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In a recent paper it was shown how memory traffic can be diminished by reformulating the classic algorithm

for reducing a matrix to bidiagonal form, a preprocess when computing the singular values of a dense matrix.
The key is a reordering of the computation so that the most memory-intensive operations can be “fused”.

In this paper, we show that other operations that reduce matrices to condensed form (reduction to upper

Hessenberg form and reduction to tridiagonal form) can be similarly reorganized, yielding different sets of
operations that can be fused. By developing the algorithms with a common framework and notation, we

facilitate the comparing and contrasting of the different algorithms and opportunities for optimization on

sequential architectures. We discuss the algorithms, develop a simple model to estimate the speedup potential
from fusing, and showcase performance improvements consistent with the what the model predicts.
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General Terms: Algorithms; Performance

Additional Key Words and Phrases: linear algebra, libraries, high-performance, Hessenberg, tridiagonal,
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1. INTRODUCTION
For many dense linear algebra operations, such as Cholesky, LU, and QR factoriza-
tions, there exist algorithms that cast most of the computation in terms of matrix-
matrix operations that can overcome the memory bandwidth bottleneck common to
most modern processors [Dongarra et al. 1989; Dongarra et al. 1991; Dongarra et al.
1990; Anderson et al. 1999]. Reduction to condensed form operations—specifically, re-
duction to upper Hessenberg, tridiagonal, and bidiagonal form—are important excep-
tions. For these operations, reducing the number of times data must be brought in
from memory is the key to optimizing performance since inherently O(n3) reads to and
writes from memory are incurred while O(n3) floating-point operations are performed
on an n× n matrix.

It should be noted that there are algorithms for reduction to condensed form based
on successive band reduction that cast most computation in terms of cache-efficient
matrix-matrix operations [Bischof et al. 1994; Lang 1999; Bischof et al. 2000; Bienti-
nesi et al. 2011]. Such algorithms are much faster than those presented in the present
paper. However, reduction to condensed form is typically not a useful operation in iso-
lation. While successive band reduction yields a faster reduction to condensed form, it
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adversely affects the performance of other parts of eigensolvers and/or SVD computa-
tions. The present paper does not compare against successive band reduction precisely
because the authors believe that such a comparison is only meaningful in the context
of a complete eigensolver or SVD solver. Thus, we only give a comprehensive treatment
of direct algorithms for reduction to condensed form.

The Basic Linear Algebra Subprograms (BLAS) [Lawson et al. 1979; Dongarra et al.
1988; Dongarra et al. 1990] provide an interface to commonly used computational ker-
nels in terms of which linear algebra routine can be written. The idea is that if these
kernels are optimized, then implementations of algorithms for computing more com-
plex operations benefit in a portable fashion. As we will see, the problem is that the
interface itself is limiting and can stand in the way of minimizing memory traffic. In
response, as part of the BLAST Forum [BLAST 2002], additional, more complex, opera-
tions were suggested for inclusion in the BLAS. Unfortunately, the extensions proposed
by the BLAST forum are not as well-supported as the original BLAS. In [Howell et al.
2008], it was shown how one of the reduction to condensed form operations, reduction
to bidiagonal form, benefits from this new functionality in the BLAS.

This paper presents algorithms for all three major reduction to condensed form op-
erations (reduction to upper Hessenberg, tridiagonal, and bidiagonal form) with the
FLAME notation [Gunnels et al. 2001]. This facilitates comparing and contrasting
different algorithms for the same operation and similar algorithms for different oper-
ations [Quintana et al. 2001; Gunnels et al. 2001; Bientinesi et al. 2005a; van de Geijn
and Quintana-Ortı́ 2008]. The paper shows how the techniques used to reduce mem-
ory traffic in the reduction to bidiagonal form algorithm, already reported in [Howell
et al. 2008], can be applied to similarly reduce such traffic when computing a reduc-
tion to upper Hessenberg or tridiagonal form (although each has different potential
for improvement). It identifies sequences of operations within the algorithms for re-
duction to condensed form that can be “fused.” (A sequence of operations is eligible
for fusing when the operations share one or more operands in common, allowing the
computations to be merged in an effort to reduce the cost due to memory traffic.) Such
compound operations have been referred to as “Level-2.5 BLAS.” It demonstrates the
relative merits of different algorithms and optimizations that combine algorithms on
a recent sequential architecture. Additionally, the paper illustrates the difference be-
tween two styles of fusing, “cache-level” fusing and “register-level” fusing, and in doing
so exposes why the latter yields superior performance. All the presented algorithms
are implemented as part of the libflame library [Van Zee 011a; Van Zee et al. 2009].
Thus the paper also provides documentation for that library’s support of the target op-
erations. The family of implementations and related benchmarking codes are available
as part of libflame so that others can experiment with optimizations of the fused op-
erations and the effect on performance. And finally, we include an electronic appendix
that (1) redefines Householder transformations in the complex domain, and (2) gives
examples of how the algorithms would change to accomodate complex matrices.

2. HOUSEHOLDER TRANSFORMATIONS (REFLECTORS)
We start by reviewing a few basic properties of Householder transformations. For sim-
plicity, we focus only on computation over real matrices. However, the algorithms and
results presented in this paper generalize to the complex domain, and a related tech-
nical report [Van Zee et al. 010b] gives examples of how to express the computation
accordingly.

2.1. Computing Householder vectors and transformations
Definition 2.1. Let u ∈ Rn, τ ∈ R. Then H = H(u) = I − uuT /τ , where τ = 1

2u
Tu, is

said to be a reflector or Householder transformation.
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We observe:

— Let z be any vector that is perpendicular to u. Applying a Householder transform
H(u) to z leaves the vector unchanged: H(u)z = z.

— Let any vector x be written as x = z + uTxu, where z is perpendicular to u and uTxu
is the component of x in the direction of u. Then H(u)x = z − uTxu.

This can be interpreted as follows: The space perpendicular to u acts as a “mirror”: any
vector in that space (along the mirror) is not reflected, while any other vector has the
component that is orthogonal to the space (the component outside and orthogonal to
the mirror) reversed in direction. Notice that a reflection preserves the length of the
vector. Also, it is easy to verify that:

(1) HH = I (reflecting the reflection of a vector results in the original vector);
(2) H = HT , and so HTH = HHT = I (a reflection is an orthogonal matrix and thus

preserves the norm); and
(3) if H0, · · · , Hk−1 are Householder transformations and Q = H0H1 · · ·Hk−1, then

QTQ = QQT = I (an accumulation of reflectors is an orthogonal matrix).

As part of the reduction to condensed form operations, given a vector x we will wish
to find a Householder transformation, H(u), such that H(u)x equals a vector with
zeros below the first element: H(u)x = ∓‖x‖2e0 where e0 equals the first column of the
identity matrix. It can be easily checked that choosing u = x±‖x‖2e0 yields the desired
H(u). Notice that any nonzero scaling of u has the same property, and the convention is
to scale u so that the first element equals one. Let us define [u, τ, h] = HOUSEV(x) to be
the function that returns u with first element equal to one, τ = 1

2u
Tu, and h = H(u)x.

2.2. Computing Au from Ax

Later, we will see that given a matrix A, we will need to form Au where u is computed
by HOUSEV(x), but we will do so by first computing Ax. Let

x→
(
χ1

x2

)
, v →

(
ν1
v2

)
, u→

(
υ1

u2

)
,

v = x− αe0, and u = v/ν1, with α = −sign(χ1)‖x‖2 (and thus υ1 = 1). Then

‖x‖2 =
∥∥∥∥( χ1

‖x2‖2

)∥∥∥∥
2

, ‖v‖2 =
∥∥∥∥( χ1 − α
‖x2‖2

)∥∥∥∥
2

, ‖u‖2 = ‖v‖2/(χ1 − α), (1)

τ =
uTu

2
=
‖u‖22

2
=

‖v‖22
2(χ1 − α)2

, (2)

w = Ax and Au =
A(x− αe0)

(χ1 − α)
=

(w − αAe0)
(χ1 − α)

. (3)

We note that Ae0 simply equals the first column of A. We will assume that various
results in Eq. (1)–(2) are computed by the function HOUSES(x) where [χ1 − α, τ, α] =
HOUSES(x).1 Then, the desired vector Au can be computed via Eq. (3).

2.3. Accumulating transformations
Consider the transformation formed by multiplying b Householder transformations(
I − uju

T
j /τj

)
, for 0 ≤ j < b− 1. If U = ( u0 u1 · · · ub−1 ), then(

I − u0u
T
0 /τ0

) (
I − u1u

T
1 /τ1

)
· · ·
(
I − ub−1u

T
b−1/τb−1

)
= (I − UT−1UT ).

1Here, HOUSES stands for “Householder scalars”, in contrast to the function HOUSEV which provides the
Householder vector u.
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Here T = 1
2D+S where D and S equal the diagonal and strictly upper triangular parts

of UTU = ST +D + S. Later we will use the fact that if

U = ( U0 u1 ) and T =
(
T00 t01
0 τ11

)
then

t01 = UT
0 u1, τ11 =

uT
1 u1

2
, and

(
T00 t01
0 τ11

)−1

=
(
T−1

00 −T−1
00 t01/τ11

0 τ−1
11

)
.

For further details, see [Joffrain et al. 2006; Puglisi 1992; Sun 1996; Walker 1988].
Alternative ways for accumulating transformations are the WY-transform [Bischof and
Van Loan 1987] and compact WY-transform [Schreiber and Van Loan 1989].

3. REDUCTION TO UPPER HESSENBERG FORM
In the first step towards computing the Schur decomposition of a matrix A, the matrix
is reduced to upper Hessenberg form: A → QBQT where B is an upper Hessenberg
matrix (zeros below the first subdiagonal) and Q is orthogonal.

3.1. Unblocked algorithm
The basic algorithm for reducing the matrix to upper Hessenberg form, overwriting
the original matrix with the result, can be explained as follows.

— Partition A→
(
α11 aT

12

a21 A22

)
.

— Let [u21, τ, a21] := HOUSEV(a21).2
— Update a01 A02

α11 aT
12

a21 A22

 :=

 I 0 0
0 1 0
0 0 H

 a01 A02

α11 aT
12

a21 A22

( 1 0
0 H

)
=

 a01 A02H

α11 aT
12H

Ha21 HA22H


where H = H(u21). Note that a21 := Ha21 need not be executed since this update
was performed by the instance of HOUSEV above.3

— Continue this process with the updated A22.

This is captured in the algorithm in Figure 1 (top), in which it is recognized that as the
algorithm proceeds beyond the first iteration, the submatrix A20 must also be updated.
As formulated, the submatrix A22 has to be read and written in the first highlighted
operation and submatrices A02, aT

12, and A22 must be read and written in the sec-
ond highlighted operation in Figure 1 (top) assuming the operations in the highlighted
boxed are fused. Thus, the bulk of memory operations then lie with A22 being read and
written twice and A20 being read and written once.

