
Copyright

by

Tyler Michael Smith

2017

The Dissertation Committee for Tyler Michael Smith
certifies that this is the approved version of the following dissertation:

Theory and Practice

of Classical Matrix-Matrix Multiplication

for Hierarchical Memory Architectures

Committee:

Robert van de Geijn, Supervisor

Enrique Quintana-Ortí, Supervisor

Keshav Pingali

Donald Fussell

Theory and Practice

of Classical Matrix-Matrix Multiplication

for Hierarchical Memory Architectures

by

Tyler Michael Smith, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2017

Dedicated to Anisha.

Acknowledgments

I wish to thank the multitudes of people who helped me. Time would

fail me to tell of . . .

v

Theory and Practice

of Classical Matrix-Matrix Multiplication

for Hierarchical Memory Architectures

Publication No.

Tyler Michael Smith, Ph.D.

The University of Texas at Austin, 2017

Supervisors: Robert van de Geijn
Enrique Quintana-Ortí

Matrix-matrix multiplication is perhaps the most important operation

used as a basic building block in dense linear algebra. A computer with a hi-

erarchical memory architectures has memory that is organized in layers, with

small and fast memories close to the processor, and big and slow memories

further away from it. Classical MMM is an operation particularly suited for

such architectures, as it exhibits a large degree of data reuse, so expensive data

movements can be amortized over a lot of computation. This dissertation ad-

vances the theory of how to optimally reuse data during MMM on hierarchical

memory architectures, and it uses this understanding to develop new practical

algorithms for matrix-matrix multiplication that exhibit improved properties

related to data movement.

vi

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 3
1.3 Contributions . 4
1.4 Organization . 5

Chapter 2. Related Work 7
2.1 A history of linear algebra packages 7
2.2 Literature on theoretical I/O lower bounds 9
2.3 Literature on practical MMM 10

2.3.1 Strategy and tactics for practical MMM 11
2.4 State-of-the-art matrix multiplication 14

2.4.1 A brief description of Goto’s algorithm 16
2.4.2 BLIS . 18

Chapter 3. I/O Lower Bounds 20
3.1 Introduction . 20
3.2 Problem Definition . 22

3.2.1 Prior approaches . 22
3.2.2 Our approach . 23

3.3 Lower Bound Proof . 24

vii

3.3.1 High-level strategy . 24
3.3.2 Employing the Loomis-Whitney inequality 25
3.3.3 A lower bound for C := AB + C 26
3.3.4 Improving the lower bound for C := AB 27

3.4 Summary . 28

Chapter 4. Optimal Algorithms
or: The Lower Bound is Tight 30

4.1 Introduction . 30
4.2 Optimal and read-optimal Algorithms 30

4.2.1 Algorithms for one level of cache 31
4.2.2 Algorithms for different shapes of MMM 36
4.2.3 A balancing act . 38

4.3 Summary . 39

Chapter 5. A Family of Algorithms for Multiple Levels of Cache 41
5.1 Introduction . 41
5.2 A Family of Algorithms . 42

5.2.1 The outer loop for the Lh−1 cache 43
5.2.2 The inner loop for the Lh−1 cache 47
5.2.3 Classifying matrix partitions. 48
5.2.4 Special cases for the family of algorithms 51

5.3 Multilevel Cache Tradeoffs . 52
5.3.1 Impact of optimizing for the Lh cache on the Lh−1 I/O cost 52
5.3.2 Impact of optimizing for Lh−1 on the Lh I/O cost 56
5.3.3 Skipping caches . 59

5.4 Experiments . 62
5.4.1 Experimental setup . 62
5.4.2 Optimizing for the L3 cache 64
5.4.3 Optimizing for the L4 cache 72
5.4.4 Algorithms for different shapes of matrices 77

5.5 Summary . 80

viii

Chapter 6. Cache Aware Multithreaded Parallelization 84
6.1 Introduction . 84
6.2 Parallelization of loops within Goto’s Algorithm 85

6.2.1 The first loop around the micro-kernel 85
6.2.2 The second loop around the micro-kernel 88
6.2.3 The third loop around the inner-kernel 90
6.2.4 The fourth loop around the inner-kernel 91
6.2.5 The outer-most loop . 93
6.2.6 Parallelism within the micro-kernel 93

6.3 MMM Parallelization for Intel Xeon Phi KNC 94
6.3.1 Architectural Details . 94
6.3.2 The BLIS implementation on the Intel Xeon Phi 95
6.3.3 Which loops to parallelize 96
6.3.4 Parallelism within cores 97
6.3.5 Parallelism between cores 98
6.3.6 Performance results . 99

6.4 MMM Parallelization for IBM PowerPC A/2 102
6.4.1 Architectural Details . 102
6.4.2 The BLIS implementation on the IBM PowerPC A2 . . 103
6.4.3 Which loop to parallelize 104
6.4.4 Performance results . 105

6.5 Paralleling the family of algorithms 107
6.5.1 Parallelizing outside the Lh−1 subproblem 108
6.5.2 Parallelizing within the Lh−1 subproblem 109
6.5.3 Summary . 110

6.6 Summary . 110

Chapter 7. Conclusion 112
7.1 Results . 112
7.2 Future work . 114

Appendices 116

ix

Appendix A. Table of Symbols 117

Appendix B. Constrained Global Maximum of
√
xyz 118

Appendix C. Bandwidth requirements for different datatypes 120

Bibliography 122

Vita 136

x

List of Tables

5.1 Machines used in experiments in this paper. 63

C.1 Typical element sizes, computation rate, and bandwidth re-
quirements for MMM relative to single precision. 121

xi

List of Figures

2.1 Diagram of Goto’s Algorithm implemented in BLIS. 15

4.1 Three algorithms for matrix multiplication that attain the lower
bound for a single level of cache. 32

5.1 Illustration showing the possible scenarios when partitioning for
the Lh and Lh−1 caches in the family of MMM algorithms when
Resident A or Resident B is encountered at the Lh cache. . . . 44

5.2 Illustration showing the possible scenarios when partitioning for
the Lh and Lh−1 caches in the family of MMM algorithms when
Resident C is encountered at the Lh cache. 45

5.3 This plot determines how much worse in terms of number of
inputs to the Lh cache an algorithm will be if it optimizes for
the Lh−1 cache as well. If it is too costly, one may choose not
to optimize for the Lh−1 cache. Vertical lines mark cache size
ratios for the Intel i7-7700K. For example, S2

S1
is too large to

optimize for both the L1 and L2 caches, but it is reasonable to
optimize for both L2 and L3. 53

5.4 An algorithm’s Lh−1 versus Lh efficiency in terms of flops per
I/O. Moving from left to right, the Lh−1 blocksizes increase, de-
creasing the I/O costs associated with the Lh−1 streamed ma-
trices. This causes the Lh blocksizes to decrease, increasing the
I/O costs associated with the Lh streamed matrices and the
Lh−1 resident matrix. In this plot, Sh is 2562, and Sh−1 is 1282. 58

5.5 Two algorithms for MMM. Left: B3A2C0. Right: Goto’s Algo-
rithm. 65

5.6 Roofline models for an Intel i7-7700K at 4.2GHz with 4 cores
under two bandwidth conditions. For algorithms displayed on
the plots, the y-axis is measured and the x-axis is theoretical.
Bottom: Two channels of DDR4 is set to DDR-3200, for a peak
bandwidth of 51200 MB/s. Top: One channel of DDR4 is set
to DDR-800, for a peak bandwidth of 6400 MB/s. 67

5.7 Performance of matrix-matrix multiplication on an Intel i7-
7700K for square matrices, varying problem size and available
bandwidth. Matrices are stored prepacked. 70

xii

5.8 Practical comparision of performance against state-of-the-art
open source and vendor libraries, for both high and low band-
width scenarios. Matrices are passed in as column-major ma-
trices, so packing is performed. 71

5.9 An algorithm for MMM optimizing the number of inputs to
both the L4 and the L2 caches. It places a square block of C
in the L4 cache, and a square block of A in the L2 cache. The
L3 cache is “skipped”, but the blocksizes are such that the L4
guest matrix, B, is reused from the L3 cache. 73

5.10 Performance of matrix-matrix multiplication for square matri-
ces, varying problem size and available bandwidth. Matrices
are stored prepacked. 74

5.11 Matrix-matrix multiplication performance on an Intel i7-5775C
with an 128MB L4 cache for a low bandwidth scenario (1 chan-
nel of DDR3-800) and a high bandwidth scenario (2 channels of
DDR3-2400). 75

5.12 Two algorithms for MMM for three levels of cache. Left: A3B2C0.
Right: C3A2C0. 78

5.13 Matrix-matrix multiplication performance for different problem
shapes on an Intel i7-7700K under a low-bandwidth scenario (1
channel of DDR4-800). 79

6.1 Loops implementing Goto’s Algorithm in BLIS. 86
6.2 Illustration of which parts of the memory hierarchy each block

of A and B reside in during the execution of the micro-kernel
with BLIS. 86

6.3 Diagram of Goto’s Algorithm implemented in BLIS. 87
6.4 Left: the micro-kernel. Right: the first loop around the micro-

kernel. 88
6.5 The second loop around the micro-kernel. 89
6.6 The third loop around the micro-kernel (first loop around Goto’s

inner kernel). 90
6.7 The fourth loop around the micro-kernel (second loop around

Goto’s inner kernel). 92
6.8 Parallelization of the pc loop requires local copies of the block

of C to be made, which are summed upon completion of the loop. 92
6.9 The fifth (outer) loop around the micro-kernel. 93

xiii

6.10 MMM performance using different parallelization schemes within
BLIS on the Intel Xeon Phi. ‘ic:n way’ indicates n-way paral-
lelization of the third loop (indexed by ic) around the micro-
kernel, and ‘jr:n way’ indicates n-way parallelization of the sec-
ond loop (indexed by jr) around the micro-kernel. 99

6.11 MMM performance comparision of BLIS and MKL on the Intel
Xeon Phi KNC. 100

6.12 MMM with different parallelization schemes for the IBM Pow-
erPC A2. ‘jr:n way’ indicates n-way parallelization of the sec-
ond loop (indexed by jr) around the micro-kernel, and ‘ir:n way’
indicates n-way parallelization of the first loop (indexed by ir)
around the micro-kernel. 106

6.13 MMM performance comparision of BLIS and ESSL on the Pow-
erPC A2 Blue Gene Q. 107

xiv

Chapter 1

Introduction

Hierarchical memory architectures have been used for decades to reduce

the cost of data access. One can conceive of a memory hierarchy being laid

out as a pyramid, with several layers of memory. The layer of memory closes

to the processor is the smallest and fastest, and each subsequent layer of

memory is bigger, slower, and further from the processor compared to the

layer above it. The goal for this dissertation is efficient computation for matrix

operations on machines with hierarchical memories. The thesis is that there

are three algorithms for matrix-matrix multiplication that, considering one

layer of memory, are optimal in terms of the number of reads from slower

layers. These three algorithms can be composed in order to encounter one of

them at each layer of the memory hierarchy. This dissertation contains both

theoretican and practical advances related to this thesis.

1.1 Motivation

High-performance dense linear algebra libraries are of great practical

importance, as they are often used as building blocks of applications used in

scientific computing and data analysis. Efficient implementations are widely

available on almost any platform, and dense linear algebra operations are ex-

pected by application programmers to achieve efficiencies close to the peak

performance of the machine. In addition to its practical importance, the im-

1

plementation of high-performance matrix operations are of pedagogical signif-

icance, since they are often used to illustrate how to attain high performance

on a novel architecture.

Research regarding practical dense linear algebra software has been

ongoing for at least the past fourty years [33], and research regarding theory

of optimal use of hierarchical memory for linear algebra has been ongoing for at

least the past three decades [46]. Costs related to data movement are often the

most significant overhead when efficient computing is a goal. Caches are small

and fast buffers used to facilitate a reduction in data movement costs. When

data has good temporal locality, input-output (I/O) costs can be reduced by

reusing data while it is in a cache. Modern computers use multiple levels

of cache, where higher levels of cache are smaller, faster, and nearer to the

processor, and lower levels of cache are bigger, slower, and further.

Matrix-matrix multiplication (MMM) is an operation that many ap-

plications depend upon to attain high performance. Scientists and engineers

have come to expect high-performance implementations of the Basic Linear

Algebra Subprograms (BLAS) [53, 27, 26] interface, providing functionality

for vector-vector, matrix-vector, and matrix-matrix operations. In turn, dense

linear algebra (DLA) libraries such as LAPACK [5] and libflame [39, 76, 77] use

BLAS operations as building blocks to provide high-performance implementa-

tions of more sophisticated operations like matrix factorizations for single-node

hierarchical memory systems. Then, distributed-memory DLA libraries such

as ScaLAPACK [22], PLAPACK [7], and Elemental [63] rely both on the BLAS

and on single-node DLA libraries. As such, MMM is one of the most impor-

tant operations on the bottom of a rich ecosystem of DLA libraries that are

depended upon by scientists in high-performance and scientific computing.

2

When developing a dense linear algebra library, an engineer will typi-

cally employ a set of heuristics in order to optimize for performance, energy

consumption, or workspace, or to achieve some other goal. Ideally, heuristics

should have firm theoretical underpinnings such that they can be shown to be

optimal according to a model of computation. Therefore this dissertation has

developed realistic but idealized models for computation and then has used

these models to develop theoretically optimal results. These results have been

be used to understand practical algorithms that attain high-performance and

are efficient on modern and future hardware in the domain of dense linear

algebra.

1.2 Problem definition

In this dissertation, we will focus on the conventional (classic) MMM

operation C += AB. In all cases, C is m×n, A is m× k, and B is k×n. We

focus on the case where all matrices are dense and unstructured, however, the

algorithms presented in this dissertation should apply to the cases where ma-

trices are dense and structured as well. Classic MMM requires 2mnk floating

point operations for dense unstructured matrices.

The goal of this dissertation is efficient algorithms for matrix opera-

tions for hierarchical memory architectures. We will describe memory hierar-

chies in the following manner: We name the n levels of the memory hierarchy

L0, L1, ..., Ln−1, for every h, 1 < h < n, the cost of accessing Lh is more ex-

pensive than accessing Lh−1. Each level of memory Lh has a size Sh, and

Sh > Sh−1 for every h, 1 < h < n.

3

1.3 Contributions

This dissertation makes the following contributions.

• It proves a new and improved theoretical I/O lower bound for MMM.

For a machine with two layers of memory –one fast layer with capacity

S, and one slow layer with unlimited capacity– MMM requires at least
2mnk√

S
reads and writes to and from slow memory.

• It analyzes the I/O optimality of a family of three algorithms for a single

layer of fast memory. One of these three algorithms has an I/O cost of

≈ 2mnk√
S

+ mn. Since it attains the lower bound, the algorithm is I/O

optimal and this proves that the I/O lower bound is tight. The other

two algorithm attain the lower in a weaker sense; that is if one ignores

the I/O cost associated with writes to slow memory, which often occurs

if the slow memory being written to is a cache.

• It shows that considering different “shapes” of MMM operations, where

some of m, n, and k are small and other large, some of those three

algorithms will be optimal (when ignoring the cost of writes), and others

will be suboptimal. It gives the conditions of optimality for each.

• It describes a new family of algorithms for multiple levels of cache. By

composing two loops per level of cache, one of the three algorithms for

a single level of cache can be encountered at each layer of the memory

hierarchy. It then demonstrates the performance of a practical algorithm

for MMM that is 45% more efficient than the state-of-the-art Goto’s

algorithm on a conventional architecture when the matrices are too large

to fit into cache and the ratio between the rate of computation and the

4

rate of data movement from main memory is made artificially high (and

representative of possible future architectures). This performance benefit

is accomplished by utilizing the L3 cache more effectively than Goto’s

algorithm does.

• It shows how the cache hierarchy can be taken into account when par-

allelizing matrix operations. When caches are shared between threads,

it is beneficial to parallelize differently than when threads have inde-

pendent caches. It then shows how these ideas can be implemented

by demonstrating practical performance for the many-core IBM Blue

Gene/Q PowerPC A2 and Intel Xeon Phi Knight’s Corner architectures.

• It derives algorithms to utilize aggregate fast memories. That is, on

a multiprocessor system where each processor has its own proprietary

fast memory, the algorithm is optimal both for the number of elements

moved into and out of each individual fast memory, and also optimal

for the number of elements read into and out of slow memory. This

is advantageous if it is less expensive for a processor to access another

processor’s fast memory than it is to access slow memory.

1.4 Organization

This dissertation is organized as follows:

• Chapter 2 it outlines the literature related to this present work. The

related work is treated with more detail in later chapters.

• Chapter 3 gives a proof of an improved I/O lower bound for MMM.

5

• Chapter 4 analyzes three algorithms for MMM for machines with a single

layer of fast memory. An algorithm is shown to obtain the lower bound

from Chapter 3, so the lower bound is said to be tight, and the algorithm

is said to be optimal.

• Chapter 5 derives a family of algorithms for MMM for machines with

multiple levels of cache. By composing two loops per level of cache, one

of the three algorithms from Chapter 4 can be encountered at each level

of cache.

• Chapter 6 Discusses how parallelism can be obtained within the family

of algorithms presented in Chapter 5. It then describes in detail the

properties of parallelizing each of the loops within the BLIS implemen-

tation of Goto’s algorithm, a member of the family of algorithm from

Chapter 5.

In this dissertation, Chapter 3 is very theoretical, and each chapter is more

practical than the one before it.

6

Chapter 2

Related Work

In this chapter, we will look at related work, including a brief history of

linear algebra packages, followed by a brief description of the state-of-the-art

implementation and algorithms for matrix multiplication.

2.1 A history of linear algebra packages

First we will describe a history of linear algebra packages and the build-

ing blocks of the dense linear algebra software stack. One of the earliest exam-

ples of such a package is EISPACK by Garbow [33], which provided routines

for obtaining the eigenvalues and eigenvectors of a matrix. Lawson et al. [53]

introduced the Basic Linear Algebra Subprograms (BLAS). This was a set of

38 simple FORTRAN routines operating on vectors. Examples include the dot

product of two vectors, the scaling of a vector, and a Givens rotation. The

point of such a library was to standardize an interface for a set of routines such

that one could always expect an efficient implementation to exist on any given

machine. This standard BLAS interface facilitated portable high performance

for the vector computers of the 1970s. Around the same time, Dongarra et

al. [25] introduced the LINPACK package that implemented higher level func-

tionality such as matrix factorizations in terms of the BLAS.

In the late 1980s, with the cost of a floating-point arithmetic operation

7

(flop) getting cheaper relative to the cost of a memory operation (memop), and

with the advent of hierarchical memory, operations solely on vectors could no

longer run efficiently, as such operations provide little opportunity for data

reuse. Within the BLAS, this was rectified by the introduction of the level-

2 BLAS, extending the BLAS with a set of matrix-vector routines (such as

a matrix-vector multiplication or a rank-1 update) [27]. This provided more

opportunities for data reuse.

Shortly thereafter, Dongarra et al. [26] introduced the level-3 BLAS.

This contained matrix-matrix operations (such as MMM) that, when work-

ing with data that can fit into fast memory, can amortize the O(n2) memops

needed to perform the matrix-matrix operation over O(n3) flops. The BLAS

level-1, 2, and 3 interfaces have become so ubiquitous that often DLA opera-

tions are referred to as their BLAS function names. For example the MMM

operation C := αAB + βC (where α and β are scalars) is often referred to as

gemm. LINPACK, which cast its computation in terms of the level-1 BLAS,

was no longer efficient, leading to the introduction of LAPACK [5].

Gunnels et al. [39, 38] introduced the Formal Linear Algebra Methods

Environment or FLAME. It made two important contributions. First, it en-

codes computation in terms of partitioned matrices and performs operations

on these partitions, rather than in terms of indices into arrays. This allowed

libflame to be more pedagogical, as the code itself looks like what one might

write on a whiteboard when describing an algorithm. Secondly, libflame pro-

vided a method of deriving algorithms for linear algebra operations that are

proven to be correct [12, 75, 13].

Libraries such as PLASMA [17] and SuperMatrix [19] build on top of

libraries like LAPACK and libflame, respectively, to provide runtime paral-

8

lelization of DLA operations, where matrices are broken into blocks, and op-

erations are implemented as directed acyclic graphs operating on those blocks.

The advantage is that this technique avoids tricky load balancing issues that

can arise when parallelizing complicated operations.

Finally, there are several libraries targeted towards distributed-memory

clusters of computers. Much as LAPACK and FLAME cast computation in

terms of the BLAS, distributed dense linear algebra libraries such as ScaLA-

PACK [22], PLAPACK [7], and Elemental [63] cast much of their computation

in terms of BLAS, LAPACK, and libflame, but this dissertation is not con-

cerned with distributed-memory architectures.

2.2 Literature on theoretical I/O lower bounds

The seminal paper by Hong and Kung [46] describes the red-blue pebble

game, in which computation is described as a directed acyclic graph (DAG).

If a blue pebble is placed on a vertex, the value associated with that vertex

is in slow memory, and if the vertex instead has a red pebble, the value is

in fast memory. There are a finite number of red pebbles, and a small set of

rules for playing the game. The goal of the game is to minimize the number

of transitions between red and blue to complete computation. Then, this

minimum number of transitions is equivalent to the lower bound on the I/O

complexity for a computation. Using this model, the minimum number of

memory movements required for matrix-matrix multiplication is O(n
3
√
S

), where

S is the number of red pebbles. Savage [64] extends the Hong-Kung model to

memories with multiple layers of fast memory. For MMM, it only proves the

same lower bound from [46] is true at every level of the memory hierarchy.

Irony, et al. [49] uses the same strategy as [46] to prove lower bounds

9

for MMM for both hierarchical and distributed memory architectures. The

main concern of Irony, et al. is attaining the lower bound for MMM on dis-

tributed memory architectures using 3D algorithms. An innovation of this

paper was using the Loomis-Whitney inequality [55] to find an upper bound

on the amount of computation that can be performed using a certain number

of elements each of A, B and C.

Dongarra, et al. [24] improved upon the coefficient of the lower bounds

for MMM, showing that MMM must incur an I/O cost of 3
√
3mnk
2
√
2

. This im-

provement came from the implicit assumption that computation is performed

via fused multiply-add instructions.

Ballard, et al. [8] extended the lower bounds results in [49] to operations

beyond MMM, like the LU and Cholesky factorizations. Generalizing the

lower bounds to these other operations made the coefficient on the leading

term less tight. This is because in order to generalize the proof to handle

these operations, the matrices A, B, and C could no longer be assumed to be

distinct.

