for these scalability
experiments.

The analyzer phase only scales with the problem size while
remaining constant when varying the number of threads given
its sequential execution, which clearly demonstrates Amdahl’s
Law. Inherent data dependencies in CHOL also limit the
amount of parallelism exploitable by the scheduler/dispatcher
phase. Both of these issues lead to the degradation in efficiency
shown Fig. 6 (right) as we scale up the number of threads.

Despite these limitations, SuperMatrix still attains a speedup
of approximately 12 when using 16 threads.

IV. CONCLUSION

The ideas behind SuperMatrix rely on high-level abstrac-
tions to expose fine grain parallelism in linear algebra op-
erations. By viewing matrix blocks as the fundamental unit
of computation, we can schedule tasks that access and update
those blocks using the same out-of-order execution techniques
long exploited by modern computer micro-architectures.

SuperMatrix upholds that the whole is greater than the sum
of the parts. Despite all the efforts to support a wide variety
of multithreaded BLAS operations across multiple computer
architectures, solely focusing on parallelizing individual com-
ponent operations has its fundamental limits. SuperMatrix can
match or exceed the performance of these libraries because
of its ability to exploit parallelism between operations while
being highly portable since it only depends upon a few kernels
that perform well sequentially on small square matrices.

Future work
Since we use LU factorization without pivoting as the

primary example in this paper, our next phase of research
entails input driven control flow such as pivoting strategies.
SuperMatrix scheduling derives parallelism from dynamic yet
explicit data flow, but pivoting introduces nondeterministic be-
havior. We gained experience dealing with pivoting strategies
from parallelism on distributed-memory architectures [14],
[28] and believe the same solutions are applicable.

The SuperMatrix implementations in this paper reflect our
initial efforts. Current research involves sorting the ready and
available tasks according to different heuristics to attain better
load balance between processing elements by reducing the
latency of tasks on the critical path of execution. This sorting
of tasks subsumes the concept of compute-ahead [1], [20],
[25]. Given the modular nature of the SuperMatrix mecha-
nism, these advanced scheduling techniques are completely
abstracted away from the user.



We have also begun experiments to compare the SuperMa-
trix mechanism with linear algebra operations implemented
using Cilk [21], a multithreaded programming environment.

Since SuperMatrix is highly portable, we have tentative
plans to adapt it to the Cell processor [4], [15], which poses
specific challenges due to the explicit management of memory.

Additional information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/.
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