2Note that the semantics here indicate that a21 is overwritten by Ha21.
3In practice, the zeros below the first element of Ha21 are not actually written. Instead, the implementation
overwrites these elements with the corresponding elements of the vector u21.
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Algorithm: [A] := HESSRED UNB(b, A)

Partition A→
„
ATL ATR

ABL ABR

«
, u→

„
uT

uB

«
, y →

„
yT

yB

«
, z →

„
zT

zB

«
whereATL is 0× 0 and uT , yT , and zT have 0 rows

while m(ATL) < b do
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
uT

uB

«
→

0@ u01

υ11

u21

1A ,
„
yT

yB

«
→

0@ y01
ψ11

y21

1A ,
„
zT

zB

«
→

0@ z01
ζ11
z21

1A
where α11, υ11, ψ11, ζ11 are scalars

Basic unblocked 1:

[u21, τ, a21] := HOUSEV(a21)

A22 := (I − u21u
T
21/τ)A22 = A22 − u21u

T
21A22/τ A02

aT
12

A22

 :=

 A02

aT
12

A22

 (I − u21u
T
21/τ) =

 A02 −A02u21u
T
21/τ

aT
12 − aT

12u21u
T
21/τ

A22 −A22u21u
T
21/τ


Basic unblocked 2: Rearranged unblocked:

[u21, τ, a21] := HOUSEV(a21)

y21 := AT
22u21

z21 := A22u21

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ
z21 := (z21 − βu21/τ)/τ
A22 := A22 − u21y

T
21 − z21uT

21

aT
12 := aT

12 − aT
12u21u

T
21/τ

A02 := A02 −A02u21u
T
21/τ

α11 := α11 − υ1ψ1 − ζ1υ1 (?)
aT
12 := aT

12 − υ1y
T
21 − ζ1uT

21 (?)
a21 := a21 − u21ψ1 − z21υ1 (?)
[x21, τ, a21] := HOUSEV(a21)
A22 := A22 − u21y

T
21 − z21uT

21 (?)
v21 := AT

22x21

w21 := A22x21

u21 := x21; y21 := v21
z21 := w21

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ
z21 := (z21 − βu21/τ)/τ

aT
12 := aT

12 − aT
12u21u

T
21/τ

A02 := A02 −A02u21u
T
21/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
uT

uB

«
←

0@ u01

υ11

u21

1A ,
„
yT

yB

«
←

0@ y01
ψ11

y21

1A ,
„
zT

zB

«
←

0@ z01
ζ11
z21

1A
endwhile

Fig. 1. Unblocked algorithms for reduction to upper Hessenberg form. The first and second fused operations
in the “Basic unblocked 2” algorithm correspond to the BLAS 2.5 operations GEMVT and GER2, respectively
[BLAST 2002]. Operations marked with (?) are not executed during the first iteration.
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Let us look at the update of A22 in Figure 1 (top) in more detail:
A22 := HA22H = (I − u21u

T
21/τ)A22(I − u21u

T
21/τ)

= A22 − u21( AT
22u21︸ ︷︷ ︸
v21

)T /τ − ( A22u21︸ ︷︷ ︸
w21

)uT
21/τ + (uT

21 A22u21︸ ︷︷ ︸
w21

)u21u
T
21/τ

2

= A22 − u21v
T
21/τ − w21u

T
21/τ + uT

21w21︸ ︷︷ ︸
2β

u21u
T
21/τ

2

= A22 − u21 ((v21 − βu21/τ)/τ)︸ ︷︷ ︸)T

y21

− ((w21 − βu21/τ)/τ)︸ ︷︷ ︸
z21

uT
21

= A22 − (u21y
T
21 + z21u

T
21).

This motivates the algorithm in Figure 1 (left). The problem with this algorithm is
that, when implemented using traditional level-2 BLAS, it requires A22 to be read four
times and written twice. If the operations in the highlighted boxes are instead fused,
then A22 needs only be read twice and written once.

What we will show next is that by delaying the update A22 := A22− (u21y
T
21 + z21u

T
21)

until the next iteration, we can reformulate the algorithm so that A22 needs only be
read and written once per iteration. Let us focus on the update A22 := A22 − (u21y

T
21 +

z21u
T
21). Partition

A22 →
(
α+

11 a+T
12

a+
21 A+

22

)
, u21 →

(
υ+

1

u+
21

)
, y21 →

(
ψ+

1

y+
21

)
, z21 →

(
ζ+
1

z+
21

)
,

where + indicates the partitioning in the next iteration. Then A22 := A22 − (u21y
T
21 +

z21u
T
21) translates to(

α+
11 a+T

12

a+
21 A+

22

)
:=
(
α+

11 a+T
12

a+
21 A+

22

)
−

((
υ+

1

u+
21

)(
ψ+

1

y+
21

)T

+
(
ζ+
1

z+
21

)(
υ+

1

u+
21

)T
)

=
(
α+

11 − (υ+
1 ψ

+
1 + ζ+

1 υ
+
1 ) a+T

12 − (υ+
1 y

+T
21 + ζ+

1 u
+T
21 )

a+
21 − (u+

21ψ
+
1 + z+

21υ
+
1 ) A+

22 − (u+
21y

+T
21 + z+

21u
+T
21 )

)
,

which shows what computation would need to be performed if the update of A22 is
delayed until the next iteration. Now, before v21 = AT

22u21 and z21 = A22u21 can be
computed in the next iteration, HOUSEV(a21) has to be computed, which requires a21

to be updated. But what is important is that A22 can be updated by the two rank-1
updates from the previous iterations just before v21 = AT

22u21 and w21 = A22u21 are
computed, which allows them to be “fused” into one operation that reads and writes
A22 to and from memory only once. The algorithm in Figure 1 (right) takes advantage
of these insights. To our knowledge it has not been previously published.

3.2. Lazy algorithm
We now show how the reduction to upper Hessenberg form can be restructured so
that the update A22 := A22 − (u21y

T
21 + z21u

T
21) during each step can be avoided. This

algorithm by itself is not practical, since (1) it requires too much temporary space,
and (2) intermediate matrix-vector multiplications, which incur additional memory
reads, eventually begin to dominate the operation. But it will become an integral part
of the blocked algorithm discussed in Section 3.4. This algorithm was first reported
in [Dongarra et al. 1989].

The rather curious choice of subscripts for u21, and y21, and z21 now becomes appar-
ent: By passing matrices U , Y , and Z into the algorithm in Figure 1, and partitioning
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Algorithm: [A,U, Y, Z] := HESSRED LAZY UNB(b, A, U, Y, Z)

Partition X →
„
XTL XTR

XBL XBR

«
for X ∈ {A,U, Y, Z}

whereXTL is 0× 0
while n(UTL) < b do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

where χ11 is a scalar

α11 := α11 − uT
10y10 − zT

10u10

a21 := a21 − U20y10 − Z20u10

aT
12 := aT

12 − uT
10Y

T
20 − zT

10U
T
20

[u21, τ, a21] := HOUSEV(a21)
y21 := AT

22u21

z21 := A22u21

y21 := y21 − Y20(UT
20u21)− U20(ZT

20u21)
z21 := z21 − U20(Y T

20u21)− Z20(UT
20u21)

β := uT
21z21/2

y21 := (y21 − βu21/τ)/τ
z21 := (z21 − βu21/τ)/τ
aT
12 := aT

12 − aT
12u21u

T
21/τ

A02 := A02 −A02u21u
T
21/τ

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ), (Z, z, ζ)}

endwhile
Fig. 2. Lazy unblocked algorithm for reduction to upper Hessenberg form. The first fused operation corre-
sponds to the BLAS 2.5 operation GEMVT [BLAST 2002].

them just like we do A in that algorithm, we can accumulate the subvectors u21, y21
and z21 into those matrices. Now, let us assume that at the top of the loop ABR has not
yet been updated. Then α11, a21, aT

12 and A22 have not yet been updated, which means
we cannot perform many of the computations in the current iteration. However, if we
let α̂11, â21, âT

12, and Â22 denote the original values in A in those locations, then the
desired α11, a21, and aT

12 are given by

α11 = α̂11 − uT
10y10 − zT

10u10

a21 = â21 − UT
20y10 − ZT

20u10

aT
12 = âT

12 − uT
10Y

T
20 − zT

10U
T
20

A22 = Â22 − U20Y
T
20 − Z20U

T
20.

Thus, we start the iteration by updating in this fashion these parts of A.
Next, we observe that the updated A22 itself is not actually needed in updated form:

We need to be able to compute AT
22u21 and A22u21. But this can be done via the alter-
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00:8 F. G. Van Zee et al.

Algorithm: [A,U,Z, T ] := HESSRED GQVDG UNB(b, A, U, Z, T )

Partition X →
„
XTL XTR

XBL XBR

«
for X ∈ {A,U,Z, T}

whereXTL is 0× 0
while n(UTL) < b do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Z, z, ζ), (T, t, τ)}

where χ11 is a scalar a01

α11

a21

 :=

 a01

α11

a21

−
 Z00

zT
10

Z20

T−1
00 u10

 a01

α11

a21

 :=

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T


T  a01

α11

a21


[u21, τ11, a21] := HOUSEV(a21) z01
ζ11
z21

 :=

 A02

aT
12

A22

u21

t01 := UT
20u21

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Z, z, ζ), (T, t, τ)}

endwhile
Fig. 3. GQvdG unblocked algorithm for the reduction to upper Hessenberg form.

native computations

y21 := AT
22u21 = ÂT

22u21 − Y20(UT
20u21)− U20(ZT

20u21)

z21 := A22u21 = Â22u21 − U20(Y T
20u21)− Z20(UT

20u21)

which requires only matrix-vector multiplications. This inspires the algorithm in Fig-
ure 2.

3.3. GQvdG unblocked algorithm
The lazy algorithm discussed above requires at each step a matrix-vector and a trans-
posed matrix-vector multiply which can be fused so that the matrix only needs to be
brought into memory once. In this section, we show how the bulk of computation (and
associated memory traffic) can be cast in terms of a single matrix multiplication per
iteration with a much simpler algorithm that does not require fusing and thus no spe-
cial implementation of the fused operation. This algorithm was first proposed by G.
Quintana and van de Geijn in [Quintana-Ortı́ and van de Geijn 2006], which is why
we call it the GQvdG unblocked algorithm. It is summarized in Figure 3.
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Families of Algorithms for Reducing a Matrix to Condensed Form 00:9

The underlying idea builds upon how Householder transformations can be accumu-
lated: The first b updates can be accumulated into a lower trapezoidal matrix U and
upper triangular matrix T so that(

I − u0u
T
0 /τ0

) (
I − u1u

T
1 /τ1

)
· · ·
(
I − ub−1u

T
b−1/τb−1

)
= (I − UT−1UT ).