2.3 Literature on practical MMM

Numerous papers have been written about how to implement the op-

erations in the aforementioned linear algebra packages. Here, we focus on the

papers concerning the practical implementation of MMM. Much of this work

has to do with answering the question: How can data be moved through the

memory hierarchy optimally?

10

2.3.1 Strategy and tactics for practical MMM

Autotuning Autotuning is a technique where the best values of various pa-

rameters like blocksizes are determined by empirically measuring performance

when those parameters are adjusted. Autotuning was introduced in dense

linear algebra by the code generator system PHiPAC [14], which stands for

Portable High Performance ANSI C.

The ideas behind PHiPAC were built upon byWhaley and Dongarra [82],

in the BLAS library Automatically Tuned Linear Algebra Software (ATLAS).

The major contribution of ATLAS was introducing the idea of implementing

matrix-matrix multiplication in terms of a basic unit of computation, often

known today as a kernel. In ATLAS it was originally called an on-chip multi-

ply.

The algorithm described in [82] specifies two possible loop orderings

used by ATLAS, depending on the problem size. Regardless, of the loop

ordering chosen, computation is cast in terms of block dot-products where C

is nb × nb, and the k dimension is much larger. The next step partitions this

block-dot product along the k dimension with blocksize nb. Then the on-chip

multiply occurs, updating the block of C with an nb × nb block of A times an

nb × nb block of B. During the on-chip multiply, computation is arranged so

that either the nb×nb block of A or the nb×nb block of B fills most of cache,

streaming the other operands.

The loop around ATLAS’s on-chip multiply is in the k dimension, and

thus each iteration uses a different block of A and B. Therefore each time an

on-chip multiply executes, an nb × nb block of each matrix A, B, and C must

be read from a slower level of memory. There are 3n2
b reads and n2

b writes per

on-chip multiply, so there are 3
2nb

reads per flop from slow memory. Since one

11

nb × nb block must fit into cache, nb ≤
√
S. Thus the algorithm from [82] has

an I/O cost of at least 3mnk√
S
. This is 50% larger than the tight lower bound

in [68]. This present paper improves upon [82] by introducing algorithms that

attain much closer to the I/O lower bound.

Model-based MMM Gunnels et al. [40] describes a family of algorithms for

gemm. It shows that given the shape of matrix-matrix multiplication that is

being executed at some level of cache, there are two locally optimal choices for

what shape of matrix-matrix multiplication must happen at the next highest

level of cache. This forms a tree of locally optimal decisions, and each path

from root to leaf is a member of a family of algorithnms.

Yotov et al. [87] takes an algorithm similar to that of ATLAS [82], but

adopts the opposite stance: Identifying optimal or near-optimal block sizes for

gemm can be done analytically, and thus empirical search is not necessary.

More recently, Low et al. [56] took the ideas behind Yotov et al., and applied

them to the more modern GotoBLAS approach, to be discussed later [35].

Cache oblivious algorithms. Most of the work presented above is related

to algorithms that explicitly partition matrices to fit into cache. These are

called cache-aware algorithms. An alternate technique is to use a divide-and-

conquer algorithm, where each divide step reduces the size of working set of

data. At some point, the size of this working set becomes small enough that

it naturally fits into cache. Algorithms that attempt to use cache optimally in

this manner are called cache oblivious algorithms.

An early cache oblivious algorithm is presented in Aggarwal et al, [3]

which proposes a model for hierarchical memory and then shows that a divide-

12

and-conquer algorithm for square matrix-multiplication is optimal under this

model. Later, Gustavson [41] showed that such recursive divide-and-conquer

algorithms could provide cache blocking for more complicated LAPACK rou-

tines such as Cholesky factorization as well. Finally, Frigo et al. [29] popular-

ized the idea of cache-oblivious algorithms beyond the domain of linear algebra

and named them. Frigo et al. also presents an algorithm that is shown to be

optimal for a matrix multiplication of any shape. They show their cache-

oblivious algorithms are optimal only for a single level of cache. However they

also show that any cache-oblivious algorithm that is optimal for one level of

cache is also a locally optimal cache-oblivious at every level of cache on systems

that have multiple levels of cache. This local optimality should be compared

to Gunnels et al. [40], which presents a family of cache-aware algorithms that

are shown to be locally optimal at every level of cache.

Tactics for practical MMM There are some papers that are not as con-

cerned with the theory of how to optimally move matrices through mem-

ory, but address more practical considerations that arise when implementing

MMM. Henry [45] discusses how to implement high-performance BLAS on the

IBM superscalar RISC S/6000. More importantly, it introduces what it calls a

Block Data Structured gemm. Today we know this concept as packing, where

matrix partitions copied into special buffers in order to maximize spatial lo-

cality as well as arrange the data in a convenient format for accessing using

SIMD instructions.

Kågstöm et al. [50] showed that the level-3 BLAS operations can be

implemented mostly in terms of MMM, and in some cases a small amount of

computation must be performed in terms of level-2 BLAS operations. This

13

shows that it is only necessary to optimize general matrix-matrix multiplica-

tion, and then the rest of the level-3 BLAS comes “for free”.

Agarwal et al. [1] is not specific on how loops are structured for cache

blocking, but rather discusses the low level details of how to exploit the various

hardware resources available on the IBM Power2 to effectively use instruction

level parallelism, yielding high performance.

This is just a small sample of the papers in this area that influenced our own

work.

2.4 State-of-the-art matrix multiplication

Goto and van de Geijn [35] described what is currently accepted to

be the most effective approach to implementing MMM in terms of rank-k

updates. We call this Goto’s algorithm, and it was first implemented in the

BLAS implementation GotoBLAS. GotoBLAS is currently maintained as a

package called OpenBLAS. The primary innovation was in realizing that there

is enough bandwidth from the L2 cache, so that one of the operands can be

streamed from the L2 cache, if the other operand resides in the L1 cache,

and optimized for the L2 cache by putting a square block in the L2 cache.

Previously it was believed that one must optimize for the L1 cache. The

effect was that blocksizes could be increased, leading to better amortization of

memory movements. 1

14

+=

+=

+=

+=

+=

+=

Partition n with blocksize nc

Partition k with blocksize kc

Partition m with blocksize mc

Partition n with blocksize nr

Partition m with blocksize mr

Micro-kernel

P
ack

B̃

P
ack

Ã

Block is reused in L3 cache.

Block is reused in L2 cache.

Block is reused in L1 cache.

Block is reused in registers.

Figure 2.1: Diagram of Goto’s Algorithm implemented in BLIS.

15

2.4.1 A brief description of Goto’s algorithm

Let us focus on the simplified case C := AB + C, or C += AB,

where A, B, and C are m× k, k×n, and m×n matrices, respectively. Goto’s

algorithm, illustrated in Figure 2.1, successively partitions the matrices so that

different tiles of A, B, and C are moved through levels of cache in different

ways. A chunk of memory (or matrix partition) may either reside in some

layer of memory or it may be streamed through that layer of memory. If the

computation is arranged such that some matrix partition is moved into a layer

of memory and then reused while it is still in that layer of memory, we say

that it resides in that layer. If instead the computation is arranged such that

some matrix partition is moved into a layer of memory, used once, and then

evicted from that layer of memory before it is used again, we say that it is

streamed through that layer of memory.

The partitioning of the matrices and where they reside in memory is

shown on the left, and the loops that implement the matrix partitions are

shown on the right. Starting from the top, the outer-most loop, indexed by

jc, partitions C and B into (wide) column panels. Next, the loop indexed

by pc partitions A and the current column panel of B into column panels

and row panels, respectively. Thus the current column panel of C (of size

m × nc) is updated as a sequence of rank-k updates (with k = kc). At this

point, Goto’s algorithm packs the current row panel of B into a contiguous

buffer, B̃. Assuming there is an L3 cache, B̃ will reside in the L3 cache. The

primary reason for the outer-most loop, indexed by jc, is to limit the amount

1At the time, the amount of data addressable by the pages in the level-1 translation
lookaside buffer (TLB) limited the size of the block in the L2 cache.

16

of workspace required for B̃ A secondary reason is to allow B̃ to remain in the

L3 cache.

Next, the current panel of A is partitioned into blocks, indexed by ic.

The current block is then packed into a contiguous buffer, Ã. The block is sized

to occupy a substantial part of the L2 cache, leaving enough space to ensure

that other data does not evict the block. Goto’s algorithm then implements

the “block-panel” multiplication of ÃB̃ as its inner kernel, making this the

basic unit of computation.

Now let us describe the workings of this inner kernel. In GotoBLAS,

this inner-kernel is a black-box implementation, often coded in assembly lan-

guage. At this point, Ã resides in the L2 cache and B̃ in the L3 cache. The

next loop, indexed by jr, partitions B̃ into column micro-panels of width nr.

During one iteration of this loop, the current micro-panel of B̃ resides in the

L1 cache. Finally, the inner-most loop, indexed by ir, partitions Ã into row

micro-panels of height mr.

At each iteration of the inner-most loop, a block dot product com-

putation occurs: the current micro-panel of Ã is multiplied by the current

micro-panel of B̃ to update the corresponding mr×nr block of C. This is per-

formed as a sequence of rank-1 updates (outer products) with columns from

the micro-panel of Ã and rows from the micro-panel of B̃. During the execu-

tion of this block dot product, an mr × nr block of C resides in registers, a

kc× nr micro-panel of B̃ resides in the L1 cache, and the mr × kc micro-panel

of Ã is streamed from the L2 cache.

The key takeaway here is that different tiles of A, B, and C are placed

in different layers of memory, and reused from different layers of memory in

17

an attempt to amortize or hide the memory movements required to implement

MMM. These memory movements can be summarized as follows:

• B̃ is moved into the L3 cache from main memory. This memory move-

ment is amortized over many block-panel matrix multiplications.

• Ã is moved into the L2 cache from main memory, amortized over many

block-micropanel matrix multiplications.

• A micro-panel of B̃ is moved into the L1 cache from the L3 cache, amor-

tized over many block dot products.

• A micro-tile of C is moved into registers from main memory, amortized

over many rank-1 updates.

It is through data reuse that we can amortize the cost of memory movements.

With effective amortization, the cost of the MMM is then dependent only on

the cost of the computation. The goal is to reuse data optimally to amortize

the memory movements the best that we can.

2.4.2 BLIS

Van Zee and van de Geijn [80] introduced the BLAS-like Library Instan-

tiation Software (BLIS). This is a systematic reimplementation of GotoBLAS,

focusing on reducing the amount of effort required to port BLIS to a new ar-

chitecture, as demonstrated in [79]. It shows that the GotoBLAS inner kernel

(known in BLIS terminology as the macro-kernel) can be implemented as two

loops around a much smaller micro-kernel. The effect is that only a single

micro-kernel must be implemented for each data type on a given architecture,

18

whereas GotoBLAS requires 12 inner kernels to be implemented for each data

type on a given architecture in order to support all level-3 BLAS operations.

19

Chapter 3

I/O Lower Bounds

3.1 Introduction

The goal of this chapter is to find theoretical lower bounds on the I/O

cost for MMM. An I/O lower bound gives us the minimum number of reads

and writes that must occur during the execution of an MMM operation, and

the greater the I/O lower bound, the better. When developing algorithms,

we can evaluate them by analyzing their I/O cost and comparing this to the

I/O lower bounds. When the costs are equal, we can say that the I/O lower

bounds are tight and the algorithm is optimal.

The text for this chapter has been taken in part from [68]. We wish to

acknowledge that the results in this chapter were independently discovered by

Julien Langou and Bradley Lowery, however they have not been published at

the time of writing this dissertation. A joint paper containing these results is

in submission at the time of writing.

Deriving lower bounds starts with the assumption that a processor has

two layers of memory hierarchy, a small fast memory and large slow memory.

The fast and slow memory could represent the cache(s) and main memory of a

processor, respectively, or main memory and disk. Practical implementations

attempt to minimize the movement of data between these (and more) layers.

Hong and Kung [46] introduced what they called the red-blue pebble

20

game model for a machine with two layers of memory. A limited number

of blue pebbles represented fast memory while an unlimited number of red

pebbles represented slow memory. By reasoning how at different times blue

and red pebbles could be associated with subsets of data, a lower bound of

Ω(mnk/
√
S) for MMM was obtained, where S is the size of the fast memory

(in matrix elements). In 1995, Savage [64] extended the red-blue pebble game

to an arbitrary number of layers, and showed that the lower bound from [46]

applies at every layer of the memory hierarchy.

In 2004, Irony et al. [49] use a very similar technique to extend the lower

bounds to communication between nodes of a distributed memory parallel

computer. Importantly, they provide a constant for the leading term of the

I/O lower bound, mnk/(2
√

2
√
S). More recently, in 2014, Ballard et al. [8]

generalized the techniques in [46] and [49] so that they can be applied to many

operations in numerical linear algebra, not only MMM.

This chapter provides a better constant for the leading term of the lower

bound for this problem. In Chapter 4, we will show that there are algorithms

that attain this lower bound with the same constant, hence the lower bound

is tight. While prior papers obtained lower bounds by reasoning about the

multiplications that must be performed as part of an MMM operation, this

chapter observes that in practice fused multiply add (FMA) operations are

employed, and that in practice C := AB + C (matrix-matrix multiplication

and accumulation or MMMA) is more representative of how matrix-matrix

operations are implemented in high-performance libraries. It shows that by

targeting MMMA instead of MMM, a superior lower bound of 2mnk/
√
S−2S

can be obtained. The constant on the leading term is 4
√

2 times greater than

that of the previous lower bound. It shows how the new result for C := AB+C

21

can be translated into a lower bound of 2mnk/
√
S − 2S − O(mn) for MMM

(C := AB).

3.2 Problem Definition

In this section, we give a formal description of MMM for which we will

derive I/O lower bounds. The computation that must be performed can be

described as follows: Consider C := AB and let γi,j, αi,j, and βi,j equal the

(i, j) elements of the respective matrices.

Then γi,j :=
∑k−1

p=0 αi,pβp,j. This requires mnk scalar multiplications and

mn(k − 1) scalar additions.

3.2.1 Prior approaches

Previous work, including both Hong and Kung [46], Irony et al. [49],

obtained lower bounds for MMM and described computation in terms of a

directed acyclic graph (DAG). In those papers, the DAGs have input vertices

corresponding to the elements of the matrices A and B, output vertices cor-

responding to the elements of the result matrix C, and computation vertices

corresponding to the the mnk elementary multiplications αi,pβp,j. Each com-

putation vertex has as inputs an element of A and an element of B, and as as

an output a scalar that must be summed with others to form an element of C.

These DAGs allow reasoning about dependencies but do not expose the costs

associated with reading elements of C from slow memory.

22

3.2.2 Our approach

In order to achieve tight lower bounds, our problem definition must ex-

pose the costs of reading elements of C. To achieve this, we model computation

in terms of FMAs. Unfortunately, the MMM operation can not be directly

modeled in terms of FMA operations. This is because of the mismatch between

the mnk elementary multiplications and the mn(k − 1) elementary additions.

Because of this, we will instead find lower bounds for a different problem, that

of the operation C += AB, or MMMA. A conventional MMMA has mnk

scalar multiplications and mnk scalar additions. We assume that each scalar

multiplication αi,pβp,j is paired with a corresponding scalar addition, and they

are executed via an FMA instruction that has three inputs (a variable in which

contributions to γi,j are accumulated, and the elements αi,p and βp,j) and one

output (the variable in which contributions to γi,j are accumulated).

When describing a DAG for an MMMA that casts computation in

terms of FMAs, each computation vertex would depend on another vertex

that contributes to the same element of C. Thus the definition of such a DAG

would impose a partial ordering on the computation. We wish to avoid such

an ordering, which leads us to not describe computation in terms of a DAG.

Our problem definition is as follows. A conventional MMMA executes

mnk FMAs. Each FMA has three inputs: an element of A, B, and C, and

all inputs must be in fast memory in order for the FMA to be executed. Our

proofs reason only about the input costs, and so our problem definition does

not include anything about outputs from instructions. Each FMA must be of

the form τi,j = δi,j +αi,pβp,j where τi,j and δi,j each are a partial accumulations

of γi,j. For simplicity, the rest of this chapter uses either γi,j or the phrase “an

element of C” as a shorthand to refer to any partial result to be accumulated

23

into that element of C, except where a distinction between τi,j, δi,j, and γi,j

needs to be made.

3.3 Lower Bound Proof

In this section we prove that an MMMA must have an I/O cost of at

least 2mnk/
√
S − 2S.

3.3.1 High-level strategy

In order to obtain I/O lower bounds, we will think of computation as

being divided into phases, where there are exactly M loads and stores during

each phase (except for the last phase). That is to say, each phase has an I/O

cost of at most M . If one can prove that there must be at least N phases for

any algorithm, then it follows that the algorithm must have a total I/O cost

of at least (N − 1)M . The N − 1 comes from the fact that the last phase may

have less than M loads and stores.

How many phases must there be? Since it is a conventional MMMA,

we know that mnk FMAs must be executed. Let F be an upper bound on the

number of FMAs that can occur during a single phase. Then there must be at

least (mnk)/F phases. This gives an overall I/O lower bound of ((mnk)/F −

1)M .

How do we find F? We know that the size of fast memory is S, and

there are at most M loads during a single phase. This means that there are

S + M elements of A, B, and C that can be used as inputs to FMAs during

a phase. Thus placing an upper bound on the number of FMAs that can be

computed using S +M elements gives an upper bound on F .

24

This is nearly the same strategy that was used by [46] and [49]. The

important difference is that in the previous papers, the number of loads and

stores to and from fast memory per phase is always equal to the size of fast

memory, S. We will show that one can achieve greater lower bounds by allow-

ing M to be a value other than S.

3.3.2 Employing the Loomis-Whitney inequality

The Loomis-Whitney inequality [55] was used in [49] to determine how

many elementary operations involved in an MMM can be executed with some

number of elements.

Theorem 3.3.1 (Loomis-Whitney). Let m be the measure of an open subset

O of Euclidean n-space, and let m1, ...,mn be the (n − 1)-dimensional mea-

sures of the projections of O on the coordinate hyper planes. Then mn−1 ≤

m1m2 · · ·mn.

To apply this theorem to our situation, let O represent a three dimensional

set of some FMAs that occur during an MMMA. Each FMA has a coordinate

(i, j, p) in the m, n, and k dimensions: γi,j+ := αi,pβp,j. The projection of O

in each of the m, n, and k dimensions respectively corresponds to the elements

of B, A, and C that are inputs to the FMAs in O. If F is the number of FMAs

that occur during an MMMA using x elements of A, y elements of B, and z

elements of C then the Loomis-Whitney inequality tells us that F 2 ≤ xyz and

hence F ≤ √xyz.

There are at most S +M elements that can be used as inputs to com-

putation during a phase, because there are at most S elements of A, B, and

C in fast memory at the start of the phase and at most M elements read

25

from slow memory during the phase. Similarly there can be at most S + M

elements that are outputs of computation during a phase, because there are

at most S elements in fast memory at the end of the phase and at most M

elements written to slow memory during the phase.

The authors of [49] reason separately about x, y, and z, showing that

since there can be at most S + M inputs to computation during phase, x ≤
S +M and y ≤ S +M . Similarly, since there can be at most S +M elements

written during a phase, z ≤ S+M . Working with FMAs, we do better because

we know that the x elements of A, the y elements of B, and the z elements of

C must all be inputs to the same phase. Therefore, we can reason about x, y,

and z all together: x+ y + z ≤ S +M .

The above can be formulated as a constrained maximization problem,

maximize F under the constraints


F ≤ √xyz
0 ≤ x, y, z

x+ y + z ≤ S +M.

Application of standard Langrange multiplier methods, detailed in Appendix B,

tells us that the global maximum occurs when

x = y = z =
S +M

3
so that F =

(S +M)
√
S +M

3
√

3
.

3.3.3 A lower bound for C := AB + C

The upper bound on F gives us the following lower bound for the I/O

cost of MMMA:(
mnk

F
− 1

)
M =

(
3
√

3

(S +M)
√
S +M

mnk − 1

)
M.

In this lower bound, M is a free variable meaning that different choices for M

yield different lower bounds. In [46], [49], and [8], M is always equal to S. If

26

we also make this choice, we obtain the lower bound:

3
√

3

2
√

2

mnk√
S
− S.

This lower bound can be found in [24].

It is possible to do better still. In order to find the greatest lower bound

for any M , our goal is to find the M that maximizes:

max
M>0

(
3
√

3Mmnk

(S +M)
√
S +M

− 1

)
≈ max

M>0

(
3
√

3Mmnk

(S +M)
√
S +M

)
when m, n, and k are large. Standard maximization techniques from calculus

yield that the global maximum is attained when M = 2S so that the I/O

lower bound (when m, n, and k are large so that the −M term can be ignored)

becomes: (
3
√

3mnk

(S +M)
√
S +M

− 1

)
M =

(
3
√

3mnk

3S
√

3S
− 1

)
(2S) =

2mnk√
S
− 2S.

3.3.4 Improving the lower bound for C := AB

Above, we found a lower bound for a different problem than was con-

sidered in previous work [46, 49], which studied C := AB. We will now use the

lower bound for C := AB + C to obtain a new lower bound for the operation

C := AB.

Consider the MMA C := AB + C. It can be implemented by the

sequence of operations:

D := AB; C := D + C.

27

Let QAB be the I/O cost for the first operation and QD+C be the I/O cost

for the second. Then since these operations implement an MMMA find that

QAB + QD+C ≥ 2mnk/
√
S − 2S. It is easy to show that there exists an

algorithm for D + C such that its I/O cost is O(mn). Then:

QAB+O(mn) ≥ 2mnk√
S
−2S or, equivalently, QAB ≥

2mnk√
S
−2S−O(mn).

Thus, our new lower bound for C := AB+C yields a new lower bound on the

I/O cost of C := AB.

3.4 Summary

In this chapter, proved that the operation C := AB + C where com-

putation must be performed in terms of FMAs, and A, B, and C are disticnt

must have an I/O cost of at least 2mnk/
√
S− 2S. Then, C := AB must have

an I/O cost of at least 2mnk/
√
S − 2S − O(mn). These lower bounds are

of interest by themselves as a theoretical result. In the next chapter, we use

them to help gain fundamental insight into how MMM must be implemented.

We believe that the proof techniques presented in this paper can apply

to algorithms outside of matrix multiplication. Generalizing the size of the

phase is one technique that can apply to lower bound proofs that follow the

same general strategy for any operation. In the domain of linear algebra, we

believe this techniqe can be used in order to find the best possible constant

coefficient for lower bounds as long as the matrix operands are distinct. For

matrix operations where the operands are not necessarily distinct, we believe

that these techniques can be combined with those from [8] to improve the

lower bounds.

28

While the proof in this chapter only applies to algorithms that do not

use FMA operations, we hypothesize that the lower bound applies in this case.

In order to prove this to be true, we believe that a different high level proof

strategy must be used, because the strategy does not provide a mechanism

to reason about long range dependencies, like if a scalar multiplication occurs

during a different phase from its corresponding scalar addition.

As a testament to its relevance, we note that techniques from this work

have alrady been used by others [9].

29

Chapter 4

Optimal Algorithms
or: The Lower Bound is Tight

4.1 Introduction

In Chapter 3, we obtained I/O lower bounds for MMM and MMMA.

In this chapter, we use those lower bounds to derive properties of algorithms

that could obtain those lower bounds. From those properties, we derive an

algorithm that has an I/O cost where the highest ordered term is the same,

including its coefficient. We derive two other algorithms that attain the lower

bound when ignoring the cost of writing to main memory. The three algorithms

are in some sense symmetric to each other and so we say that they form a family

of algorithms. We then show that for different “shapes” of MMM, that is when

different combinations of m, n, and k are large or small, which of these three

algorithms will be favorable.

Portions of the text in this chapter are taken from [68].

4.2 Optimal and read-optimal Algorithms

In Chapter 3, we obtained a tight constant on the I/O cost for matrix-

matrix multiplication for machines with one level of cache. Assuming that

computation is performed in terms of fused multiply-adds (FMAs), matrix-

matrix multiplication must have an I/O cost of at least 2mnk√
S
, where S is the

30

capacity of the cache. The paper then presents three algorithms for matrix-

matrix multiplication. One of these attains the I/O lower bound, and the other

two are optimal only in terms of the number of inputs into cache, however they

can be considered to be optimal if a read plus a write costs the same as a read.

In this section, we describe and analyze these three algorithms. We

discuss how to choose blocksizes for the algorithms. We then show that each

of these algorithms is favorable for different shapes of matrix-matrix multipli-

cation.

4.2.1 Algorithms for one level of cache

Matrix-matrix multiplication that casts computations in terms of FMAs

requires an I/O cost of least 2mnk√
S
. The goal for the algorithms in this section

is to incur an I/O cost of only 2mnk√
S

plus a quadratic term. To attain this goal,

it is sufficient that: (1) each element of one of the operands is read from slow

memory once and (2) each element of the other two operands is involved in

≈
√
S FMAs each time it is read from slow memory. We now present three

algorithms for MMM that attain this goal.

Resident C. We now describe an algorithm that keeps a block of C resi-

dent in fast memory during computation. See the top algorithm illustrated in

Figure 4.1. Consider C := AB + C. Partition:

C →

 C0,0 · · · C0,n−1
...

...
Cm−1,0 · · · Cm−1,n−1

 , A→

 A0

...
Am−1

 , B →
(
B0 · · · Bn−1

)
,

where Ci,j ismc×nc, Ai ismc×k, and Bj is k×nc. Then compute Ci,j += AiBj

such that Ci,j is read from slow memory once, and then updated with a series

31

Resident C

Resident B

Resident A

+=

+=

+=

Data in cache.

Data in main memory.

Figure 4.1: Three algorithms for matrix multiplication that attain the lower
bound for a single level of cache.

32

of rank-1 updates. During Ci,j += AiBj, each element of Ci,j, Ai, and Bj is

read from slow memory one time, and each element of Ci,j is written to slow

memory once. This gives the following I/O costs for each operand:

• Ci,j: mcnc reads and mcnc writes.

• Ai: mck reads.

• Bj: knc reads.

With d mn
mcnc
e such Ci,j += AiBj suboperations performed during the

overall MMM operation C += AB, the total input and output costs associated

with each matrix are:

• C: mn reads and mn writes.

• A: dmnk
nc
e reads.

• B: dmnk
mc
e reads.

When mc ≈ nc ≈
√
S 1, the total input cost is 2mnk√

S
+mn, and the total output

cost is mn. Choosing mc = nc equalizes the input costs associated with A and

B, and minimizes dmnk
nc
e+ dmnk

mc
e. The highest ordered term in the cost of the

Resident C algorithm is the same as the I/O lower bound for MMM. Thus the

algorithm is optimal and the lower bound is tight.

1 Note that mc and nc must be slightly less than
√
S so that there is room for a row of

Ai and a column of Bj in cache.

33

Resident B. Another possibility is an algorithm that keeps a block of B res-

ident in fast memory during computation. See the middle algorithm illustrated

in Figure 4.1.

Partition:

C →
(
C0 · · · Cn−1

)
, A→

(
A0 · · · An−1

)
,

B →

 B0,0 · · · B0,n−1
...

...
Bm−1,0 · · · Bm−1,n−1

 ,

where Cj is m × nc, Ap is m × kc, and Bp,j is kc × nc. Cj += ApBp,j is

implemented as a loop over vector-matrix multiplications.

During Cj += ApBp,j, each element of Cj, Ap, and Bp,j is read from

slow memory one time, and each element of Cj is written to slow memory

once. This gives the following I/O costs for each operand:

• Cj: mnc reads and mnc writes.

• Ai: mkc reads.

• Bp,j: kcnc reads.

With d kn
kcnc
e such Cj += ApBp,j suboperations performed during the

overall MMM operation C += AB, the total input and output costs associated

with each matrix are:

• C: dmnk
kc
e reads and dmnk

kc
e writes.

• A: dmnk
nc
e reads.

• B: nk reads.

34

If kc ≈ nc ≈
√
S, the input cost is approximately 2mnk√

S
+ nk, and the output

cost is approximately mnk√
S
. The input cost now attains near the I/O lower

bound.

Resident A. A third possibility is an algorithm that keeps a block of A

resident in fast memory during computation, as illustrated in Figure 4.1.

Partition:

C →

 C0

...
Cm−1

 , A→

 A0,0 · · · A0,k−1
...

...
Am−1,0 · · · Am−1,k−1

 , B →

 B0

...
Bk−1

 ,

where Ci is mc × n, Ai,p is mc × kc, and Bp is kc × n. Ci += Ai,pBp is

implemented as a loop over matrix-vector multiplications.

During Ci += Ai,pBp, each element of Ci, Ai,p, and Bp is read from

slow memory one time, and each element of Ci is written to slow memory once.

This gives the following I/O costs for each operand:

• Ci: mcn reads and mcn writes.

• Ai,p: mckc reads.

• Bp: kcn reads.

With d mk
mckc
e such Ci += Ai,pBp suboperations performed during the

overall MMM operation C += AB, the total input and output costs associated

with each matrix are:

• C: dmnk
kc
e reads and dmnk

kc
e writes.

• A: mk reads.

35

• B: dmnk
mc
e reads.

If mc ≈ kc ≈
√
S, the input cost is approximately 2mnk√

S
+mk, and the output

cost is approximately mnk√
S
. The input cost attains near the I/O lower bound.

Discussion. These three algorithms and the shapes of the subproblems ex-

posed by them have been described before, however their optimality has not

been able to be analyzed in the context of the 2mnk√
S

lower bound before now.

The Resident A algorithm was described as early as 1991 [52], and each of

Resident A, Resident B, and Resident C appears in [40].

4.2.2 Algorithms for different shapes of MMM

The number of reads and writes from slow memory during the algo-

rithms Resident A, Resident B, and Resident C depend on the shape of the

input matrices. There are cases where one of the algorithms is more efficient

than the other two, where we define efficiency by flops per I/O cost. The

higher this value is, the more efficient the algorithm is. There are 2mnk flops

performed during MMM, and the I/O lower bound is 2mnk√
S
. Thus our goal

for efficiency is
√
S flops per I/O. We will now examine the cases for which

algorithms are efficient, assuming that m, n, and k are at least
√
S.

Resident C is efficient if and only if k is large. The Resident C algo-

rithm reads dmnk
nc
e + dmnk

mc
e + mn elements from slow memory during MMM.

If mc = nc =
√
S, this is approximately 2mnk√

S
+ mn. This gives an efficiency

of
(

1√
S

+ mn
2k

)−1
. When k is large, this is approximately

√
S.

We can analyze Resident A and Resident B similarly. Here we ignore

the I/O cost for writes. If blocksizes are chosen to be equal to
√
S, Resident B

36

has an efficiency of
(

1√
S

+ nk
2m

)−1
, which is approximately

√
S when m is large.

Resident A has an efficiency of
(

1√
S

+ mk
2n

)−1
, which is approximately

√
S when

n is large.

This shows that one must choose the right algorithm depending on the

shape of the problem. For each of Resident A, Resident B, and Resident C,

there is a minimal shape that can be implemented efficiently. For Resident C

it is when m and n are ≈
√
S, and k is large. For Resident B it is when k and

n are ≈
√
S, and m is large. For Resident A it is when m and k are ≈

√
S,

and n is large. In each of these cases, the resident matrix must fit into fast

memory, and the “other dimension” must be large so that the cost of moving

the resident matrix into fast memory can be amortized. In fact, these minimal

shapes are the exact shapes that are exposed by each of the algorithms after

they have been partitioned by their outer two loops. Because these problems

are the smallest, most basic problems that can be implemented efficiently, and

because they are the same problem shapes that are exposed by the algorithms,

we call these problem shapes optimal subproblems .

The fact that one must choose a different algorithm for MMM depend-

ing on problem shape and size has been noted before for distributed memory

MMM [65, 54], and for hierarchical memory MMM [40, 82], but our analysis

of the algorithms in terms of the tight I/O lower bounds is novel. In practice,

shapes of MMM where one or two dimensions are small often arise as subprob-

lems during matrix factorizations [39, 5]. Outside of DLA, other applications

may use highly skewed matrix-matrix multiplication. In quantum chemistry,

coupled cluster applications use tensors of one to eight dimensions, and from

hundreds of bytes to hundreds of gigabytes in size[10]. Tensor contractions

on these tensors, which are equivalent to MMM under permutations, range

37

widely in size and shape as well, with contractions varying from perfectly

“square” (m=n=k) to highly skewed, with ratios between m, n, and k as high

as 10000 in higher-order coupled cluster methods[61].

4.2.3 A balancing act

In the previous parts of this section, we have assumed that I/O costs

associated with all three matrices are equal. We analyzed algorithms assuming

that a read and a write costs the same as a read, and we only looked at the

read costs of all three algorithms.

In doing so, we reached the conclusion that we should take the following

strategy for the algorithms Resident A, Resident B, and Resident C: Place a

square block of the resident matrix in fast memory, and stream the other two

operands through fast memory. This amortizes the I/O costs associated with

the resident matrix, and equalizes the I/O costs associated with the streamed

matrices.

What if the operands are not symmetric in terms of I/O costs? Suppose

accessing elements of one of the matrices is more expensive than accessing

elements of another. For instance, accessing elements of C may be inherently

more expensive than accessing elements of A or B, since elements of C must

be read and written. In this case, it may make sense to use the algorithm that

has the expensive matrix reside in fast memory.

However this is not always possible depending on problem shape. Sup-

pose we are using either the Resident A, B, or C algorithm. Let’s call the

streamed matrices W and V , and suppose the algorithm has blocksizes q and

r such that during each optimal subproblem of the algorithm, each element of

W is reused q times and each element of V is reused r times. If the cost of

38

accessing elements W and V are equal, then we should choose q = r ≈
√
S.

If instead the cost of accessing an element of W costs α, and accessing an

element of V costs β, then when m, n, and k are large, the efficiency of our

chosen algorithm is α
2q

+ β
2r
. This is minimized when q =

√
αS
β

and r =
√

βS
α
.

For example, when choosing blocksizes for Resident A, (and n is large),

if a write and a read costs the same as two reads, then the efficiency of Resi-

dent A is 2
2kc

+ 1
2mc

. In this case, instead of equalizing the blocksizes so that

mc = kc and a square block resides in fast memory, we must balance the cost

of reading and writing C with the cost of reading A, so kc should be chosen

to be
√

2S, and mc should be chosen to be
√

S
2
.

In an ideal situation, input costs associated with all matrices are equal,

and we can pick square blocksizes. This is not always the case in practice. To

summarize this section, the ingredients to an efficient algorithm are: (1) Fill

fast memory with a submatrix of one of the operands (the resident matrix),

(2) Amortize the I/O cost associated with (1) over a lot of computation, (3)

Choose blocksizes that balance the I/O costs associated with the other two

matrices with each other (the streamed matrices).

4.3 Summary

In this chapter, we described three algorithms for MMM. The analysis

of these algorithms shows that the I/O lower bounds from Chapter 3 have the

best possible coefficient, and it shows that one of these algorithms is optimal,

and the other two are read-optimal. In all three algorithms, a square block of

one of the three operands is moved into fast memory, occupying most of it,

and panels of the other two matrices are streamed through fast memory. We

show that when k is large, the Resident C algorithm is efficient, when m is

39

large, the Resident B algorithm is efficient, and when n is large, the Resident A

algorithm is efficient.

40

Chapter 5

A Family of Algorithms for Multiple Levels of
Cache

5.1 Introduction

Typically, modern computer architectures have several levels of cache.

In this chapter, we show how to adapt the results from Chapter 4 to develop

practical algorithms that are efficient on such architectures. The three algo-

rithms (Resident A, Resident B, and Resident C) are used as building blocks

to develop a new family of algorithms for architectures for multiple levels of

cache. By composing two loops for each level of the memory hierarchy, a mod-

ified version one of those three algorithms can be encountered at each level of

cache. This lets us optimize the I/O cost for each level of cache, letting us

effectively use a multilevel cache hierarchy.

Unfortunately, tradeoffs occur when trying to simultaneously optimize

the I/O cost at different levels of the cache hierarchy within this family of

algorithms. We analyze these tradeoffs and provide insight into how to resolve

them. Finally we show that members of this family of algorithms outperform

the state-of-the-art Goto’s Algorithm [35] in low bandwidth situations when

data movement to and from main memory becomes a more significant cost.

41

5.2 A Family of Algorithms

Given the ideas about how to attain a near-optimal I/O cost for MMM

for a single layer of fast memory presented in Section 4.2, we will use those

ideas to develop a methodology for implementing MMM for machines with

multiple layers of fast memory. The basic idea is as follows: We will assume

there is an optimal subproblem targeting some layer of cache, the Lh cache.

That is, a subproblem where two dimensions are small and one is large, and

the matrix that has two small dimensions resides in the Lh cache. Then, we

will implement this Lh optimal subproblem such that for the next smaller and

faster level of cache, the Lh−1 cache, there is an optimal algorithm targeting

it. In doing this, we attempt to simultaneously optimize the I/O cost for both

the Lh and Lh−1 caches.

We use tiled loops in order to implement the Lh subproblem, where

each loop partitions the matrices along one of the dimensions m, n, or k with

some blocksize. We will show that two loops can be used to implement the

Lh subproblem such that one encounters an optimal subproblem targeting the

Lh−1 cache. We will show that the directions of the loops depend on the shape

of the subproblem encountered at the Lh cache. With this methodology, if

one shape of optimal subproblem is encountered at the Lh cache, then one

of the other two shapes will be encountered at the Lh−1 cache. The loops

partitioning the Lh subproblem into the Lh−1 subproblem are illustrated in

Figures 5.1 and 5.2.

We note that [40] claimed that it was locally optimal to encounter a

subproblem that corresponds to one of the three optimal subproblems at every

level of the memory hierarchy. However that paper did not give details on how

this could be accomplished, nor did it analyze the claim in terms of any I/O

42

lower bounds.

5.2.1 The outer loop for the Lh−1 cache

In this section, we will analyze the outermost of the two loops for the

Lh−1 cache. The scenarios for this Lh−1 outer loop are illustrated in Figures 5.1

and 5.2, under the leftmost two columns, labeled Lh optimal subproblem and

Lh−1 outer loop. We will show that the outermost of the two tiled loops must

be along the “long” dimension of the Lh subproblem. The tiled loops within

the Lh optimal subproblem should be designed in such a way that ensures that

the Lh I/O cost is as close to the I/O lower bound as possible. This means

that:

1. The Lh resident matrix must remain in the Lh cache during the entire

subproblem.

2. Each element of each of the non-resident matrices must be used in ≈
√
Sh

FMAs each time it is loaded into cache.

3. To attain close to the I/O lower bound, the matrix resident in the Lh
cache should occupy as much of the cache as possible, so only a small

portion of the non-resident matrices should be in cache at a time.

We will now present two arguments that show that the outer loop must par-

tition the matrices along the long dimension of the optimal subproblem.

The first argument is as follows, and holds when the Lh cache has a

least recently used (LRU) replacement policy. Consider a loop partitioning

the matrices along one of the small dimensions of the Lh subproblem. Such a

loop would partition the Lh resident matrix, so not every element of the Lh

43

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

+
=

L
h
su
bp

ro
bl
em

.
L
h
−
1
ou

te
r
lo
op

.
L
h
−
1
in
ne
r
lo
op

.
L
h
−
1
su
bp

ro
bl
em

.

R
es
id
en
t
bl
oc
k
of
L
h
ca
ch
e
(o
r
pa

rt
of

it
).

G
ue
st

pa
ne
l
of
L
h
ca
ch
e.

R
es
id
en
t
bl
oc
k
of
L
h
−
1
ca
ch
e.

F
ig
ur
e
5.
1:

Ill
us
tr
at
io
n
sh
ow

in
g
th
e
po

ss
ib
le

sc
en
ar
io
s
w
he
n
pa

rt
it
io
ni
ng

fo
r
th
e
L
h
an

d
L
h
−
1
ca
ch
es

in
th
e

fa
m
ily

of
M
M
M

al
go

ri
th
m
s
w
he
n
R
es
id
en
t
A

or
R
es
id
en
t
B

is
en
co
un

te
re
d
at

th
e
L
h
ca
ch
e.

44

+
=

+
=

+
=

+
=

+
=

+
=

L
h
su
bp

ro
bl
em

.
L
h
−
1
ou

te
r
lo
op

.
L
h
−
1
in
ne
r
lo
op

.
L
h
−
1
su
bp

ro
bl
em

.

R
es
id
en
t
bl
oc
k
of
L
h
ca
ch
e
(o
r
pa

rt
of

it
).

G
ue
st

pa
ne
l
of
L
h
ca
ch
e.

R
es
id
en
t
bl
oc
k
of
L
h
−
1
ca
ch
e.

F
ig
ur
e
5.
2:

Ill
us
tr
at
io
n
sh
ow

in
g
th
e
po

ss
ib
le

sc
en
ar
io
s
w
he
n
pa

rt
it
io
ni
ng

fo
r
th
e
L
h
an

d
L
h
−
1
ca
ch
es

in
th
e

fa
m
ily

of
M
M
M

al
go

ri
th
m
s
w
he
n
R
es
id
en
t
C

is
en
co
un

te
re
d
at

th
e
L
h
ca
ch
e.

45

resident matrix would be accessed during every iteration. Each iteration of

this loop accesses every element of one of the non-resident matrices. Because

the non-resident matrices are too big to fit into cache, accessing that many

elements would cause the partitions of the resident matrix not accessed by

the current iteration to be evicted from cache. Therefore, in an LRU cache,

first partitioning along one of the short dimensions of the resident subprob-

lem causes portions of the resident matrix to be evicted from cache, and so

Condition (1) for implementing the optimal subproblem is not met.

The second argument even holds when the Lh cache is ideal and one

can explicitly control what data is in it. Suppose that the loop partitions along

one of the small dimensions of the Lh subproblem with blocksize sh−1. Then,

one of the non-resident matrices will not be partitioned by this loop. During

each iteration of the loop, every element of the non-resident matrix that is

not partitioned is used in sh−1 FMAs. In order to satisfy condition (2) above,

each element of the non-resident matrices must be used ≈
√
Sh times each

time they are read into the Lh cache. Since the Lh−1 outer loop blocks for the

Lh−1 cache, sh−1 will be significantly smaller than
√
Sh. In order for this to

occur, the entire non-resident matrix would need to be brought into the Lh
cache, and stay in cache during the entire loop. This is not possible since the

non-resident matrix is too big.

We have now established that the outer of the two loops targeting the

Lh−1 cache must be along the long dimension. If we name the blocksize for

the Lh−1 outer loop sh−1, then we can summarize the cases as follows.

• If the Lh subproblem is Resident A, then partition the n dimension with

blocksize sh−1.

46

• If the Lh subproblem is Resident B, then partition the m dimension with

blocksize sh−1.

• If the Lh subproblem is Resident C, then partition the k dimension with

blocksize sh−1.

5.2.2 The inner loop for the Lh−1 cache

The next step is to further partition the matrices to target the Lh−1
cache. The possibilities for this Lh−1 inner loop are illustrated in Figures 5.1

and 5.2, in the columns labeled Lh−1 inner loop and Lh−1 subproblem. Each

iteration of the Lh−1 outer loop is a subproblem where two dimensions are

approximately
√
Sh and the other is sh−1. The Lh−1 inner loop will partition

this subproblem one of the two dimensions that the Lh−1 outer loop did not.

If the Lh subproblem is:

• Resident A, then the subproblem exposed by each iteration of the Lh−1
outer loop is a block of A times a skinny panel of B updating a skinny

panel of C. Then the Lh−1 inner loop should partition either the m or

the k dimension with blocksize th−1.

• Resident B, then the subproblem exposed by each iteration of the Lh−1
outer loop is a short panel of A times a block of B updating a short

panel of C. Then the Lh−1 inner loop should partition either the n or

the k dimension with blocksize th−1.

• Resident C, then the subproblem exposed by each iteration of the Lh−1
outer loop is a skinny panel of A times a short panel of B updating

a block of C (also called a rank-k update). Then the Lh−1 inner loop

should partition either the m or the n dimension with blocksize th−1.

47

This Lh−1 inner loop exposes a new subproblem that we will call the Lh−1
subproblem. The pair of loops for the Lh−1 cache have partitioned the matrices

such that one of the matrices is sh−1 × th−1 or th−1 × sh−1, and the other

dimension is longer, roughly
√
Sh. Thus at the Lh−1 cache, we encounter a

problem that is similar to one of the three optimal subproblems.

5.2.3 Classifying matrix partitions.

The two loops for the Lh−1 have exposed partitions of each matrices

that differ in terms of access frequency and size. From these properties, we

can classify these different matrix partitions.

Lh resident matrix. We have already classified the Lh resident matrix. The

Lh−1 outer loop partitions along the large dimension of the Lh subproblem.