After b iterations the basic unblocked algorithm overwrites matrix A with

A(b) = H(ub−1) · · ·H(u0)ÂH(u0) · · ·H(ub−1)

=
(
I − ub−1u

T
b−1/τb−1

)
· · ·
(
I − u0u

T
0 /τ0

)
Â
(
I − u0u

T
0 /τ0

)
· · ·H(ub−1)

= (I − UT−1UT )T Â(I − UT−1UT ) = (I − UT−1UT )T (Â− ÂU︸︷︷︸
Z

T−1UT )

= (I − UT−1UT )T (Â− ZT−1UT ),

where Â denotes the original contents of A.
Let us assume that this process has proceeded for k iterations. Partition

X →
(
XTL XTR

XBL XBR

)
for X ∈ {A, Â, U, Z, T},

where XTL is k × k. Then

A(k) =

(
A

(k)
TL A

(k)
TR

A
(k)
BL A

(k)
BR

)
=

(
I −

(
UTL

UBL

)
T−1

TL

(
UTL

UBL

)T
)T ((

ÂTL ÂTR

ÂBL ÂBR

)
−
(
ZTL

ZBL

)
T−1

TL

(
UTL

UBL

)T
)
.

Now, assume that after the first k iterations our algorithm leaves our variables in the
following states:

—A =
(
ATL ATR

ABL ABR

)
contains

(
A

(k)
TL ÂTR

A
(k)
BL ÂBR

)
. In other words, the first k columns have

been updated and the rest of the columns are untouched.

— Only
(
UTL

UBR

)
, TTL, and

(
ZTR

ZBR

)
have been updated.

The question is how to advance the computation. Now, at the top of the loop, we expose(
XTL XTR

XBL XBR

)
→

 X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22


for (X,x, χ) ∈ {(A, a, α), (Â, â, α̂), (U, u, υ), (Z, z, ζ), (T, t, τ). In order to compute the next
Householder transformation, the next column of A must be updated according to prior
computation: a01

α11

a21

 =

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T


T 
 a01

α11

a21

−
 Z00

zT
10

Z20

T−1
00 u10︸ ︷︷ ︸

column k of ZkT
−1
k UT

k

 ,
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which means first updating a01

α11

a21

 :=

 a01 − Z00w10

α11 − zT
10w10

a21 − Z20w10

 ,

where w10 = T−1
00 u10. Next, we need to perform the update a01

α11

a21

 :=

I −
 U00

uT
10

U20

T−1
00

 U00

uT
10

U20

T


T  a01

α11

a21



=

 a01

α11

a21

−
 U00

uT
10

U20

T−T
00

 U00

uT
10

U20

T  a01

α11

a21

 =

 a01 − U00y10
α11 − uT

10y10
a21 − U20y10

 ,

where y10 = T−T
00 (UT

00a01 + u10α11 + UT
20a21). After these computations we can compute

the next Householder transform from a21, updating a21:

— [u21, τ, a21] := HOUSEV(a21).

The next column of Z is computed by z01
ζ11
z21

 :=

 Â00 â01 Â02

âT
10 α̂11 âT

12

Â20 â21 Â22

 0
0
u21

 =

 Â02u21

âT
12u21

Â22u21

 .

As in Section 2.3, we finish by computing the next column of T : T00 t̂01 T̂02

0 τ̂11 t̂T12
0 0 T̂22

 :=

 T00 UT
20u21 T̂02

0 1
2u

T
21u21 t̂T12

0 0 T̂22

 .

Note that 1
2u

T
21u21 is equal to the τ computed by HOUSEV(a21), and thus it need not be

recomputed to update τ11.

3.4. Blocked algorithms
We now discuss how much of the computation can be cast in terms of matrix-matrix
multiplication. The first such blocked algorithm was reported in [Dongarra et al. 1989].
That algorithm corresponds roughly to our blocked Algorithm 1.

In Figure 4 we give four blocked algorithms which differ by how computation is
accumulated in the body of the loop:

— Two correspond to using the unblocked algorithms in Figure 1.
— A third results from using the lazy algorithm in Figure 2. For this variant, we in-

troduce matrices U , Y , and Z of width b in which vectors computed by the lazy
unblocked algorithm are accumulated. We are not aware of this algorithm having
been reported before.

— The fourth results from using the algorithm in Figure 3. It returns matrices U , Z,
and T . It was first reported in [Quintana-Ortı́ and van de Geijn 2006] and we will
call it the GQvdG blocked algorithm.

Let us consider having progressed through the matrix so that it is in the state

A =
(
ATL ATR

ABL ABR

)
, U =

(
UT

UB

)
, Y =

(
YT

YB

)
, Z =

(
ZT

ZB

)
,
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Algorithm: [A] := HESSRED BLK(A, T )

Partition A→
„
ATL ATR

ABL ABR

«
, X →

„
XT

XB

«
for X ∈ {T, U, Y, Z}

whereATL is 0× 0 and TT , UT , YT , and ZT have 0 rows
while m(ATL) < m(A) do

Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,
„
XT

XB

«
→

0@ X0

X1

X2

1A
for X ∈ {T, U, Y, Z}

whereA11 is b× b and T1, U1, Y1, and Z1 have b rows

Algorithm 1, 2: (blocked + basic unblocked, blocked + rearranged unblocked)
[ABR, UB ] := HESSRED UNB(b, ABR)
T1 = 1

2
D + S where UT

BUB = ST +D + S

ATR := ATR(I − UBT
−1
1 UT

B )

Algorithm 3: (blocked + lazy unblocked)
[ABR, UB , YB , ZB ] := HESSRED LAZY UNB(b, ABR, UB , YB , ZB)
T1 = 1

2
D + S where UT

BUB = ST +D + S

ATR := ATR(I − UBT
−1
1 UT

B )
A22 := A22 − U2Y T

2 − Z2UT
2

Algorithm 4: (GQvdG blocked + GQvdG unblocked)
[ABR, UB , ZB , T1] := HESSRED GQVDG UNB(b, ABR, UB , ZB , T1)

ATR := ATR(I − UBT
−1
1 UT

B )„
A12

A22

«
:=

 
I −

„
U1

U2

«
T−1
1

„
U1

U2

«T
!T „„

A12

A22

«
−
„
Z1

Z2

«
T−1
1 UT

2

«
Continue with„

ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,
„
XT

XB

«
←

0@ X0

X1

X2

1A
for X ∈ {T, U, Y, Z}

endwhile

Fig. 4. Blocked reduction to Hessenberg form based on original or rearranged algorithm. The call to HES-
SRED UNB performs the first b iterations of one of the unblocked algorithms in Figures 1 or 2. In the case
of the algorithms in Figure 1, UB accumulates and returns the vectors u21 encountered in the computation
and YB and ZB are not used.

where ATL is b × b. Assume that the factorization has completed with ATL and ABL

(meaning that ATL is upper Hessenberg and ABL is zero except for its top-right most
element), and ATR and ABR have been updated so that only an upper Hessenberg
factorization ofABR has to be completed, updating theATR submatrix correspondingly.
In the next iteration of the blocked algorithm, we perform the following steps:

— Perform the first b iterations of the lazy algorithm with matrix ABR, accumulating
the appropriate vectors in UB , YB , and ZB .

— Apply the resulting Householder transformations from the right to ATR. In Sec-
tion 2.3 we discussed that this requires the computation of UTU = ST + D + S,
where D and S equal the diagonal and strictly upper triangular part of UTU , after
which ATR := ATR(I − UT−1UT ) = ATR −ATRUT

−1UT with T = 1
2D + S.
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— Repartition(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

(
UT

UB

)
→

 U0

U1

U2

 , . . .

— Update A22 := A22 − U2Y
T
2 − Z2U

T
2 .

— Move the thick line (which denotes how far the factorization has proceeded) forward
by the block size:(

ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22

 ,

(
UT

UB

)
←

 U0

U1

U2

 , . . .

Proceeding like this block-by-block computes the reduction to upper Hessenberg form
while reducing the size of the matrices U , Y , and Z, casting some of the computation in
terms of matrix-matrix multiplications that are known to achieve high performance.

When one of the unblocked algorithms in Figure 1 is used instead, A22 is already
updated upon return from HESSRED UNB and thus only the update of ATR can be
accelerated by calls to level-3 BLAS operations.

The GQvdG blocked algorithm, which uses the GQvdG unblocked algorithm, was in-
corporated into recent releases of LAPACK, modulo a small change that accumulates
T−1 instead of T . Prior to this, an algorithm that used the lazy unblocked algorithm
but also updated ATR as part of that unblocked algorithm (and thus cast less com-
putation in terms of level-3 BLAS) was part of LAPACK [Dongarra et al. 1989]. A
comparison between the GQvdG blocked algorithm and this previously used algorithm
can be found in [Quintana-Ortı́ and van de Geijn 2006].

3.5. Fusing operations
We now discuss how the eligible sets of operations encountered in the various algo-
rithms can be fused to reduce memory traffic.

In the rearranged algorithm, delaying the update of A22 yields the following three
operations that can be fused (here we drop the subscripts):

A := A− (uyT + zuT )
v := ATx
w := Ax

(4)

Note that the first operation may be implemented as two calls to the level-2 BLAS
routine GER, while the remaining two operations are instances of the GEMV operation.

By inspecting the three operations, we notice that only one column of A needs to be
read and updated at a time. So, let us partition

A→
`
a0 · · · an−1

´
, u→

0B@ υ0

...
υn−1

1CA , v →

0B@ ν0
...

νn−1

1CA , x→

0B@ χ0

...
χn−1

1CA , y →

0B@ ψ0

...
ψn−1

1CA .

Then the following steps, for 0 ≤ j < n, compute the desired result (provided that
initially w = 0):

aj := aj − ψju− υjz (2×AXPY)
νj := aT

j x (DOT)
w := w + χjaj (AXPY)

However, if we implement this fused operation by looping over the level-1 BLAS oper-
ations (parenthesized above), each element of A is still accessed six times—no fewer

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: January 2012.
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than if we had simply called GER and GEMV in sequence (twice each). We would only
benefit (hopefully) from the current column of A, aj , residing in the cache after the
first call to AXPY, thus allowing the second AXPY, the DOT, and third AXPY routine
invocations to more readily access the elements of aj . We refer to this as “cache-level”
fusing, as it promotes increased temporal locality of subparts of matrix A within the
cache hierarchy and thus allows these memory-limited operations to complete in less
time. The authors of [Howell et al. 2008] demonstrate the benefits of cache-level fus-
ing, except they express the computation as a sequence of level-2 BLAS subproblems
rather than in terms of level-1 operations.4 But the purpose and effect is similar.

But on many architectures, accessing cached data—even data in the highest levels
of the cache hierarchy—still incurs some cost. So ideally, we would want to avoid these
redundant memory operations altogether. In order to do this, we need to further parti-
tion the level-1 subproblems to allow fusing of individual scalar arithmetic operations.