Each element of the Lh resident matrix is accessed in every iteration of the loop,

and a comparatively smaller amount of the other two matrices are accessed.

This is why we classify it as the resident matrix. The elements of the other

two operands are not all accessed every iteration of the Lh−1 outer loop, so we

can classify them as the Lh streamed matrices .

There are two choices for the dimension that the Lh−1 inner loop iterates

in. Depending on the direction of this loop, the elements of different matrix

partitions are reused at different rates. The Lh−1 inner loop always partitions

the Lh resident matrix and one of the Lh streamed matrices. This allows us

to classify the two Lh streamed matrices differently, taking into account the

properties from Section 5.2.1 that must hold so that the implementation of

the Lh subproblem is still close to optimal.

48

Lh guest matrix. The operand that is not partitioned by the Lh−1 inner

loop is used during every iteration of the Lh−1 inner loop. In order to meet

the conditions for implementing the Lh optimal subproblem, the operand not

partitioned by the Lh−1 operand can only be inputted to the Lh cache one time.

Therefore it must remain in cache during the entire inner Lh−1 loop. We name

this operand the guest matrix of the Lh cache to contrast it with the resident

matrix of the Lh cache. The elements of the Lh guest matrix, like the elements

of the Lh resident matrix, are reused from the Lh cache across iterations of

a loop. The difference is that the Lh resident matrix is reused across every

iteration of the outer Lh−1 loop, and the Lh guest matrix is reused across the

iterations of the inner Lh−1 loop. The resident matrix therefore remains in the

Lh cache for a long period of time, whereas the guest matrix remains in the

Lh cache for a comparatively short period.

Lh−1 resident matrix. We have discussed the Lh resident matrix and the

Lh guest matrix, and will now discuss the remaining operand. The purpose

of the outer and inner Lh−1 loops is to effectively utilize the Lh−1 cache. This

remaining operand has been partitioned twice, and if the blocksizes for these

two loops are chosen properly, the partition can fit inside the Lh−1 cache, and

it is possible to implement the subproblem exposed by the Lh−1 inner loop

such that it remains in cache. Therefore we name this matrix partition the

Lh−1 resident matrix.

Suppose that th is the blocksize for the Lh cache that is not partitioned

by the Lh−1 inner loop. Then these are the cases that we may encounter for

the Lh−1 subproblem.

• If A is the Lh−1 resident matrix, then the Lh−1 subproblem is a th−1×sh−1

49

block of A times a sh−1 × th wide panel of B to update a th−1 × th wide

panel of C.

• If B is the Lh−1 resident matrix, then the Lh−1 subproblem is a th× th−1
tall panel of A times a th−1 × sh−1 block of B to update a th × sh−1 tall

panel of C.

• If C is the Lh−1 resident matrix, then the Lh−1 subproblem is a th−1× th
wide panel of A times a th× sh−1 tall panel of B to update a th−1× sh−1
block of C.

Suppose sh−1 ≈ th−1. In this case the subproblem is a roughly square

block with dimensions sh−1 and th−1 residing in the Lh−1 cache. The other

operands have dimensions sh−1 and th and th−1 and th, with th much larger

than sh−1, and they both remain in the Lh cache during the operation. If the

resident matrix occupies most of the Lh−1 cache, and the other two operands

are streamed into it, then this is an optimal subproblem for the Lh−1 cache.

Naming algorithms. We have now described a procedure to optimize for

the I/O cost for the Lh−1 cache, given that one of three shapes of subproblems

is encountered at the Lh cache. One of the other two shapes of subproblems

then is encountered at the Lh−1 cache. One can then apply the same procedure

to optimize for the next, smaller and faster level of cache, the Lh−2 cache.

The algorithms that arise from this methodology can be identified by which

operand is the resident matrix in each level of cache. Therefore, we introduce

a naming convention for the algorithms that states the level of cache followed

by the operand resides in it. For instance if an algorithm has B as the resident

50

matrix of the L2 cache, A as the resident matrix of the L1 cache, and C as the

resident matrix in registers, it is called B2A1C0.

5.2.4 Special cases for the family of algorithms

When applying this family of algorithms to different levels of the mem-

ory hierarchy, some special cases may arise.

Avoiding costly writes. When reading and writing from and to certain

levels of the memory hierarchy, reads and write can be overlapped. For other

levels of the memory hierarchy, they cannot. For example, it is often the

case that reads and writes from and to caches can happen simultaneously. In

contrast, reads and writes to and from DRAM utilize the same resources, and

so a read plus a write to and from main memory can cost the same as two

reads. Because of this, if there is a level of the memory hierarchy where a read

plus a write costs more than a read from that level, it may be preferred to use

an algorithm where the Resident C shape is encountered at the next smaller

and faster level of the memory hierarchy.

Optimizing for registers. In our family of algorithms, we think of the

register file as simply the smallest and fastest level of cache. However for

practical reasons, it should be treated as a special case. In many imple-

mentations of MMM, the innermost kernel implements the Resident C al-

gorithm [35, 80, 81, 43]. There are good reasons for this. The latency of the

computation instructions dictates that there is a minimum number of regis-

ter that must be used to store elements of C to avoid the instruction latency

becoming a bottleneck. The number of elements of C that are stored in reg-

51

isters must be at least the product of the instruction latency and the number

of elementary additions that can be performed per cycle [87, 57]. Often this

means that a significant portion of the registers must be dedicated to storing

elements of C, such it would be unnatural to use the Resident A or Resident B

algorithms for the registers.

Therefore, it is often the case that there is no choice but to use Resi-

dent C for the registers. A side effect is that only Resident A or Resident B

can be used for the next slower level of cache for which ones optimizes.

5.3 Multilevel Cache Tradeoffs

In this family of algorithms, when simultaneously optimizing for multi-

ple levels of cache, there are tensions between I/O costs at the different levels

of cache. That is, when there is an optimal subproblem at the Lh level of

cache, and two loops partition the matrices so there is an optimal subproblem

at the Lh−1 level of cache, there will be more Lh cache misses than when only

optimizing for the Lh cache, and there will be more Lh−1 cache misses than

when only optimizing for the Lh−1 cache.

5.3.1 Impact of optimizing for the Lh cache on the Lh−1 I/O cost

When blocking only for one level of cache, the streamed matrices are

each associated with an aggregate I/O cost of O
(
mnk√
S

)
. The I/O cost asso-

ciated with the resident matrix is a lower ordered term and we often ignore

it. When optimizing for both the Lh and Lh−1 caches, however, the I/O cost

associated with the Lh−1 resident matrix becomes cubic because each element

of the Lh−1 resident matrix is moved into the Lh−1 cache once per Lh sub-

problem. For illustration, suppose that the Resident A shape is encountered

52

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1

1.6

2.5

4

S
2

:
S
1

S
3

:
S
2

S
3

:
(4S

2)

S
3

:
S
1

Sh−1

Sh

R
el
at
iv
e
I/
O

co
st

I/O cost relative to lower bound for different scenarios

LRU Lh, optimizing for Lh and Lh−1.

Best case optimizing for Lh and Lh−1.

Blocking for only Lh−1.

Figure 5.3: This plot determines how much worse in terms of number of
inputs to the Lh cache an algorithm will be if it optimizes for the Lh−1 cache
as well. If it is too costly, one may choose not to optimize for the Lh−1 cache.
Vertical lines mark cache size ratios for the Intel i7-7700K. For example, S2

S1
is

too large to optimize for both the L1 and L2 caches, but it is reasonable to
optimize for both L2 and L3.

53

at the Lh cache and the Resident C shape is encountered at the Lh−1 cache.

Suppose furthermore that mc is the blocksize in the m dimension for the Lh
cache and kc is the blocksize in the k dimension for the Lh cache, and that

mr and nr are the blocksizes in the m and n dimensions for the Lh−1 cache.

During the overall MMM operation, there are mk
mckc

Lh subproblems, and each

Lh subproblem is made up of mcn
mrnr

Lh−1 subproblems. An mrnr block of C

gets loaded into the Lh−1 cache during each Lh−1 subproblem. Multiplying by

the number of subproblems gives a total I/O cost of mnk
kc

. Now consider the

I/O cost associated with the Lh−1 streamed matrix B. Per Lh subproblem,

there is an I/O cost of mckcn
mr

associated with it. The overall I/O cost is mnk
mr

.

This is the same as if we were only blocking for the Lh cache. In the general

case, when optimizing for both Lh and Lh−1, the I/O cost associated with the

Lh−1 resident matrix will be ≈ mnk√
Sh
, whereas when only optimizing for the

Lh−1 cache, the I/O cost associated with the Lh−1 resident matrix is either

O(mn), O(mk) or O(nk). On the other hand, the I/O costs associated with

the streamed matrices are not affected.

Tradeoffs are local. Optimizing for further levels of cache Lh+1, Lh+2, etc,

does not affect the Lh−1 I/O cost. We will now illustrate this claim with an

example. Suppose we encounter the Resident B algorithm at the Lh+1 cache,

Resident A at the Lh cache, and Resident C at the Lh−1 cache. Then suppose

the blocksizes for the Lh+1 cache are labeled kh+1 and nh+1, the blocksizes for

the Lh cache are labeled mh and kh, and the blocksizes for the Lh−1 cache

are labeled nh−1 and mh−1. Consider an Lh subproblem. The dimensions

associated with that subproblem are mh, nh+1, and kh. Thus the Lh−1 I/O

costs associated with that subproblem are:

54

• A: mhkhnh+1

nh−1

• B: mhkhnh+1

mh−1

• C: mhnh+1

There are mkh+1

mhkh
Lh subproblems per Lh+1 subproblem. Multiplying that num-

ber with the Lh−1 I/O costs above gives us the following Lh−1 I/O costs per

Lh+1 subproblem.

• A: mkh+1nh+1

nh−1

• B: mkh+1nh+1

mh−1

• C: mkh+1nh+1

kh

Finally, there are nk
nh+1kh+1

Lh+1 subproblems overall. Multipying this number

with the Lh−1 I/O cost per Lh+1 subproblem gives us the following overall

Lh−1 I/O costs.

• A: mnk
nh−1

• B: mnk
mh−1

• C: mnk
kh

This illustrates that when looking at tradeoffs for the Lh−1 cache, we only need

to look at the blocking for the Lh cache, because blocking for further (bigger

and slower) levels of cache does not harm the Lh−1 I/O cost.

55

5.3.2 Impact of optimizing for Lh−1 on the Lh I/O cost

Blocksizes must be chosen such that every matrix partition that must

be able to fit into the Lh cache can do so. Different matrix partitions must fit

into the Lh cache depends on the situation, and blocking for the Lh−1 cache

means that there is less room in the Lh cache for the Lh resident matrix, and

blocksizes must be reduced.

Suppose that the Lh resident matrix is sh × th, and the Lh−1 resident

matrix is sh−1 × th−1. We will now discuss what matrices must fit into the Lh
cache, and the conditions on the blocksizes that this implies.

• At minimum, the Lh resident matrix and Lh guest matrix must fit into

the Lh cache. The Lh resident matrix is of size sh× th and the Lh guest

matrix is of size sh× sh−1 or th× sh−1. Thus, the blocksizes must satisfy

the condition shth+shsh−1 ≤ Sh in the first case, and shth+ thsh−1 ≤ Sh

in the second.

• If the Lh cache is inclusive, meaning that anything in the Lh−1 cache

must also be in the Lh cache, then the Lh−1 resident matrix must fit into

the Lh cache as well. In this case an additional th−1sh−1 elements must

fit into cache.

• If the Lh cache is inclusive and LRU, then in order for an element to

remain in the Lh cache, fewer than Sh elements may be accessed in

between accesses of the element that we desire to remain in cache. This

means that every matrix partition that is exposed by the Lh−1 outer

loop must fit into cache, so the blocksizes must satisfy the condition

shth + shsh−1 + thsh−1 ≤ Sh.

56

These conditions represent a tradeoff between optimizing for the Lh and Lh−1
caches. The larger the Lh−1 cache is, the more data must fit into the Lh cache,

and the smaller the blocksizes sh and th must be. If we make the simplifying

assumptions that sh = th, and that th−1 = sh−1 =
√
Sh−1, and then adjust sh

and th to account for the extra data that must be in cache, the I/O cost for the

Lh cache when optimizing for both the Lh and Lh−1 caches can be determined

by the ratio Sh/Sh−1.

For example, if the Lh is LRU and inclusive, then the Lh resident block

and the panels of the Lh streamed matrices that are exposed by each iteration

of the Lh−1 outer loop must fit into the Lh cache. Therefore s2h+2shth−1 ≤ Sh.

If we assume th−1 =
√
Sh−1, then this condition becomes s2h + 2sh

√
Sh−1 ≤ Sh.

Solving for sh in the case that attains the equality, we obtain sh = −
√
Sh−1 +

√
Sh−1 + Sh. In this case the I/O cost is 2mnk√

Sh+Sh−1−
√
Sh−1

. If we divide this

by the I/O lower bound, we obtain
√

1 + Sh−1

Sh
+
√

Sh−1

Sh
. This tells how many

times worse than the Lh I/O lower bound we have when applying our family of

algorithms to both the Lh and Lh−1 caches. Figure 5.3 plots this curve along

with the curve corresponding to the ideal case and the curve corresponding to

blocking only for the Lh−1 cache.

Sometimes, it is counterproductive or of limited value to optimize for

the Lh−1 cache if one is optimizing for the Lh cache. There are a few options

for this case.

1. The simplest option is to simply treat the Lh−1 cache as if it were smaller

than it is.

2. Another option is to tweak the blocksizes for the Lh−1 cache in a slightly

more sophisticated way, as the number of elements in cache that are

57

0.0 20.0 40.0 60.0 80.0 100.0120.0140.0
0.0

100.0

200.0

300.0

Lh−1 efficiency

L
h
effi

ci
en
cy

Efficiency for the Lh and Lh−1 caches for varying blocksizes

LRU Lh, optimizing for Lh and Lh−1.

Ideal Lh cache, optimizing for Lh and Lh−1.

Blocking only for Lh.
Blocking only for Lh−1.

Figure 5.4: An algorithm’s Lh−1 versus Lh efficiency in terms of flops per I/O.
Moving from left to right, the Lh−1 blocksizes increase, decreasing the I/O costs
associated with the Lh−1 streamed matrices. This causes the Lh blocksizes to
decrease, increasing the I/O costs associated with the Lh streamed matrices
and the Lh−1 resident matrix. In this plot, Sh is 2562, and Sh−1 is 1282.

not part of the resident matrix depends on sh−1 if the Lh cache is LRU.

Therefore, one can tweak the blocksizes so that sh−1 is smaller than th−1.

3. A third option is that instead of optimizing for the Lh−1 cache, one could

“skip” it and instead simultaneously optimize for the Lh and Lh−2 caches.

Tradeoffs are local. When examining the impact of blocking for Lh upon

the Lh−1 I/O cost we found that this adversely effected the Lh−1 I/O cost,

but blocking for further (bigger and slower) levels of cache did not. Similarly,

blocking for the Lh−1 cache adversely affects the Lh I/O cost but blocking for

58

further (smaller and faster) levels of cache does not. This is because the entire

Lh−2 subproblem fits within the data that must be in the Lh cache. These

two properties mean that tradeoffs are local. When trying to optimize for one

level of cache, one only has to consider the level of cache above it and the level

of cache below it.

Pareto optimal solutions. In Figure 5.4, we consider a pair of caches,

varying the Lh−1 cache sizes of an algorithm, and comparing its Lh efficiency to

its Lh−1 efficiency (where efficiency is as defined in Section 4.2.2). If we assume

that the resident matrices are square, and we only consider algorithms within

this family of algorithms, then this plot gives us Pareto optimal solutions to

the Lh and Lh−1 tradeoff problem. When trying to resolve multilevel cache

tradeoffs, this can be done for every pair of levels in the memory hierarchy.

5.3.3 Skipping caches

We have seen that tradeoffs occur when simultaneously optimizing for

the I/O cost of multiple levels of cache. Sometimes these tradeoffs are too

great, so instead of optimizing for both the Lh and Lh−1 cache, one may

forego the Lh−1 cache, and instead simultaneously optimize for Lh and Lh−2
I/O cost, where the Lh−1 cache is intermediate between Lh and Lh−2. We call

this skipping the Lh−1 cache.

When the Lh−1 cache is skipped, an optimal subproblem is encountered

at the Lh level and at the Lh−2 level, but not at the Lh−1 level, and there are

two loops targeting the Lh−2 cache, but none for the Lh−1 cache. Thus I/O

cost for the Lh−1 cache is not optimized in this case. However, this does not

mean that the Lh−1 is not useful. Recall that the Lh guest matrix is reused

59

during each iteration of the Lh−2 inner loop. With the right circumstances,

this Lh guest matrix may be instead reused in the Lh−1 cache, if that level of

cache is skipped.

The Lh guest matrix will have on the order of
√
ShSh−2 elements, and

so reusing the Lh guest matrix in the Lh−1 cache may be appropriate if Sh−1
is on the order of

√
ShSh−2. The exact blocksizes enabling the use of the Lh

guest matrix in the Lh−1 cache depend on the nature of the Lh−1 cache. We

will now analyze the blocksizes, assuming that sh = th =
√
Sh, and th−1 =

sh−1 =
√
Sh−2

• In idealized circumstances, only the Lh guest matrix should need to be

in the Lh−1 cache. In this case, the condition
√
ShSh−2 ≤ Sh−1 must be

satisfied.

• If the Lh−1 cache is LRU, then a panel of the Lh resident matrix must

also fit into the Lh−1 cache. In this case, the condition 2
√
ShSh−2 ≤ Sh−1

must be satisfied.

• If the Lh−1 cache is inclusive, then the Lh−2 resident block must also fit

into the Lh−1 cache. If it is inclusive and LRU, the condition 2
√
ShSh−2+

Sh−2 ≤ Sh−1 must be satisfied.

While this scheme uses the Lh−1 cache, it does not optimize for it. The Lh
guest matrix is reused from the Lh−1 cache, but its dimensions are no where

close to square, so its blocksizes do not balance the I/O costs of loading the

other two operands into the Lh−1 cache. Furthermore, if the Lh−1 cache is

LRU, then it occupies at most half of the Lh−1 cache, so blocksizes must be

much smaller than optimal. For these reasons, this skipping of the Lh−1 cache,

60

but still using it, does not satisfy the properties of an optimal subproblem, and

furthermore we do not call it the Lh−1 resident matrix.

We have seen that sometimes it is inadvisable to optimize for every

level of cache, but that sometimes it is possible to still use a level of cache

without optimizing the I/O cost for that cache. Doing so has some notable

side effects.

• It is particularly favorable to place the Lh guest matrix in the Lh−1 cache

when the Lh cache is exclusive. Exclusive caches do not contain any data

that is contained in smaller faster levels of the memory hierarchy. In this

case the Lh guest matrix does not take up space in the Lh cache, so the

Lh resident matrix can be increased in size, reducing the Lh I/O cost.

• The Lh guest panel, and one panel of the Lh resident matrix will be

streamed through the Lh−2 cache. Elements of the Lh guest panel will

be less expensive to access since they will be in the Lh−1 cache. One

must take this asymmetry into account when choosing blocksizes for the

Lh−2 cache, as in Section 4.2.3.

• It is possible that one may wish to skip the biggest and slowest level of

cache, but still use it. In this case, one may introduce a single outermost

loop in order to constrain the size of a panel that can fit into the last level

of cache. We characterize Goto’s Algorithm as fitting into this family

of algorithms, where there are two loops optimizing for the number of

L2 cache misses, and two loops optimizing for the number of loads into

registers. The L1 cache is skipped, and an outermost loop is added to

use but not optimize for the L3 cache. Since A is the resident matrix

of the L2 cache, and C is the resident matrix of the registers, the name

61

of Goto’s Algorithm according to the naming convention proposed in

Section 5.2.3 is A2C0.

5.4 Experiments
5.4.1 Experimental setup

In this section, we will evaluate the algorithms that can be created by

our methodology. We will do so by performing experiments on architectures

with a varying number of levels of cache. In many practical circumstances,

Goto’s Algorithm attains excellent performance [79] that is difficult to ex-

ceed, despite the fact that it does not attain close to the I/O lower bound on

machines with an L3 cache. Therefore, in order to evaluate the I/O cost of dif-

ferent algorithms, we will vary the cost of accessing main memory. This allows

us to demonstrate that as reading and writing to main memory become more

expensive, algorithms that optimize for the L3 cache become more efficient

relative to those that do not.

In all of our experiments, we perform MMM in double precision. We

are interested in scenarios where I/O is important, and double precision MMM

requires the most bandwidth of the four common data types (single precision,

complex, double precision, and double complex). We are not aware of this ob-

servation being in the literature, and so we present an analysis in Appendix C.

We created the Multilevel Optimized Matrix-matrix Multiplication Sand-

box (MOMMS) in order to implement the algorithms for this paper. MOMMS

implements algorithms for MMM by composing building blocks like matrix

partitioning, packing, and parallelization at compile time. MOMMS is writ-

ten in Rust [59]. Rust is a modern systems programming language focusing on

memory safety; in safe Rust, there are no null or dangling pointers and there

62

Component Machine 1 Machine 2
CPU Intel i7-7700K Intel i7-5775C

Memory 2x8GB DDR4-3200 2x8GB DDR3-2400
Motherboard Chipset Intel Z270 Intel Z97

Table 5.1: Machines used in experiments in this paper.

are no data races. Most of this safety is enforced at compile-time through

Rust’s borrow checker. In Rust, memory is freed when it goes out of scope, so

there is no garbage collector. From Rust, one can call C functions with very

low overhead. For low-level kernels, MOMMS calls the BLIS micro-kernel.

Memory safety, lack of garbage collection, zero cost abstractions, and easy

low-overhead interface to C make Rust an appealing choice for high perfor-

mance computing applications.

In our experiments, we compare against the BLAS [26] libraries ATLAS,

BLIS, and Intel’s Math Kernel Library (MKL). We used the 2017 release 2 of

MKL, version 0.2.1 of BLIS, and 3.10.3 of ATLAS in our experiments.

Experimental platforms. We built two machines for our experiments. Rel-

evant components are shown in Table 5.1. We will refer to these machines by

their processor names. We chose the Z270 and Z97 chipset motherboards

because these are enthusiast motherboards for consumers interested in over-

clocking, and so they provide the ability to change the memory multiplier. The

i7-7700K machine is a 4-core Intel Kaby Lake machine with a 64KB L1 cache,

a 256KB L2 cache, and a 6MB L3 cache. We chose this because it is a recent

readily available Intel processor with an L3 cache. The i7-5775C is a 4-core

Intel Broadwell machine. It also has a 64KB L1 cache, a 256KB L2 cache, and

a 6MB L3 cache. More importantly it has 128MB of eDRAM, functioning as

63

an L4 cache.

On both machines, all experiments were performed with hyperthreading

disabled. A userspace CPU governor was used to set the CPUs to the nominal

CPU frequency: 4.2 GHz for the i7-7700K, and 3.3 GHz for the i7-5775C.

Varying Bandwidth. The bandwidth to main memory can be determined

by the product of the number of memory channels, the base clock rate, the

number of bytes per transfer, and the memory multiplier. With DDR RAM,

this is doubled since it transfers on both the leading and trailing edges of the

clock signal. For our experiments we wish to increase the ratio of the rate

of I/O to the rate of computation. Decreasing the base clock rate decreases

both the rate of computation and the rate of I/O, but reducing the memory

multiplier and the number of memory channels decreases the rate of I/O with-

out changing the rate of computation, and they can be changed by tweaking

a computer’s BIOS settings.

5.4.2 Optimizing for the L3 cache

In this section, we will describe an algorithm that optimizes for both the

L3 and L2 cache. We have implemented this algorithm using MOMMS, and

will compare this algorithm to our implementation Goto’s Algorithm (using

MOMMS), and to vendor and state-of-the-art open source BLAS [26] imple-

mentations. Figure 5.5 compares Goto’s Algorithm with our algorithm opti-

mizing for the I/O cost of the L3 and L2 caches. We call our algorithm B3A2C0,

because B is the resident matrix of the L3 cache, and A is the resident matrix

of the L2 cache.

We now describe the B3A2C0 algorithm as implemented for the i7-

64

B3A2C0 Algorithm Goto’s Algorithm

+=

+=

+=

+=

+=

Partition n with blocksize 768

Partition k with blocksize 768

Partition m with blocksize 120

Partition k with blocksize 192

Inner kernel

+=

+=

+=

+=

Partition n with blocksize 3000

Partition k with blocksize 192

Partition m with blocksize 120

Inner kernel

Block is reused in L3 cache.

Block is reused in L2 cache.

Figure 5.5: Two algorithms for MMM. Left: B3A2C0. Right: Goto’s Algo-
rithm.

65

7700K and illustrated in Figure 5.5. First, we partition for the L3 cache. The

L3 outer loop partitions the matrices in the n dimension with blocksize 768.

Then the L3 inner loop partitions in the k dimension, also with blocksize 768.

This reveals a 768× 768 block of B that will be the resident matrix of the L3

cache. Next, we partition for the L2 cache. Since B is the L3 resident matrix,

the L2 outer loop must be in the m dimension, and it is with blocksize 120.

The L2 inner loop then partitions the k dimension with blocksize 192, making

a block of A resident in the L2 cache, and a 120 × 768 panel of C the guest

matrix of the L3 cache. We skip the L1 cache, since it is a quarter the size

of the L2 cache, and therefore it is not beneficial to optimize for both the L2

and L1. The next two loops make a 4 × 12 block of C the resident matrix of

registers, and a 192 × 12 panel of B the guest matrix of the L2 cache. Since

we skipped the L1 cache, the 192 × 12 panel of B can reside in the L1 cache

as it is appropriately sized. Finally, we call a 4× 12 micro-kernel provided by

BLIS [80].

We compare against Goto’s Algorithm with similar blocksizes as fol-

lows: nc is 3000, kc is 192, mc is 120, mr is 4, and nr is 12. Our implementation

of Goto’s Algorithm uses the same micro-kernel from BLIS as does B3A2C0.

For both algorithms, we parallelize the second loop around the micro-kernel

with 4 threads. The effect of this is to quadruple the bandwidth requirements

of our algorithms.

Rooflines. In Figure 5.6, we show the roofline model [83] for the i7-7700K

machine for the case of one channel of DDR4-800 RAM, and for the case of

two channels of DDR4-3200 RAM.

The roofline model gives an upper bound on performance based on the

66

1 2 4 8 16 32 64 128 256 512
1

10

100

flops per byte

G
F
LO

P
S

Dual channel DDR 3200 RAM

1 2 4 8 16 32 64 128 256 512
1

10

100

flops per byte

G
F
LO

P
S

Single channel DDR 800 RAM

Roofline
MOMMS Goto
MOMMS B3A2C0

Figure 5.6: Roofline models for an Intel i7-7700K at 4.2GHz with 4 cores
under two bandwidth conditions. For algorithms displayed on the plots, the
y-axis is measured and the x-axis is theoretical. Bottom: Two channels of
DDR4 is set to DDR-3200, for a peak bandwidth of 51200 MB/s. Top: One
channel of DDR4 is set to DDR-800, for a peak bandwidth of 6400 MB/s.

67

arithmetic intensity of an algorithm for a specific machine. The machine is

characterized by its rate of computation, and the rate at which it can trans-

fer data between main memory and cache. The arithmetic intensity of an

algorithm is the number of flops per byte transferred between memory and

cache during the execution of that algorithm. When the arithmetic intensity

is low it is bandwidth bound, and when the arithmetic intensity is high it is

compute bound. The roofline model is thus a plot where the x-axis is the

arithmetic intensity and the y-axis is maximum rate of computation for that

arithmetic intensity. The roofline that serves as an upper bound on perfor-

mance is formed by two linear curves that intersect when the minimum time

spent for computation for an algorithm is equal to the minimum time spent for

I/O. Algorithms are plotted on the roofline model according to their arithmetic

intensity and measured performance as a way to explain their performance and

to explain whether or not they could perform better. One can either measure

the arithmetic intensity of an algorithm or analyze it. We choose to analyze

the arithmetic intensity of the algorithms plotted.

The arithmetic intensities are determined by summing the theoretical

I/O cost of each matrix, and dividing by the number of flops. The cost of

reading and writing C to and from main memory is 2mnk
kc

, the cost of loading

A from main memory is mnk
nc

, and the cost of loading B from main memory

is mnk
m

. When the matrices are large, this gives an efficiency of
(

1
kc

+ 1
2nc

)−1
flops per element. For our implementation, this is 23.26 flops per byte. For

B3A2C0, with a 768× 768 block of B in the L3 cache, the cost of reading and

writing of C to and from main memory is 2mnk
768

, the cost of reading A from

main memory is mnk
768

, and the cost of reading B from main memory is mnk
m

.

This gives an I/O cost of 3mnk
768

+ nk, and there are 2mnk flops. When the

68

matrices are large, this gives an efficiency of 2∗768
3

flops per element or 64 flops

per byte.

These cases represent the minimum and the maximum memory band-

width that we can practically configure the machine for. We plot the modeled

efficiency of Goto’s Algorithm and the algorithm B3A2C0 against each algo-

rithm’s measured performance. In the DDR4-3200 case, either algorithm could

achieve the computation peak of the machine, but for the DDR4-800 case, only

B3A2C0 would be able to.

Varying Bandwidth. In Figure 5.7, we compare the achieved performance

of Goto’s Algorithm and B3A2C0 for square matrices, varying the amount of

bandwidth to main memory. Packing is often used to achieve spatial locality

during an algorithm. Otherwise blocks that are designed to reside in cache

may not be able to due to cache conflict issues [45]. Packing incurs extra

memory movements that are not fundamentally required to happen during

MMM. Therefore, we sidestep the spatial locality issue by storing matrices in a

friendly format for our algorithms such that every time a matrix is partitioned,

the blocks are stored contiguously.

At low bandwidth, B3A2C0 outperforms Goto’s Algorithm by thirty to

forty percent. As the amount of bandwidth increases, I/O cost to and from

main memory becomes less important, and the gap decreases and eventually

disappears. With two channels of DDR4-3200, Goto’s Algorithm slightly out-

performs B3A2C0. This is expected because B3A2C0 has an additional loop

as compared to Goto’s Algorithm. It is simply more complicated and should

therefore be slower when I/O is not an issue.

69

0 1000 2000 3000 4000
0

100

200

m = n = k

G
F
LO

P
S

1 channel of DDR4-800

0 1000 2000 3000 4000
0

100

200

m = n = k

1 channel of DDR4-1200

0 1000 2000 3000 4000
0

100

200

m = n = k

G
F
LO

P
S

1 channel of DDR4-1600

0 1000 2000 3000 4000
0

100

200

m = n = k

2 channels of DDR4-3200

MOMMS Goto
MOMMS B3A2C0

Figure 5.7: Performance of matrix-matrix multiplication on an Intel i7-7700K
for square matrices, varying problem size and available bandwidth. Matrices
are stored prepacked.

70

0 1000 2000 3000 4000
0

100

200

m = n = k

G
F
LO

P
S

1 channel of DDR4-800

0 1000 2000 3000 4000
0

100

200

m = n = k

2 channels of DDR4-3200

MOMMS Goto
MOMMS B3A2C0

MOMMS C3A2C0

BLIS
MKL
ATLAS

Figure 5.8: Practical comparision of performance against state-of-the-art
open source and vendor libraries, for both high and low bandwidth scenarios.
Matrices are passed in as column-major matrices, so packing is performed.

Comparing with existing implementations. In Figure 5.8, we compare

our implementations of Goto’s Algorithm and B3A2C0 against the dgemm

routines in MKL and BLIS. It would not be fair to compare against imple-

mentations of MMM if we did not need to pack, so for this experiment, input

matrices are stored in column major order, and our implementations of Goto’s

Algorithm and B3A2C0 pack matrices the first time they become the resident

or guest matrix at some level of cache. This packing (and the fact that C is

not stored hierarchically for Goto’s Algorithm) account for the performance

difference seen for the Goto and B3A2C0 curves between Figures 5.7 and 5.8.

In this graph, we see that for high bandwidth scenarios, BLIS, the MOMMS

implementation of Goto’s Algorithm, and B3A2C0 all attain roughly 75% of

peak, and that MKL greatly outperforms the other implementations. MKL is

the gold standard vendor implementation of MMM, and typically boasts the

highest performance on any Intel CPU. For low bandwidth, C3A2C0 performs

71

the best, with B3A2C0 close behind. ATLAS performs almost as well as the

algorithms implemented in MOMMS that optimize for the L3 I/O cost (al-

though its performance ramps up slowly), but it does not perform nearly as

well for the high bandwidth case.

This experiment demonstrates that state-of-the-art implementations of

MMM do not optimize for the L3 cache. When bandwidth to main memory

is slow, these implementations are suboptimal. Although it greatly outper-

forms the others, performance even for B3A2C0 and C3A2C0 is quite low when

there is little bandwidth to main memory. The Intel i7-7700K’s L3 cache is

only 6MB, whereas L3 caches on many server CPUs are much larger, suggest-

ing that greater performance is possible for low bandwidth scenarios on such

architectures.

5.4.3 Optimizing for the L4 cache

In this section, we demonstrate that our methodology can be efficiently

applied to the Intel i7-5775C, which has four levels of cache. The L4 cache is

128MB of eDRAM.

We implemented an algorithm called C4A2C0 for this architecture. Fig-

ure 5.9 shows the loop ordering and the blocksizes used for C4A2C0. In C4A2C0,

a 3600× 3600 block of C resides in the L4 cache, and a 120× 192 block of A

resides in the L2 cache. We decided to skip blocking for the L3 cache, as there

is sufficient bandwidth from the L4 cache without optimizing for the number of

L3 cache misses. Nevertheless, the guest matrix of the L4 cache, a 192× 3600

panel of B, is appropriately sized to remain in the L3. C4A2C0 uses the same

inner kernel as B3A2C0.

In Figure 5.10, we compare the performance of Goto’s Algorithm and

72

C4A2C0 Algorithm

+=

+=

+=

+=

+=

Partition m dimension with blocksize 3600

Partition n dimension with blocksize 3600

Partition k dimension with blocksize 192

Partition m dimension with blocksize 120

Inner kernel

Block is reused in L4 cache.

Block is reused in L3 cache.

Block is reused in L2 cache.

Figure 5.9: An algorithm for MMM optimizing the number of inputs to both
the L4 and the L2 caches. It places a square block of C in the L4 cache,
and a square block of A in the L2 cache. The L3 cache is “skipped”, but the
blocksizes are such that the L4 guest matrix, B, is reused from the L3 cache.

73

0
50

00

10
00

0

15
00

0
0

50

100

150

200

m = n = k

G
F
LO

P
S

1 channel of DDR3-800

0
50

00

10
00

0

15
00

0
0

50

100

150

200

m = n = k

1 channel of DDR3-1066

0
50

00

10
00

0

15
00

0
0

50

100

150

200

m = n = k

G
F
LO

P
S

1 channel of DDR3-1333

0
50

00

10
00

0

15
00

0
0

50

100

150

200

m = n = k

2 channels of DDR3-2400

MOMMS Goto
MOMMS C4A2C0

Figure 5.10: Performance of matrix-matrix multiplication for square matrices,
varying problem size and available bandwidth. Matrices are stored prepacked.

74

0
50

00

10
00

0

15
00

0
0

50

100

150

200

m = n = k

G
F
LO

P
S

1 channel of DDR-800

0
50

00

10
00

0

15
00

0
0

50

100

150

200

m = n = k

2 channels of DDR3-2400

MOMMS Goto
MOMMS C4A2C0

BLIS
MKL

Figure 5.11: Matrix-matrix multiplication performance on an Intel i7-5775C
with an 128MB L4 cache for a low bandwidth scenario (1 channel of DDR3-
800) and a high bandwidth scenario (2 channels of DDR3-2400).

C4A2C0 for square matrices across several bandwidths. In this experiment,

matrices are stored hierarchically, and so packing is not performed. For high

bandwidths, Goto’s Algorithm and C4A2C0 exhibit similar performance, but

when bandwidth is low, C4A2C0 outperforms Goto’s Algorithm.

In Figure 5.11, we compare the performance on square matrices of our

implementations of Goto’s Algorithm and C4A2C0, with Intel MKL and BLIS.

In this experiment, matrices are stored in column-major order, and so packing

is performed when partitions of A and B become resident or guest matrices of

some level of cache. In C4A2C0, C is unpacked when is no longer resident in L4.

In both Figures 5.10 and 5.11, the top of the graphs is the peak computational

rate of the machine.

Because the L4 cache is so large, we ran quite large problems, otherwise

75

the matrices would completely fit into cache. Performance for Goto’s Algo-

rithm and MKL do not fall off until the problem size becomes m = n = k ≈

5000. From these graphs, we can see that Goto’s Algorithm does not optimally

use the L4 cache, and neither does MKL.

BLIS’s performance does not fall off as severely as for the other im-

pementations when the problem size grows, however its performance overall

is not as high. The algorithmic differences between BLIS and the MOMMS

implemenation of Goto’s Algorithm are parallelism and blocksizes. BLIS uses

a larger kc and smaller mc than MOMMS and parallelizes the 2nd and 3rd

loops around the micro-kernel, whereas MOMMS parallelizes the 2nd loop

around the micro-kernel. Modifying either the parallelism or the blocksizes

so that they match that of the MOMMS implementation of Goto’s Algorithm

adversely affects performance for the low bandwidth case, causing a noticeable

dropoff for larger matrices. We can only conclude that somehow the way that

data is shared by the threads within BLIS, coupled with the larger value of

kc within BLIS, (or the smaller mc) fosters better reuse of data within the L4

cache. This is a reminder that it is possible for an algorithm to have better

data reuse than was designed.

With DDR-800, all implementations of MMM on the i7-5775C out-

perform those on the i7-7700K, despite the fact that the processor is two

generations older. The large L4 cache means that blocksizes for the C4A2C0

algorithm can be very large, so the algorithm does not need much bandwidth

from main memory, but even for algorithms that do not take advantage of

the L4 cache by using such large blocksizes benefit from having the 128MB

cache. This is because the large amount of cache space facilitates the hiding

of latency to main memory, through techniques such as hardware prefetching.

76

5.4.4 Algorithms for different shapes of matrices

We will now compare different algorithms for different shapes of MMM.

Algorithm A3B2C0 partitions the matrices such that a square block of A is

resident in the L3 and a block of B is resident in the L2 cache. It then calls

an inner kernel updating a panel of C whose elements are in the L3 cache by

multiplying a block of A whose elements are in the L2 cache times a panel of B

whose elements are in the L3 cache. Algorithm C3A2C0 partitions the matrices

such that a square block of C is resident in the L3 and a block of A is resident

in the L2 cache. It then calls the same inner kernel as the algorithm B3A2C0

does. Blocksizes and loop orderings for algorithms A3B2C0 and C3A2C0 are

shown in Figure 5.12.

Algorithms A3B2C0, B3A2C0, and C3A2C0 represent three choices for

blocking for the L3 cache. In Section 4.2.2, we argued that each of these choices

may be optimal for a specific problem shape where two dimensions are equal

to
√
S3 and the other dimension is large, and that using the wrong algorithm

with the wrong problem shape can result in an I/O cost that is 50% greater.

On a machine with three levels of cache and low bandwidth, we claim

the following: A3B2C0 casts its computation in terms of a block-panel multiply,

with a block of A in the L3 cache, and so it should be the best choice of the

three algorithms when m = k ≈
√
S3, and n is large. Similarly, B3A2C0 casts

its computation in terms of a panel-block multiply, with a block of B in the

L3 cache, and so it should be the best choice of the three algorithms when

n = k ≈
√
S3, and m is large. Finally, C3A2C0 casts its computation in terms

of a block dot product multiply, with a block of C in the L3 cache, and so it

should be the best choice of the three algorithms when m = n ≈
√
S3, and k

is large.

77

A3B2C0 Algorithm C3A2C0 Algorithm

+=

+=

+=

+=

+=

Partition m with blocksize 768

Partition k with blocksize 768

Partition n with blocksize 120

Partition k with blocksize 192

Inner kernel

+=

+=

+=

+=

+=

Partition n dimension with blocksize 624

Partition m dimension with blocksize 624

Partition k dimension with blocksize 156

Partition m dimension with blocksize 156

Inner kernel

Block is reused in L3 cache.

Block is reused in L2 cache.

Figure 5.12: Two algorithms for MMM for three levels of cache. Left: A3B2C0.
Right: C3A2C0.

78

0 1000 2000 3000 4000
0

100

200

m

G
F
LO

P
S

n = k = 600

0 1000 2000 3000 4000
0

100

200

k = n

m = 600

0 1000 2000 3000 4000
0

100

200

n

G
F
LO

P
S

m = k = 600

0 1000 2000 3000 4000
0

100

200

m = k

n = 600

0 1000 2000 3000 4000
0

100

200

k

G
F
LO

P
S

m = n = 600

0 1000 2000 3000 4000
0

100

200

m = n

k = 600

0 1000 2000 3000 4000
0

100

200

m = n = k

Square

MOMMS Goto
MOMMS A3B2C0

MOMMS B3A2C0

MOMMS C3A2C0

Figure 5.13: Matrix-matrix multiplication performance for different problem
shapes on an Intel i7-7700K under a low-bandwidth scenario (1 channel of
DDR4-800).

79

In Figure 5.13, we show performance results for MMM using A3B2C0,

B3A2C0, C3A2C0, and Goto’s Algorithm, with matrices stored hierarchically

and no packing. We vary the shape of the matrices. In each case, two of the

dimensions are set to 768, and one of the dimensions is varied along the x-

axis. The experiment performed on the Intel i7-7700K machine, with the DDR

speed set to DDR4-800. When the dimension that is allowed to vary is large,

the predicted algorithm outperforms the others. We also show performance

when the matrices are square, and the size varies along the x-axis. For our

algorithms that optimize for the L3 cache, there is very little performance

difference between the square case and the case where an algorithm is the

“correct” choice. This shows that to get the best I/O properties when executing

MMM for large matrices, it should be sufficient for an application to have two

dimensions approximately equal to the the size of the square root of the last

level of cache.

The algorithms A3B2C0, B3A2C0, and C3A2C0 outperform Goto’s Algo-

rithm for larger problem sizes in this low bandwidth scenario. This is because

even when the algorithm is wrong for the problem shape, the I/O cost is only

50% higher. In comparison, on this machine, Goto’s Algorithm has an I/O

cost that is approximately two times higher than the “correct” algorithm.

5.5 Summary

In this chapter, we have developed a new family of algorithms for simul-

taneously optimizing the I/O cost of MMM at multiple levels of the memory

hierarchy. In Chapter 4, we analyzed the problem shapes that naturally arise

from algorithms that attain the theoretical I/O lower bounds for MMM for a

single level of cache that [68], and we named these shapes optimal subprob-

80

lems. We then showed how one can use two loops at each level of the memory

hierarchy in order to encounter an optimal subproblem at each level of cache.

We analyzed the tradeoffs that occur when doing so, showing that one may not

want to optimize for every level of cache. Finally we quantified the effective-

ness of our family of algorithms by demonstrating performance improvements

over state-of-the-art implementations of MMM when I/O cost to main mem-

ory is a limiting factor. While we only described algorithms for general MMM,

we believe that the same techniques can be applied to cases where matrices

have structure, for example when some matrices are triangular or symmetric.

In this chapter, we often focused on potential performance benefits

of these algorithms, and in our experiments, we demonstrated differences in

I/O costs by examining performance differences. However, even when two

algorithms exhibit the same performance, we believe that the one with lower

I/O cost is inherently better. This is because memory movements cost far

more energy than flops do [66], so all things being equal, an algorithm that

moves less data around will cost less money to execute and be better for the

environment.

Many algorithms in libraries such as LAPACK [5] or libflame [39] take

advantage of the fact that MMM implementations in BLAS libraries are ef-

ficient when the k dimension is relatively small, on the order of a couple of

hundred, as Goto’s Algorithm reaches its maximal efficiency when k is equal

to the blocksize kc. We expect future machines to be bandwidth bound when

executing MMM in such situations, and algorithms for MMM that have larger

blocksizes will be used. To take advantage of algorithms that use larger block-

sizes, LAPACK and FLAME can use larger blocksizes, however this is currently

disadvantageous because the larger their blocksizes, the more time is spent

81

during inefficient unblocked subproblems. According to this line of thought,

LAPACK and FLAME will need to use different algorithms that eliminate this

weakness. One possible solution is to use recursive algorithms, as advocated

in Peise and Bientinesi [62].

This chapter uses I/O lower bounds to make arguments about algo-

rithms targeting hierarchical memory. A great deal of previous work uses I/O

lower bounds to make arguments for algorithms targeting distributed memory

instead [49, 70, 65, 8]. In this dissertation, and in the so-called 2.5D or 3D

algorithms for MMM, the goal is to fill fast memory with one operand, and

stream the other operands from slow memory. The difference is that for dis-

tributed memory systems, there is not enough data to fill local memory with

one operand because data is distributed. To solve this, data can be duplicated

between processors, allowing local memories to be filled with copies of data.