If we coded the operations at a very low level, controlling individual load and store
instructions, we could implement the algorithm in Figure 5 (right). We consider this
algorithm to be fused at the register-level because certain memory operations are
avoided by reusing data when they are still loaded in the processor core’s registers.
We provide an unfused algorithm on the left-hand side of the figure and a cache-level
fusing in the middle for contrast. Note that the cache-level algorithm fuses only the
outer loops (over n) while the register-level algorithm goes a step further and also
fuses the inner loops (over m). It is easy to see that register-level fusing reduces the
number of memory accesses to each element of matrix A to the absolute minimum: one
load and one store.

The other fusable operations present in Figures 1 and 2, and throughout the remain-
der of this paper, can be fused in a similar manner.

4. REDUCTION TO TRIDIAGONAL FORM
The first step towards computing the eigenvalue decomposition of a symmetric matrix
is to reduce the matrix to tridiagonal form.

Let A ∈ Rn×n be symmetric. If A → QBQT where B is upper Hessenberg and Q
is orthogonal, then B is symmetric and therefore tridiagonal. In this section we show
how to take advantage of symmetry, assuming that matrix A is stored in only the lower
triangular part of A and only the lower triangular part of that matrix is overwritten
with B.

When matrix A is symmetric, and only the lower triangular part is stored and up-
dated, the unblocked algorithms for reducing A to upper Hessenberg form can be
changed by noting that v21 = w21 and y21 = z21. This motivates the algorithms in
Figures 6–8, which correspond respectively to Figures 1 (left and right), 2, and 4 when
taking advantage of symmetry. The blocked algorithm and associated unblocked algo-
rithm was first reported in [Dongarra et al. 1989].

In the rearranged algorithm, delaying the update of A22 allows the highlighted op-
erations in Figure 6 (right) to be fused. We leave it as an exercise to the reader to fuse
the highlighted operations in Figure 7.

5. REDUCTION TO BIDIAGONAL FORM
The previous sections were inspired by the paper [Howell et al. 2008] that discusses
how fused operations can benefit algorithms for the reduction of a matrix to bidiagonal
form. The purpose of this section is to present the basic and rearranged unblocked algo-
rithms for this operation with our notation to facilitate the comparing and contrasting

4The blocking employed by authors’ cache-level technique uses the same algorithmic blocksize specified in
the top-level blocked algorithm.
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for j = 0 : n− 1
LOAD yj → β
for i = 0 : m− 1

LOAD Aij → α11

LOAD ui → υ1

α11 := α11 − βυ1

STORE Aij ← α11

endfor
endfor
for j = 0 : n− 1

LOAD uj → γ
for i = 0 : m− 1

LOAD Aij → α11

LOAD zi → ζ1
α11 := α11 − γζ1
STORE Aij ← α11

endfor
endfor
for j = 0 : n− 1

ρ := 0
for i = 0 : m− 1

LOAD Aij → α11

LOAD xi → χ1

ρ := ρ+ α11χ1

endfor
STORE νj ← ρ

endfor
SETTOZERO( w )
for j = 0 : n− 1

LOAD xj → κ
for i = 0 : m− 1

LOAD Aij → α11

LOAD wi → ω1

ω1 := ω1 + κα11

STORE wi ← ω1

endfor
endfor

SETTOZERO( w )
for j = 0 : n− 1

LOAD yj → β
for i = 0 : m− 1

LOAD Aij → α11

LOAD ui → υ1

α11 := α11 − βυ1

STORE Aij ← α11

endfor
LOAD uj → γ
for i = 0 : m− 1

LOAD Aij → α11

LOAD zi → ζ1
α11 := α11 − γζ1
STORE Aij ← α11

endfor
ρ := 0
for i = 0 : m− 1

LOAD Aij → α11

LOAD xi → χ1

ρ := ρ+ α11χ1

endfor
STORE νj ← ρ
LOAD xj → κ
for i = 0 : m− 1

LOAD Aij → α11

LOAD wi → ω1

ω1 := ω1 + κα11

STORE wi ← ω1

endfor
endfor

SETTOZERO( w )
for j = 0 : n− 1

LOAD yj → β
LOAD uj → γ
LOAD xj → κ
ρ := 0
for i = 0 : m− 1

LOAD Aij → α11

LOAD ui → υ1

LOAD zi → ζ1
LOAD xi → χ1

LOAD wi → ω1

α11 := α11 − βυ1

α11 := α11 − γζ1
ρ := ρ+ α11χ1

ω1 := ω1 + κα11

STORE Aij ← α11

STORE wi ← ω1

endfor
STORE νj ← ρ

endfor

Fig. 5. Algorithms for computing the fusable set of operations present in Eq. 4 using no fusing (left), cache-
level fusing (middle), and register-level fusing (right). Whereas the unfused and cache-level fused algorithms
access each element of matrix A six times, the register-level fused algorithm avoids redundant memory
instructions and thus touches each element only twice.

of the reduction to upper Hessenberg and tridiagonal form algorithms to those for the
reduction to bidiagonal form.

The first step towards computing the Singular Value Decomposition (SVD) of A ∈
Rm×n is to reduce the matrix to bidiagonal form: A→ QLBQ

T
R where B is a bidiagonal

matrix (nonzero diagonal and superdiagonal) and QL and QR are again square and
orthogonal.

For simplicity, we explain the algorithms for the case where A is square.
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Algorithm: [A] := TRIRED UNB(A)

Partition A→
„
ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, y}

whereATL is 0× 0 and uT , yT have 0 rows
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,
„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

where α11, υ11, and ψ11 are scalars

Basic unblocked: Rearranged unblocked:

[u21, τ, a21] := HOUSEV(a21)

y21 := A22u21

β := uT
21y21/2

y21 := (y21 − βu21/τ)/τ
A22 := A22 − u21y

T
21 − y21uT

21

α11 := α11 − 2υ11ψ11 (?)
a21 := a21 − (u21ψ11 + y21υ11) (?)
[x21, τ, a21] := HOUSEV(a21)
A22 := A22 − u21y

T
21 − y21uT

21 (?)
v21 := A22x21

u21 := x21; y21 := v21
β := uT

21y21/2
y21 := (y21 − βu21/τ)/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,
„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

endwhile
Fig. 6. Unblocked algorithms for reduction to tridiagonal form. Left: basic algorithm. Right: rearranged to
allow fusing of operations. Operations marked with (?) are not executed during the first iteration.

5.1. Basic algorithm
The basic algorithm for this operation, overwriting A with the result B, can be ex-
plained as follows:

— Partition A→
(
α11 aT

12

a21 A22

)
.

— Let
[(

1
u21

)
, τL,

(
α11

0

)]
:= HOUSEV

((
α11

a21

))
.5

— Update (
α11 aT

12

a21 A22

)
:=

(
I −

(
1
u21

)(
1
u21

)T

/τL

)(
α11 aT

12

a21 A22

)
=
(
α− ψ11/τL aT

12 − yT
21/τL

0 A22 − u21y
T
21/τL

)
,

5Note that the semantics here indicate that α11 is overwritten by the first element of
„
α11

0

«
.
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00:16 F. G. Van Zee et al.

Algorithm: [A,U, Y ] := TRIRED LAZY UNB(b, A, U, Y )

Partition X →
„
XTL XTR

XBL XBR

«
for X ∈ {A,U, Y }

whereXTL is 0× 0
while n(UTL) < b do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ)}

where χ11 is a scalar

α11 := α11 − uT
10y10 − yT

10u10

a21 := a21 − U20y10 − Y20u10

[u21, τ, a21] := HOUSEV(a21)
y21 := A22u21

y21 := y21 − Y20(UT
20u21)− U20(Y T

20u21)
β := uT

21y21/2
y21 := (y21 − βu21/τ)/τ

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (Y, y, ψ)}

endwhile
Fig. 7. Lazy unblocked reduction to tridiagonal form.

where ψ11 = α11 + uT
21a21 and yT

21 = aT
12 + uT

21A22. Note that α11 := α − ψ11/τL does
not need to be executed since this update was performed by the instance of HOUSEV
above.

— Let [v21, τR, a12] := HOUSEV (a12).
— Update A22 := A22(I − v21vT

21/τR) = A22 − z21vT
21/τR, where z21 = A22v21.

— Continue this process with the updated A22.

The resulting algorithm, slightly rearranged, is given in Figure 9 (left).

5.2. Rearranged algorithm
We now show how, again, the loop can be restructured so that multiple updates of, and
multiplications with, A22 can be fused. Focus on the update A22 := A22 − (u21y

T
21 +

z21v
T
21). Partition

A22 →
„
α+

11 a+T
12

a+
21 A+

22

«
, u21 →

„
υ+
11

u+
21

«
, y21 →

„
ψ+

11

y+21

«
, z21 →

„
ζ+11
z+21

«
, v21 →

„
ν+
11

v+21

«
,

where + indicates the partitioning in the next iteration. Then(
α+

11 a+T
12

a+
21 A+

22

)
:=
(
α+

11 a+T
12

a+
21 A+

22

)
−
(
υ+

11

u+
21

)(
ψ+

11

y+
21

)T

−
(
ζ+
11

z+
21

)(
ν+
11

v+
21

)T

=
(
α+

11 − υ
+
11ψ

+
11 − ζ

+
11ν

+
11 a+T

12 − υ
+
11y

+T
21 − ζ

+
11v

+T
21

a+
21 − u

+
21ψ

+
11 − z

+
21ν

+
11 A+

22 − u
+
21y

+T
21 − z

+
21v

+T
21

)
,
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Algorithm: [A,U, Y ] := TRIRED BLK(A,U, Y )

Partition A→
„
ATL ATR

ABL ABR

«
, X →

„
XT

XB

«
for X ∈ {U, Y }

whereATL is 0× 0 and UT , YT have 0 rows
while m(ATL) < m(A) do

Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,
„
XT

XB

«
→

0@ X0

X1

X2

1A
for X ∈ {U, Y }

whereA11 is b× b and U1, and Y1 have b rows

[ABR, UB , YB ] := TRIRED LAZY UNB(b, ABR, UB , YB)
A22 := A22 − U2Y

T
2 − Y2U

T
2

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,
„
XT

XB

«
←

0@ X0

X1

X2

1A
for X ∈ {U, Y }

endwhile
Fig. 8. Blocked reduction to tridiagonal form based on original or rearranged algorithm. TRIRED UNB per-
forms the first b iterations of the lazy unblocked algorithm in Figure 7.

which shows how the update of A22 can be delayed until the next iteration. If u21 =
y21 = z21 = v21 = 0 during the first iteration, the body of the loop may be changed to