Because of this duplication of data and because of limitations of the proof

technique used in [68], the 2mnk√
S

lower bound is not known to apply to these

2.5D or 3D algorithms. Despite this, it would be interesting to compare the

2.5D and 3D algorithms to the 2mnk√
S

lower bound, and future work is to com-

pare and contrast those algorithms for distributed MMM to the algorithms for

hierarchical MMM in this chapter.

Hard drives and other similarly slow storage devices can be thought

of as another layer of the memory hierarchy. Because of this, we believe that

out-of-core algorithms for matrix-matrix multiplication can be considered part

of this family of algorithms. A major difference between such out-of-core

algorithms and the ones in this chapter targeting LRU caches is that out-

of-core algorithms may require explicit reads and writes to disk and explicit

overlapping of I/O and computation.

82

We believe that the algorithms in this chapter can be easily general-

ized to other dense linear algebra operations, much in the way that Goto’s

Algorithm [35] was generalized to the rest of the Level-3 BLAS [36]. The key

point is that most suboperations during the other level 3 BLAS operations

(that operate on structured matrices) are just regular, unstructured MMM

operations.

83

Chapter 6

Cache Aware Multithreaded Parallelization

6.1 Introduction

When parallelizing MMM, one should keep in mind how hardware re-

sources are shared between threads and use that to guide how data should be

shared between threads. We will now provide a brief example that illustrates

that if the goal is to minimize the I/O cost for MMM, one should to paral-

lelize in a cache-aware fashion. Suppose that there is a machine N threads,

and the N threads share a fast memory of size S. If one parallelizes such

that each thread works on completely independent data, and the cache is split

equally between the threads, then each thread has its own fast memory of

size S/N . In this scheme, an algorithm for MMM has an I/O cost of at least
2mnk√
S/N

= 2mnk
√
N√

S
. If we were instead to parallelize such that all the threads

work with the same resident block at the same time, then we could perhaps

we could parallelize such that the parallel MMM algorithm still attains the

I/O lower bound of 2mnk√
S
.

The goal of this chapter is how to implement shared-memory parallel

MMM when accounting for the fact that on different computer architectures,

different levels of cache may be shared by threads. We do so by first in-

vestigating the properties of parallelizing the different loops within the BLIS

implementation of Goto’s Algorithm (in Section 6.2). Sections 6.3 and 6.4

form a case study detailing which of these loops to parallelize for the the IBM

84

Blue Gene/Q PowerPC A2 (BGQ), and the Intel Xeon Phi Knight’s Corner

(KNC) architectures. In Section 6.5 we take the insights from parallelizing

Goto’s Algorithm and apply them to the family of algorithms introduced in

Chapter 5.

The text and figures from this chapter are taken in part from [67].

6.2 Parallelization of loops within Goto’s Algorithm

We will now break down the properties of the loops within the BLIS

implementation of Goto’s Algorithm, applying the ideas of how to parallelize

the family of algorithms from Chapter 5. In the original GotoBLAS implemen-

tation, the inner kernel is the basic unit of computation. Parallelization is not

incorporated within it, and it would not be feasible to do so since it is typically

implemented in assembly. The BLIS framework exposes two loops within that

inner kernel that are implemented in C, and casts computation in terms of a

smaller basic unit of computation, the micro-kernel. This smaller basic unit of

computation exposes two new loops for which it is feasible to parallelize. The

loops that we consider parallelizing within BLIS are shown in Figure 6.1, an

illustration of Goto’s Algorithm within BLIS with the loops labeled is shown

in Figure 6.3, and a diagram showing which layer of the memory hierarchy

that different matrix partitions reside in is shown in Figure 6.2.

6.2.1 The first loop around the micro-kernel

First consider Loop 1 in Figure 6.1, illustrated in Figure 6.4. If one

parallelizes the first loop around the micro-kernel (indexed by ir), different

instances of the micro-kernel are assigned to different threads. Our objective

is to optimally use fast memory resources. In this case, the different threads

85

Loop 5 for jc = 0, . . . , n− 1 in steps of nc, Jc = jc : jc + nc − 1
Loop 4 for pc = 0, . . . , k − 1 in steps of kc, Pc = pc : pc + kc − 1

B(Pc,Jc) → Bc // Pack into Bc

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc, Ic = ic : ic +mc − 1
A(Ic,Pc) → Ac // Pack into Ac

Loop 2 for jr = 0, . . . , nc − 1 in steps of nr, Jr = jr : jr + nr − 1
Loop 1 for ir = 0, . . . ,mc − 1 in steps of mr, Ir = ir : ir +mr − 1
Loop 0 for kr = 0, . . . , kc − 1 // Micro-kernel

Cc(Ir,Jr) += Ac(Ir, kr) Bc(kr,Jr)
endfor

endfor
endfor

endfor
endfor

endfor

Figure 6.1: Loops implementing Goto’s Algorithm in BLIS.

Main Memory

L3 cache

L2 cache

+=

L1 cache

registers

jc jc

ic ic

pc

pc

jr

jr

ir

ir

Figure 6.2: Illustration of which parts of the memory hierarchy each block of
A and B reside in during the execution of the micro-kernel with BLIS.

86

+=

+=

+=

+=

+=

+=

Partition n with blocksize nc (jc loop)

Partition k with blocksize kc (pc loop)

Partition m with blocksize mc (ic loop)

Partition n with blocksize nr (jr loop)

Partition m with blocksize mr (ir loop)

Micro-kernel

P
ack

B̃

P
ack

Ã

Block is reused in L3 cache.

Block is reused in L2 cache.

Block is reused in L1 cache.

Block is reused in registers.

Figure 6.3: Diagram of Goto’s Algorithm implemented in BLIS.

87

+= ir +=

Figure 6.4: Left: the micro-kernel. Right: the first loop around the micro-
kernel.

share the same micro-panel of B̃, which resides in the L1 cache.

Regardless of the size of the matrices on which we operate, this loop

has a fixed number of iterations, dmc

mr
e, since it loops over mc in steps of mr.

Thus, the amount of parallelism that can be extracted from this loop is quite

limited. Additionally, a micro-panel of B̃ is brought from the L3 cache into the

L1 cache and then used during each iteration of this loop. When parallelized,

less time is spent in this loop and thus the cost of bringing that micro-panel of

B̃ into the L1 cache is amortized over less computation. The cost of bringing B̃

into the L1 cache may be overlapped by computation, so it may be completely

or partially hidden. In this case, there is a minimum amount of computation

required to hide the cost of bringing B̃ into the L1 cache. Thus, parallelizing

is acceptable only when this loop has a large number of iterations. These two

factors mean that this loop should be parallelized only when the ratio of mc

to mr is large. Unfortunately, this is not usually the case, as mc is usually on

the order of a few hundred elements.

6.2.2 The second loop around the micro-kernel

Now consider Loop 2 in Figure 6.1, illustrated in Figure 6.5. If one

parallelizes the second loop around the micro-kernel (indexed by jr), each

thread will be assigned a different micro-panel of B̃, which resides in the L1

88

+=

jr jr

Figure 6.5: The second loop around the micro-kernel.

cache, and they will all share the same block of Ã, which resides in the L2 cache.

Then, each thread will multiply the block of Ã with its own micro-panel of B̃.

Similar to the first loop around the micro-kernel, this loop has a fixed

number of iterations, as it iterates over nc in steps of nr. The time spent in

this loop amortizes the cost of packing the block of Ã from main memory into

the L2 cache. Thus, for similar reasons as the first loop around the micro-

kernel, this loop should be parallelized only if the ratio of nc to nr is large.

Fortunately, this is almost always the case, as nc is typically on the order of

several thousand elements.

Consider the case where this loop is parallelized and each thread shares

a single L2 cache. Here, one block Ã will be moved into the L2 cache, and

there will be several micro-panels of B̃ which also require space in the cache.

Thus, it is possible that either Ã or the micro-panels of B̃ will have to be

resized so that all fit into the cache simultaneously. However, micro-panels of

B̃ are small compared to the size of the L2 cache, so this will likely not be an

issue.

Now consider the case where the L2 cache is not shared, and this loop

over nc is parallelized. Each thread will pack part of Ã, and then use the entire

block of Ã for its local computation. In the serial case of gemm, the process

of packing of Ã moves it into a single L2 cache. In contrast, parallelizing this

89

loop results in various parts of Ã being placed into different L2 caches. This

is due to the fact that the packing of Ã is parallelized. Within the parallelized

packing routine, each thread will pack a different part of Ã, and so that part

of Ã will end up in that thread’s private L2 cache. A cache coherency protocol

must then be relied upon to guarantee that the pieces of Ã are duplicated

across the L2 caches, as needed. This occurs during the execution of the

microkernel and may be overlapped with computation. Because this results in

extra memory movements and relies on cache coherency, this may or may not

be desireable depending on the cost of duplication among the caches. If the

architecture does not provide cache coherency, the duplication of the pieces of

Ã must be done manually.

6.2.3 The third loop around the inner-kernel

+= ic ic

Figure 6.6: The third loop around the micro-kernel (first loop around Goto’s
inner kernel).

Next consider Loop 3 in Figure 6.1, illustrated in Figure 6.6. If one

parallelizes this first loop around what we call the macro-kernel (indexed by

ic), which corresponds to Goto’s inner kernel, each thread will be assigned a

different block of Ã, which resides in the L2 cache, and they will all share

the same row panel of B̃, which resides in the L3 cache or main memory.

Subsequently, each thread will multiply its own block of Ã with the shared

90

row panel of B̃.

Unlike the inner-most two loops around the micro-kernel, the number

of iterations of this loop is not limited by the blocking sizes; rather, the number

of iterations of this loop depends on the size of m. When m is less than the

product of mc and the degree of parallelization of the loop, blocks of Ã will be

smaller than optimal and performance will suffer.

Now consider the case where there is a single, shared L2 cache. If this

loop is parallelized, there must be multiple blocks of Ã in this cache. Thus,

the size of each Ã must be reduced in size by a factor equal to the degree of

parallelization of this loop. The size of Ã is mc× kc, so either or both of these

may be reduced. If we choose to reduce mc, parallelizing this loop is equivalent

to parallelizing the first loop around the micro-kernel. If instead each thread

has its own L2 cache, each block of Ã resides in its own cache, and thus it

would not need to be resized.

Now consider the case where there are multiple L3 caches. If this loop

is parallelized, each thread will pack a different part of the row panel of B̃ into

its own L3 cache. Then a cache coherency protocol must be relied upon to

place every portion of B̃ in each L3 cache. As before, if the architecture does

not provide cache coherency, this duplication of the pieces of B̃ must be done

manually.

6.2.4 The fourth loop around the inner-kernel

Consider Loop 4 in Figure 6.1, illustrated in Figure 6.7. If one paral-

lelizes this second loop around the macro-kernel (indexed by pc), each thread

will be assigned a different block of Ã and a different block of B̃. A problem

when parallelizing this loop is that each thread will update the same block

91

+= pc

pc

Figure 6.7: The fourth loop around the micro-kernel (second loop around
Goto’s inner kernel).

of C, potentially creating race conditions. Thus, parallelizing this loop either

may requires a synchronization mechanism coordinating the threads updating

the same parts of C. Another solution is for each thread to accumulate parts

of AB in its own buffer, with partial accumulations of C summed together

afterwards, as illustrated in Figure 6.8. Loop 4 should only be parallelized

when m and n are small compared to the number of threads so that only by

parallelizing this loop can a satisfactory level of parallelism be achieved. It

is for these reasons that 2.5 or 3D distributed memory matrix multiplication

algorithms [71, 2] parallelize the k dimension for parallelization (in addition

to parallelizing the m and n dimensions).

+=

pc

pc

+
+

Figure 6.8: Parallelization of the pc loop requires local copies of the block of
C to be made, which are summed upon completion of the loop.

92

6.2.5 The outer-most loop

+=

jc jc

Figure 6.9: The fifth (outer) loop around the micro-kernel.

Finally, consider Loop 5 in Figure 6.1, the outermost loop in BLIS,

and illustrated in Figure 6.9. If one parallelizes this loop, each thread will

be assigned a different row panel of B̃, and each thread will share the whole

matrix A which resides in main memory.

Consider the case where there is a single L3 cache. Then the size of

a panel of B̃ must be reduced so that multiple of B̃ will fit in the L3 cache.

If nc is reduced, then this is equivalent to parallelizing the 2nd loop around

the micro-kernel, in terms of how the data is partitioned among threads. If

instead each thread has its own L3 cache, then the size of B̃ will not have to

be altered, as each panel of B̃ will reside in its own cache.

Parallelizing this loop thus may be a good idea on multi-socket systems

where each CPU has a separate L3 cache. Threads parallelizing this loop do

not share any packed buffers of Ã or B̃, so parallelizing this loop is, from a

data-sharing perspective, equivalent to gaining parallelism outside of BLIS.

6.2.6 Parallelism within the micro-kernel

In this section we have considered the micro-kernel to be a black-box

basic unit of computation. We will now discuss parallelizing within it. The

93

micro-kernel is a block dot-product implemented as a loop around rank-1 up-

dates of an mr × nr block of C that is accumulated in registers. Parallelizing

this loop around these rank-1 updates is ill-advised because the threads would

accumulate contributions to the same block of C, and the operation is too

small to amortize the synchronization overheads required to facilitate multiple

threads updating the same data.

One could envision carefully parallezing the m or n dimension in the

micro-kernel. Such parallelism could be described as some combination of

parallelizing the first and second loop around the micro-kernel.

6.3 MMM Parallelization for Intel Xeon Phi KNC

We now discuss how BLIS supports high performance and scalability

on the Xeon Phi architecture.

6.3.1 Architectural Details

The Xeon Phi has 60 cores, each of which has its own 512 KB L2 cache

and 32 KB L1 data cache. Each core has four hardware threads, all of which

share the same L1 cache. A core is capable of dispatching two instructions per

clock cycle, utilizing the core’s two pipelines. One of these may be used to

execute vector floating point instructions or vector memory instructions. The

other may only be used to execute scalar instructions or prefetch instructions.

If peak performance is to be achieved, the instruction pipeline that is capable

of executing floating point operations should be executing a fused multiply

accumulate instruction (FMA) as often as possible. One thread may only

issue one instruction to each pipeline every other clock cycle. Thus, utilizing

two hardware threads is the minimum necessary to fully occupy the floating

94

point unit. Using four hardware threads further alleviates instruction latency

and bandwidth issues [48].

Although these hardware threads may seem similar to the hyper-threading

found on more conventional CPUs, the fact is that hyper-threading is not of-

ten used for high-performance computing applications, and these hardware

threads must be used for peak performance.

6.3.2 The BLIS implementation on the Intel Xeon Phi

Because of the highly parallel nature of the Intel Xeon Phi, the micro-

kernel must be designed while keeping the parallelism gained from the core-

sharing hardware threads in mind. On conventional architectures, micro-

panels of Ã and B̃ are sized such that B̃ resides in the L1 cache, and B̃ is

streamed from memory. However, this regime is not appropriate for the Xeon

Phi. This is due to the fact that with four threads sharing an L1 cache, par-

allelizing in the m and n dimensions means that there must be room for at

least two micro-panels of Ã and two micro-panels of B̃ in the L1 cache. On

the Xeon Phi, to fit so much data into the L1 cache would mean reducing kc
to a point where the cost of updating the mr ×nr block of C is not amortized

by enough computation. Thus no data will reside in the L1 cache.

We now discuss the register and cache blocksizes for the BLIS imple-

mentation of Xeon Phi, as they affect how much parallelism can be gained

from each loop. Various pipeline restrictions for the Xeon Phi mean that its

micro-kernel must either update a 30×8 or 8×30 block of C. For our study, we

have choosen 30× 8. Next, the block of Ã must fit into the 512 KB L2 cache:

mc is chosen to be 120, and kc is chosen to be 240. There is no L3 cache, so nc
is only bounded by main memory, and by the amount of memory we want to

95

use for the temporary buffer holding the panel of B̃. For this reason we choose

nc to be 14400, which is the largest n dimension for any matrix we use for our

experiments.1

6.3.3 Which loops to parallelize

The sheer number of threads (240) and the fact that hardware threads

are organized in a hierarchical manner suggests parallelizing multiple loops.

We use the fork-join model to parallelize multiple loops. When a thread en-

counters a loop with P -way parallelism, it will spawn P children, and those

P threads parallelize that loop instance. The total number of threads is the

product of the number of threads parallelizing each loop. We will now take the

insights from the last section to determine which loops would be appropriate

to parallelize, and to what degree. In this section we will use the name of the

index variable to identify each loop, as shown in Figures 6.1 and 6.3.

• The ir loop: With an mc of 120 and mr of 30, this loop only has four

iterations, thus it does not present a favorable opportunity for paral-

lelization.

• The jr loop: Since nc is 14400, and nr is only 8, this loop provides an

excellent opportunity for parallelism. This is especially true among the

hardware threads. The four hardware threads share an L2 cache, and if

this loop is parallelized among those threads, they will also share a block

of Ã.

1If we instead choose nc to be 7200, performance drops by approximately 2 percent of
the peak of the machine.

96

• The ic loop: Since this loop has steps of 120, and it iterates over all of

m, this loop provides a good opportunity when m is large. Additionally,

since each core of the Xeon Phi has its own L2 cache, parallelizing this

loop is beneficial because the size of Ã will not have to be changed as

long as the loop is not parallelized by threads within a core. If the cores

share an L2 cache, parallelizing this loop would result in multiple blocks

of Ã, each of which would have to be reduced in size since they would

all have to fit into one L2 cache.

• The pc loop: We do not consider this loop for reasons explained in Sec-

tion 6.2.4 above.

• The jc loop: Since the Xeon Phi lacks an L3 cache, this loop provides

no advantage over the jr loop for parallelizing in the n dimension. It

also offers worse spatial locality than the jr loop, since there would be

different buffers of B̃.

We have now identified two loops as opportunities for parallelism on

the Xeon Phi, the jr and ic loops.

6.3.4 Parallelism within cores

It is advantageous for hardware threads on a single core to parallelize

the jr loop. If this is done, then each hardware thread is assigned a different

micro-panel of B̃, and the four threads share the same block of Ã. If the four

hardware threads are synchronized, they will access the same micro-panel of

Ã concurrently. Not only that, if all four threads operate on the same region

of Ã at the same time, one of the threads will load an element of Ã into the L1

cache, and all four threads will use it before it is evicted. Thus, parallelizing

97

the jr loop and synchronizing the four hardware threads will reduce bandwidth

requirements of the micro-kernel. The synchronization of the four hardware

threads is accomplished by periodically executing a barrier. Synchronizing

threads may be important even when threads are located on different cores.

For example, multiple cores conceptually will share a micro-panel of B̃, which

is read into their private L2 caches. If they access the B̃ micro-panel at the

same time, the micro-panel will be read just once out of L3 (or memory) and

replicated using the cache coherence protocol. However, if cores fall out of

synch, a micro-panel of B̃ may be read from main memory multiple times.

This may penalize performance or energy.

For our Xeon Phi experiments, the four threads on a core parallelize

the jr loop, and a barrier is executed every 8 instances of the micro-kernel.

However, we do not enforce any synchronization between cores.

6.3.5 Parallelism between cores

As noted, it is particularly advantageous to parallelize the ic loop be-

tween cores as each core has its own L2 cache. However, if parallelism between

cores is only attained by this loop, performance will be poor when m is small.

Also, all cores will only work with an integer number of full blocks of Ã (where

the size of the Ã is mc× kc) when m is a multiple of 7200. For this reason, we

seek to gain parallelism in both the m and n dimensions. Thus, we parallelize

the jr loop in addition to the ic loop to gain parallelism between cores, even

though this incurs the extra cost of the cache-coherency protocol to duplicate

all of Ã to each L2 cache.

98

0 5000 10000
0

5

10

15

m = n

G
F
LO

P
S/

co
re

Varying m and n (k = 240)

0 200 400 600 800 1000
0

5

10

15

k

Varying k (m = n = 14400)

jr:4 way
ic:15 way; jr:16 way
ic:60 way; jr:4 way

jr:240 way

Figure 6.10: MMM performance using different parallelization schemes within
BLIS on the Intel Xeon Phi. ‘ic:n way’ indicates n-way parallelization of the
third loop (indexed by ic) around the micro-kernel, and ‘jr:n way’ indicates n-
way parallelization of the second loop (indexed by jr) around the micro-kernel.

6.3.6 Performance results

Given that (1) each core can issue one floating point multiply-accumulate

instruction per clock cycle, and (2) the SIMD vector length for double-precision

real elements is 8, each core is capable of executing 16 floating point operations

per cycle, where a floating point operation is either a floating point multiply

or addition. At 1.1 GHz, this corresponds to a peak of 17.6 GFLOPS per core,

or 1056 GFLOPS for 60 cores. In the performance results presented in this

paper, the top of each graph represents the theoretical peak of that machine.

Figure 6.10 compares the performance of different parallelization schemes

within BLIS on the Xeon Phi. There are four parallelization schemes pre-

sented. They are labeled with how much parallelism was gained from the ic

99

0 5000 10000
0

5

10

15

m = n

G
F
LO

P
S/

co
re

Varying m and n (k = 240)

0 200 400 600 800 1000
0

5

10

15

k

Varying k. (m = n = 14400)

BLIS # cores = 1
BLIS # cores = 60
MKL # cores = 1
MKL # cores = 60
BLIS Divotless

Figure 6.11: MMM performance comparision of BLIS and MKL on the Intel
Xeon Phi KNC.

and jr loops. In all cases, parallelization within a core is done by parallelizing

the jr loop. Single-thread results are not presented, as such results would be

meaningless on the Xeon Phi.

The case labeled ‘jr: 240 way’, where all parallelism is gained from the

jr loop, yields very poor performance. Even when n = 14400, which is the

maximum tested (and a rather large problem size), each thread is only multi-

plying each Ã with seven or eight micro-panels of B̃. In this case, not enough

time is spent in computation to amortize the packing of Ã. Additionally, Ã

is packed by all threads and then the cache coherency protocol duplicates all

micro-panels of Ã among the threads (albeit at some cost due to extra memory

traffic). Finally, Ã is rather small compared to the number of threads, since

it is only 240 × 120. A relatively small block of Ã means that there is less

opportunity for parallelism in the packing routine. This makes load balancing

100

more difficult, as some threads will finish packing before others and then sit

idle.

Next consider the case labeled ‘ic:60 way; jr:4 way’. This is the case

where parallelism between cores is gained from the ic loop, and it has good

performance when m is large. However, load balancing issues arise when mr

multiplied by the number of threads parallelizing the ic loop does not divide

m (that is, when m is not divisible by 1800). This is rooted in the mr × nr
micro-kernel’s status as the basic unit of computation. Now consider the case

labeled ‘ic: 15; jr:16’. This case ramps up more smoothly, especially when m

and n are small.

In Figure 6.11, we compare the best BLIS implementation against In-

tel’s Math Kernel Library (MKL), which is a highly-tuned implementation of

the BLAS. We note that MKL’s performance has improved since these exper-

iments were originally performed, in 2013. For the top graph, we compare the

‘ic:15 way; jr:16 way’ scheme against MKL when m and n vary. For the bot-

tom graph, we use the ‘ic:60 way; jr:4 way’ scheme, since it performs slightly

better when m is large. This case is particularly favorable for this paralleliza-

tion scheme because each thread is given an integer number of blocks of Ã.

This only happens when m is divisible by 7200.

In the bottom graph of Figure 6.11, when both m and n are fixed to

14400, notice that there are ‘divots’ that occur when k is very slightly larger

than kc, which is 240 in the BLIS implementation of gemm, and evidently

in the MKL implementation of gemm as well. When k is just slightly larger

than a multiple of 240, an integer number of rank-k updates will be performed

with the optimal blocksize kc, and one rank-k update will be performed with a

smaller rank. The rank-k update with a small value of k is expensive because

101

in each micro-kernel call, an mr × nr block of C must be both read from

and written to main memory. When k is small, this update of the mr × nr
submatrix of C is not amortized by enough computation. It is more efficient

to perform a single rank-k update with a k that is larger than the optimal

kc than to perform a rank-k update with the optimal kc followed by a rank-k

update with a very small value of k. This optimization is shown in the curve

in Figure 6.11 labeled “BLIS Divotless”.

Figure 6.11 shows BLIS attaining very similar performance to that of

Intel’s highly-tuned MKL, falling short by only one or two percentage points

from the achieved performance of the Xeon Phi. We also demonstrate great

scaling results when using all 60 cores of the machine. Additionally, we demon-

strate that the performance ‘divots’ that occur in both MKL and BLIS when

k is slightly larger than some multiple of 240 can be eliminated.

6.4 MMM Parallelization for IBM PowerPC A/2

We now discuss how BLIS supports high performance and scalability

on the IBM Blue Gene/Q PowerPC A2 architecture [42].

6.4.1 Architectural Details

The Blue Gene/Q PowerPC A2 processor has 16 cores available for use

by applications. Much like the Intel Xeon Phi, each core is capable of using

up to four hardware threads, each with its own register file. The PowerPC

A2 supports the QPX instruction set, which supports SIMD vectors of length

four for double-precision real elements. QPX allows fused multiply-accumulate

instructions, operating on SIMD vectors of length four. This lets the A2

execute 8 flops per cycle.

102

The 16 cores of BGQ that can be used for gemm share a single 32 MB

L2 cache. This cache is divided into 2 MB slices. When multiple threads are

simultaneously reading from the same slice, there is some contention between

the threads. Thus there is a cost to having multiple threads access the same

part of Ã at the same time. The L2 cache has a latency of 82 clock cycles and

128 byte cache lines.

Each core has its own L1 prefetch, L1 instruction, and L1 data cache.

The L1 prefetch cache contains the data prefetched by the stream prefetcher

and has a capacity of 4 KB [23]. It has a latency of 24 clock cycles and a cache

line size of 128 byes. The L1 data cache has a capacity of 16 KB, and a cache

line size of 64 bytes. It has a latency of 6 clock cycles [34].

The PowerPC A2 has two pipelines. The AXU pipeline is used to exe-

cute QPX floating point operations. The XU pipeline can be used to execute

memory and scalar operations. Each clock cycle, a hardware thread is allowed

to dispatch one instruction to one of these pipelines. In order for the A2 to be

dispatching a floating point instruction each clock cycle, every instruction must

either execute on the XU pipeline, or it must be a floating point instruction.

Additionally, since there are inevitably some instructions that are executed on

the XU pipeline, we use four hardware threads so that there will usually be

an AXU instruction available to dispatch alongside each XU instruction.

6.4.2 The BLIS implementation on the IBM PowerPC A2

As on the Intel Xeon Phi, Ã and the sliver of B̃ reside in the L2 cache

and no data resides in the L1 cache. (This amount of L1 cache per thread on

the A2 is half that of the Xeon Phi.)

For the BLIS PowerPC A2 implementation, we have chosen mr and

103

nr to both be 8. The block of Ã takes up approximately half of the 32 MB

L2 cache, and in the BLIS implementation, mc is 1024 and kc is 2048. The

PowerPC A2 does not have an L3 cache and thus nc is limited by the size of

memory; therefore, we have choosen a rather large value of nc = 10240.

6.4.3 Which loop to parallelize

While there are fewer threads to use on the PowerPC A2 than on the

Xeon Phi, 64 hardware threads is still enough to require the parallelization

of multiple loops. Again, we refer to each loop by the name of its indexing

variable.

• The ir loop: With an mc of 1024 and mr of 8, this loop has many

iterations. Thus, unlike the Intel Xeon Phi, the first loop around the

micro-kernel presents an excellent opportunity for parallelism.

• The jr loop: Since nc is large and nr is only 8, this loop also provides an

excellent opportunity for parallelism. However when threads parallelize

this loop, they share the same Ã, and may access the same portions of

Ã concurrently. This poses problems when it causes too many threads

to access the same 2 MB portion of the L2 cache simultaneously.

• The ic loop: Since all threads share the same L2 cache, this loop has

similar advantages as the ir loop. If multiple threads parallelize this

loop, Ã will have to be reduced in size. This reduction in size reduces

the computation that amortizes the movement of each sliver of B̃ into

the L2 cache. If we reduce mc, then parallelizing the ic loop reduces this

cost by the same amount as parallelizing ir.

104

• The pc loop: Once again, we do not consider this loop for parallelization.

• The jc loop: This loop has the same advantages and disadvantages as the

jr loop, except that this loop should not be parallelized among threads

that share a core, since they will not then share a block of Ã.

Since the L2 cache is shared, and there is no L3 cache, our choices

for the PowerPC A2 is between parallelizing either the ic or ir loops, and

either the jc or jr loops. In both of these cases, we prefer the inner loops to

the outer loops. The reason for this is two-fold. Firstly, it is convenient to

not change any of the cache blocking sizes from the serial implementation of

BLIS when parallelizing. But more importantly, parallelizing the inner loops

instead of the outer loops engenders better spatial locality, as there will be one

contiguous block of memory, instead of several blocks of memory that may not

be contiguous.

6.4.4 Performance results

Like the Xeon Phi, each core of the PowerPC A2 can issue one double-

precision fused multiply-accumulate instrucion each clock cycle. The SIMD

vector length for double-precision arithmetic is 4, so each core can execute 8

floating point operations per cycle. At 1.6 GHz, a single core has a double-

precision peak performance of 12.8 GFLOPS. This becomes the top line in

Figures 6.12 and 6.13. The theoretical peak with all 16 cores is 204.8 GFLOPS.

Figure 6.12 compares the performance of different parallelization schemes

within BLIS on the PowerPC A2. It is labeled similarly to Figure 6.10, de-

scribed in the previous section. All parallelization schemes have good per-

formance when m and n are large, but the schemes that only parallelize in

105

0 2000 4000 6000 800010000
0

5

10

m = n

G
F
LO

P
S/

co
re

Varying m and n (k = 2048)

0 1000 2000 3000 4000
0

5

10

k

Varying k (m = n = 10240)

jr:2 way; ir:2 way
jr:8 way; ir:8 way

ir:64 way
jr:64 way

Figure 6.12: MMM with different parallelization schemes for the IBM Pow-
erPC A2. ‘jr:n way’ indicates n-way parallelization of the second loop (indexed
by jr) around the micro-kernel, and ‘ir:n way’ indicates n-way parallelization
of the first loop (indexed by ir) around the micro-kernel.

either the m or the n dimensions have performance that varies according to

the amount of load balancing. Proper load balancing for the ‘ir:64 way’ case is

only achieved when m is divisible by 512, and similarly, proper load balancing

for the ‘jr:64 way’ case is only achieved when n is divisible by 512.

The performance of BLIS is compared with that of ESSL in Figure 6.13.

The parallelization scheme used for this comparision is the one labeled ‘jr:8

way; ir:8 way’. Parallel performance scales perfectly to 16 cores for large m

and n.

106

0 2000 4000 6000 800010000
0

5

10

m = n

G
F
LO

P
S/

co
re

Varying m and n (k = 2048)

0 1000 2000 3000 4000
0

5

10

k

Varying k (m = n = 10240)

BLIS 1 Core
BLIS 16 Cores
ESSL 1 Core

ESSL 16 Cores

Figure 6.13: MMM performance comparision of BLIS and ESSL on the Pow-
erPC A2 Blue Gene Q.

6.5 Paralleling the family of algorithms

We now turn our attention to how parallelism can be incorporated into

the family of algorithms introduced in Chapter 5 in a cache-aware manner. We

will start by thinking about the algorithm that is encountered at the Lh cache,

we will then consider hazards to I/O costs that can arise during parallelism

(as we saw when parallelizing Goto’s Algorithm within BLIS).

We will suppose there are N threads that are cooperatively executing

the Lh subproblem. Recall from Chapter 5 that the Lh subproblem has two

small dimensions and one large, with the small and roughly square matrix

residing in the Lh cache and the other two operands are streamed in from lower

levels of the memory hierarchy. Then two loops partition the Lh subproblem,

exposing the Lh−1 subproblem.

We will now identify several hazards that arise when parallelizing the

107

Lh subproblem. Some of these hazards come from different threads working

on different data. Threads working on different data can mean that more data

must fit into cache, leading to reduced blocksizes and higher I/O costs. Other

hazards can come from different threads working on the same data.

6.5.1 Parallelizing outside the Lh−1 subproblem

We now consider hazards that can arize when parallelizing the Lh sub-

problem such that each thread works on a distinct Lh−1 resident block. This

happens if either the Lh−1 inner and outer loops are parallelized. This can be

thought of as a more coarse grained way of parallelizing the Lh subproblem.

Shared Lh−1 cache. Suppose that theN threads share an Lh−1 cache. Then,

the size of the Lh−1 resident blocks must be adjusted so that N blocks can fit

into the Lh−1 cache. This could increase the I/O cost into the Lh−1 cache by

factor
√
N . This suggests that parallelizing outside of the Lh−1 subproblem

be done only if threads have independent Lh−1 caches.

This hazard happens for instance within Goto’s Algorithm if all threads

share an L2 cache, and they parallelize the third loop around the micro-kernel.

Then the size of Ã must be modified so that N of them must fit into the L2

cache.

Exacerbating Lh versus Lh−1 I/O tradeoffs. Remember that when op-

timizing for the I/O cost for both the Lh and Lh−1 caches, tradeoffs occur. In

particular, for LRU caches, the panels of the Lh streamed matrices that are

exposed by the Lh−1 outer loop must fit into the Lh cache along with the Lh
resident matrix.

108

If N threads parallelize the Lh−1 outer loop, and the N threads all

share an Lh cache, then N such panels of each of the streamed matrices must

fit into the Lh cache. One can parallelize the Lh−1 inner loop to mitigate this

issue, but note that there is generally less parallelism available in the Lh−1
inner loop.

This hazard happens for instance within Goto’s Algorithm if all threads

share an L2 cache, and they parallelize the second loop around the micro-

kernel. Then the size of Ã and the size of the micro-panels of B̃ must be

modified so that N of the micro-panels must fit into cache along with Ã. Note

that this hazard was not thoroughly explored within the context of Goto’s

Algorithm in this chapter.

6.5.2 Parallelizing within the Lh−1 subproblem

We now consider hazards that can arise when parallelizing loops within

the Lh−1 subproblem. In this case, each thread is working on the same Lh−1
resident block. This can be thought of as a more fine grained way of paral-

lelizing the Lh subproblem.

Unshared Lh−1 cache. If different threads each have their own Lh−1 cache,

parallelizing inside of the Lh−1 subproblem can lead to worse amortization of

the I/O cost assocated with moving the Lh−1 resident block into the Lh−1
cache. In the serial case, the Lh−1 block is moved into cache, and this data

movement is amortized by the computation that happens during the Lh−1
subproblem. In the parallel case, the Lh−1 block is moved into multiple caches,

and this is amortized over the same amount of computation. This movement

of Lh−1 into multiple caches intstead of a single cache represents a greater I/O

109

cost.

This hazard happens for instance within Goto’s Algorithm if each thread

has its own L2 cache, and they parallelize the second loop around the micro-

kernel. Then one Ã must be moved into multiple caches in order to execute

the macro-kernel instead of just into one of those caches.

Increased synchronization costs. Parallelizing at a finer granularity can

result in more frequent synchronization, and barriers are expensive.

6.5.3 Summary

As one might have noticed while reading the potential hazards above

and how to avoid them, there is no way to avoid all of the hazards. An engineer

must carefully weigh their options and decide which loops to parallelize and

therefore how much data should be shared between threads.

6.6 Summary

In this chapter, we described the five loops around the BLIS micro-

kernel that implement Goto’s Algorithm within the BLIS framework. We

discussed where, during the execution of the micro-kernel, data resides and

used this to motivate insights about opportunities for parallelizing the various

loops. We discussed how parallelizing the different loops affects data sharing

sharing and amortization of data movement. These insights were then applied

to the parallelization of this operation on two architectures that require many

threads to achieve peak performance: The IBM Blue Gene/Q and the Intel

Xeon Phi. We also showed that parallelizing multiple loops is a key to high

performance and scalability.

110

At the time that these experiments were performed (in 2013), it was

a curiosity that on both of these architectures the L1 cache is too small to

support the multiple hardware threads that are required to attain near-peak

performance. Now, within the family of algorithms introduced in Chapter 5,

we that it is simply not convenient for the L2 guest matrix to be placed within

the L1 cache for these architectures.

The parallelism of the loops that implement Goto’s Algorithm has been

extended to all of the level-3 BLAS operations within BLIS. The same lessons

apply to those operations, but one must keep in mind that for the operations

TRSM and TRMM, parallelism in the m dimension is tricky, as there are

dependencies along it.

111

Chapter 7

Conclusion

In this work, we have identified three algorithms for MMM that when

considering a single layer of memory in a hierarchical memory architecture,

are optimal in terms of the number of reads from slower layers of the memory

hierarchy. Each of these algorithms is associated with a particular shape of

MMM. Applying these algorithms at different levels of the memory hierarchy

has allowed us to derive practical algorithms for sequential and parallel MMM

on architectures with hierarchies with multiple layers.

7.1 Results

In this dissertation several novel contributions have been reported.

Lower bounds for MMM. We have proven new theoretical I/O lower

bounds for MMM for machines with a single level of fast memory. According

to this lower bound, any classical MMM operation must incur an I/O cost of

at least 2mnk√
S
, where S is the size of fast memory. We use the same general

strategy for proving these I/O lower bounds as many other papers, but we have

made tactical improvements to the lower bound proofs that have allowed us to

find the correct coefficient on the leading term of the I/O lower bound. The

first of these tactical improvements is that we assumed that computation is

performed via FMA instructions, allowing us to account for the cost associated

112

with reading elements of the matrix C from slow memory. The second of

these tactical improvements is a generalization of the proof strategy. The

commonly used I/O lower bound proof strategy, first introduced in [46], breaks

computation down into phases, where each phase has the same I/O cost. Then,

a lower bound on the number of phases gives an I/O lower bound. We showed

that by allowing the I/O cost of each phase to be a variable, instead of being

fixed to the size of fast memory, one can obtain an improved I/O lower bound.

A family of algorithms for MMM. We described and analyzed a pre-

viously known algorithm, called Resident C, showing that it attains the I/O

lower bound and thus is optimal. This also proves that the I/O lower bounds

are tight. We also described to other algorithms, Resident A and B, that are

optimal with respect to the number of reads from slow memory. We then

derived a family of algorithms for a hierarchical memory architecture with

multiple levels of fast memory. By composing two loops per level of cache,

one of Resident A, B, and C can be encountered at each level of the memory

hierarchy. We analyzed the tradeoffs between the I/O costs of adjacent levels

of cache that arise from this family of algorithms, showing that it not always

benefitial to optimize for the I/O cost at each level of the memory hierarchy.

From this, we expanded the family of algorithms to allow more flexibility in

rectifying these tradeoffs, and in the process the state-of-the-art Goto’s Algo-

rithm became a part of this family of algorithms. Then, we developed practical

algorithms from this family that improved greatly upon the state-of-the-art in

terms of I/O cost and that greatly outperform state-of-the-art algorithms when

the bandwidth to main memory is low.

113

Cache-aware loop-based parallelism. We devised a loop-based paral-

lelization scheme for our family of algorithms and applied this scheme to the

BLIS implementation of Goto’s Algorithm. The key observation is that the

parallelization must be aware of how caches are shared by threads, and thus

the threads must share or not share data accordingly. We analyzed the prop-

erties of the loops within BLIS and the effects of parallelizing each of these

loops. We then applied this loop-based parallelism to obtain practical perfor-

mance and good scalability on the manycore architectures the Intel Xeon Phi

Knight’s Corner and the IBM Blue Gene/Q.

7.2 Future work

There are several avenues of research suggested by this dissertation.

Lower bounds for other operations. The new techniques introduced by

this work can be applied to other operations as well. With these techniques,

the lower bound strategy we have used can be used to improve the coefficient

on the I/O lower bounds for a wide variety of operations.

New lower bounds proof strategies. While it is true that we have found

the best possible coefficient for I/O lower bounds for MMM when it is per-

formed with FMA instructions, we have come across limitations of this proof

strategy. In our family of algorithms, there are tradeoffs when optimizing for

the I/O cost at adjacent levels of cache. We would like to prove theoretically

whether or not such tradeoffs are necessary. We want to obtain I/O lower

bounds for MMM when it is not performed with FMAs. We also want to ob-

tain tight lower bounds for DLA operations where one operand appears twice

114

in the operation. For example, the BLAS operation triangular matrix-matrix

multiplication is essentially an MMM operation, however because the opera-

tion is B += AB, with B appearing twice, we cannot prove that the coefficient

on the leading term is two.

Real-world application of algorithms For our family of algorithms, in

order to demonstrate a practical benefit over state-of-the-art algorithms, we

artificially lowered the amount of bandwidth to main memory in order to show

a benefit for algorithms that better utilize the L3 and L4 caches. Identifying a

computer architecture where a member of our family of algorithms outperforms

Goto’s Algorithm (be it by better utilizing the L1, L3, or some other cache)

remains future work. Then, while we have described algorithms that optimize

for the aggregate fast memory of several processors, we have not shown a

practical benefit to doing so.

115

Appendices

116

Appendix A

Table of Symbols

α, β, . . . Scalar variables
a, b, . . . Vector variables

A,B, . . .
Matrix variables.

A, B, and C are the canonical operands of MMM.

m,n, k

Matrix dimensions.
A is always m× k.
B is always k × n.
C is always m× n.

L1, L2, . . .
Caches.

Lh+1 is smaller and faster than Lh
S Capacity of fast memory in elements

117

Appendix B

Constrained Global Maximum of
√
xyz

In this appendix, we give details on how the optimal F is determined.

The problem to be solved is

maximize F under the constraints


F ≤ √xyz
0 ≤ x, y, z

x+ y + z ≤ S +M
.

We first observe that if any of x, y, or z is zero, then so is F and hence will

only consider the case where 0 < x, y, z. Also, if x + y + z are strictly less

than S + M , then one of x, y, or z can be increased, thereby increasing F ,

and hence we only need to consider x + y + z = S + M . Finally, given these

constraints we can optimize F =
√
xyz, as long as we check that the result is

a maximum. The constrained problem thus becomes

maximize F =
√
xyz under the constraints

{
0 < x, y, z

x+ y + z = S +M
.

We can use the Lagrange Multiplier method to solve ∇F = λ∇(x + y + z −

(S +M)) for x, y, z. Hence

yz

2
√
xyz

= λ,
xy

2
√
xyz

= λ,
xz

2
√
xyz

= λ, and S +M = x+ y + z.

Since then yz = xy = xz and we know that x, y and z are nonzero, we

deduce that x = y = z and hence S + M = 3x. As a result, the solution is

x = y = z = (S +M)/3. To show that this is a global maximum, we can find

118

the second derivative of F at this point, or we can evaluate F at this point

and any point on the boundary of our region to show that any value on the

boundary is smaller.

We conclude that the global maximum of F is:

F =
S +M

3

√
S +M

3
=

(S +M)
√
S +M

3
√

3

119

Appendix C

Bandwidth requirements for different datatypes

In this section, we analyze the bandwidth requirement for MMM for

different datatypes, where the bandwidth is the rate that reads and writes

happen. According to the lower bound, MMM must have an I/O cost of at

least 2mnk√
S
. For simplicity, we assume that the MMM must have 2mnk√

S
elements

read, as in the Resident C algorithm. Suppose we wish to compute at a rate

of R floating point operations per second. Since MMM requires 2mnk floating

point operations, achieving this rate of computation means that the MMM

must be executed in 2mnk
R

seconds. This imposes a bandwidth requirement of
R√
S
elements per second.

Different datatypes have different sizes. To compare the bandwidth

requirements of different datatypes, we need to express this bandwidth re-

quirement in terms of bytes per second. Suppose a datatype has W bytes per

element. Then the bandwidth requirement for that datatype is RW√
S

bytes per

second. We must also take into account the fact that S is the capacity of

fast memory in terms of the number of elements that it can hold. Suppose

fast memory can hold SB bytes. Then it can hold SB/W elements, and the

bandwidth requirement becomes WR√
SB/W

bytes per second.

With this, we can compare bandwidth costs of different data types.