α11 := α11 − υ11ψ11 − ζ11ν11
a21 := a21 − u21ψ11 − z21ν11
aT
12 := aT

12 − υ11y
T
21 − ζ11vT

21[(
1
u+

21

)
, τL,

(
α11

0

)]
:= HOUSEV

((
α11

a21

))
A22 := A22 − u21y

T
21 − z21vT

21

y21 := a12 +AT
22u

+
21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := HOUSEV (a12)
β := yT

21v21
y21 := y21/τL
z21 := (A22v21 − βu+

21/τL)/τR

Now, the goal becomes to bring the three highlighted updates together. The problem is
that the last update, which requires v21, cannot commence until after the second call to
HOUSEV completes. This dependency can be circumvented by observing that one can
perform a matrix-vector multiply of A22 with the vector aT

12 = aT
12 − yT

21/τL instead of
with v21, after which the result can be updated as if the multiplication had used the
output of the HOUSEV, as indicated by Eq. (3) in Section 2. These observations justify
the rearrangement of the computations as indicated in Figure 9 (right).
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Algorithm: [A] := BIRED UNB(A)

Partition A→
„
ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, v, y, z}

whereATL is 0× 0, uT , vT , yT , zT have 0 elements
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,
„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

where α11, υ11, ν11, ψ11, and ζ11 are scalars

Basic unblocked: Rearranged unblocked:

[(
1
u21

)
, τL,

(
α11

0

)]
:=

HOUSEV

((
α11

a21

))

y21 := a12 +AT
22u21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := HOUSEV (a12)

β := yT
21v21

y21 := y21/τL
z21 := (A22v21 − βu21/τL)/τR

A22 := A22 − u21y
T
21 − z21vT

21

α11 := α11 − υ11ψ11 − ζ11ν11 (?)
a21 := a21 − u21ψ11 − z21ν11 (?)
aT
12 := aT

12 − υ11y
T
21 − ζ11vT

21 (?)[(
1
u+

21

)
, τL,

(
α11

0

)]
:=

HOUSEV

((
α11

a21

))
a+
12 := a12 − a12/τL
A22 := A22 − u21y

T
21 − z21vT

21 (?)
y21 := AT

22u
+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

y21 := y21 + a12

[ψ11 − α12, τR, α12] := HOUSES(a+
12)

v21 := (a+
12 − α12e0)/(ψ11 − α12)

aT
12 := α12e

T
0

u21 := u+
21

β := yT
21v21

y21 := y21/τL
z21 := (w21 − α12A22e0)/(ψ11 − α12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,
„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

endwhile
Fig. 9. Unblocked algorithms for reduction to bidiagonal form. Left: basic algorithm. Right: rearranged to
allow fusing of operations (this is essentially Algorithm I from [Howell et al. 2008]). The fused operation in
the “Basic unblocked” algorithm corresponds to the BLAS 2.5 operation GER2 while the fused operation in
the “Rearranged unblocked” algorithm corresponds to GEMVER [BLAST 2002]. Operations marked with (?)
are not executed during the first iteration.
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Algorithm: [A,U, V, Y, Z] := BIRED LAZY UNB(b, A, U, V, Y, Z)

Partition X →
„
XTL XTR

XBL XBR

«
for X ∈ {A,U, V, Y, Z}

whereXTL is 0× 0
while n(UTL) < b do

Repartition„
XTL XTR

XBL XBR

«
→

0@ X00 x01 X02

xT
10 χ11 xT

12
X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (V, v, ν), (Y, y, ψ), (Z, z, ζ)}

where χ11 is a scalar

Lazy basic unblocked: Lazy rearranged unblocked:

α11 := α11 − uT
10y10 − zT

10v10
a21 := a21 − U20y10 − Z20v10
aT
12 := aT

12 − uT
10Y

T
20 − zT

10V
T
20[(

1
u21

)
, τL,

(
α11

0

)]
:=

HOUSEV

((
α11

a21

))
y21 := a12 +AT

22u21

−Y20U
T
20u21 − V20Z

T
20u21

aT
12 := aT

12 − yT
21/τL

[v21, τR, a12] := HOUSEV (a12)

β := yT
21v21

y21 := y21/τL
z21 := (A22v21
−U20Y

T
20v21 − Z20V

T
20v21

−βu21/τL)/τR

α11 := α11 − uT
10y10 − zT

10v10
a21 := a21 − U20y10 − Z20v10
aT
12 := aT

12 − uT
10Y

T
20 − zT

10V
T
20[(

1
u+

21

)
, τL,

(
α11

0

)]
:=

HOUSEV

((
α11

a21

))
a+
12 := a12 − a12/τL
y21 := −Y20U

T
20u

+
21 − V20Z

T
20u

+
21

y21 := y21 +AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

w21 := w21 − U20Y
T
20a

+
12 − Z20V

T
20a

+
12

a22l := A22e0 − U20Y
T
20e0 − Z20V

T
20e0

y21 := a12 + y21
[ψ11 − α12, τR, α12] := HOUSES(a+

12)
v21 := (a+

12 − α12e0)/(ψ11 − α12);
aT
12 := α12e

T
0

u21 := u+
21

β := yT
21v21

y21 := y21/τL
z21 := (w21 − α12a22l)/(ψ11 − α12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with„
XTL XTR

XBL XBR

«
←

0@ X00 x01 X02

xT
10 χ11 xT

12

X20 x21 X22

1A
for (X,x, χ) ∈ {(A, a, α), (U, u, υ), (V, v, ν), (Y, y, ψ), (Z, z, ζ)}

endwhile
Fig. 10. Lazy unblocked versions of the algorithms in Figure 9. Left: lazy basic algorithm. Right: lazy
rearranged algorithm (this is essentially Algorithm III from [Howell et al. 2008]). The first fused operation
in the “Lazy rearranged unblocked” algorithm, modulo a slight reordering of the computation vis-à-vis y21,
corresponds to the BLAS 2.5 operation GEMVER [BLAST 2002]. Note that upon entry to both algorithms,
matrix A is n × n and matrices U , V , Y , and Z are n × b. Also note that the multiplications A22e0, Y T

20e0,
and UT

20e0 do not require computation: they simply extract the first column or row of the given matrix.
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Algorithm: [A] := BIRED BLK(A,U, V, Y, Z)

Partition A→
„
ATL ATR

ABL ABR

«
, X →

„
XT

XB

«
for X ∈ {U, V, Y, Z}

whereATL is 0× 0 and UT , VT , YT , ZT have 0 rows
while m(ATL) < m(A) do

Determine block size b
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,
„
XT

XB

«
→

0@ X0

X1

X2

1A
for X ∈ {U, V, Y, Z}

whereA11 is b× b and U1, V1, Y1, and Z1 have b rows

[ABR, UB , VB , YB , ZB ] := BIRED LAZY UNB(b, ABR, UB , VB , YB , ZB)
A22 := A22 − U2Y

T
2 − Z2V

T
2

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 A01 A02

A10 A11 A12

A20 A21 A22

1A,
„
XT

XB

«
←

0@ X0

X1

X2

1A
for X ∈ {U, V, Y, Z}

endwhile
Fig. 11. Blocked algorithm for reduction to bidiagonal form. For simplicity, it is assumed that A is n × n
where n is an integer multiple of b. Matrices U , V , Y , and Z are all n× b.

5.3. Lazy algorithms
A lazy algorithm can be derived by not updating A22 at all, and instead accumulating
the updates in matrix U , V , Y , and Z, much like was done for the other reduction to
condensed form operations.

We start with the rearranged algorithm to make sure that

y21 := AT
22u

+
21

a+
12 := a+

12 − y21/τL
w21 := A22a

+
12

can still be fused. Next, the key is to realize that what was previously a multiplication
by A22 must now be replaced by a multiplication by A22 − U20Y

T
20 − Z20V

T
20. This yields

the algorithm in Figure 10 (right) which was first proposed by Howell et al. [Howell
et al. 2008].

For completeness, we include in Figure 10 (left) a basic algorithm which does not
rearrange operations for fusing, but still has the “lazy” property whereby A22 is never
updated.

5.4. Blocked algorithms
Finally, a blocked algorithm is given in Figure 11. The basic lazy unblocked algorithm
in conjunction with the blocked algorithm was first published in [Dongarra et al. 1989]
and is part of LAPACK. The rearranged lazy unblocked algorithm in conjunction with
the blocked algorithm was proposed as Algorithm III in [Howell et al. 2008].

5.5. Fusing operations
Once again, we leave it as an exercise to the reader to construct loop-based fusings of
the operations highlighted in Figures 9 and 10.
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6. ACCUMULATING HOUSEHOLDER TRANSFORMATIONS
In Section 2.3, we briefly discussed how to accumulate the triangular factors T of the
block Householder transformations. The need for computing and storing T is clear in
the unblocked and blocked GQvdG algorithms for reducing a matrix to upper Hessen-
berg form, shown in Figures 3 and 4. However, none of the other algorithms (blocked or
unblocked) for reduction to condensed form use the triangular factors, because none of
the other algorithms apply block Householder transforms. So at first glance, computing
and storing T within these algorithms may seem unnecessary.

But typically reduction to condensed form is not a terminal operation. The triangu-
lar factors will be needed when forming (or applying) the orthogonal matrix Q after a
reduction to upper Hessenberg or tridiagonal form, or the matrices QL and QR subse-
quent to a reduction to bidiagonal form. So for most applications, it is not a matter of
if these factors will be computed, but when.

Note that we would normally compute T by columns, via t01 := UT
20u21, as shown

in the GQvdG algorithm in Figure 3, and the scalar τ11 is computed as part of the
HOUSEV function. Upon careful inspection, we find that each lazy unblocked algo-
rithm (shown in Figures 2, 7, and 10) computes UT

20u21 as an intermediate product in
the course of its normal computation. Indeed, for reduction to upper Hessenberg and
tridiagonal forms, this intermediate product is computed within fusable sets of opera-
tions. And for reduction to bidiagonal form, if the intermediate product V T

20a
+
12 is saved

from the second set of fusable operations (see Figure 10), then the t01 vectors associ-
ated with the right-hand orthogonal matrix QR may easily be computed in a manner
similar to that used to compute v21. This technique saves approximately 1

4bn
2 floating-

point operations every time Q (or QL or QR) is formed or applied. Thus, given that the
triangular factors can fit within a relatively small b × n matrix (or two such matrices
for bidiagonal reduction), it is easy to make the case that these values should be stored
for later use.

Notwithstanding the obvious advantage to storing T within the lazy unblocked algo-
rithms, we have chosen to omit these statements from the algorithm figures (except in
the case of the GQvdG algorithm) since they relate more to subsequent computations
outside the scope of our discussion than the reduction to condensed form operations
themselves.

7. ESTIMATING THE IMPACT OF FUSING
Before presenting performance results of actual implementations, we will first esti-
mate the impact of fusing on performance.

The table in Figure 12 summarizes all of the fused operations used by all algorithms
presented in this paper and lists the corresponding routine names given by the BLAST
Forum [BLAST 2002]. The table also includes the approximations for the floating-point
and memory operation counts, which may be used to derive the total number of mem-
ory and floating-point operations incurred within a given unfused or fused unblocked
algorithm implementation. These totals are summarized in Figure 13. Similarly, the
table in Figure 14 shows the number of floating-point operations (flops) required by
unblocked and blocked components of various algorithms. The table also quantifies
the number of flops executed by fusable sets of operations within a given unblocked
algorithm.