Suppose that Rs, Rd, Rc and Rz are the rate of computation for the sin-

gle precision, double precision, single precision complex, and double precision

120

Datatype Element Size Rate of computation BW requirement
(bytes) (relative to single) (relative to single)

single 4 1 1
double 8 1/2

√
2

complex 8 1/4
√

2/2
double complex 16 1/4 1

Table C.1: Typical element sizes, computation rate, and bandwidth require-
ments for MMM relative to single precision.

complex datatypes, respectively. When comparing real datatypes, doubling

the size of the datatype often means halving the rate of computation. The

change to the WR term cancels in this case, and the bandwidth requirement

is multiplied by factor
√

2 because the cache can then hold half as many ele-

ments. When comparing real and complex datatypes for the same precision,

often the size of the datatype doubles and the computation rate decreases by

factor four. In this case, the WR term changes by factor 1/2, and the size

of the cache is halved, and the bandwidth requirement is multiplied by factor
√

2/2. Accordingly, we compare bandwidth requirements for single, double,

single precision complex, and double precision complex in Table C.1.

121

Bibliography

[1] R. C. Agarwal, F. Gustavson, and M. Zubair. Exploiting functional

parallelism on Power2 to design high-performance numerical algorithms.

IBM Journal of Research and Development, 38(5), 1994.

[2] R.C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar.

A three-dimensional approach to parallel matrix multiplication. IBM

Journal of Research and Development, 39, 1995.

[3] Alok Aggarwal, Bowen Alpern, Ashok Chandra, and Marc Snir. A model

for hierarchical memory. In Proceedings of the nineteenth annual ACM

symposium on Theory of computing, pages 305–314. ACM, 1987.

[4] Bowen Alpern, Larry Carter, and Ephraim Feig. Uniform memory hier-

archies. In Foundations of Computer Science, 1990. Proceedings., 31st

Annual Symposium on, pages 600–608. IEEE, 1990.

[5] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford,

James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven

Hammarling, Alan McKenney, et al. LAPACK Users’ guide. SIAM,

1999.

[6] Edward Anderson, Zhaojun Bai, Jack Dongarra, Anne Greenbaum, Alan

McKenney, Jeremy Du Croz, Sven Hammerling, James Demmel, C Bischof,

and Danny Sorensen. LAPACK: A portable linear algebra library for

high-performance computers. In Proceedings of the 1990 ACM/IEEE

122

conference on Supercomputing, pages 2–11. IEEE Computer Society Press,

1990.

[7] Greg Baker, John Gunnels, Greg Morrow, Beatrice Riviere, and Robert

Van De Geijn. PLAPACK: High performance through high-level ab-

straction. In Parallel Processing, 1998. Proceedings. 1998 International

Conference on, pages 414–422. IEEE, 1998.

[8] Grey Ballard, E Carson, J Demmel, M Hoemmen, Nicholas Knight, and

Oded Schwartz. Communication lower bounds and optimal algorithms

for numerical linear algebra. Acta Numerica, 23:1–155, 2014.

[9] Grey Ballard, Nicholas Knight, and Kathryn Rouse. Communication

lower bounds for matricized tensor times khatri-rao product. arXiv

preprint arXiv:1708.07401, 2017.

[10] Rodney J Bartlett and Monika Musiał. Coupled-cluster theory in quan-

tum chemistry. Reviews of Modern Physics, 79(1):291, 2007.

[11] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William

Dally, Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sher-

man Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards,

Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley

Williams, Katherine Yelick, Keren Bergman, Shekhar Borkar, Dan Camp-

bell, William Carlson, William Dally, Monty Denneau, Paul Franzon,

William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge,

R. Stanley Williams, and Katherine Yelick. Exascale computing study:

Technology challenges in achieving exascale systems, 2008. Peter Kogge,

Editor and Study Lead.

123

[12] Paolo Bientinesi, John A Gunnels, Margaret E Myers, Enrique S Quintana-

Ortí, and Robert A Geijn. The science of deriving dense linear alge-

bra algorithms. ACM Transactions on Mathematical Software (TOMS),

31(1):1–26, 2005.

[13] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-

Ortí, Tyler Rhodes, Robert A. Geijn, and Field G. Van Zee. Deriving

dense linear algebra libraries. Formal Aspects of Computing, 25(6):933–

945, 2012.

[14] Jeff Bilmes, Krste Asanović, Cheewhye Chin, and Jim Demmel. Opti-

mizing matrix multiply using PHiPAC: a Portable, High-Performance,

ANSI C coding methodology. In Proceedings of International Conference

on Supercomputing, Vienna, Austria, July 1997.

[15] Jeff Bilmes, Krste Asanović, Chee whye Chin, and Jim Demmel. The

PHiPACv1.0 matrix-multiply distribution. Technical Report 98-35, Int’l

Computer Science Institute, October 1998.

[16] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles

Fedak, Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lody-

gensky, Frederic Magniette, et al. MPICH-V: Toward a scalable fault

tolerant MPI for volatile nodes. In Supercomputing, ACM/IEEE 2002

Conference, pages 29–29. IEEE, 2002.

[17] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A

class of parallel tiled linear algebra algorithms for multicore architectures.

Parallel Computing, 35(1):38–53, 2009.

124

[18] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van De Geijn.

Collective communication: theory, practice, and experience. Concur-

rency and Computation: Practice and Experience, 19(13):1749–1783, 2007.

[19] Ernie Chan, Enrique S Quintana-Ortí, Gregorio Quintana-Ortí, and Robert

Van De Geijn. Supermatrix out-of-order scheduling of matrix operations

for smp and multi-core architectures. In Proceedings of the nineteenth

annual ACM symposium on Parallel algorithms and architectures, pages

116–125. ACM, 2007.

[20] Fannie Chen, Loring Craymer, Jeff Deifik, Alvin J Fogel, Daniel S Katz,

Alfred G Silliman Jr, Raphael R Some, Sean Upchurch, Keith Whisnant,

et al. Demonstration of the remote exploration and experimentation

(ree) fault-tolerant parallel-processing supercomputer for spacecraft on-

board scientific data processing. In Dependable Systems and Networks,

2000. DSN 2000. Proceedings International Conference on, pages 367–

372. IEEE, 2000.

[21] Zizhong Chen and Jack Dongarra. Algorithm-based fault tolerance for

fail-stop failures. Parallel and Distributed Systems, IEEE Transactions

on, 19(12):1628–1641, 2008.

[22] Jaeyoung Choi, Jack J Dongarra, Roldan Pozo, and David W Walker.

ScaLAPACK: A scalable linear algebra library for distributed memory

concurrent computers. In Frontiers of Massively Parallel Computation,

1992., Fourth Symposium on the, pages 120–127. IEEE, 1992.

[23] I-Hsin Chung, Changhoan Kim, Hui-Fang Wen, and Guojing Cong. Ap-

plication data prefetching on the IBM Blue Gene/Q supercomputer. In

125

Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, SC ’12, pages 88:1–88:8, Los

Alamitos, CA, USA, 2012.

[24] Jack Dongarra, Jean-François Pineau, Yves Robert, Zhiao Shi, and Frédéric

Vivien. Revisiting matrix product on master-worker platforms. Inter-

national Journal of Foundations of Computer Science, 19(06):1317–1336,

2008.

[25] Jack J Dongarra, James R Bunch, Cleve B Moler, and Gilbert W Stewart.

LINPACK users’ guide. Siam, 1979.

[26] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff.

A set of level 3 basic linear algebra subprograms. ACM Transactions on

Mathematical Software (TOMS), 16(1):1–17, 1990.

[27] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J

Hanson. An extended set of fortran basic linear algebra subprograms.

ACM Trans. Math. Soft, 14(1):1–17, 1988.

[28] Graham E Fagg and Jack J Dongarra. FT-MPI: Fault tolerant MPI,

supporting dynamic applications in a dynamic world. In Recent advances

in parallel virtual machine and message passing interface, pages 346–353.

Springer, 2000.

[29] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachan-

dran. Cache-oblivious algorithms. In Foundations of Computer Science,

1999. 40th Annual Symposium on, pages 285–297. IEEE, 1999.

126

[30] Kyle Gallivan, William Jalby, and Ulrike Meier. The use of BLAS3 in

linear algebra on a parallel processor with a hierarchical memory. SIAM

Journal on Scientific and Statistical Computing, 8(6):1079–1084, 1987.

[31] Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed H Sameh. Impact

of hierarchical memory systems on linear algebra algorithm design. Inter-

national Journal of High Performance Computing Applications, 2(1):12–

48, 1988.

[32] Marc Gamell, Daniel S Katz, Hemanth Kolla, Jacqueline Chen, Scott

Klasky, and Manish Parashar. Exploring automatic, online failure re-

covery for scientific applications at extreme scales. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 895–906. IEEE Press, 2014.

[33] Burton S Garbow. EISPACK – A package of matrix eigensystem routines.

Computer Physics Communications, 7(4):179–184, 1974.

[34] Megan Gilge. IBM system Blue Gene solution: Blue Gene/Q application

development. IBM, June 2013.

[35] Kazushige Goto and Robert van de Geijn. Anatomy of high-performance

matrix multiplication. ACM Transactions on Mathematical Software,

34(3), May 2008.

[36] Kazushige Goto and Robert Van De Geijn. High-performance implemen-

tation of the level-3 blas. ACM Transactions on Mathematical Software

(TOMS), 35(1):4, 2008.

127

[37] J.A. Gunnels, D.S. Katz, E.S. Quintana-Ortí, and R.A. van de Geijn.

Fault-tolerant high-performance matrix multiplication: theory and prac-

tice. In DSN 2001, 2001.

[38] John A. Gunnels. A systematic approach to the design and analysis of

linear algebra algorithms. Ph.D. dissertation. FLAME Working Note

#6. Technical Report TR-2001-44, The University of Texas at Austin,

Department of Computer Sciences, November 2001.

[39] John A Gunnels, Fred G Gustavson, Greg M Henry, and Robert A Van

De Geijn. FLAME: Formal linear algebra methods environment. ACM

Transactions on Mathematical Software (TOMS), 27(4):422–455, 2001.

[40] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family

of high-performance matrix multiplication algorithms. In ICCS ’01, 2001.

[41] Fred G Gustavson. Recursion leads to automatic variable blocking for

dense linear-algebra algorithms. IBM Journal of Research and Develop-

ment, 41(6):737–755, 1997.

[42] Ruud A. Haring, Martin Ohmacht, ThomasW. Fox, Michael K. Gschwind,

David L. Satterfield, Krishnan Sugavanam, Paul W. Coteus, Philip Hei-

delberger, Matthias A. Blumrich, Robert W. Wisniewski, Alan Gara,

George L.-T. Chiu, Peter A. Boyle, Norman H. Chist, and Changhoan

Kim. The IBM Blue Gene/Q compute chip. Micro, IEEE, 32(2):48 –60,

March-April 2012.

[43] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst.

Libxsmm: accelerating small matrix multiplications by runtime code gen-

eration. In Proceedings of the International Conference for High Per-

128

formance Computing, Networking, Storage and Analysis, page 84. IEEE

Press, 2016.

[44] Alexander Heinecke, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy,

Alexander Kobotov, Roman Dubtsov, Greg Henry, Aniruddha G. Shet,

George Chrysos, and Pradeep Dubey. Design and implementation of

the Linpack benchmark for single and multi-node systems based on In-

tel(r) Xeon Phi(tm) coprocessor. In 27th IEEE International Parallel &

Distributed Processing Symposium (IPDPS 2013), 2013.

[45] Greg Henry. BLAS based on block data structures. Technical report,

Cornell University, 1992.

[46] Jia-Wei Hong and Hsiang-Tsung Kung. I/O complexity: The red-blue

pebble game. In Proceedings of the thirteenth annual ACM symposium

on Theory of computing, pages 326–333. ACM, 1981.

[47] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance

for matrix operations. IEEE Trans. Comput., 33(6), 1984.

[48] Intel. Intel Xeon Phi Coprocessor System Software Developers Guide,

June 2013.

[49] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower

bounds for distributed-memory matrix multiplication. Journal of Parallel

and Distributed Computing, 64(9):1017–1026, 2004.

[50] Bo Kågström, Per Ling, and Charles Van Loan. GEMM-based level 3

BLAS: High performance model implementations and performance evalu-

ation benchmark. ACM Transactions on Mathematical Software, 24(3):268–

302, 1998.

129

[51] HT Kung. Memory requirements for balanced computer architectures.

In ACM SIGARCH Computer Architecture News, volume 14, pages 49–

54. IEEE Computer Society Press, 1986.

[52] Monica S Lam, Edward E Rothberg, and Michael E Wolf. The cache per-

formance and optimizations of blocked algorithms. In ACM SIGARCH

Computer Architecture News, volume 19, pages 63–74. ACM, 1991.

[53] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T.

Krogh. Basic linear algebra subprograms for Fortran usage. ACM

Transactions on Mathematical Software (TOMS), 5(3):308–323, 1979.

[54] Jin Li, Anthony Skjellum, and Robert D Falgout. A poly-algorithm

for parallel dense matrix multiplication on two- dimensional process grid

topologies. Master’s thesis, Mississippi State University. Department of

Computer Science., 1996.

[55] Lynn H. Loomis and Hassler Whitney. An inequality related to the

isoperimetric inequality. Bulletin of the American Mathematical Society,

55:961–962, 1949.

[56] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S.

Quintana-Ortí. Analytical modeling is enough for high performance

BLIS. Technical report, Technical report, Department of Computer Sci-

ences, The University of Texas at Austin. Manuscript in progress, 2014.

[57] Tze Meng Low, Francisco D Igual, Tyler M Smith, and Enrique S Quintana-

Ortí. Analytical modeling is enough for high-performance BLIS. ACM

Transactions on Mathematical Software, 43(2):12, 2016.

130

[58] Bryan A. Marker, Field G. Van Zee, Kazushige Goto, Gregorio Quintana-

Ortí, and Robert A. van de Geijn. Toward scalable matrix multiply on

multithreaded architectures. In European Conference on Parallel and

Distributed Computing, pages 748–757, February 2007.

[59] Nicholas D Matsakis and Felix S Klock II. The rust language. In ACM

SIGAda Ada Letters, volume 34, pages 103–104. ACM, 2014.

[60] Devin A Matthews. High-performance tensor contraction without blas.

arXiv preprint arXiv:1607.00291, 2016.

[61] Devin A Matthews and John F Stanton. Non-orthogonal spin-adaptation

of coupled cluster methods: A new implementation of methods including

quadruple excitations. The Journal of chemical physics, 142(6):064108,

2015.

[62] Elmar Peise and Paolo Bientinesi. Recursive algorithms for dense linear

algebra: The relapack collection. arXiv preprint arXiv:1602.06763, 2016.

[63] Jack Poulson, Bryan Marker, Robert A Van de Geijn, Jeff R Hammond,

and Nichols A Romero. Elemental: A new framework for distributed

memory dense matrix computations. ACM Transactions on Mathemati-

cal Software (TOMS), 39(2):13, 2013.

[64] John E Savage. Extending the hong-kung model to memory hierarchies.

In Computing and Combinatorics, pages 270–281. Springer, 1995.

[65] Martin D Schatz, Jack Poulson, and Robert A van de Geijn. Scalable

universal matrix multiplication algorithms: 2d and 3d variations on a

theme. submitted to ACM Transactions on Mathematical Software, pages

1–30, 2012.

131

[66] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing

technology challenges. In International Conference on High Performance

Computing for Computational Science, pages 1–25. Springer, 2010.

[67] Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Ham-

mond, and Field G. Van Zee. Anatomy of high-performance many-

threaded matrix multiplication. In 28th IEEE International Parallel &

Distributed Processing Symposium (IPDPS 2014), pages 1049–1059, 2014.

[68] Tyler M Smith and Robert A van de Geijn. Pushing the bounds for

matrix-matrix multiplication. arXiv preprint arXiv:1702.02017, 2017.

[69] Tyler M Smith, Robert A van de Geijn, Mikhail Smelyanskiy, and En-

rique S Quintana-Ortí. Towards ABFT for BLIS GEMM. Technical

Report TR-15-05, The University of Texas at Austin., 2015.

[70] Edgar Solomonik and James Demmel. Communication-optimal parallel

2.5 d matrix multiplication and lu factorization algorithms. In European

Conference on Parallel Processing, pages 90–109. Springer, 2011.

[71] Edgar Solomonik and James Demmel. Communication-optimal parallel

2.5D matrix multiplication and LU factorization algorithms. In Proceed-

ings of the 17th international conference on Parallel processing - Volume

Part II, Euro-Par’11, Berlin, Heidelberg, 2011. Springer-Verlag.

[72] Michael Turmon, Robert Granat, and Daniel S. Katz. Software-implemented

fault detection for high-performance space applications. In DSN 2000,

2000.

[73] Michael Turmon, Robert Granat, and Daniel S Katz. Software-implemented

fault detection for high-performance space applications. In Dependable

132

Systems and Networks, 2000. DSN 2000. Proceedings International Con-

ference on, pages 107–116. IEEE, 2000.

[74] Michael Turmon, Robert Granat, Daniel S Katz, and John Z Lou. Tests

and tolerances for high-performance software-implemehted fault detec-

tion. Computers, IEEE Transactions on, 52(5):579–591, 2003.

[75] Robert A. van de Geijn and Enrique S. Quintana-Ortí. The Science of

Programming Matrix Computations. lulu.com, 2008.

[76] Field Van Zee, Ernie Chan, Robert van de Geijn, Enrique Quintana, and

Gregorio Quintana-Orti. Introducing: The libflame library for dense

matrix computations. Computing in science & engineering, 2009.

[77] Field G. Van Zee. libflame: The Complete Reference. lulu.com, 2009.

[78] Field G Van Zee and Tyler M Smith. Inducing complex matrix multipli-

cation via the 3M and 4M methods FLAME Working Note# 81. 2016.

Submitted to ACM Trans. Math. Softw.

[79] Field G. Van Zee, Tyler M. Smith, Bryan Marker Bryan, Tze Meng Low,

Robert van de Geijn, Francisco D. Igual, Mikhail Smelyanskiy, Xianyi

Zhang, Michael Kistler, Vernon Austel, John Gunnels, and Lee Killough.

The BLIS framework: Experiments in portability. ACM Transactions on

Mathematical Software, 42(2):12, 2016.

[80] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework for

rapidly instantiating BLAS functionality. ACM Transactions on Mathe-

matical Software, 41(3), 2015.

133

[81] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. Augem: auto-

matically generate high performance dense linear algebra kernels on x86

cpus. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, page 25. ACM,

2013.

[82] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear

algebra software. In Proceedings of SC’98, 1998.

[83] Samuel Williams, AndrewWaterman, and David Patterson. Roofline: An

insightful visual performance model for multicore architectures. Commu-

nications of the ACM, 52(4):65–76, 2009.

[84] Panruo Wu and Zizhong Chen. Ft-scalapack: Correcting soft errors on-

line for scalapack Cholesky, QR, and LU factorization routines. In Pro-

ceedings of the 23rd international symposium on High-performance paral-

lel and distributed computing, pages 49–60. ACM, 2014.

[85] Panruo Wu, Chong Ding, Longxiang Chen, Feng Gao, Teresa Davies,

Christer Karlsson, and Zizhong Chen. Fault tolerant matrix-matrix

multiplication: correcting soft errors on-line. In Proceedings of the sec-

ond workshop on Scalable algorithms for large-scale systems, pages 25–28.

ACM, 2011.

[86] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-driven level 3

BLAS performance optimization on Loongson 3A processor. In 2012

IEEE 18th International Conference on Parallel and Distributed Systems

(ICPADS), 2012.

134

[87] Kamen Yotov, Xiaoming Li, Gang Ren, MJS Garzaran, David Padua,

Keshav Pingali, and Paul Stodghill. Is search really necessary to generate

high-performance BLAS? Proceedings of the IEEE, 93(2):358–386, 2005.

[88] Field G Van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A Geijn.

Scalable parallelization of flame code via the workqueuing model. ACM

Transactions on Mathematical Software (TOMS), 34(2):10, 2008.

135

Vita

Tyler Michael Smith was born in Silvis, Illinois on 12 April 1989, the

son of Thomas Michael Smith and Sherri Lee Smith. He received Bachelor of

Science degrees in Computer Science, Mathematics, and Statistics from Purdue

University in May 2011. He began his graduate studies at the University of

Texas at Austin in September 2011.

Permanent address: 507 W 33rd St
Austin, Texas 78705

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

136

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Motivation
	Problem definition
	Contributions
	Organization

	Chapter 2. Related Work
	A history of linear algebra packages
	Literature on theoretical I/O lower bounds
	Literature on practical MMM
	Strategy and tactics for practical MMM

	State-of-the-art matrix multiplication
	A brief description of Goto's algorithm
	BLIS

	Chapter 3. I/O Lower Bounds
	Introduction
	Problem Definition
	Prior approaches
	Our approach

	Lower Bound Proof
	High-level strategy
	Employing the Loomis-Whitney inequality
	A lower bound for C := A B + C
	Improving the lower bound for C := AB

	Summary

	Chapter 4. Optimal Algorithms or: The Lower Bound is Tight
	Introduction
	Optimal and read-optimal Algorithms
	Algorithms for one level of cache
	Algorithms for different shapes of MMM
	A balancing act

	Summary

	Chapter 5. A Family of Algorithms for Multiple Levels of Cache
	Introduction
	A Family of Algorithms
	The outer loop for the Lh-1 cache
	The inner loop for the Lh-1 cache
	Classifying matrix partitions.
	Special cases for the family of algorithms

	Multilevel Cache Tradeoffs
	Impact of optimizing for the Lh cache on the Lh-1 I/O cost
	Impact of optimizing for Lh-1 on the Lh I/O cost
	Skipping caches

	Experiments
	Experimental setup
	Optimizing for the L3 cache
	Optimizing for the L4 cache
	Algorithms for different shapes of matrices

	Summary

	Chapter 6. Cache Aware Multithreaded Parallelization
	Introduction
	Parallelization of loops within Goto's Algorithm
	The first loop around the micro-kernel
	The second loop around the micro-kernel
	The third loop around the inner-kernel
	The fourth loop around the inner-kernel
	The outer-most loop
	Parallelism within the micro-kernel

	MMM Parallelization for Intel Xeon Phi KNC
	Architectural Details
	The BLIS implementation on the Intel Xeon Phi
	Which loops to parallelize
	Parallelism within cores
	Parallelism between cores
	Performance results

	MMM Parallelization for IBM PowerPC A/2
	Architectural Details
	The BLIS implementation on the IBM PowerPC A2
	Which loop to parallelize
	Performance results

	Paralleling the family of algorithms
	Parallelizing outside the Lh-1 subproblem
	Parallelizing within the Lh-1 subproblem
	Summary

	Summary

	Chapter 7. Conclusion
	Results
	Future work

	Appendices
	Appendix A. Table of Symbols
	Appendix B. Constrained Global Maximum of xyz
	Appendix C. Bandwidth requirements for different datatypes
	Bibliography
	Vita