Combining the analyses summarized in Figure 13 and Figure 14 allows us to esti-
mate an upper bound for the asymptotic speedup one would observe from fusing opera-
tions within a given algorithm. We need only make a few mild assumptions concerning
the computation to construct a model to predict actual performance improvement:
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Fused operation BLAST
name

dependent
algorithms flops memory operations

unfused fused
v := ATx
w := Ax

GEMVT Hessenberg 4n2 2n2 n2

A := A− aT b− cT d GER2 Hessenberg,
bidiagonal

4n2,
4mn

4n2,
4mn

2n2,
2mn

A := A− aT b− cT d
v := ATx
w := Ax

N/A Hessenberg 8n2 6n2 2n2

y := y − Y UTu− UZTu
z := z − UY Tu− ZUTu

N/A Hessenberg 14mn 7mn 5mn

A := A− uT y − yTu
v := Ax

N/A tridiagonal 4n2 5n2 2n2

y := y − Y UTu− UY Tu N/A tridiagonal 8mn 4mn 3mn

A := A− aT b− cT d
b := ATu
a := a+ βb
w := Aa

GEMVER bidiagonal 8mn 6mn 2mn

b := b+ αATu
a := a+ βb
w := Aa

GEMVT bidiagonal 4mn 2mn mn

w := w − UY Ta− ZV Ta
t := Ae0 − UY T e0 − ZV T e0

N/A bidiagonal 6mn 6mn 4mn

Fig. 12. A summary of the fused operations one could potentially use within various reduction to condensed
form algorithms and their floating-point and memory operation costs. The highlighted sets of fused opera-
tions are those present in the algorithms which exhibited the highest performance.

— The level-3 computation in a blocked algorithm executes s times faster than the
level-1 and level-2 computation in the corresponding unblocked algorithm.6

— An unblocked algorithm’s execution is limited by memory accesses rather than its
floating-point operations. This allows us to assume that reducing a fraction n of
memory operations within an unblocked algorithm will result in the a corresponding
speedup of 1

1−n , or a 1
1−n speedup contribution to the overall algorithm if it is part

of a blocked algorithm.

Thus, the expected asymptotic speedup α due to fusing is given by

α =
Execution time without fusing

Execution time with fusing
=
tunfused
unblocked + tblocked

tfused
unblocked + tblocked

=
su+ (1− u)

su(1− rf) + (1− u)

where r is the fraction of unblocked memory operations that are avoided via fusing, f
is the fraction of unblocked floating-point computation that is associated with fusable
operations, and u is the fraction of total floating-point operations performed within
the unblocked algorithm. Note that approximations for r are given in the right-hand

6Note that this assumption typically does not hold for small problem sizes due to data caching, which is why
we only attempt to estimate performance improvement for relatively large problem sizes.
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Algorithm
(unblocked only)

memory operations
unfused fused r = unfused−fused

unfused

Reduction to upper Hessenberg form
Basic 2 2n3+ 1

2 bn2 n3+ 1
2 bn2 ≈ 50%

Rearranged 2n3+ 1
2 bn2 2

3 n3+ 1
2 bn2 ≈ 66%

Lazy 2
3 n3+ 15

4 bn2 1
3 n3+ 13

4 bn2 ≈ 50%
Reduction to tridiagonal form
Rearranged 1

2 n3 1
3 n3 ≈ 33%

Lazy 1
6 n3+ 3

2 bn2 1
6 n3+ 5

4 bn2 ≈ 1%
Reduction to bidiagonal form
Basic 3(mn2− 1

3 n3) 2(mn2− 1
3 n3) ≈ 33%

Rearranged 3(mn2− 1
3 n3) (mn2− 1

3 n3) ≈ 66%

Lazy rearranged (mn2− 1
3 n3)+

4b(mn− 1
2 n2)

1
2 (mn2− 1

3 n3)+

3bmn
≈ 50%

Howell’s Algorithm III (mn2− 1
3 n3)+

4b(mn− 1
2 n2)

(mn2− 1
3 n3)+

4b(mn− 1
2 n2)

0%7

Fig. 13. A summary of the number of memory operations required by unfused and fused implementations
of various unblocked algorithms for reducing a matrix to condensed form.

column of Figure 13 while f and u are estimated in the two right-most columns of
Figure 14.

Figure 15 summarizes the expected asymptotic speedups due to fusing for all con-
densed form algorithms that contain fusable sets of operations.

The most obvious takeaway from Figures 13–15 is that while reduction to upper
Hessenberg form and reduction to bidiagonal form appear well-suited for speedup, re-
duction to tridiagonal form presents fewer opportunities for fusing. In fact, the blocked
lazy algorithm is only benefited through a lower-order term. Thus, we would not expect
to see much improvement, if any, for this particular algorithm.

8. PERFORMANCE RESULTS
We now report performance for implementations of various algorithms that is attained
in practice.

8.1. Platform details
All experiments reported in this paper were performed on a single core of a Dell Pow-
erEdge R900 server consisting of four Intel “Dunnington” six-core processors. Each
core provides a peak performance of 10.64 GFLOPS. Performance experiments were
gathered under the GNU/Linux 2.6.18 operating system. Source code was compiled by
the GNU C compiler, version 4.1.2. All experiments were performed in double-precision
real floating-point arithmetic.

All reduction to condensed form implementations were linked to the BLAS provided
by GotoBLAS2 1.10. All LAPACK implementations were obtained via the netlib distri-
bution of LAPACK version 3.3.1. For the reduction to bidiagonal form we also compare
against an implementation by Howell et al. (Algorithm III), reported on in [Howell

7Howell et al. implement fused operations as a sequence of level-2 BLAS operations. Rather than achieving
speedup by reducing memory operations, this type of fusing uses blocking to interleave smaller fusable
subproblems in an effort to promote increased data cache reuse.
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Algorithm floating-point operations
unblocked fusable blocked f = fusable

unblocked u = unblocked
total

Reduction to upper Hessenberg form
Basic 2 8

3 n3+bn2 8
3 n3 2

3 n3 ≈ 99% ≈ 80%
Rearranged 4

3 n3+ 15
2 bn2 4

3 n3+ 7
2 bn2 2n3 ≈ 99% ≈ 80%

Lazy 4
3 n3+ 15

2 bn2 4
3 n3+ 7

2 bn2 2n3 ≈ 99% ≈ 40%
Reduction to tridiagonal form
Rearranged 4

3 n3 4
3 n3 N/A ≈ 100% ≈ 100%

Lazy 2
3 n3+3bn2 2bn2 2

3 n3 ≈ 1% ≈ 51%
Reduction to bidiagonal form
Basic 4(mn2− 1

3 n3) 4(mn2− 1
3 n3) N/A ≈ 100% ≈ 100%

Rearranged 4(mn2− 1
3 n3) 4(mn2− 1

3 n3) N/A ≈ 100% ≈ 100%
Lazy
rearranged

2(mn2− 1
3 n3)

+8b(mn−n2)

2(mn2− 1
3 n3)

+4b(mn−n2)
2(mn2− 1

3 n3) ≈ 99% ≈ 51%

Fig. 14. A summary of the number of floating-point operations required by various algorithms for reducing
a matrix to condensed form. The two right-most columns, combined with the right-hand column in Figure 13,
may be used to estimate upper bounds for the speedup one would observe from fusing eligible subproblems
within an operation’s unblocked algorithm. These upper bounds are estimated in Figure 15.

Algorithm
memory operations floating-point operations speedup α
r = unfused−fused

unfused f = fusable
unblocked u = unblocked

total s = 4 s = 5

Reduction to upper Hessenberg form
Basic 2 ≈ 50% ≈ 99% ≈ 80% 1.87 1.89
Rearranged ≈ 66% ≈ 99% ≈ 80% 2.60 2.65
Lazy ≈ 50% ≈ 99% ≈ 40% 1.56 1.61

Reduction to tridiagonal form
Rearranged ≈ 33% ≈ 100% ≈ 100% 1.49 1.49
Lazy ≈ 1% ≈ 1% ≈ 51% 1.00 1.00

Reduction to bidiagonal form
Basic ≈ 33% ≈ 100% ≈ 100% 1.49 1.49
Rearranged ≈ 66% ≈ 100% ≈ 100% 2.94 2.94
Lazy
rearranged ≈ 50% ≈ 99% ≈ 51% 1.66 1.71

Fig. 15. Estimated asymptotic speedup from fusing using a simple model that assumes: (1) that the level-
3 computation in the blocked algorithm executes s times as fast as the level-1 and level-2 computation
found in the corresponding unblocked algorithm; and (2) that memory operations (rather than floating-point
operations) are the limiting factor to performance in the unblocked algorithm. We estimate speedup for s = 4
and s = 5.

et al. 2008] and available from [Howell 2005]. (This code was compiled by the GNU
Fortran compiler, version 4.1.2.)
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8.2. Fused operation implementations
Experiments were performed with both cache-level and register-level fused implemen-
tations. All implementations were coded in C. Operations fused at the cache-level were
expressed in terms of level-1 BLAS. By contrast, operations fused at the register-level
were coded using SSE2 and SSE3 vector intrinsics. The corresponding assembly code
of each register-level fused kernel was carefully inspected to ensure that (1) the cor-
rect vector arithmetic instructions were emitted by the compiler and (2) the number
of load/store instructions were kept to a minimum. We believe that the resulting fused
implementations are, for the most part, comparable to what one would arrive at if the
operation were assembly-coded by hand.

Some readers may wonder why we chose to implement our cache-level fused opera-
tions in terms of level-1 operations rather than the level-2 approach taken by [Howell
et al. 2008]. It is true that if a cache-level fused implementation is based on level-2 op-
erations, it can automatically benefit from certain optimizations that may be employed
within the level-2 BLAS that are not available to level-1 operations. For example, one
such optimization involves unrolling the outer loop of the GEMV operation L times (pro-
vided there are enough registers available to support the unrolling). This allows the
implementation to reduce the number of memory accesses on either the input or output
vector by a factor of L. However, the implementation is not required to do so, and the
specific details concerning a BLAS library’s implementation are oftentimes not avail-
able. Without knowing exactly how the level-2 operations are implemented, we cannot
precisely quantify the number of memory operations avoided by using register-level
fusing. Therefore, we implement cache-level fusing in terms of level-1 operations not
because we think it yields the best possible performance, but because we can model its
performance without making overly-specific assumptions about the implementation.

8.3. Implementations of the reduction algorithms
The blocked algorithms were implemented using the FLAME/C API [Van Zee 011a;
Bientinesi et al. 2005b] which allows the implementations to closely mirror the al-
gorithms presented in this paper. Since this API carries considerable overhead that
affects performance, the unblocked algorithms were translated into lower-level im-
plementations that use the BLAS-like Interface Subprograms (BLIS) interface [Veras
et al. ]. This is a C interface that (1) resembles the BLAS interface but is more natural
for C, and (2) fixes certain problems for the routines that compute with (single- and
double-precision) complex datatypes. All these implementations are part of the stan-
dard libflame distribution so that others can experiment with further optimizations.

8.4. Tuning of block size
We performed experiments to determine the optimal block size for the blocked algo-
rithms. A block size of 32, the default block size for the LAPACK implementation,
appeared to be near-optimal and was used for all experiments.

8.5. Reduction to upper Hessenberg form
The table in Figure 15 indicates that there is considerable potential for speedup from
fusing for all three fusable algorithms, particularly an algorithm based on the rear-
ranged unblocked algorithm. Performance of the various implementations of reduction
to upper Hessenberg form are given in Figure 16, with raw performance results in the
top graph and speedup of fusable algorithms, using both cache-level and register-level
fusing, shown in the bottom graph.

Not surprisingly, register-level fusing provides a significant improvement in perfor-
mance over cache-level fusing. Remarkably, the speedups predicted by the model, as
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Fig. 16. Performance of various implementations of reduction to upper Hessenberg form for problem sizes
up to 3000 for double-precision real (top) and speedup of fusable algorithms relative to their unfused coun-
terparts using cache-level and register-level fusing (bottom). Implementations of blocked algorithms use a
block size of 32. Note that in the top graph, the performance curve for “netlib dgehrd” coincides mostly with
the curve for “GQvdG blocked with GQvdG unblocked.”
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summarized in Figure 15, provide good estimates of the performance of algorithm im-
plementations that use register-level fusing.

For larger matrices (n ≥ 300), the blocked implementation that uses a lazy un-
blocked algorithm with register-level fusing (labeled “blocked with lazy unblocked
with register-level fusing”) outperforms all other implementations, even the netlib
dgehrd and “GQvdG blocked with GQvdG unblocked” implementations. Note that
netlib dgehrd uses the “GQvdG blocked with GQvdG unblocked” algorithm, with the
minor modification that the algorithm switches to what is essentially our pure basic
unblocked algorithm for the final 128× 128 subproblem (when ABR is 128× 128).

8.6. Reduction to tridiagonal form
In contrast to reduction to upper Hessenberg form, Figure 15 suggests that there is
much less room for improvement via fusing in the reduction to tridiagonal form algo-
rithms, particularly for the lazy algorithm.

The reason for the negligible potential for speedup in the lazy algorithm can be
traced back to the memory and flop count analysis in Figures 13 and 14. The reduc-
tion in memory operations that may be achieved via fusing within the unblocked lazy
algorithm constitutes a lower-order term. Likewise, the floating-point operations in
the fusable portions of this algorithm amount to a similar lower-order term. Thus, we
would expect very little performance benefit from fusing for this algorithmic variant.
By contrast, a simple rearranged unblocked algorithm should stand to benefit notice-
ably from fusing. However, with none of its computation expressible in terms of level-3
operations, such an algorithm is bound to asymptotically underperform its lazy coun-
terpart.

Figure 17 (top) reports performance for various implementations of reduction to
tridiagonal form, with corresponding speedups for the two fusable algorithms dis-
played in Figure 17 (bottom). The fused implementations perform mostly as expected.

8.7. Reduction to bidiagonal form
According to Figure 15, reduction to bidiagonal form should receive significant benefit
from fusing.

Figure 18 (top) reports performance for various implementations of reduction to bidi-
agonal form while Figure 18 (bottom) shows speedups for fusable algorithms. For this
operation there is a clear advantage gained from rearranging the computations and
fusing operations, particularly when register-level fusing is employed. With the ex-
ception of small problem sizes, the “blocked with lazy rearranged with register-level
fusing” outperforms all others, including the implementation of Algorithm III reported
on in [Howell et al. 2008]. Once again, our simple model provides good estimates of the
asymptotic speedup for each fusable algorithm.

The performance results for “blocked with lazy rearranged unblocked with cache-
level fusing”, along with Howell’s Algorithm III, clearly show that considerable im-
provement can be gained from cache-level fusing. However, as one might expect, ac-
cessing an element of data from cache is still more costly than avoiding the memory
operation altogether, as the “blocked with lazy rearranged unblocked with register-
level fusing” exhibits the highest performance, except for the smallest problem sizes.

Note that in Figure 18 (bottom) Howell’s Algorithm III outperforms the “blocked
with lazy rearranged unblocked with cache-level fusing” algorithm by a small margin.
The two algorithm implementations are similar except that the former (1) fuses in
terms of level-2 BLAS instead of level-1 BLAS, and (2) is coded entirely in Fortran-
77 rather than C with higher-level FLAME abstractions. Given that both styles of
cache-level fusing incur the same number of memory operations, we suspect the out-
performance can be explained almost entirely by the latter point, as modern compilers
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Fig. 17. Performance of various implementations of reduction to tridiagonal form for problem sizes up to
3000 for double-precision real (top) and speedup of fusable algorithms relative to their unfused counterparts
using cache-level and register-level fusing (bottom). Implementations of blocked algorithms use a block size
of 32. Note that in the top graph, the performance curve for “netlib dsytrd” coincides mostly with the curve
for “blocked with lazy unblocked with register-level fusing.”
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tend to be able to more highly optimize pure Fortran-77 over C that contains some calls
to the FLAME/C APIs. Thus, it may be possible to achieve marginal improvements in
performance of all register-level fused implementations by removing all programming
abstractions and coding entirely at low levels.

8.8. Hybrid algorithms
In Figure 18 (top) it can be observed that, for smaller problem sizes (n ≤ 500), the “re-
arranged unblocked with register-level fusing” algorithm yields the best performance.
This suggests that a library routine should switch algorithms as a function of problem
size. Note that the netlib LAPACK implementations of all three condensed form oper-
ations tested in this paper employ hybrid approaches, albeit with different crossover
points. The netlib routines for reduction to upper Hessenberg form (dgehrd) and re-
duction to bidiagonal form (dgebrd) switch to basic unblocked algorithms for the fi-
nal 128 × 128 submatrix, while the routine for reduction to tridiagonal form (dsytrd)
switches for the final 32× 32 submatrix.

Hybrid algorithms for all three reduction to condensed form operations can be con-
structed in a straightforward manner, and thus we omit results for such implementa-
tions from this paper.

9. CONCLUSION
This paper presents what we believe to be the most complete analysis to date of al-
gorithms for reducing matrices to condensed form. Numerous algorithms are summa-
rized and opportunities for rearranging and fusing of operations are exposed. The ben-
efit of cache-level fusing is confirmed, while more highly-optimized register-level fusing
is shown, in theory and practice, to offer superior gain. These performance improve-
ments based on register-level fused kernels conform reasonably well to the speedups
predicted by a simple model.

Future work in this area will investigate the impact of fusing in multicore environ-
ments.
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A. COMPUTING IN THE COMPLEX DOMAIN
For simplicity and clarity, the algorithms given thus far have assumed computation
on real matrices. In this appendix, we briefly discuss how to formulate a few of these
algorithms for complex matrices.

In order to capture more generalized algorithms which work in both the real and
complex domains, we must first introduce a complex Householder transform.

Definition A.1. Let u ∈ Cn, τ ∈ R. Then H = H(u) = I − τ−1uuH , where τ = 1
2u

Hu,
is a complex Householder transformation.

The complex Householder transform has properties similar to those of the real in-
stantiation, namely: (1) HH = I; (2) H = HH , and so HHH = HHH = I; and (3) if
H0, · · · , Hk−1 are complex Householder transformations and Q = H0H1 · · ·Hk−1, then
QHQ = QQH = I.

Let x, v, u ∈ Cn,

x→
(
χ1

x2

)
, v →

(
ν1
v2

)
, u→

(
υ1

u2

)
,

v = x − αe0, and u = v/ν1. We can re-express the complex Householder transform H
as:

H =

(
I − τ−1

(
1
u2

)(
1
u2

)H
)

It can be shown that the application of H(u) to a vector x,

H

(
χ1

x2

)
=
(
α
0

)
(5)

is satisfied for

α = −‖x‖2χ1

|χ1|
. (6)

Notice that for x, v, u ∈ Rn, this definition of α is equivalent to the definition given
for real Householder transformations in Section 2.2, since χ1/|χ1| = sign(χ1). By re-
defining α this way, we allow τ to remain real, which allows the complex Householder
transform to retain the property of being a reflector.

There is one drawback to this approach, however. Applying H(u) to x results in α be-
ing a complex value. This causes problems for some applications. For example, in the
case of reduction to tridiagonal form, the values of α generated by each transformation
form the off-diagonal elements of the tridiagonal matrix. Typically, one wishes these
off-diagonal elements to be real because it simplifies the arithmetic in subsequent com-
putations. But it turns out there is a straightforward solution to this problem.

c© 2012 ACM 0098-3500/2012/01-ART00 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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First, we leverage the fact that a complex off-diagonal element αi from the ith row
(or column) of a tridiagonal matrix T can be rotated into the real domain by computing
a complex scalar ρi = ᾱi/|αi| and then scaling the ith row of T by ρi and the ith column
of T by ρ̄i. Notice that this has no effect on the ith diagonal element Tii since ρiρ̄i = 1.
Also, this guarantees that ρiαi is positive. Thus, one can easily compute and apply a
diagonal matrix R that transforms a tridiagonal matrix T with complex off-diagonals
to a real tridiagonal matrix TR. In this case, the overall reduction to real tridiagonal
form becomes:

A = QTQH

= QRHRTRHRQH

= QRHTRRQ
H

= QRHTR(QRH)H

And so the total cost of defining complex Householder transforms as reflectors amounts
to: (1) computing R; (2) applying R to T from the left and RH from the right; and
(3) applying RH to Q from the right. These operations are O(n), O(n), and O(n2),
respectively, and are typically lower-order terms within larger O(n3) computations.
This process is similar to the one described by Stewart in [Stewart 2001].

Other instances of the Householder transform, such as those found in LAPACK, re-
strict α to the real domain [LAPACK Users’ Guide ; Lehoucq 1994]. In these situations,
Eq. (5) is satisfiable only if τ ∈ C, which results in HH 6= I. This definition has the
benefit of giving real α values without any additional scaling, but results in mathe-
matics and implementation code that are somewhat more complicated (ie: one must
keep track of whether it is appropriate to apply H or HH ).

Ultimately, we prefer our Householder transforms to remain reflectors in both the
real and complex domains, and so we choose to define α as in Eq. (6).

Recall that Figures 1–11 illustrate algorithms for computing on real matrices. We
will now review a few of the algorithms, as expressed in terms of the complex House-
holder transform.

A.1. Reduction to upper Hessenberg form
Since the complex Householder transform H is a reflector, the basic unblocked algo-
rithm for reducing a complex matrix to upper Hessenberg is, at a high level, identical
to the algorithm for real matrices:

— Partition A→
(
α11 aT

12

a21 A22

)
.

— Let [u21, τ, a21] := HOUSEV(a21).
— Update a01 A02

α11 aT
12

a21 A22

 :=

 I 0 0
0 1 0
0 0 H

 a01 A02

α11 aT
12

a21 A22

( 1 0
0 H

)
=

 a01 A02H

α11 aT
12H

Ha21 HA22H


where H = H(u21). Note that a21 := Ha21 need not be executed since this update
was performed by the instance of HOUSEV above.

— Continue this process with the updated A22.

As before, Ha21 is computed by HOUSEV.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: January 2012.



Families of Algorithms for Reducing a Matrix to Condensed Form App–3

The real and complex algorithms begin to differ with the updates of aT
12 and A02:

aT
12 := aT

12H

= aT
12 − aT

12u21u
H
21/τ

A02 := A02H

= A02 −A02u21u
H
21/τ

Specifically, we can see that u21 is conjugate-transposed instead of simply transposed.
The remaining differences can be seen by inspecting the update of A22:

A22 := HA22H

= (I − u21u
H
21/τ)A22(I − u21u

H
21/τ)

= A22 − u21( AH
22u21︸ ︷︷ ︸
v21

)H/τ − ( A22u21︸ ︷︷ ︸
w21

)uH
21/τ + (uH

21 A22u21︸ ︷︷ ︸
w21

)u21u
H
21/τ

2

= A22 − u21v
H
21/τ − w21u

H
21/τ + uH

21w21︸ ︷︷ ︸
2β

u21u
H
21/τ

2

= A22 − u21(vH
21 − βuH

21/τ)/τ − ((w21 − βu21/τ)/τ)uH
21

= A22 − u21 ((v21 − β̄u21/τ)/τ︸ ︷︷ ︸)H

y21

− ((w21 − βu21/τ)/τ)︸ ︷︷ ︸
z21

uH
21

= A22 − (u21y
H
21 + z21u

H
21)

This leads towards the basic and rearranged unblocked algorithms in Figure 19.

A.2. Reduction to tridiagonal form
Let A ∈ Cn×n be Hermitian. If A → QBQH where B is upper Hessenberg and Q is
unitary, then B is Hermitian and therefore tridiagonal. We may take advantage of the
Hermitian structure of A just as we did with symmetry in Section 4. Let us assume
that only the lower triangular part of A is stored and read, and that only the lower
triangular part is overwritten by B.

When matrix A is Hermitian, and only the lower triangular part is referenced, the
unblocked algorithms for reducing A to upper Hessenberg form can be changed by
noting that v21 = wH

21 and y21 = zH
21. This results in the basic and rearranged unblocked

algorithms shown in Figure 20.

A.3. Reduction to bidiagonal form
The basic algorithm for reducing a complex matrix to bidiagonal form can be explained
as follows:

— Partition A→
(
α11 aT

12

a21 A22

)
.

— Let
[(

1
u21

)
, τL,

(
α11

0

)]
:= HOUSEV

((
α11

a21

))
.

— Update (
α11 aT

12

a21 A22

)
:=

(
I −

(
1
u21

)(
1
u21

)H

/τL

)(
α11 aT

12

a21 A22

)
=
(
α− ψ11/τL aT

12 − yT
21/τL

0 A22 − u21y
T
21/τL

)
,
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App–4 F. G. Van Zee et al.

where ψ11 = α11 + uH
21a21 and yT

21 = aT
12 + uH

21A22. Note that α11 := α − ψ11/τL need
not be executed since this update was performed by the instance of HOUSEV above.

— Let [v21, τR, a12] := HOUSEV (a12).
— Update A22 := A22(I − v21vT

21/τR) = A22 − z21vT
21/τR, where z21 = A22v21.

— Continue this process with the so updated A22.

The resulting unblocked algorithm and a rearranged variant that allows fusing are
given in Figure 21.

A.4. Blocked algorithms
Blocked algorithms may be constructed for reduction to upper Hessenberg form by
making the following minor changes to the algorithms shown in Figure 4:

— For Algorithms 1–4, update ATR by applying the complex block Householder trans-
form, (I − UBT

−1UH
B ), instead of (I − UBT

−1UT
B ).

— For Algorithm 3, update A22 as A22 = A22 − U2Y
H
2 − Z2U

H
2 .

— Compute T as T = 1
2D + S where UH

B UB = SH +D + S.

Blocked algorithms for reduction to tridiagonal form and bidiagonal form can be
constructed in a similar fashion.
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Families of Algorithms for Reducing a Matrix to Condensed Form App–5

Algorithm: [A] := COMPLEXHESSRED UNB(b, A)

Partition A→
„
ATL ATR

ABL ABR

«
, u→

„
uT

uB

«
, y →

„
yT

yB

«
, z →

„
zT

zB

«
whereATL is 0× 0 and uT , yT , and zT have 0 rows

while m(ATL) < b do
Repartition„

ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,

„
uT

uB

«
→

0@ u01

υ11

u21

1A ,
„
yT

yB

«
→

0@ y01
ψ11

y21

1A ,
„
zT

zB

«
→

0@ z01
ζ11
z21

1A
where α11, υ11, ψ11, ζ11 are scalars

Basic unblocked 1:

[u21, τ, a21] := HOUSEV(a21)

A22 := (I − u21u
H
21/τ)A22 = A22 − u21u

H
21A22/τ A02

aT
12

A22

 :=

 A02

aT
12

A22

 (I − u21u
H
21/τ) =

 A02 −A02u21u
H
21/τ

aT
12 − aT

12u21u
H
21/τ

A22 −A22u21u
H
21/τ


Basic unblocked 2: Rearranged unblocked:

[u21, τ, a21] := HOUSEV(a21)

y21 := AH
22u21

z21 := A22u21

β := uH
21z21/2

y21 := (y21 − β̄u21/τ)/τ
z21 := (z21 − βu21/τ)/τ
A22 := A22 − u21y

H
21 − z21uH

21

aT
12 := aT

12 − aT
12u21u

H
21/τ

A02 := A02 −A02u21u
H
21/τ

α11 := α11 − υ1ψ̄1 − ζ1ῡ1 (?)
aT
12 := aT

12 − υ1y
H
21 − ζ1uH

21 (?)
a21 := a21 − u21ψ̄1 − z21ῡ1 (?)
[x21, τ, a21] := HOUSEV(a21)
A22 := A22 − u21y

H
21 − z21uH

21 (?)
v21 := AH

22x21

w21 := A22x21

u21 := x21; y21 := v21
z21 := w21

β := uH
21z21/2

y21 := (y21 − β̄u21/τ)/τ
z21 := (z21 − βu21/τ)/τ

aT
12 := aT

12 − aT
12u21u

H
21/τ

A02 := A02 −A02u21u
H
21/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,

„
uT

uB

«
←

0@ u01

υ11

u21

1A ,
„
yT

yB

«
←

0@ y01
ψ11

y21

1A ,
„
zT

zB

«
←

0@ z01
ζ11
z21

1A
endwhile

Fig. 19. Unblocked reduction to upper Hessenberg form using a complex Householder transform. Left: basic
algorithm. Right: rearranged algorithm so that operations can be fused. Operations marked with (?) are not
executed during the first iteration.
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Algorithm: [A] := COMPLEXTRIRED UNB(A)

Partition A→
„
ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, y}

whereATL is 0× 0 and uT , yT have 0 rows
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,
„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

where α11, υ11, and ψ11 are scalars

Basic unblocked: Rearranged unblocked:

[u21, τ, a21] := HOUSEV(a21)

y21 := A22u21

β := uH
21y21/2

y21 := (y21 − βu21/τ)/τ
A22 := A22 − u21y

H
21 − y21uH

21

α11 := α11 − υ11ψ̄11 − υ11ψ̄11 (?)
a21 := a21 − (u21ψ̄11 + y21ῡ11) (?)
[x21, τ, a21] := HOUSEV(a21)
A22 := A22 − u21y

H
21 − y21uH

21 (?)
v21 := A22x21

u21 := x21; y21 := v21
β := uH

21y21/2
y21 := (y21 − βu21/τ)/τ

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,
„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (y, ψ)}

endwhile
Fig. 20. Unblocked reduction to tridiagonal form using a complex Householder transformation. Left: basic
algorithm. Right: rearranged to allow fusing of operations. Operations marked with (?) are not executed
during the first iteration.
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Algorithm: [A] := COMPLEXBIRED UNB(A)

Partition A→
„
ATL ATR

ABL ABR

«
, x→

„
xT

xB

«
for x ∈ {u, v, y, z}

whereATL is 0× 0, uT , vT , yT , zT have 0 elements
while m(ATL) < m(A) do

Repartition„
ATL ATR

ABL ABR

«
→

0@ A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1A,
„
xT

xB

«
→

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

where α11, υ11, ν11, ψ11, and ζ11 are scalars

Basic unblocked: Rearranged unblocked:

[(
1
u21

)
, τL,

(
α11

0

)]
:=

HOUSEV

((
α11

a21

))

y21 := ā12 +AH
22u21

aT
12 := aT

12 − yH
21/τL

[v21, τR, a12] := HOUSEV (a12)

β := yH
21v21

y21 := y21/τL
z21 := (A22v21 − βu21/τL)/τR

A22 := A22 − u21y
H
21 − z21vH

21

α11 := α11 − υ11ψ̄11 − ζ11ν̄11 (?)
a21 := a21 − u21ψ̄11 − z21ν̄11 (?)
aT
12 := aT

12 − υ11y
H
21 − ζ11vH

21 (?)[(
1
u+

21

)
, τL,

(
α11

0

)]
:=

HOUSEV

((
α11

a21

))
a+
12 := a12 − a12/τL
A22 := A22 − u21y

H
21 − z21vH

21 (?)
y21 := AH

22u
+
21

a+
12 := a+

12 − ȳ21/τL
w21 := A22ā

+
12

y21 := y21 + ā12

[ψ11 − α12, τR, α12] := HOUSES(a+
12)

v21 := (ā+
12 − ᾱ12e0)/(ψ̄11 − ᾱ12)

aT
12 := α12e

T
0

u21 := u+
21

β := yH
21v21

y21 := y21/τL
z21 := (w21 − ᾱ12A22e0)/(ψ̄11 − ᾱ12)
z21 := z21 − βu21/τL
z21 := z21/τR

Continue with„
ATL ATR

ABL ABR

«
←

0@ A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1A,
„
xT

xB

«
←

0@ x01

χ11

x21

1A
for (x, χ) ∈ {(u, υ), (v, ν), (y, ψ), (z, ζ)}

endwhile
Fig. 21. Unblocked reduction to bidiagonal form using a complex Householder transformation. Left: basic
algorithm. Right: rearranged to allow fusing of operations. Operations marked with (?) are not executed
during the first iteration.
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